[go: up one dir, main page]

JP5249563B2 - Toilet seat temperature controller - Google Patents

Toilet seat temperature controller Download PDF

Info

Publication number
JP5249563B2
JP5249563B2 JP2007306568A JP2007306568A JP5249563B2 JP 5249563 B2 JP5249563 B2 JP 5249563B2 JP 2007306568 A JP2007306568 A JP 2007306568A JP 2007306568 A JP2007306568 A JP 2007306568A JP 5249563 B2 JP5249563 B2 JP 5249563B2
Authority
JP
Japan
Prior art keywords
toilet seat
resistance
heaters
heater
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007306568A
Other languages
Japanese (ja)
Other versions
JP2009125494A (en
Inventor
研治 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007306568A priority Critical patent/JP5249563B2/en
Publication of JP2009125494A publication Critical patent/JP2009125494A/en
Application granted granted Critical
Publication of JP5249563B2 publication Critical patent/JP5249563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toilet Supplies (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、便座表面を加熱・暖房するためのAC抵抗負荷を通電制御してAC抵抗負荷を所定の設定温度に制御するための便座温度制御装置に関するものである。   The present invention relates to a toilet seat temperature control apparatus for controlling energization of an AC resistance load for heating and heating a toilet seat surface to control the AC resistance load to a predetermined set temperature.

従来から、便座表面を加熱・暖房するヒータを便座内部に収納した暖房便座において、高い熱量のヒータを低い熱量にて使用する際には、一般的にトライアックによる位相制御が行なわれている(例えば、特許文献1参照)。   Conventionally, in a heated toilet seat in which a heater that heats and heats the toilet seat surface is housed in the toilet seat, when using a high heat amount heater at a low heat amount, phase control by triac is generally performed (for example, , See Patent Document 1).

図8(a)は相対的に熱量の大きい単一のヒータ12とトライアック5とを商用交流電源3に直列に接続した回路構造の一例を示し、図8(b)はヒータ12を低い熱量で使用する場合のトライアック5による位相制御の一例を示しており、トライアックの点弧タイミングを早めることによってヒータ12への投入熱量(投入ワット数)をある程度確保できるが、位相制御に使用するトライアック5はその動作特性上、突入電流が大きく、ヒータ電流の立ち上がりが急峻となる。図9は電流波形推移の一例であり、図中のAは立ち上がり時、Bは保温時、Cは加温時をそれぞれ示している。このように、特に立ち上がり時Aに突入電流が大きくなることで雑音端子電圧や電源高調波などのエミッション(EMI)性能の悪化を招くという問題がある。ここでいうエミッション性能とは、ヒータ12が出す電磁界ノイズを低く抑えることができる性能のことであり、該性能の悪化は、制御回路や周辺の電気機器等の故障原因となる。なお、トライアック5の点弧タイミングを図8(b)の点弧タイミングよりもさらに遅らせることで電流ピーク値を小さくできるが、この場合、電流ピーク値の低下に伴いヒータ12の投入熱量が低下してしまうことになる。なお図8(b)中のT0は人体検知センサからの信号を受けた時点であり、点弧タイミングを算出する起点である。 FIG. 8A shows an example of a circuit structure in which a single heater 12 having a relatively large amount of heat and a triac 5 are connected in series to the commercial AC power source 3, and FIG. 8B shows that the heater 12 has a low amount of heat. shows an example of the phase control by the tRIAC 5 when used, to some extent can be secured heat input to the heater 12 (input watts) by advancing the ignition timing point of the triac 5, triac 5 to be used for phase control Due to its operating characteristics, the inrush current is large and the rise of the heater current is steep. FIG. 9 shows an example of the current waveform transition. In the figure, A indicates the rise time, B indicates the warming time, and C indicates the warming time. In this way, there is a problem that the inrush current becomes large particularly at the time of rising A, thereby causing deterioration of emission (EMI) performance such as noise terminal voltage and power supply harmonics. The emission performance referred to here is a performance that can suppress the electromagnetic field noise generated by the heater 12 to a low level, and the deterioration of the performance causes a failure of the control circuit and peripheral electric devices. Note that the current peak value can be reduced by further delaying the ignition timing of the triac 5 than the ignition timing of FIG. 8B, but in this case, the amount of heat input to the heater 12 decreases as the current peak value decreases. It will end up. In addition, T0 in FIG.8 (b) is a time of receiving the signal from a human body detection sensor, and is a starting point which calculates ignition timing.

そこで、立ち上がり波形を緩和する方法としてコイルを使用することで、ある程度の投入熱量を確保しつつエミッション性能を向上させることが可能であるが、この場合、ヒータ12が大型化するほど、つまり、必要な熱量が大きくなるほどコイルに必要なインダクタンスも大きくなり、サイズやコストの面でデメリットも多かった。   Therefore, by using a coil as a method of relaxing the rising waveform, it is possible to improve the emission performance while ensuring a certain amount of input heat. In this case, the larger the heater 12, the more necessary it is. The greater the amount of heat, the greater the inductance required for the coil, and there were many disadvantages in terms of size and cost.

また、ヒータ12として、例えばハロゲンヒータなどの大きな温度変化特性をもつものを使用する場合、電圧印加直後はハロゲンヒータの温度が低いため、温度上昇後より大きな電流が流れるようになり、その値はハロゲンヒータの使用温度範囲にもよるが、電源容量が小さい場合は電圧降下が起こるなどの弊害が生じるおそれがある。これを防ぐ方法として、例えば部分的に熱量を投入する位相制御や半波通電などにより予備加熱時間を設けて、ハロゲンヒータの温度をあげ、抵抗が大きくなってから通電する方法が考えられるが、上記エミッション性能を達成するためには、予備加熱時の通電率に上限があり、このためハロゲンヒータの早い温度立ち上がりを実現することが困難となる。
特開2006−305344号公報
In addition, when a heater having a large temperature change characteristic such as a halogen heater is used as the heater 12, since the temperature of the halogen heater is low immediately after voltage application, a larger current flows after the temperature rise, and the value is Although depending on the operating temperature range of the halogen heater, when the power source capacity is small, there is a possibility that a bad effect such as a voltage drop may occur. As a method for preventing this, for example, a method of energizing after increasing the temperature of the halogen heater by increasing the temperature of the halogen heater by providing a preliminary heating time by phase control or half-wave energization that partially inputs heat, In order to achieve the above-mentioned emission performance, there is an upper limit to the energization rate at the time of preheating, which makes it difficult to realize a rapid temperature rise of the halogen heater.
JP 2006-305344 A

本発明は上記の従来の問題点に鑑みて発明したものであって、電流ピーク値を下げることで突入電流を軽減でき、エミッション性能を改善できると共に、突入電流の低下にかかわらず必要熱量を確保できるので、節電を図りながら早い立ち上がりを実現できる便座温度制御装置を提供することを課題とするものである。   The present invention was invented in view of the above-mentioned conventional problems, and by reducing the current peak value, the inrush current can be reduced, the emission performance can be improved, and the necessary heat quantity can be ensured regardless of the decrease of the inrush current. Therefore, it is an object of the present invention to provide a toilet seat temperature control device capable of realizing a quick rise while saving power.

前記課題を解決するために本発明は、便座1表面を加熱・暖房するためのAC抵抗負荷への供給電力を位相制御する便座温度制御装置において、便座1内部に収容される複数のAC抵抗負荷2A,2Bと、上記複数のAC抵抗負荷2A,2Bを商用交流電源3に対して直列・並列いずれか一方の接続形態に切り替えるリレー4と、上記複数のAC抵抗負荷2A,2Bの通電を個別にON・OFF制御する複数のトライアック5A,5Bと、上記リレー4及びトライアック5A,5Bを個別に制御する制御回路6とを備え、上記制御回路6は、上記複数のAC抵抗負荷2A,2Bを直列接続して同時に通電する直列接続形態、上記複数のAC抵抗負荷2A,2Bを並列接続して各AC抵抗負荷2A,2Bに交互に通電する並列接続形態と、上記複数のAC抵抗負荷2A,2Bを並列接続して各AC抵抗負荷2A,2Bに同時に通電する並列接続形態のいずれかに切替設定する導通形態切替手段7と、上記各接続形態において必要熱量の低下を防止するためにトライアック5A,5Bの点弧タイミングを交流半周期毎に調整するためのトリガ手段8とを有していることを特徴としている。 In order to solve the above problems, the present invention provides a toilet seat temperature control device for phase-controlling the power supplied to an AC resistance load for heating / heating the surface of the toilet seat 1, and a plurality of AC resistance loads accommodated in the toilet seat 1. 2A, 2B, a relay 4 for switching the plurality of AC resistance loads 2A, 2B to either a serial or parallel connection form with respect to the commercial AC power supply 3, and energization of the plurality of AC resistance loads 2A, 2B individually And a control circuit 6 for individually controlling the relay 4 and the triacs 5A and 5B. The control circuit 6 includes the plurality of AC resistance loads 2A and 2B. a series connection form simultaneously energized in series connection, a parallel connection form to energize the plurality of AC resistive load 2A, and 2B connected in parallel to each AC resistive load 2A, alternately 2B, the plurality of a Preventing resistive load 2A, each AC resistive load 2A are connected in parallel to 2B, the conduction mode switching unit 7 for switching set to one of the parallel connection form simultaneously energized to 2B, a reduction in the required amount of heat in the above connection form Therefore, it has a trigger means 8 for adjusting the firing timing of the triacs 5A and 5B for each half cycle of the alternating current.

このような構成とすることで、導通形態切替手段7により複数のAC抵抗負荷2A,2Bを直列、並列いずれかに切替設定することで、従来の単一ヒータを使用する場合と比べて、抵抗値が増加するので、エミッション性能を悪化させる立ち上がり波形の電流ピーク値を小さくでき、これに伴い突入電流を軽減できると共に節電を図ることができる。またこのときトリガ手段8によりトライアック5A,5Bの点弧タイミングを調整することで、突入電流の低下にかかわらず必要熱量を確保できるようになる。   By adopting such a configuration, a plurality of AC resistance loads 2A and 2B are switched to either serial or parallel by the conduction mode switching means 7, so that the resistance can be reduced as compared with the case where a conventional single heater is used. Since the value increases, the current peak value of the rising waveform that deteriorates the emission performance can be reduced, and accordingly, the inrush current can be reduced and power can be saved. Further, at this time, by adjusting the ignition timing of the triacs 5A and 5B by the trigger means 8, it becomes possible to secure the necessary heat amount regardless of the decrease of the inrush current.

また、上記導通形態切替手段7は、負荷通電開始時には複数のAC抵抗負荷2A,2Bを直列接続形態に切替設定するのが好ましく、この場合、負荷通電開始時に高出力の直列接続形態を実行することで、高出力が得られ早い立ち上がりが可能となり、またこのとき温度変化特性が大きなAC抵抗負荷を用いた場合でも、抵抗値の増加に比例して電流ピーク値が下がることで、突入電流を軽減できるようになる。 The conduction mode switching means 7 preferably switches and sets the plurality of AC resistance loads 2A and 2B to the serial connection mode at the start of load energization. In this case, the high output series connection mode is executed at the start of load energization. As a result, a high output can be obtained and a quick rise is possible, and even when an AC resistance load with a large temperature change characteristic is used at this time, the current peak value decreases in proportion to the increase in resistance value. Can be reduced.

請求項1の発明は、複数のAC抵抗負荷を直並列切替可能とすることにより、従来の単一ヒータを使用する場合と比べて抵抗値を増加させることができ、これに伴い突入電流を軽減でき、エミッション性能を改善できるものであり、また同時にトライアックの点弧タイミングを交流半周期毎に調整して必要熱量の低下を防止することにより、突入電流の低下にかかわらず必要熱量を確保でき、高い熱量のAC抵抗負荷の使用にも十分に対応可能となる。   According to the first aspect of the present invention, a plurality of AC resistance loads can be switched in series and parallel, so that the resistance value can be increased as compared with the case of using a conventional single heater, and the inrush current is reduced accordingly. It is possible to improve the emission performance, and at the same time, by adjusting the triac firing timing for each half cycle of AC to prevent the required heat amount from decreasing, the necessary heat amount can be secured regardless of the inrush current decrease, It is possible to sufficiently cope with the use of an AC resistance load having a high heat quantity.

また請求項2の発明は、温度変化特性が大きなAC抵抗負荷を用いた場合であっても、負荷通電開始時において突入電流を大幅に軽減しながら早い立ち上がりを実現できるものである。   According to the second aspect of the present invention, even when an AC resistance load having a large temperature change characteristic is used, a quick rise can be realized while greatly reducing the inrush current at the start of load energization.

以下、本発明の便座温度制御装置20の回路構造の一例を示している。   Hereinafter, an example of the circuit structure of the toilet seat temperature control apparatus 20 of the present invention is shown.

本例の便座温度制御装置20は、便座1を加熱・暖房するための複数のAC抵抗負荷2A,2Bとして2つのヒータ12A,12B(輻射型発熱体)を備え、各ヒータ12A,12Bからの熱輻射によって臀部が接触する着座面を短時間で暖房できるようにしている。   The toilet seat temperature control device 20 of this example includes two heaters 12A and 12B (radiation-type heating elements) as a plurality of AC resistance loads 2A and 2B for heating and heating the toilet seat 1, and each of the heaters 12A and 12B The seating surface with which the buttock comes into contact with the heat radiation can be heated in a short time.

暖房便座の一例を図6、図7に示す。腰掛式便器16に回動自在に取付けてある便座1はO型であり、この便座1の約半周分の長さを有する2つのU字型のヒータ12A,12Bが、便座1内に設けた空洞部をほぼ1周するように収容されている。2つのヒータ12A,12Bは、高出力時に必要な投入熱量(投入ワット数)に対してそれぞれ1/2程度の熱量を持ったものであり、前方に配置されるヒータ12Aの後端部と、後方に配置されるヒータ12Bの前端部とが互いにオーバーラップするように設置されており、温度の低いヒータ端部での温度下降を防止することで、便座1全体の温度をほぼ均一にして暖房感の向上を図っている。なお図6中の13は便座1の過昇を防止するサーモスタット、14はヒータ12A,12Bの保持部材、図7中の17は便蓋、18はロータンク、19は局部洗浄装置である。   An example of the heating toilet seat is shown in FIGS. The toilet seat 1 that is rotatably attached to the seat-type toilet 16 is O-shaped, and two U-shaped heaters 12A and 12B having a length corresponding to about a half circumference of the toilet seat 1 are provided in the toilet seat 1. The hollow portion is accommodated so as to make one round. The two heaters 12A and 12B each have a heat amount of about 1/2 with respect to the input heat amount (input wattage) required at the time of high output, and the rear end portion of the heater 12A disposed on the front side, It is installed so that the front end portion of the heater 12B arranged at the rear overlaps each other, and the temperature of the entire toilet seat 1 is made substantially uniform by preventing temperature drop at the heater end portion having a low temperature. We try to improve the feeling. In FIG. 6, 13 is a thermostat for preventing the toilet seat 1 from rising too high, 14 is a holding member for the heaters 12A and 12B, 17 in FIG. 7 is a toilet lid, 18 is a low tank, and 19 is a local washing device.

ここで、本発明においては、図1、図2に示すように、上記2つのヒータ12A,12Bの通電制御を行なうために、商用交流電源3と各ヒータ12A,12Bとの間に、リレー4と、トライアック5A,5Bが設けられ、またリレー4とトライアック5A,5Bの動作を制御する図3に示す制御回路6を備えている。なお図1(a)は2つのヒータ12A,12Bを直列接続して同時に通電する直列接続形態の一例を示しており、同(b)は2つのヒータ12A,12Bを同時にONにする際のトライアック5A,5Bの点弧タイミングを示しており、図2(a)は2つのヒータ12A,12Bを並列接続して各ヒータ12A,12Bに同時或いは交互に通電する並列接続形態の一例を示しており、同(b)は2つのヒータ12A,12Bを交互にONにする際のトライアック5A,5Bの点弧タイミングを示している。 Here, in the present invention, as shown in FIGS. 1 and 2, a relay 4 is provided between the commercial AC power supply 3 and the heaters 12A and 12B in order to perform energization control of the two heaters 12A and 12B. And a triac 5A, 5B, and a control circuit 6 shown in FIG. 3 for controlling the operation of the relay 4 and the triacs 5A, 5B . 1A shows an example of a serial connection configuration in which two heaters 12A and 12B are connected in series and energized at the same time, and FIG. 1B is a triac when the two heaters 12A and 12B are simultaneously turned on. FIG. 2 (a) shows an example of a parallel connection configuration in which two heaters 12A and 12B are connected in parallel and the heaters 12A and 12B are energized simultaneously or alternately. (B) shows the firing timing of the triacs 5A, 5B when the two heaters 12A, 12B are alternately turned on.

本例のトライアック5A,5Bは、2つヒータ12A,12Bの通電を個別にON・OFF制御するものであり、商用交流電源3と一方のヒータ12Aとの間及び商用交流電源3と他方のヒータ12Bとの間にそれぞれ接続されている。   The triacs 5A and 5B of this example individually control ON / OFF of energization of the two heaters 12A and 12B, and between the commercial AC power source 3 and one heater 12A and between the commercial AC power source 3 and the other heater. 12B, respectively.

またリレー4は、商用交流電源3に対して2つのヒータ12A,12Bの接続関係を直列接続と並列接続との間で切替えるためのものであり、本例では、リレー4のCOM端子をNC端子に接触するOFF状態とし且つ一方のトライアック5A(又は5B)のみをONにすることで、2つのヒータ12A,12Bが直列接続形態となり、一方、リレー4のCOM端子をNO端子に接触するON状態とし且つ2つのトライアック5A,5Bを共にONにすることで、2つのヒータ12A,12Bが並列接続形態に切り替わるようになっている。   The relay 4 is for switching the connection relationship of the two heaters 12A and 12B between the commercial AC power supply 3 between series connection and parallel connection. In this example, the COM terminal of the relay 4 is used as the NC terminal. By turning on only one TRIAC 5A (or 5B), the two heaters 12A and 12B are connected in series, while the COM terminal of the relay 4 is in contact with the NO terminal. By turning both the two triacs 5A and 5B ON, the two heaters 12A and 12B are switched to a parallel connection configuration.

図3は制御回路6の一例を示す。本例の制御回路6は、人体検知センサからの信号、操作器からの操作信号、サーモスタットからの信号等に基づいて上記リレー4及び上記トライアック5A,5Bを個別に制御するマイコンで構成されており、導通形態切替手段7及びトリガ手段8を有している。本例の制御回路6は、ヒータ12A,12Bの通電開始時には導通形態切替手段7により2つのヒータ12A,12Bを直列接続形態に切り替えると共にトリガ手段8により交流半周期T(T’)毎にトライアック5A,5Bの点弧タイミング(トリガパルスを出力するタイミング)を交流半周期毎に早める方向に位相制御することで必要熱量の低下を防止するものである。   FIG. 3 shows an example of the control circuit 6. The control circuit 6 of this example is composed of a microcomputer that individually controls the relay 4 and the triacs 5A and 5B based on a signal from a human body detection sensor, an operation signal from an operating device, a signal from a thermostat, and the like. , A conduction mode switching means 7 and a trigger means 8 are provided. The control circuit 6 of this example switches the two heaters 12A and 12B to the serial connection mode by the conduction mode switching means 7 at the start of energization of the heaters 12A and 12B, and triacs by the trigger means 8 every AC half cycle T (T ′). The required heat amount is prevented from being lowered by phase-controlling the 5A and 5B firing timing (timing for outputting the trigger pulse) in a direction that is advanced every AC half cycle.

ここで上記導通形態切替手段7は、必要熱量に応じて、2つのヒータ12A,12Bを直列に接続して同時に通電する直列接続形態と、2つのヒータ12A,12Bを並列接続して同時或いは交互に通電する並列接続形態のいずれかに切替設定する。   Here, the conduction mode switching means 7 connects the two heaters 12A and 12B in series and supplies electricity at the same time and the two heaters 12A and 12B in parallel or simultaneously or alternately according to the required heat quantity. Is switched to one of the parallel connection modes for energizing the current.

また上記トリガ手段8は、上記各接続形態のそれぞれにおいて、交流半周期T(T’)毎にトライアック5A,5Bの点弧タイミングをそれぞれ早めて通電時間を長くすることで、突入電流の低下に伴う必要熱量の低下を防止するものである。つまり必要熱量に応じてトライアック5A,5Bの通電時間を算出して、ヒータ12A,12Bに印加される通電時間が算出された値になるように、商用交流電源3のゼロクロスから所定時間経過後にトライアック5A,5Bにトリガパルスを出力するものであり、このときトライアック5A,5Bは次のゼロクロスまでヒータ12A,12Bの通電を継続する。   Further, the trigger means 8 reduces the inrush current by increasing the energization time by increasing the firing timing of the triacs 5A and 5B for each AC half cycle T (T ′) in each of the above connection modes. This is to prevent a decrease in the necessary heat amount. That is, the triac 5A, 5B energization time is calculated according to the required heat quantity, and the triac is obtained after a predetermined time has elapsed from the zero cross of the commercial AC power supply 3 so that the energization time applied to the heaters 12A, 12B becomes the calculated value. A trigger pulse is output to 5A and 5B. At this time, the triacs 5A and 5B continue energizing the heaters 12A and 12B until the next zero cross.

次に本便座温度制御装置20の動作の一例を説明する。   Next, an example of operation | movement of this toilet seat temperature control apparatus 20 is demonstrated.

使用者がトイレットルームに入室すると、人体検知センサが使用者の入室を検知する。それにより、使用者の入室を示す信号が制御回路6に送られる。制御回路6は、人体検知センサからの信号を受けると、導通形態切替手段7及びトリガ手段8を介して各ヒータ12A,12Bの通電制御を開始する。   When the user enters the toilet room, the human body detection sensor detects the user's entry. Thereby, a signal indicating the user's entry is sent to the control circuit 6. When receiving a signal from the human body detection sensor, the control circuit 6 starts energization control of the heaters 12A and 12B via the conduction mode switching unit 7 and the trigger unit 8.

先ず、ヒータ12A,12Bの通電開始時には、リレー4により2つのヒータ12A,12Bを直列接続し且つ一方のトライアック5A(又は5B)のみをONにして各ヒータ12A,12Bに同時に通電する直列接続形態とする。その後、ある程度温度が上がってから並列接続形態に切り替えて交互に通電を行なうことで保温する。さらにその後、加温のための高出力を得る場合は、並列接続形態で2つのトライアック5A,5Bを共にONして各ヒータ12A,12Bに同時にフル通電を行なう。   First, at the start of energization of the heaters 12A and 12B, two relays 12A and 12B are connected in series by the relay 4 and only one triac 5A (or 5B) is turned on to energize each heater 12A and 12B simultaneously. And Then, after the temperature rises to some extent, the heat is kept by switching to the parallel connection mode and energizing alternately. Thereafter, when a high output for heating is to be obtained, the two triacs 5A and 5B are both turned on in a parallel connection form and the heaters 12A and 12B are energized simultaneously.

ここにおいて、従来の単一ヒータ12(図6(a))の場合、その熱量をWとすると、抵抗値は、
V×V/W(Ω)
となる。この場合、電流ピーク値が大きいために、突入電流も大きくなる。
Here, in the case of the conventional single heater 12 (FIG. 6A), when the heat quantity is W, the resistance value is
V x V / W (Ω)
It becomes. In this case, since the current peak value is large, the inrush current also increases.

一方、本発明では、単一ヒータ12の熱量のそれぞれ1/2程度の熱量を持つ2つのヒータ12A,12Bを直並列切り替え可能とする回路構造とすると共に、図1(a)の矢印イ方向に電流が流れる直列接続形態と、図2(a)のトライアック5A,5Bを同時ONにした状態で2つのヒータ12A,12Bに矢印ロと矢印ハで示す方向に同時に電流を流すか、或いは、トライアック5A,5Bを交互にONにして2つのヒータ12A,12Bに矢印ロと矢印ハで示す方向に交互に電流を流す並列接続形態とのいずれかに切替設定可能とする。   On the other hand, in the present invention, the circuit structure is such that two heaters 12A and 12B each having a heat quantity of about ½ of the heat quantity of the single heater 12 can be switched in series and parallel, and the direction indicated by the arrow A in FIG. In the state of series connection in which current flows through and the triacs 5A and 5B in FIG. 2 (a) are simultaneously turned on, the currents are simultaneously supplied to the two heaters 12A and 12B in the directions indicated by arrows B and C, or The triacs 5A and 5B are alternately turned ON, and the two heaters 12A and 12B can be switched to either a parallel connection configuration in which current flows alternately in the directions indicated by arrows B and C.

ここにおいて、図1(a)に示す直列接続形態では抵抗値は、
4V×V/W(Ω)
となり、立ち上がり波形の電流ピーク値が単一ヒータ12の場合(図8(b))と比較して1/4程度まで下がるので、突入電流は単一ヒータ12の場合と比較して、1/4程度まで軽減される。
Here, in the series connection form shown in FIG.
4V x V / W (Ω)
Thus, the current peak value of the rising waveform is reduced to about ¼ compared with the case of the single heater 12 (FIG. 8B), so the inrush current is 1 / It is reduced to about 4.

その後、図2(a)に示す並列接続形態では抵抗値は、
V×V/(W/2)(Ω)=2V×V/W(Ω)
となり、立ち上がり波形の電流ピーク値が単一ヒータ12(図8(b))の場合と比較して1/2程度まで下がるので、突入電流は単一ヒータ12の場合と比較して1/2程度まで軽減される。
Thereafter, in the parallel connection configuration shown in FIG.
V × V / (W / 2) (Ω) = 2V × V / W (Ω)
Thus, the current peak value of the rising waveform is reduced to about ½ compared to the case of the single heater 12 (FIG. 8B), so the inrush current is ½ compared to the case of the single heater 12. Reduced to a degree.

この結果、本発明では直列、並列いずれの場合も、従来の単一ヒータ12の場合と比較して、大きな突入電流が流れることがないので、雑音端子電圧や電源高調波などのエミッション(EMI)性能を改善できると共に、節電できる利点が得られ、さらに電圧波形を緩めるためのコイル等を使用しなくて済むので、装置の小型化と低コスト化とを図ることができる。   As a result, in the present invention, a large inrush current does not flow in both cases of series and parallel as compared with the case of the conventional single heater 12, so that emission (EMI) such as noise terminal voltage and power supply harmonics. In addition to improving the performance and saving power, it is not necessary to use a coil or the like for loosening the voltage waveform, so that the apparatus can be reduced in size and cost.

また、制御回路6は、人体検知センサからの信号を受けた時点T0(図4)から交流半周期T(T’)毎に点弧タイミングを算出して、各点弧タイミングでトリガパルスを出力する。本例では、従来の単一ヒータ12の点弧タイミングを図8(b)のt1(t1’)としたとき、並列接続形態時の点弧タイミングを単一ヒータ12よりも早い図2(b)のt2(t2’)とし、さらに直列接続形態時の点弧タイミングをより早い図1(b)のt3(t3’)とする。これにより、本発明では、直列、並列いずれの場合も、単一ヒータの場合よりも電流ピーク値が低くなった分だけ通電時間を長くのばすことができる。つまり、AC100V1周期中の通電時間が長くなる分だけ、投入される熱量が増加する結果、突入電流の低下にかかわらず必要熱量を確保でき、早い温度立ち上がりが可能になる。さらに温度がある程度上がった後に並列接続に切り替えて交互通電を行なうことで、節電を図りながら保温できるものであり、さらに加温時は並列接続形態で各ヒータ12A,12Bにフル通電をすることで高出力を得ることができる。図4は本発明の立ち上がり波形の時間的推移を示している。図中Aは直列接続時、Bは並列接続で交互通電、Cは並列接続でフル通電の期間をそれぞれ示している。図5は本発明のヒータ12A,12Bの抵抗値の時間的推移であって、ヒータ12A,12Bの温度上昇と共に抵抗値が増加する場合を示している。   In addition, the control circuit 6 calculates the ignition timing every AC half cycle T (T ′) from the time T0 (FIG. 4) when receiving the signal from the human body detection sensor, and outputs the trigger pulse at each ignition timing. To do. In this example, when the ignition timing of the conventional single heater 12 is t1 (t1 ′) in FIG. 8B, the ignition timing in the parallel connection configuration is earlier than that of the single heater 12 in FIG. ) T2 (t2 ′), and the ignition timing in the serial connection mode is t3 (t3 ′) in FIG. As a result, in the present invention, the energization time can be extended by the amount that the current peak value is lower than in the case of a single heater in both cases of series and parallel. That is, as the energization time during the AC100V1 period becomes longer, the amount of heat input increases, so that the necessary amount of heat can be ensured regardless of the drop in inrush current, and rapid temperature rise is possible. Furthermore, after the temperature has risen to some extent, switching to parallel connection and performing alternate energization can keep heat while saving power. Further, during heating, the heaters 12A and 12B are fully energized in parallel connection form. High output can be obtained. FIG. 4 shows the time transition of the rising waveform of the present invention. In the figure, A is a series connection, B is a parallel connection and alternately energized, and C is a parallel connection and a full energization period. FIG. 5 shows a temporal transition of the resistance values of the heaters 12A and 12B according to the present invention, and shows a case where the resistance value increases as the temperature of the heaters 12A and 12B rises.

上記図4の結果、本発明においては、直列、並列いずれにおいても、突入電流を小さく抑えながら必要な投入熱量を確保できるものであり、特に立ち上がり時の直列接続時A(図4)において突入電流を小さくできるので、仮りにハロゲンヒータ等の高い熱量のAC抵抗負荷を用いた場合でも、突入電流を小さく抑えながら早い温度立ち上がりを実現できることがわかる。   As a result of FIG. 4, in the present invention, it is possible to secure the necessary input heat amount while suppressing the inrush current in both series and parallel. In particular, the inrush current at the time of series connection A at the start-up (FIG. 4). Therefore, even when a high-heat AC resistance load such as a halogen heater is used, rapid temperature rise can be realized while keeping the inrush current small.

なお、前記実施形態では、AC抵抗負荷2A,2Bとして輻射式発熱体である2つのヒータ12A,12Bを使用したが、勿論これに限るものではなく、例えば高温シーズヒータや石英管ヒータ等であってもよい。   In the above-described embodiment, the two heaters 12A and 12B, which are radiant heating elements, are used as the AC resistance loads 2A and 2B. However, the present invention is not limited to this. For example, a high-temperature sheathed heater or a quartz tube heater is used. May be.

本発明の便座温度制御装置20の回路構造は、AC抵抗負荷を熱源とする例えば給湯器の分野にも広く応用可能である。   The circuit structure of the toilet seat temperature control device 20 of the present invention can be widely applied to the field of, for example, a water heater using an AC resistance load as a heat source.

本発明の一実施形態を示し、(a)は2つのヒータを直列接続形態とした場合の回路図、(b)は2つのヒータを同時にONにする際のトライアックの点弧タイミングを説明するタイムチャートである。1A and 1B show an embodiment of the present invention, in which FIG. 1A is a circuit diagram in a case where two heaters are connected in series, and FIG. 2B is a time for explaining the firing timing of a triac when two heaters are simultaneously turned on. It is a chart. (a)は同上の2つのヒータを並列接続して同時或いは交互に通電する並列接続形態とした場合の回路図、(b)は2つのヒータを交互にONにする際のトライアックの点弧タイミングを説明するタイムチャートである。(A) is a circuit diagram when the two heaters are connected in parallel and are connected in parallel or alternately energized, and (b) is a triac firing timing when the two heaters are alternately turned on. It is a time chart explaining. 同上の制御回路に関連するブロック図である。It is a block diagram relevant to the control circuit same as the above. 同上の立ち上がり波形の時間的推移を示すグラフである。It is a graph which shows the time transition of a rising waveform same as the above. 同上のヒータの抵抗値の時間的推移を示すグラフである。It is a graph which shows the time transition of the resistance value of a heater same as the above. 同上のヒータを組み込んだ便座の下面図である。It is a bottom view of the toilet seat incorporating the same heater. 同上のヒータを組み込んだ便座を備えた暖房便座装置の一例を示す斜視図である。It is a perspective view which shows an example of the heating toilet seat apparatus provided with the toilet seat incorporating the heater same as the above. (a)は従来の単一ヒータをトライアックで位相制御する回路図、(b)は従来のトライアックの位相制御時のタイムチャートである。(A) is a circuit diagram for phase control of a conventional single heater by triac, (b) is a time chart at the time of phase control of the conventional triac. 従来の単一ヒータの立ち上がり波形の時間的推移を示すグラフである。It is a graph which shows the time transition of the rising waveform of the conventional single heater.

符号の説明Explanation of symbols

1 便座
2A,2B AC抵抗負荷
3 商用交流電源
4 リレー
5A,5B トライアック
6 制御回路
7 導通形態切替手段
8 トリガ手段
12A,12B ヒータ
20 便座温度制御装置
DESCRIPTION OF SYMBOLS 1 Toilet seat 2A, 2B AC resistance load 3 Commercial AC power supply 4 Relay 5A, 5B Triac 6 Control circuit 7 Conduction mode switching means 8 Trigger means 12A, 12B Heater 20 Toilet seat temperature control device

Claims (2)

便座表面を加熱・暖房するためのAC抵抗負荷への供給電力を位相制御する便座温度制御装置において、便座内部に収容される複数のAC抵抗負荷と、上記複数のAC抵抗負荷を商用交流電源に対して直列・並列いずれか一方の接続形態に切り替えるリレーと、上記複数のAC抵抗負荷の通電を個別にON・OFF制御する複数のトライアックと、上記リレー及びトライアックを個別に制御する制御回路とを備え、
上記制御回路は、上記複数のAC抵抗負荷を直列接続して同時に通電する直列接続形態、上記複数のAC抵抗負荷を並列接続して各AC抵抗負荷に交互に通電する並列接続形態と、上記複数のAC抵抗負荷を並列接続して各AC抵抗負荷に同時に通電する並列接続形態のいずれかに切替設定する導通形態切替手段と、上記各接続形態において必要熱量の低下を防止するためにトライアックの点弧タイミングを交流半周期毎に調整するためのトリガ手段とを有していることを特徴とする便座温度制御装置。
In a toilet seat temperature control device for phase-controlling power supplied to an AC resistance load for heating and heating the toilet seat surface, a plurality of AC resistance loads housed inside the toilet seat and the plurality of AC resistance loads as commercial AC power supplies On the other hand, a relay that switches to either a serial or parallel connection form, a plurality of triacs that individually control ON / OFF of the energization of the plurality of AC resistance loads, and a control circuit that individually controls the relay and the triac Prepared,
The control circuit includes a series connection configuration in which the plurality of AC resistance loads are connected in series and energized at the same time, a parallel connection configuration in which the plurality of AC resistance loads are connected in parallel to alternately energize each AC resistance load, and In order to prevent a decrease in the amount of heat required in each of the connection modes, a conduction mode switching means for switching and setting to any one of the parallel connection modes in which a plurality of AC resistance loads are connected in parallel and each AC resistance load is energized simultaneously . A toilet seat temperature control device comprising trigger means for adjusting the ignition timing for each half cycle of the alternating current.
上記導通形態切替手段は、負荷通電開始時には複数のAC抵抗負荷を直列接続形態に切替設定することを特徴とする請求項1記載の便座温度制御装置。   The toilet seat temperature control device according to claim 1, wherein the conduction mode switching means switches and sets a plurality of AC resistance loads to a serial connection mode at the start of load energization.
JP2007306568A 2007-11-27 2007-11-27 Toilet seat temperature controller Expired - Fee Related JP5249563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306568A JP5249563B2 (en) 2007-11-27 2007-11-27 Toilet seat temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306568A JP5249563B2 (en) 2007-11-27 2007-11-27 Toilet seat temperature controller

Publications (2)

Publication Number Publication Date
JP2009125494A JP2009125494A (en) 2009-06-11
JP5249563B2 true JP5249563B2 (en) 2013-07-31

Family

ID=40816984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306568A Expired - Fee Related JP5249563B2 (en) 2007-11-27 2007-11-27 Toilet seat temperature controller

Country Status (1)

Country Link
JP (1) JP5249563B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753800B2 (en) * 2012-01-12 2015-07-22 東芝燃料電池システム株式会社 Fuel cell power generation system and operation method thereof
JP5696910B1 (en) * 2013-09-26 2015-04-08 Toto株式会社 Sanitary washing device
KR20230034667A (en) * 2021-09-03 2023-03-10 세메스 주식회사 Heating unit, substrate processing apparatus including same, control method of heating unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513279Y2 (en) * 1987-07-23 1993-04-07
JPH11151183A (en) * 1997-11-21 1999-06-08 Toto Ltd Heating toilet seat unit, its control unit and product with heating toilet seat unit
JP4003785B2 (en) * 2005-05-20 2007-11-07 松下電器産業株式会社 Heating device and toilet device equipped with the same
JP4747821B2 (en) * 2005-12-14 2011-08-17 パナソニック株式会社 Heating toilet seat

Also Published As

Publication number Publication date
JP2009125494A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5875279B2 (en) HEATER CONTROL DEVICE AND METHOD, AND PROGRAM
JP5249563B2 (en) Toilet seat temperature controller
CN107773114B (en) Sanitary cleaning device
JP2007007016A (en) Toilet seat device
JP5673767B1 (en) Sanitary washing device
JP2010116081A (en) Moisture removal apparatus
JP4396147B2 (en) Power control apparatus and image forming apparatus
JP4983481B2 (en) Toilet seat device
JP2017218864A (en) Warm water washing toilet seat device
JP2009112799A (en) Toilet seat device
JP4548277B2 (en) Toilet equipment
JP2014168596A (en) Heating cooker
JP4747821B2 (en) Heating toilet seat
JP2006320608A5 (en)
JP4158115B2 (en) Electric cooker
JP5340652B2 (en) Electric kotatsu
JP4927630B2 (en) Electric hot water boiler
JP2004259557A (en) Method for controlling consumption current of heater, and consumption current controller using the same
JP2005221086A (en) Toaster oven
JP2006320608A (en) Heating device, heating toilet seat and toilet device provided with the same
KR200185673Y1 (en) A heating device of electrical boiler
JP4797922B2 (en) Heating toilet seat
JPH08153440A (en) Heater control device, and electric rice cooker and electric pot using this heater control device
JP2007007017A (en) Toilet seat device
JP2532566Y2 (en) Microcomputer control system for heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Ref document number: 5249563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees