[go: up one dir, main page]

JP5252217B2 - Engine exhaust purification system - Google Patents

Engine exhaust purification system Download PDF

Info

Publication number
JP5252217B2
JP5252217B2 JP2009096294A JP2009096294A JP5252217B2 JP 5252217 B2 JP5252217 B2 JP 5252217B2 JP 2009096294 A JP2009096294 A JP 2009096294A JP 2009096294 A JP2009096294 A JP 2009096294A JP 5252217 B2 JP5252217 B2 JP 5252217B2
Authority
JP
Japan
Prior art keywords
nox
urea water
injection amount
catalyst
selective reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009096294A
Other languages
Japanese (ja)
Other versions
JP2010248925A (en
Inventor
博幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009096294A priority Critical patent/JP5252217B2/en
Publication of JP2010248925A publication Critical patent/JP2010248925A/en
Application granted granted Critical
Publication of JP5252217B2 publication Critical patent/JP5252217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. by adjusting the dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明はエンジン排気浄化装置に関し、特に選択還元NOx触媒を備えたエンジン排気浄化装置に関する。   The present invention relates to an engine exhaust purification device, and more particularly to an engine exhaust purification device including a selective reduction NOx catalyst.

従来、排気通路に設けた選択還元NOx触媒に向けて噴射弁から尿素水を供給し、排気ガス中の窒素酸化物(NOx)を窒素に還元することで、NOx排出濃度を低減するエンジン排気浄化装置が知られている(例えば、特許文献1、2参照)。   Conventionally, engine exhaust purification that reduces NOx emission concentration by supplying urea water from an injection valve toward a selective reduction NOx catalyst provided in an exhaust passage and reducing nitrogen oxide (NOx) in exhaust gas to nitrogen An apparatus is known (see, for example, Patent Documents 1 and 2).

特許文献1に記載のように、このようなエンジン排気浄化装置は尿素水噴射弁の熱害問題を抱えている。すなわち、尿素水噴射弁の耐熱温度が排気温度よりも低いため、尿素水噴射弁の耐熱性に問題があった。このため、特許文献1に記載の装置では、噴射弁の周りに冷却媒体を循環させる冷却室を設け、噴射弁を冷却するように構成されている。これにより、この装置では、噴射弁を熱的に保護することができるようになっている。   As described in Patent Document 1, such an engine exhaust gas purification device has a heat damage problem of the urea water injection valve. That is, since the heat resistance temperature of the urea water injection valve is lower than the exhaust temperature, there is a problem with the heat resistance of the urea water injection valve. For this reason, in the apparatus described in Patent Document 1, a cooling chamber for circulating a cooling medium around the injection valve is provided to cool the injection valve. Thereby, in this apparatus, the injection valve can be thermally protected.

また、特許文献2に記載に記載のように、エンジン排気浄化装置は、使用と共に選択還元NOx触媒が劣化したり、NOx濃度センサ等が検出異常を発生したりする。このため、特許文献2に記載の装置では、選択還元NOx触媒とセンサ類の劣化異常を判定し、これを運転者に報知するように構成されている。この異常報知により、運転者は浄化システムの性能劣化を知ることができるようになっている。   Further, as described in Patent Document 2, in the engine exhaust gas purification device, the selective reduction NOx catalyst deteriorates with use, or the NOx concentration sensor or the like generates a detection abnormality. For this reason, the apparatus described in Patent Document 2 is configured to determine the deterioration abnormality of the selective reduction NOx catalyst and the sensors and notify the driver of this. By this abnormality notification, the driver can know the performance deterioration of the purification system.

特開平2007−321647号公報Japanese Patent Laid-Open No. 2007-321647 特開平2006−37770号公報Japanese Patent Laid-Open No. 2006-37770

しかしながら、特許文献1のように、噴射弁に冷却媒体を循環させるための冷却室を設けると、装置全体が複雑になると共に、製造コストが増大してしまうという問題があった。このため、このような付加的な構造を設ける代わりに、噴射する尿素水の内部流自体で噴射弁の冷却作用を得ることが考えられる。この場合、尿素水の噴射量を所定量以上確保することで、付加的な構造なしに噴射弁を熱的に保護することが可能となる。   However, when the cooling chamber for circulating the cooling medium is provided in the injection valve as in Patent Document 1, the entire apparatus becomes complicated and the manufacturing cost increases. For this reason, instead of providing such an additional structure, it is conceivable to obtain the cooling action of the injection valve by the internal flow itself of the urea water to be injected. In this case, it is possible to protect the injection valve thermally without an additional structure by securing the injection amount of the urea water at a predetermined amount or more.

しかしながら、尿素水の内部流で噴射弁を自己冷却する場合、噴射弁の温度(または、噴射弁の温度と関連する排気温度等)に応じて必要とされる尿素水の噴射量が多くなる。このように尿素水の噴射量が多くなると、余分なアンモニアが大気中に排出されるアンモニアスリップが発生してしまうという問題があった。   However, when the injection valve self-cools with the internal flow of urea water, the amount of urea water injection required is increased according to the temperature of the injection valve (or the exhaust temperature associated with the temperature of the injection valve). Thus, when the injection amount of urea water increases, there is a problem in that ammonia slip occurs in which excess ammonia is discharged into the atmosphere.

一方、アンモニアスリップが発生していると、触媒下流に設けられたNOx濃度センサは排出されるNOxに加えてアンモニアをも検出するため、NOx濃度を誤って高めに検出してしまう。このため、特許文献2のような装置では、浄化システムが異常でない場合であっても、アンモニアスリップに起因するNOx濃度の誤検出によって、浄化システムが異常であると誤判定してしまうおそれがあった。   On the other hand, if ammonia slip has occurred, the NOx concentration sensor provided downstream of the catalyst detects ammonia in addition to the exhausted NOx, so the NOx concentration is erroneously detected higher. For this reason, even in a case where the purification system is not abnormal, there is a possibility that the purification system is erroneously determined to be abnormal due to erroneous detection of the NOx concentration caused by ammonia slip even in a device such as Patent Document 2. It was.

本発明は、このような課題を解決するためになされたものであり、尿素水の噴射によって尿素水噴射弁に対する熱害を抑制可能であると共に、浄化システムの異常の誤判定を防止することができるエンジン排気浄化装置を提供することを目的としている。   The present invention has been made to solve such a problem, and it is possible to suppress thermal damage to the urea water injection valve by injection of urea water, and to prevent erroneous determination of abnormality of the purification system. An object of the present invention is to provide an engine exhaust purification device that can be used.

上述した課題を解決するために、本発明は、エンジンの排気通路中に設けられた選択還元NOx触媒と、この選択還元NOx触媒の排気上流側に設けられ、選択還元NOx触媒に向けて尿素水を噴射する尿素水噴射弁と、この尿素水噴射弁を制御する制御部と、を備えたエンジン排気浄化装置において、制御部は、尿素水噴射弁を制御して尿素水の噴射量を調整する噴射量制御手段と、尿素水噴射弁に関連する温度に基づいて、尿素水噴射弁に対する熱害を抑制すべき運転領域か否かを判定する熱害領域判定手段と、排気中のNOxの還元のためにエンジン運転状態に応じた噴射量を設定する第1設定手段と、熱害を抑制するように噴射量を設定する第2設定手段と、選択還元NOx触媒によるNOx浄化率を取得する浄化率取得手段と、浄化率取得手段の取得したNOx浄化率に基づいて、エンジン排気浄化装置の異常を判定する異常判定手段と、を備え、噴射量制御手段は、熱害を抑制すべき運転領域にある時には、第1設定手段と第2設定手段の設定した噴射量のうち大きい噴射量で尿素水が噴射されるように尿素水噴射弁を制御すると共に、第2設定手段で設定した噴射量の方が第1設定手段で設定した噴射量よりも大きい場合には異常判定手段によるNOx浄化異常判定を禁止することを特徴としている。   In order to solve the above-described problems, the present invention provides a selective reduction NOx catalyst provided in an exhaust passage of an engine and an aqueous urea solution provided upstream of the selective reduction NOx catalyst toward the selective reduction NOx catalyst. In an engine exhaust gas purification apparatus that includes a urea water injection valve that injects water and a control unit that controls the urea water injection valve, the control unit controls the urea water injection valve to adjust the injection amount of urea water An injection amount control means, a heat damage area determination means for determining whether or not the heat damage to the urea water injection valve should be suppressed based on the temperature related to the urea water injection valve, and reduction of NOx in the exhaust gas The first setting means for setting the injection amount according to the engine operating state for the purpose, the second setting means for setting the injection amount so as to suppress the heat damage, and the purification for acquiring the NOx purification rate by the selective reduction NOx catalyst Rate acquisition means, Abnormality determining means for determining an abnormality of the engine exhaust purification device based on the NOx purification rate acquired by the rate acquiring means, and the injection amount control means is configured to operate in the first state when it is in the operating region where heat damage should be suppressed. The urea water injection valve is controlled so that urea water is injected with a larger injection amount among the injection amounts set by the setting means and the second setting means, and the injection amount set by the second setting means is the first setting. When the injection amount set by the means is larger, the NOx purification abnormality determination by the abnormality determination means is prohibited.

このように構成された本発明においては、尿素水噴射弁に対する熱害を抑制すべきエンジン運転状態では、エンジン運転状態に応じた最適な噴射量と、熱害を抑制するように設定された噴射量とのうち、大きい方の噴射量が採用され、この噴射量で噴射弁から尿素水が噴射される。したがって、熱害を抑制すべき運転領域では、少なくとも熱害を抑制するように設定された噴射量又はこれよりも大きい噴射量が確保されるので、噴射弁の熱害を確実に抑制することができる。   In the present invention configured as described above, in an engine operating state in which thermal damage to the urea water injection valve is to be suppressed, an optimal injection amount according to the engine operating state and an injection set to suppress thermal damage The larger one of the amounts is employed, and urea water is injected from the injection valve at this amount. Therefore, in the operation region where thermal damage should be suppressed, at least an injection amount set to suppress thermal damage or an injection amount larger than this is ensured, so that the thermal damage of the injection valve can be reliably suppressed. it can.

さらに、本発明では、熱害を抑制すべきエンジン運転状態で、エンジン運転状態に応じた最適な噴射量よりも、熱害を抑制するように設定された噴射量の方が大きい場合には、熱害を抑制するように設定された噴射量で尿素水が噴射されるので、アンモニアスリップが発生し易くなる。このようなアンモニアスリップが発生し易い状況下では、排気中のアンモニアに起因してNOx濃度を正確に検出できず、正確なNOx浄化率を取得できないおそれがある。このため、本発明では、この状況下で排気浄化システムの異常判定を禁止することで、誤判定を防止することができる。   Furthermore, in the present invention, in the engine operating state in which thermal damage should be suppressed, when the injection amount set to suppress thermal damage is larger than the optimal injection amount according to the engine operating state, Since urea water is injected with an injection amount set so as to suppress thermal damage, ammonia slip is likely to occur. Under such circumstances where ammonia slip is likely to occur, the NOx concentration cannot be accurately detected due to ammonia in the exhaust gas, and an accurate NOx purification rate may not be obtained. For this reason, in the present invention, it is possible to prevent erroneous determination by prohibiting abnormality determination of the exhaust purification system under this situation.

また、本発明において好ましくは、異常判定手段は、選択還元NOx触媒の劣化または浄化率取得手段の異常の少なくとも何れか1つを判定する。このように構成された本発明においては、NOx浄化率に基づいて、選択還元NOx触媒の劣化或いは浄化率取得手段の異常を精度よく判定することができる。   In the present invention, preferably, the abnormality determination means determines at least one of deterioration of the selective reduction NOx catalyst or abnormality of the purification rate acquisition means. In the present invention configured as described above, it is possible to accurately determine the deterioration of the selective reduction NOx catalyst or the abnormality of the purification rate acquisition means based on the NOx purification rate.

また、本発明において好ましくは、浄化率取得手段は、選択還元NOx触媒の排気上流側におけるNOx濃度をエンジン運転状態に応じて推定するNOx濃度推定手段と、選択還元NOx触媒の排気下流側におけるNOx濃度を検出するNOx濃度検出手段と、を備えている。このように構成された本発明においては、選択還元NOx触媒の排気上下流のNOx濃度をNOx濃度推定手段とNOx濃度検出手段によって精度よく検出することができる。   In the present invention, preferably, the purification rate acquisition means includes NOx concentration estimating means for estimating the NOx concentration on the exhaust upstream side of the selective reduction NOx catalyst according to the engine operating state, and NOx on the exhaust downstream side of the selective reduction NOx catalyst. NOx concentration detecting means for detecting the concentration. In the present invention configured as described above, the NOx concentration upstream and downstream of the selective reduction NOx catalyst can be accurately detected by the NOx concentration estimating means and the NOx concentration detecting means.

また、本発明において好ましくは、噴射量制御手段は、異常判定手段が異常判定した場合には所定期間尿素水の噴射を停止し、停止後所定期間経過した後に選択還元NOx触媒の排気上流側及び下流側のNOx濃度の濃度差を算出し、この濃度差が所定濃度差以下である場合は選択還元NOx触媒の劣化と判定し、濃度差が所定濃度差を超える場合は、NOx濃度検出手段の異常と判定する。このように構成された本発明においては、選択還元NOx触媒の劣化と触媒下流のNOx濃度検出手段の異常とを識別して判定することができる。   Preferably, in the present invention, the injection amount control means stops the urea water injection for a predetermined period when the abnormality determination means determines abnormality, and after the predetermined period has elapsed after the stop, The concentration difference of the downstream NOx concentration is calculated. When the concentration difference is equal to or less than the predetermined concentration difference, it is determined that the selective reduction NOx catalyst has deteriorated. When the concentration difference exceeds the predetermined concentration difference, the NOx concentration detecting means Judge as abnormal. In the present invention configured as described above, the deterioration of the selective reduction NOx catalyst and the abnormality of the NOx concentration detection means downstream of the catalyst can be identified and determined.

本発明のエンジン排気浄化装置によれば、尿素水の噴射によって尿素水噴射弁に対する熱害を抑制可能であると共に、浄化システムの異常の誤判定を防止することができる。   According to the engine exhaust gas purification apparatus of the present invention, the thermal damage to the urea water injection valve can be suppressed by the injection of urea water, and erroneous determination of abnormality of the purification system can be prevented.

本発明の実施形態におけるエンジン排気浄化装置の全体図である。1 is an overall view of an engine exhaust purification device according to an embodiment of the present invention. 本発明の実施形態における排気浄化処理フローである。It is an exhaust purification treatment flow in the embodiment of the present invention. 本発明の実施形態における噴射量設定のためのグラフである。It is a graph for the injection amount setting in the embodiment of the present invention.

次に、添付図面を参照して、本発明の実施形態を説明する。
図1乃至図3を参照して、本発明の実施形態によるエンジン排気浄化装置を説明する。
図1に示すように、本発明の一実施形態によるエンジン排気浄化装置1は、SCR(選択還元触媒)方式で車両エンジン排気中の窒素酸化物(NOx)の排気濃度を低減するものであり、エンジン2の排気通路3に設けられた選択還元NOx触媒10(以下、「触媒10」という)と、この触媒10とエンジン2との間の排気通路3に尿素水4を噴射するための尿素水噴射装置20と、この尿素水噴射装置20からの尿素水4の噴射量を制御する制御部30とを備えている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
An engine exhaust gas purification apparatus according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, an engine exhaust gas purification apparatus 1 according to an embodiment of the present invention reduces the exhaust concentration of nitrogen oxides (NOx) in vehicle engine exhaust by an SCR (selective reduction catalyst) method. Selective reduction NOx catalyst 10 (hereinafter referred to as “catalyst 10”) provided in the exhaust passage 3 of the engine 2 and urea water for injecting the urea water 4 into the exhaust passage 3 between the catalyst 10 and the engine 2 An injection device 20 and a control unit 30 for controlling the injection amount of the urea water 4 from the urea water injection device 20 are provided.

本実施形態のエンジン排気浄化装置1では、尿素水噴射装置20によって尿素水4を排気通路3内に噴霧すると、排気通路3内の排気による排気熱で尿素水4が加水分解、熱分解してアンモニアが生成される。このアンモニアは触媒10に吸着され、吸着されたアンモニアと排気中のNOxとの間で脱硝反応が促進される。これにより、酸素共存下でも選択的にNOxが還元されて窒素ガスN2と水H2Oに分解され、これらが大気中に排出される。 In the engine exhaust gas purification device 1 of this embodiment, when the urea water 4 is sprayed into the exhaust passage 3 by the urea water injection device 20, the urea water 4 is hydrolyzed and thermally decomposed by the exhaust heat from the exhaust in the exhaust passage 3. Ammonia is produced. This ammonia is adsorbed by the catalyst 10, and a denitration reaction is promoted between the adsorbed ammonia and NOx in the exhaust. Thereby, even in the presence of oxygen, NOx is selectively reduced and decomposed into nitrogen gas N 2 and water H 2 O, which are discharged into the atmosphere.

尿素水噴射装置20は、エンジン2と触媒10との間の排気通路3に取り付けられた尿素水を噴射するための尿素水噴射弁21(以下、「噴射弁21」という)と、尿素水4を貯留する尿素水タンク22と、ポンプ23と、圧力制御弁24とを備えている。ポンプ23には尿素水タンク22からフィルタ25及び配管26aを通して尿素水4が供給される。ポンプ23は、この尿素水4を配管26bを通して圧力制御弁24に向けて圧送する。圧力制御弁24は、配管26cを通して噴射弁21に所定圧力で尿素水4を供給する。また、圧力制御弁24には、尿素水タンク22への戻り路である配管26dが設けられている。
噴射弁21は、例えば、電磁弁及びこの電磁弁の駆動機構等から構成されており、制御部30からの駆動信号に基づいて、電磁弁の開度が調節される。
The urea water injection device 20 includes a urea water injection valve 21 (hereinafter referred to as “injection valve 21”) for injecting urea water attached to the exhaust passage 3 between the engine 2 and the catalyst 10, and a urea water 4 Is provided with a urea water tank 22, a pump 23, and a pressure control valve 24. The urea water 4 is supplied to the pump 23 from the urea water tank 22 through the filter 25 and the pipe 26a. The pump 23 pumps the urea water 4 toward the pressure control valve 24 through the pipe 26b. The pressure control valve 24 supplies the urea water 4 at a predetermined pressure to the injection valve 21 through the pipe 26c. The pressure control valve 24 is provided with a pipe 26 d that is a return path to the urea water tank 22.
The injection valve 21 includes, for example, a solenoid valve and a drive mechanism for the solenoid valve, and the opening degree of the solenoid valve is adjusted based on a drive signal from the control unit 30.

制御部30は、車両に設けられたECUであり、各種センサから信号を受け取り、これらに基づいて、触媒10に供給する尿素水4の噴射量を算出する。そして、制御部30は、算出した噴射量で尿素水4を噴射するように、噴射弁21に駆動信号を出力して弁開度を調節する。なお、尿素水4は、噴射弁21から連続的に噴射されてもよいし、間欠的に噴射されてもよい。   The control unit 30 is an ECU provided in the vehicle, receives signals from various sensors, and calculates the injection amount of the urea water 4 supplied to the catalyst 10 based on these signals. And the control part 30 outputs a drive signal to the injection valve 21, and adjusts the valve opening so that the urea water 4 may be injected with the calculated injection quantity. The urea water 4 may be continuously injected from the injection valve 21 or may be intermittently injected.

また、制御部30は、触媒10及び後述するNOx濃度センサ12を含む浄化システムの異常が検出された場合に、異常検出信号を報知手段5に出力する。報知手段5は、例えば、モニタ,ランプ,スピーカ等であって、異常検出信号に基づいて運転者に異常を報知する。   Further, the control unit 30 outputs an abnormality detection signal to the notification unit 5 when an abnormality of the purification system including the catalyst 10 and the NOx concentration sensor 12 described later is detected. The notification means 5 is, for example, a monitor, a lamp, a speaker or the like, and notifies the driver of the abnormality based on the abnormality detection signal.

エンジン2のエンジン回転速度センサ2aは、エンジン回転速度Neを表すエンジン回転速度信号を制御部30に出力する。
アクセル開度センサ6は、アクセル開度θを表すアクセル開度信号を制御部30に出力する。
The engine speed sensor 2 a of the engine 2 outputs an engine speed signal representing the engine speed Ne to the control unit 30.
The accelerator opening sensor 6 outputs an accelerator opening signal representing the accelerator opening θ to the control unit 30.

また、触媒10には、そのハウジングに触媒10の温度を測定する温度センサ11が設けられている。この温度センサ11は、触媒10の温度Tsを表す触媒温度信号を制御部30に出力する。なお、本実施形態では、この触媒温度Tsを噴射弁21の温度に関連付けて、噴射弁21の温度を推定もしくは実質的に触媒温度Tsを噴射弁21の温度とみなしている。これに限らず、噴射弁21の温度を直接測定する温度センサを別途設けてもよい。   Further, the catalyst 10 is provided with a temperature sensor 11 for measuring the temperature of the catalyst 10 in its housing. The temperature sensor 11 outputs a catalyst temperature signal indicating the temperature Ts of the catalyst 10 to the control unit 30. In the present embodiment, the catalyst temperature Ts is related to the temperature of the injection valve 21, and the temperature of the injection valve 21 is estimated or substantially regarded as the temperature of the injection valve 21. Not only this but you may provide the temperature sensor which measures the temperature of the injection valve 21 directly.

また、触媒10の下流側の排気通路3には、NOx濃度検出手段であるNOx濃度センサ12が設けられている。このNOx濃度センサ12は、触媒10で浄化された排気中のNOx濃度Drを検出し、NOx濃度Drを表すNOx濃度検出信号を制御部30に出力する。   The exhaust passage 3 downstream of the catalyst 10 is provided with a NOx concentration sensor 12 as NOx concentration detection means. The NOx concentration sensor 12 detects the NOx concentration Dr in the exhaust gas purified by the catalyst 10, and outputs a NOx concentration detection signal representing the NOx concentration Dr to the control unit 30.

次に、図2の排気浄化処理フローに基づいて、本発明の実施形態によるエンジン排気浄化装置1の作用を説明する。制御部30は、図2に示す処理を所定時間毎に繰り返し行っている。
まず、制御部30は、各センサから受け取ったエンジン回転速度Ne,アクセル開度θ,NOx濃度Dr,触媒温度Tsを表す信号を読み込む(ステップS1)。
制御部30は、読み込んだエンジン回転速度Ne,アクセル開度θに基づいて、要求エンジントルクTeを算出する(ステップS2)。
Next, the operation of the engine exhaust gas purification apparatus 1 according to the embodiment of the present invention will be described based on the exhaust gas purification process flow of FIG. The control unit 30 repeatedly performs the process shown in FIG. 2 at predetermined time intervals.
First, the control unit 30 reads signals representing the engine speed Ne, the accelerator opening θ, the NOx concentration Dr, and the catalyst temperature Ts received from each sensor (step S1).
The control unit 30 calculates the required engine torque Te based on the read engine rotational speed Ne and accelerator opening degree θ (step S2).

さらに、NOx濃度推定手段である制御部30は、エンジン回転速度Ne,要求エンジントルクTeに基づき、現在の運転状態に応じてエンジン2から排出されると推定されるNOxの発生量から排出NOx濃度Dfを算出する(ステップS3)。なお、本実施形態では、エンジン2の運転状態に応じて排出NOx濃度Dfを算出しているが、これに限らず、触媒10の排気上流側にNOx濃度センサを設けて、このNOx濃度センサが排出NOx濃度Dfを検出するように構成してもよい。   Further, the control unit 30 that is a NOx concentration estimating means is based on the engine rotational speed Ne and the required engine torque Te, and the exhausted NOx concentration is calculated from the amount of NOx that is estimated to be exhausted from the engine 2 according to the current operating state. Df is calculated (step S3). In the present embodiment, the exhaust NOx concentration Df is calculated according to the operating state of the engine 2, but the present invention is not limited to this, and a NOx concentration sensor is provided on the exhaust upstream side of the catalyst 10, and this NOx concentration sensor The exhaust NOx concentration Df may be detected.

そして、浄化率取得手段としての制御部30は、取得したNOx濃度、すなわち触媒10の排気上下流位置における排出NOx濃度Df,NOx濃度Drに基づいて、NOx浄化率αを算出する(ステップS4)。   Then, the control unit 30 as the purification rate acquisition means calculates the NOx purification rate α based on the acquired NOx concentration, that is, the exhaust NOx concentration Df and the NOx concentration Dr at the exhaust upstream / downstream position of the catalyst 10 (step S4). .

また、第1設定手段としての制御部30は、排出NOx濃度Df,NOx濃度Dr,触媒温度Tsに基づいて、現在のエンジン2の運転状態に応じて供給すべき最適な尿素水4の噴射量Q1を算出する(ステップS5)。この処理では、制御部30は、触媒温度Tsで触媒10において吸着可能な最大アンモニア吸着量から目標アンモニア吸着量を設定し、触媒10の排気上下流のNOx濃度Df,DrからNOx浄化率αに相当するアンモニア消費量を算出する。そして、制御部30は、算出したアンモニア消費量に応じて、目標アンモニア吸着量が達成されるように、噴射量を算出する。したがって、このとき算出された噴射量Q1で尿素水4を噴射すれば、アンモニアスリップは発生しない。実アンモニア吸着量は、噴射された尿素水の積算値と、アンモニア消費量とから算出することができる。   Further, the control unit 30 as the first setting means, based on the exhausted NOx concentration Df, the NOx concentration Dr, and the catalyst temperature Ts, optimal injection amount of the urea water 4 to be supplied according to the current operating state of the engine 2. Q1 is calculated (step S5). In this process, the control unit 30 sets the target ammonia adsorption amount from the maximum ammonia adsorption amount that can be adsorbed by the catalyst 10 at the catalyst temperature Ts, and changes the NOx concentration Df, Dr upstream and downstream of the catalyst 10 to the NOx purification rate α. Calculate the corresponding ammonia consumption. Then, the control unit 30 calculates the injection amount so that the target ammonia adsorption amount is achieved according to the calculated ammonia consumption amount. Therefore, if the urea water 4 is injected with the injection amount Q1 calculated at this time, ammonia slip does not occur. The actual ammonia adsorption amount can be calculated from the integrated value of the injected urea water and the ammonia consumption amount.

次いで、熱害領域判定手段としての制御部30は、触媒温度Tsが所定閾値温度Ts0以上であるか否かを判定する(ステップS6)。この閾値温度Ts0は、噴射弁21の熱害対策が必要になる温度閾値であり、閾値温度Ts0以上が熱害領域である。したがって、温度Ts0は、この温度以下での使用では噴射量の大小にかかわらず、噴射弁21を熱的に保護することができるように設定されている。 Next, the control unit 30 as the heat-damaged area determination unit determines whether or not the catalyst temperature Ts is equal to or higher than a predetermined threshold temperature Ts 0 (step S6). The threshold temperature Ts 0 is a temperature threshold that requires countermeasures against heat damage of the injection valve 21, and the threshold temperature Ts 0 or higher is a heat damage region. Accordingly, the temperature Ts 0 is set so that the injection valve 21 can be thermally protected regardless of the amount of injection when used below this temperature.

触媒温度Tsが閾値温度Ts0以上である場合(ステップS6;Yes)、噴射弁21を熱害から保護すべき場合であり、第2設定手段としての制御部30は、後述するカウンタをリセットして初期値に戻した後(ステップS7)、触媒温度Tsに応じた噴射量Q2を算出する(ステップS8)。本実施形態では、触媒温度Tsと内部メモリに記憶されたテーブル(図3参照)に基づいて噴射量Q2が設定される。 If the catalyst temperature Ts is the threshold temperature Ts 0 or more (Step S6; Yes), the case of the injection valve 21 should be protected from thermal damage, the control unit 30 as a second setting means resets the counter to be described later After returning to the initial value (step S7), the injection amount Q2 corresponding to the catalyst temperature Ts is calculated (step S8). In the present embodiment, the injection amount Q2 is set based on the catalyst temperature Ts and a table (see FIG. 3) stored in the internal memory.

図3に示すように、このテーブルは、閾値温度Ts0以上の触媒温度Tsにおいて設定されており、触媒温度Tsが高いほど噴射量Q2は大きい。すなわち、触媒温度Tsが高いほど尿素水4の噴射量Q2を多くして、噴射弁21の自己冷却作用を大きくすることで、噴射弁21に対する熱害を抑制している。噴射量Q2で尿素水を噴射することにより、噴射弁21の熱的保護を図ることができる。 As shown in FIG. 3, this table is set at the catalyst temperature Ts equal to or higher than the threshold temperature Ts 0 , and the injection amount Q2 is larger as the catalyst temperature Ts is higher. That is, the thermal damage to the injection valve 21 is suppressed by increasing the injection amount Q2 of the urea water 4 and increasing the self-cooling action of the injection valve 21 as the catalyst temperature Ts increases. By injecting urea water with the injection amount Q2, the thermal protection of the injection valve 21 can be achieved.

噴射量Q2が設定されると、制御部30は、噴射量Q2が噴射量Q1よりも大きいか否かを判定する(ステップS9)。エンジン2から排出されるNOx濃度が高い運転状態では、噴射量Q1の方が、熱害対策で必要な噴射量Q2よりも大きな値に算定される場合がある。このため、以下の処理では、噴射量Q1,Q2のうち大きい方を選択することにより、少なくとも噴射弁21の熱害対策を行うことができるように構成されている。   When the injection amount Q2 is set, the control unit 30 determines whether or not the injection amount Q2 is larger than the injection amount Q1 (step S9). In an operation state in which the concentration of NOx discharged from the engine 2 is high, the injection amount Q1 may be calculated to be a larger value than the injection amount Q2 required for heat damage countermeasures. For this reason, in the following process, it is comprised so that the heat damage countermeasure of the injection valve 21 can be taken at least by selecting the larger one among the injection quantities Q1 and Q2.

噴射量Q2の方が噴射量Q1よりも大きい場合(ステップS9;Yes)、噴射量制御手段としての制御部30は、噴射量Q2を採用し、噴射量Q2で尿素水4が噴射弁21から噴射されるように、駆動信号を出力する(ステップS10)。これにより、噴射弁21を熱的に保護することができる。一方、噴射量Q2は噴射量Q1よりも大きいので、過剰な噴射量分によりアンモニアスリップが発生しやすくなる(アンモニアスリップ領域)。   When the injection amount Q2 is larger than the injection amount Q1 (step S9; Yes), the control unit 30 as the injection amount control means adopts the injection amount Q2, and the urea water 4 is injected from the injection valve 21 at the injection amount Q2. A drive signal is output so as to be injected (step S10). Thereby, the injection valve 21 can be protected thermally. On the other hand, since the injection amount Q2 is larger than the injection amount Q1, ammonia slip easily occurs due to an excessive injection amount (ammonia slip region).

このため、噴射量Q2に設定した場合、制御部30は、後述する浄化システムの異常判定を禁止する(ステップS11)。すなわち、アンモニアスリップ発生時には、触媒10下流の排気中に含まれるアンモニアにより、NOx濃度センサ12がNOx濃度を高めに検出するおそれがあるため、算出されるNOx浄化率が不正確であるおそれがある。このため、NOx浄化率が不正確だと、制御部30は浄化システムが異常であると誤判定してしまう。本実施形態では、このような誤判定を防止するため、アンモニアスリップ領域では、浄化システムの異常判定を禁止し、異常判定処理を実行しない。制御部30は、この異常判定禁止を報知手段5に出力し、報知手段5は異常判定禁止中であることを運転者に報知する。   Therefore, when the injection amount Q2 is set, the control unit 30 prohibits a purification system abnormality determination described later (step S11). That is, when ammonia slip occurs, the NOx concentration sensor 12 may detect the NOx concentration higher due to ammonia contained in the exhaust gas downstream of the catalyst 10, and thus the calculated NOx purification rate may be inaccurate. . For this reason, if the NOx purification rate is inaccurate, the control unit 30 erroneously determines that the purification system is abnormal. In the present embodiment, in order to prevent such erroneous determination, in the ammonia slip region, abnormality determination of the purification system is prohibited and abnormality determination processing is not executed. The control unit 30 outputs this abnormality determination prohibition to the notification unit 5, and the notification unit 5 notifies the driver that the abnormality determination is being prohibited.

一方、触媒温度Tsは閾値温度Ts0以上であるが、噴射量Q2が噴射量Q1よりも大きくない場合(ステップS9;No)、エンジン2から排出されるNOx濃度が高い運転状態であり、噴射量制御手段としての制御部30は、噴射量Q1を採用し、噴射量Q1で尿素水4が噴射弁21から噴射されるように、駆動信号を出力する(ステップS12)。これにより、アンモニアスリップを発生させることなく、噴射弁21を熱的に保護することができる。 On the other hand, when the catalyst temperature Ts is equal to or higher than the threshold temperature Ts 0 but the injection amount Q2 is not greater than the injection amount Q1 (step S9; No), the NOx concentration discharged from the engine 2 is in an operating state, and the injection is performed. The control unit 30 as the amount control means adopts the injection amount Q1 and outputs a drive signal so that the urea water 4 is injected from the injection valve 21 at the injection amount Q1 (step S12). Thereby, the injection valve 21 can be thermally protected without causing ammonia slip.

噴射量Q1に設定した場合、異常判定手段としての制御部30は、浄化システムの異常判定処理(ステップS13−S16)を実行する。まず、制御部30は、ステップS4で算出したNOx浄化率αが所定閾値以下であるか否かを判定する(ステップS13)。
NOx浄化率αが所定閾値以下である場合(ステップS13;Yes)、所定のNOx浄化率が得られていないので、制御部30は劣化異常フラグを1に設定する(ステップS14)。劣化異常フラグが0であることは、浄化システムが正常に動作していることを意味し、劣化異常フラグが1であることは、浄化システムに何等かの異常が生じていることを意味する。
When the injection amount Q1 is set, the control unit 30 serving as the abnormality determination means executes the purification system abnormality determination process (steps S13 to S16). First, the control unit 30 determines whether or not the NOx purification rate α calculated in step S4 is equal to or less than a predetermined threshold (step S13).
When the NOx purification rate α is equal to or less than the predetermined threshold (step S13; Yes), the predetermined NOx purification rate is not obtained, and therefore the control unit 30 sets the deterioration abnormality flag to 1 (step S14). A deterioration abnormality flag of 0 means that the purification system is operating normally, and a deterioration abnormality flag of 1 means that some abnormality has occurred in the purification system.

すなわち、NOx浄化率αの低下は、浄化システムの触媒10の劣化と、検出センサ(本実施形態ではNOx濃度センサ12)の異常とに起因して生じる。触媒10が劣化した場合には、NOx浄化率が実際に低下する。一方、NOx濃度センサ12の異常の場合には、実際にはNOxが適正に浄化されているにもかかわらず、NOx浄化率が低く算出される。しかしながら、NOx浄化率αからのみでは、触媒10とNOx濃度センサ12のいずれが原因であるのかは特定できない。このため、制御部30は、触媒劣化又はNOx濃度センサ異常を区別することなく、浄化システムの異常検出を記憶し、異常検出信号を報知手段5に出力する(ステップS15)。報知手段5は、この異常検出信号を受け取り、異常検出中であることを運転者に報知する。   That is, the decrease in the NOx purification rate α is caused by the deterioration of the catalyst 10 of the purification system and the abnormality of the detection sensor (NOx concentration sensor 12 in this embodiment). When the catalyst 10 deteriorates, the NOx purification rate actually decreases. On the other hand, when the NOx concentration sensor 12 is abnormal, the NOx purification rate is calculated to be low although NOx is actually purified appropriately. However, it cannot be specified which of the catalyst 10 and the NOx concentration sensor 12 is the cause only from the NOx purification rate α. For this reason, the control unit 30 stores the abnormality detection of the purification system without distinguishing between catalyst deterioration or NOx concentration sensor abnormality, and outputs an abnormality detection signal to the notification means 5 (step S15). The notification means 5 receives this abnormality detection signal and notifies the driver that the abnormality is being detected.

一方、NOx浄化率αが所定閾値以下でない場合(ステップS13;No)、所定のNOx浄化率が得られているので、制御部30は劣化異常フラグを0に設定する(ステップS16)。   On the other hand, when the NOx purification rate α is not less than or equal to the predetermined threshold (step S13; No), since the predetermined NOx purification rate is obtained, the control unit 30 sets the deterioration abnormality flag to 0 (step S16).

また、ステップS6において、触媒温度Tsが閾値温度Ts0以上でない場合(ステップS6;No)、噴射弁21の熱害抑制対策を実施しなくてもよい場合であり、制御部30は、まず劣化異常フラグが1であるか否かを判定する(ステップS17)。
劣化異常フラグが1でない場合(ステップS17;No)、浄化システムの異常が検出されていない状態であり、制御部30は、上述のステップS12−S16の処理を行う。
Further, in step S6, when the catalyst temperature Ts is not the threshold temperature Ts 0 or more (Step S6; No), the case where the thermal damage suppression of the injection valve 21 may not be performed, the control unit 30 first degradation It is determined whether or not the abnormality flag is 1 (step S17).
When the deterioration abnormality flag is not 1 (step S17; No), it is a state in which no abnormality of the purification system is detected, and the control unit 30 performs the processing of the above-described steps S12 to S16.

一方、劣化異常フラグが1である場合(ステップS17;Yes)、浄化システムの異常が検出されている状態であり、且つ、噴射弁21の熱害抑制対策を実施しなくてもよい状態である。この場合、制御部30は、噴射弁21からの尿素水4の噴射量を0に設定し、噴射を停止させ(ステップS18)、内部カウンタのカウントダウン処理を行う(ステップS19)。このカウンタは、制御部30が内部に有しているものであり、所定期間、噴射を停止するために設けられている。ステップS19の処理では、現在のカウンタ値を所定数だけデクリメントする。具体的には、現在のカウンタ値から1を差し引く処理を行う。   On the other hand, when the deterioration abnormality flag is 1 (step S17; Yes), it is a state in which an abnormality of the purification system is detected, and it is not necessary to take measures for suppressing heat damage of the injection valve 21. . In this case, the control unit 30 sets the injection amount of the urea water 4 from the injection valve 21 to 0, stops the injection (step S18), and performs a countdown process of the internal counter (step S19). This counter is provided inside the control unit 30 and is provided to stop the injection for a predetermined period. In the process of step S19, the current counter value is decremented by a predetermined number. Specifically, a process of subtracting 1 from the current counter value is performed.

次いで、制御部30はカウンタ値が0に達したか否かを判定する(ステップS20)。
カウンタ値が0でない場合(ステップS20;No)、制御部30は処理を終了して、再びステップS1の処理を繰り返す。
一方、カウンタ値が0である場合(ステップS20;Yes)、噴射停止から所定時間経過したので、制御部30はカウンタをリセットする(ステップS21)。なお、噴射停止から所定時間経過したので、触媒10に吸着されていたアンモニアは、停止期間中に通過した排気中のNOxを浄化するために消費され、アンモニア吸着量は0となっている。したがって、この時点で触媒10はNOxを浄化しなくなっている。
Next, the control unit 30 determines whether or not the counter value has reached 0 (step S20).
When the counter value is not 0 (step S20; No), the control unit 30 ends the process and repeats the process of step S1 again.
On the other hand, when the counter value is 0 (step S20; Yes), since the predetermined time has elapsed from the stop of injection, the control unit 30 resets the counter (step S21). Since a predetermined time has elapsed since the stop of the injection, the ammonia adsorbed on the catalyst 10 is consumed to purify NOx in the exhaust gas that has passed during the stop period, and the ammonia adsorption amount is zero. Therefore, at this time, the catalyst 10 does not purify NOx.

次いで、制御部30は、触媒10がNOxを浄化しない状態における排出NOx濃度DfとNOx濃度Drとの濃度差が、所定濃度以下であるか否かを判定する(ステップS22)。
この時点では、触媒10はNOxを浄化していないので上記濃度差は0となり、よって上記濃度差は所定濃度以下になる。
Next, the control unit 30 determines whether or not the concentration difference between the exhaust NOx concentration Df and the NOx concentration Dr when the catalyst 10 does not purify NOx is equal to or less than a predetermined concentration (step S22).
At this time, since the catalyst 10 is not purifying NOx, the concentration difference becomes 0, and thus the concentration difference becomes a predetermined concentration or less.

しかしながら、上記濃度差が所定濃度以下でない場合(ステップS22;No)、上記濃度差は所定濃度以下にならない原因は、NOx濃度センサ12の検出異常と考えられる。したがって、制御部30は、劣化異常フラグが1である原因をNOx濃度センサ12の異常と特定し、センサ異常を表す異常検出信号を報知手段5に出力する(ステップS23)。報知手段5は、この異常検出信号を受け取り、センサ異常であることを運転者に報知する。   However, if the concentration difference is not less than or equal to the predetermined concentration (step S22; No), the reason why the concentration difference does not become the predetermined concentration or less is considered to be an abnormal detection of the NOx concentration sensor 12. Therefore, the control unit 30 identifies the cause of the deterioration abnormality flag being 1 as the abnormality of the NOx concentration sensor 12, and outputs an abnormality detection signal representing the sensor abnormality to the notification unit 5 (step S23). The notification means 5 receives this abnormality detection signal and notifies the driver that the sensor is abnormal.

一方、上記濃度差が所定濃度以下である場合(ステップS22;Yes)、NOx濃度センサ12を正常とみなして、制御部30は、劣化異常フラグが1である原因を触媒10の劣化と特定し、触媒劣化を表す異常検出信号を報知手段5に出力する(ステップS24)。報知手段5は、この異常検出信号を受け取り、触媒劣化であることを運転者に報知する。   On the other hand, when the concentration difference is equal to or less than the predetermined concentration (step S22; Yes), the NOx concentration sensor 12 is regarded as normal, and the control unit 30 identifies the cause of the deterioration abnormality flag being 1 as deterioration of the catalyst 10. Then, an abnormality detection signal indicating catalyst deterioration is output to the notification means 5 (step S24). The notification means 5 receives this abnormality detection signal and notifies the driver that the catalyst is deteriorated.

以上のように、本実施形態のエンジン排気浄化装置1では、噴射弁21に対する熱害を抑制すべきエンジン運転状態では、エンジン運転状態に応じた最適な噴射量Q1と、熱害を抑制するように設定された噴射量Q2とのうち、大きい方の噴射量が採用され、この噴射量で噴射弁21から尿素水4が噴射される。したがって、熱害を抑制すべき運転領域では、少なくとも熱害を抑制するように設定された噴射量Q2又はこれよりも大きい噴射量が確保されるので、噴射弁21の熱害を確実に抑制することができる。   As described above, in the engine exhaust gas purification apparatus 1 of the present embodiment, in the engine operation state in which the heat damage to the injection valve 21 is to be suppressed, the optimal injection amount Q1 corresponding to the engine operation state and the heat damage are suppressed. The larger one of the injection amounts Q2 set in the above is adopted, and the urea water 4 is injected from the injection valve 21 with this injection amount. Therefore, in the operation region in which the heat damage should be suppressed, at least the injection amount Q2 set to suppress the heat damage or an injection amount larger than this is secured, so the heat damage of the injection valve 21 is surely suppressed. be able to.

さらに、本実施形態のエンジン排気浄化装置1では、熱害を抑制すべきエンジン運転状態で、最適な噴射量Q1よりも、熱害抑制のための噴射量Q2の方が大きい場合には、噴射量Q2で尿素水4が噴射されるので、アンモニアスリップが発生し易くなる。このようなアンモニアスリップが発生し易い状況下では、排気中のアンモニアに起因してNOx濃度センサ12がNOx濃度を正確に検出できず、正確なNOx浄化率αを取得できないおそれがある。このため、本実施形態では、アンモニアスリップが発生し易い状況下で排気浄化システム(触媒10,NOx濃度センサ21)の異常判定を禁止することで、誤判定を防止することができる。   Furthermore, in the engine exhaust purification apparatus 1 of the present embodiment, when the injection amount Q2 for suppressing thermal damage is larger than the optimal injection amount Q1 in the engine operating state where thermal damage should be suppressed, injection is performed. Since the urea water 4 is injected with the amount Q2, ammonia slip easily occurs. Under such circumstances where ammonia slip is likely to occur, the NOx concentration sensor 12 cannot accurately detect the NOx concentration due to ammonia in the exhaust gas, and there is a possibility that an accurate NOx purification rate α cannot be obtained. For this reason, in this embodiment, an erroneous determination can be prevented by prohibiting the abnormality determination of the exhaust purification system (catalyst 10, NOx concentration sensor 21) in a situation where ammonia slip is likely to occur.

1 エンジン排気浄化装置
2 エンジン
2a エンジン回転速度センサ
3 排気通路
4 尿素水
5 報知手段
6 アクセル開度センサ
10 選択還元NOx触媒
11 温度センサ
12 NOx濃度センサ
20 尿素水噴射装置
21 尿素水噴射弁
22 尿素水タンク
23 ポンプ
30 制御部
DESCRIPTION OF SYMBOLS 1 Engine exhaust gas purification device 2 Engine 2a Engine rotational speed sensor 3 Exhaust passage 4 Urea water 5 Notification means 6 Accelerator opening degree sensor 10 Selective reduction NOx catalyst 11 Temperature sensor 12 NOx concentration sensor 20 Urea water injection device 21 Urea water injection valve 22 Urea Water tank 23 Pump 30 Controller

Claims (4)

エンジンの排気通路中に設けられた選択還元NOx触媒と、この選択還元NOx触媒の排気上流側に設けられ、前記選択還元NOx触媒に向けて尿素水を噴射する尿素水噴射弁と、この尿素水噴射弁を制御する制御部と、を備えたエンジン排気浄化装置において、
前記制御部は、
前記尿素水噴射弁を制御して尿素水の噴射量を調整する噴射量制御手段と、
前記尿素水噴射弁に関連する温度に基づいて、前記尿素水噴射弁に対する熱害を抑制すべき運転領域か否かを判定する熱害領域判定手段と、
排気中のNOxの還元のためにエンジン運転状態に応じた前記噴射量を設定する第1設定手段と、
前記熱害を抑制するように前記噴射量を設定する第2設定手段と、
前記選択還元NOx触媒によるNOx浄化率を取得する浄化率取得手段と、
前記浄化率取得手段の取得したNOx浄化率に基づいて、エンジン排気浄化装置の異常を判定する異常判定手段と、を備え、
前記噴射量制御手段は、前記熱害を抑制すべき運転領域にある時には、前記第1設定手段と前記第2設定手段の設定した噴射量のうち大きい噴射量で尿素水が噴射されるように前記尿素水噴射弁を制御すると共に、前記第2設定手段で設定した噴射量の方が前記第1設定手段で設定した噴射量よりも大きい場合には前記異常判定手段によるNOx浄化異常判定を禁止することを特徴とするエンジン排気浄化装置。
A selective reduction NOx catalyst provided in the exhaust passage of the engine, a urea water injection valve provided on the exhaust upstream side of the selective reduction NOx catalyst and injecting urea water toward the selective reduction NOx catalyst, and the urea water In an engine exhaust purification device comprising a control unit that controls an injection valve,
The controller is
Injection amount control means for adjusting the urea water injection amount by controlling the urea water injection valve;
A heat damage area determination means for determining whether or not the operation area is to suppress a heat damage to the urea water injection valve based on a temperature related to the urea water injection valve;
First setting means for setting the injection amount according to the engine operating state for the reduction of NOx in the exhaust;
Second setting means for setting the injection amount so as to suppress the heat damage;
A purification rate acquisition means for acquiring a NOx purification rate by the selective reduction NOx catalyst;
An abnormality determination means for determining an abnormality of the engine exhaust purification device based on the NOx purification rate acquired by the purification rate acquisition means,
When the injection amount control means is in an operation region in which the heat damage should be suppressed, urea water is injected with a large injection amount among the injection amounts set by the first setting means and the second setting means. The urea water injection valve is controlled, and when the injection amount set by the second setting means is larger than the injection amount set by the first setting means, NOx purification abnormality determination by the abnormality determination means is prohibited. An engine exhaust purification device characterized by:
前記異常判定手段は、前記選択還元NOx触媒の劣化または前記浄化率取得手段の異常の少なくとも何れか1つを判定することを特徴とすることを特徴とする請求項1に記載のエンジン排気浄化装置。   2. The engine exhaust gas purification apparatus according to claim 1, wherein the abnormality determination unit determines at least one of deterioration of the selective reduction NOx catalyst and abnormality of the purification rate acquisition unit. . 前記浄化率取得手段は、前記選択還元NOx触媒の排気上流側におけるNOx濃度をエンジン運転状態に応じて推定するNOx濃度推定手段と、前記選択還元NOx触媒の排気下流側におけるNOx濃度を検出するNOx濃度検出手段と、を備えていることを特徴とする請求項1又は2に記載のエンジン排気浄化装置。   The purification rate acquisition means includes NOx concentration estimation means for estimating the NOx concentration on the exhaust upstream side of the selective reduction NOx catalyst according to an engine operating state, and NOx for detecting the NOx concentration on the exhaust downstream side of the selective reduction NOx catalyst. The engine exhaust purification device according to claim 1, further comprising a concentration detection unit. 前記噴射量制御手段は、前記異常判定手段が異常判定した場合には所定期間尿素水の噴射を停止し、停止後所定期間経過した後に前記選択還元NOx触媒の排気上流側及び下流側の前記NOx濃度の濃度差を算出し、この濃度差が所定濃度差以下である場合は前記選択還元NOx触媒の劣化と判定し、前記濃度差が所定濃度差を超える場合は、前記NOx濃度検出手段の異常と判定することを特徴とする請求項3に記載のエンジン排気浄化装置。   The injection amount control means stops the urea water injection for a predetermined period when the abnormality determination means makes an abnormality determination, and the NOx on the exhaust upstream side and downstream side of the selective reduction NOx catalyst after a predetermined period has elapsed after the stop. A concentration difference between the concentrations is calculated. If the concentration difference is less than or equal to a predetermined concentration difference, it is determined that the selective reduction NOx catalyst has deteriorated. If the concentration difference exceeds the predetermined concentration difference, an abnormality in the NOx concentration detection means is detected. The engine exhaust gas purification apparatus according to claim 3, wherein the engine exhaust gas purification apparatus is determined.
JP2009096294A 2009-04-10 2009-04-10 Engine exhaust purification system Expired - Fee Related JP5252217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096294A JP5252217B2 (en) 2009-04-10 2009-04-10 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096294A JP5252217B2 (en) 2009-04-10 2009-04-10 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2010248925A JP2010248925A (en) 2010-11-04
JP5252217B2 true JP5252217B2 (en) 2013-07-31

Family

ID=43311535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096294A Expired - Fee Related JP5252217B2 (en) 2009-04-10 2009-04-10 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP5252217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741363B1 (en) 2015-06-19 2017-05-29 도요타지도샤가부시키가이샤 Malfunction diagnosis apparatus and malfunction diagnosis method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762832B2 (en) * 2011-06-09 2015-08-12 ボッシュ株式会社 Degradation diagnosis device and exhaust purification device of selective reduction catalyst
JP6015198B2 (en) * 2012-07-26 2016-10-26 トヨタ自動車株式会社 Reducing agent addition system
JP5672295B2 (en) * 2012-12-03 2015-02-18 トヨタ自動車株式会社 Exhaust gas purification device deterioration judgment system
JP5850177B2 (en) * 2012-12-06 2016-02-03 トヨタ自動車株式会社 Exhaust purification device failure judgment system
JP5842805B2 (en) * 2012-12-28 2016-01-13 株式会社デンソー Urea water addition controller
WO2014192863A1 (en) * 2013-05-30 2014-12-04 トヨタ自動車株式会社 Error diagnostic device for exhaust purification device
JP6330444B2 (en) * 2014-04-16 2018-05-30 いすゞ自動車株式会社 Exhaust purification system
JP6323354B2 (en) 2015-01-30 2018-05-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6534941B2 (en) * 2016-02-09 2019-06-26 トヨタ自動車株式会社 Abnormality diagnosis device for exhaust purification mechanism
JP2020112096A (en) * 2019-01-11 2020-07-27 マツダ株式会社 Exhaust gas purification device diagnostic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718208B2 (en) * 2003-10-02 2005-11-24 日産ディーゼル工業株式会社 Engine exhaust purification system
JP4267534B2 (en) * 2004-07-23 2009-05-27 日野自動車株式会社 Abnormality detection method for exhaust purification system
JP2007321647A (en) * 2006-05-31 2007-12-13 Hitachi Ltd Exhaust treatment equipment for engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741363B1 (en) 2015-06-19 2017-05-29 도요타지도샤가부시키가이샤 Malfunction diagnosis apparatus and malfunction diagnosis method

Also Published As

Publication number Publication date
JP2010248925A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5252217B2 (en) Engine exhaust purification system
JP6037036B2 (en) Exhaust gas purification device abnormality diagnosis device
JP6037035B2 (en) Exhaust purification device diagnostic device
CN101918686B (en) Equipment and method for determining catalyst deterioration
US9624804B2 (en) Abnormality diagnosis device for a sensor
JP3979153B2 (en) NOx purification device for internal combustion engine
JP4290109B2 (en) Exhaust purification equipment
AU2013356013B2 (en) Deterioration determination system of exhaust emission control device
KR101741363B1 (en) Malfunction diagnosis apparatus and malfunction diagnosis method
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
JP5880514B2 (en) Engine exhaust purification system
JP2009191756A (en) Fault diagnosis apparatus for oxidation catalyst, method of fault diagnosis for oxidation catalyst, and exhaust purification apparatus of internal combustion engine
JP4666018B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2014199777A1 (en) Control device, exhaust purification device for internal combustion engine, and control method for exhaust purification device
JP5195283B2 (en) Engine exhaust purification system
JP2012031826A (en) Failure detection system for exhaust emission control device
JP2010209771A (en) Malfunction diagnosis device for exhaust emission control system, and exhaust emission control system
JP5146547B2 (en) Exhaust gas purification device for internal combustion engine
JP5839118B2 (en) Abnormality determination system for exhaust gas purification device of internal combustion engine
JP2010071227A (en) Engine exhaust emission control device
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
JP2010261329A (en) Exhaust purification device
JP2018131937A (en) Ammonia concentration detector
JP2018178734A (en) Exhaust gas purification system for internal combustion engine
JP2016079903A (en) Failure judgment device for exhaust gas purification device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

R150 Certificate of patent or registration of utility model

Ref document number: 5252217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees