[go: up one dir, main page]

JP5257759B2 - Inspection apparatus and inspection method - Google Patents

Inspection apparatus and inspection method Download PDF

Info

Publication number
JP5257759B2
JP5257759B2 JP2008179307A JP2008179307A JP5257759B2 JP 5257759 B2 JP5257759 B2 JP 5257759B2 JP 2008179307 A JP2008179307 A JP 2008179307A JP 2008179307 A JP2008179307 A JP 2008179307A JP 5257759 B2 JP5257759 B2 JP 5257759B2
Authority
JP
Japan
Prior art keywords
inspection
light
modulation
unit
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008179307A
Other languages
Japanese (ja)
Other versions
JP2010019635A (en
Inventor
和彦 深澤
晴彦 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008179307A priority Critical patent/JP5257759B2/en
Publication of JP2010019635A publication Critical patent/JP2010019635A/en
Application granted granted Critical
Publication of JP5257759B2 publication Critical patent/JP5257759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、半導体ウエハ等に代表される被検物の表面を検査する検査装置および検査方法に関する。   The present invention relates to an inspection apparatus and an inspection method for inspecting the surface of an object represented by a semiconductor wafer or the like.

半導体ウエハ(以下適宜ウエハと称する)上に回路パターンを形成する半導体製造装置は従来から良く知られているが、この半導体製造は複雑な多岐に亘る工程を経て行われ、この工程中において、ウエハ上に形成された回路パターンに欠陥や異常等が発生していないか否かについての検査や、ウエハ上に付着したゴミやウエハ表面の傷等の有無について検査することが必要である。これは例えば、ウエハに傷があると、半導体製造工程中にこの傷が原因でウエハにクラックが発生したり割れたりして、それまでの製造工程が無駄になるという問題があるためである。   2. Description of the Related Art A semiconductor manufacturing apparatus that forms a circuit pattern on a semiconductor wafer (hereinafter referred to as a wafer as appropriate) has been well known in the past, but this semiconductor manufacturing is performed through a variety of complicated processes. It is necessary to inspect whether there are any defects or abnormalities in the circuit pattern formed on the substrate, and to inspect for dust attached to the wafer, scratches on the wafer surface, or the like. This is because, for example, if there is a scratch on the wafer, the wafer is cracked or broken during the semiconductor manufacturing process, and the previous manufacturing process is wasted.

半導体製造工程では、レジストが塗布されたウエハの表面に所定の回路パターンが露光されると、現像、エッチング、スパッタリング、ドーピング、CMP(化学的機械的研磨)等の多くの工程を経て、再度レジスト塗布の後に別の回路パターンが露光され、その後同様の工程を経て複数の層が積み重ねられる。このような半導体製造工程では、ウエハの検査を各工程で行うことが好ましいが、欠陥がある場合に再生が可能な回路パターンの露光工程および現像工程が終わった段階で行う検査が特に重要である。   In a semiconductor manufacturing process, when a predetermined circuit pattern is exposed on the surface of a wafer on which a resist is applied, the resist is again processed through many steps such as development, etching, sputtering, doping, and CMP (chemical mechanical polishing). After the application, another circuit pattern is exposed, and then a plurality of layers are stacked through the same process. In such a semiconductor manufacturing process, it is preferable to inspect the wafer in each step, but it is particularly important to inspect the circuit pattern that can be reproduced when there is a defect, and the inspection that is performed at the end of the development process. .

このようなウエハの検査には、回路パターン等を走査型電子顕微鏡(SEM)等で拡大して回路パターン等そのものを観察するミクロ検査と、正反射像や回折像の明視野観察や暗視野観察を行うマクロ検査(例えば、特許文献1を参照)とが知られている。マクロ検査は、ウエハを一括して観察することができるため、高いスループットを得られ重要な検査となっている。このようなマクロ検査は、従来、人間が目視によって行ってきたが、回路パターンの微細化やウエハの大型化に伴いマクロ検査装置の重要性が高まっている。
特開2002‐162368号公報
For inspection of such wafers, a micro-inspection in which a circuit pattern or the like is enlarged by a scanning electron microscope (SEM) to observe the circuit pattern or the like, and a bright field observation or a dark field observation of a specular reflection image or a diffraction image There is known a macro inspection (see, for example, Patent Document 1). The macro inspection is an important inspection because a high throughput can be obtained because the wafer can be observed collectively. Conventionally, such macro inspection has been carried out by human eyes. However, the importance of macro inspection apparatuses is increasing as circuit patterns become finer and wafers become larger.
JP 2002-162368 A

マクロ検査では、検査用照射光として超高圧水銀ランプ等の光源が発する光から所望の波長帯の光を干渉フィルタ等の波長選択フィルタで抽出している。そのため、波長選択フィルタは光源からの光により加熱され、光学性能に影響が出る可能性が生じている。また、回路パターンの微細化に伴い回折検査に用いる検査用照射光の波長を短波長化する必要が生じている。具体的には、h線(405nm)からi線(365nm)を用いるようになり、最近では248nm波長帯の光を用いる必要が生じてきた。従来用いていたh線やi線は水銀の輝線スペクトルであるため、波長選択フィルタの透過波長帯が多少シフトしても、輝線スペクトルに変化はなく、波長選択フィルタの透過域に当該輝線スペクトルが入っていれば、抽出される波長に対する影響はほとんど無かった。しかし、超高圧水銀ランプ等の248nm波長帯の光は比較的ブロードなピークとなっており、検査用照射光を抽出する波長選択フィルタの透過波長帯がシフトすると検査用照射光の波長もシフトしてしまう不都合が発生する可能性が高まっている。また、このような波長のシフトは装置ごとに進行具合が異なる可能性があり、複数の検査装置間で検査結果のバラツキ(いわゆる装置間誤差)を生じる虞もある。   In the macro inspection, light in a desired wavelength band is extracted from light emitted from a light source such as an ultrahigh pressure mercury lamp as inspection irradiation light using a wavelength selection filter such as an interference filter. For this reason, the wavelength selective filter is heated by light from the light source, which may affect the optical performance. Further, with the miniaturization of circuit patterns, it is necessary to shorten the wavelength of the irradiation light for inspection used for diffraction inspection. Specifically, from the h-line (405 nm) to the i-line (365 nm), it has recently become necessary to use light in the 248 nm wavelength band. Conventionally used h-line and i-line are mercury emission line spectra, so even if the transmission wavelength band of the wavelength selection filter is slightly shifted, the emission line spectrum does not change, and the emission line spectrum is in the transmission region of the wavelength selection filter. If so, there was little effect on the extracted wavelength. However, the light in the 248 nm wavelength band such as an ultra-high pressure mercury lamp has a relatively broad peak, and the wavelength of the inspection irradiation light also shifts when the transmission wavelength band of the wavelength selection filter that extracts the irradiation light for inspection shifts. There is an increased possibility of inconvenience. In addition, such a shift in wavelength may progress differently for each apparatus, and there is a possibility that variations in inspection results (so-called inter-apparatus errors) occur between a plurality of inspection apparatuses.

本発明はこのような問題に鑑みたもので、検査用照明光の波長変動の影響を受けない正確な検査が可能であり、且つ、複数の検査装置間で検査結果のバラツキを抑え半導体製造工程の工程管理精度を向上させることが可能な検査装置および検査方法を提供することを目的とする。   The present invention has been made in view of such a problem, and is capable of accurate inspection that is not affected by wavelength fluctuations of inspection illumination light, and suppresses variations in inspection results among a plurality of inspection apparatuses. It is an object of the present invention to provide an inspection apparatus and an inspection method capable of improving the process control accuracy.

このような目的達成のため、本発明に係る検査装置は、被検物に検査用照射光を照射する照射部と、前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、前記検査の状態を検出する検査状態検出部とを備え、前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出し、複数の異なる波長の前記検査用照射光に対応した複数の前記変調部を備えて構成されるIn order to achieve such an object, an inspection apparatus according to the present invention includes an irradiation unit that irradiates a test object with inspection irradiation light, and irradiation of the inspection irradiation light in advance according to the wavelength of the inspection irradiation light. A modulation unit that emits inspection light that causes a set physical modulation; and an inspection light that is irradiated with the inspection irradiation light and receives the physical modulation at the test object and the modulation unit. A light receiving unit that receives light, an inspection unit that inspects the test object based on inspection light that has undergone physical modulation by the test object received by the light receiving unit, and an inspection state that detects the state of the inspection An inspection light that has been subjected to the physical modulation by the test object and an inspection light that has been subjected to the physical modulation by the modulation unit within a range that can be simultaneously received by the light receiving unit. The test object and the modulation unit are disposed on the inspection state detection unit. It detects the state of the inspection based on the inspection light received the physical modulation in parts, and a plurality of the modulated portions corresponding to the inspection illumination light of a plurality of different wavelengths.

なお、上述の検査装置において複数の前記変調部は異なる複数の位置に配設されることが好ましい。また、同等な前記物理的変調の特性を有する複数の前記変調部を、前記被検物を介して対称な位置に備えることが好ましい。 Incidentally, in the inspection apparatus described above, a plurality of the modulation section are preferably arranged in a plurality of different positions. Further, it is preferable that a plurality of the modulation units having the same physical modulation characteristics are provided at symmetrical positions via the test object.

また、本発明に係る検査装置は、被検物に検査用照射光を照射する照射部と、前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、前記検査の状態を検出する検査状態検出部とを備え、前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出し、同等な前記物理的変調の特性を有する複数の前記変調部を、前記被検物を介して対称な位置に備えて構成されるFurther, the inspection apparatus according to the present invention includes an irradiation unit that irradiates the inspection object with the irradiation light for inspection, and irradiation with the irradiation light for inspection, and physical modulation set in advance according to the wavelength of the irradiation light for inspection And a light receiving unit that receives the inspection light that has been irradiated with the inspection irradiation light and is subjected to the physical modulation in the modulation unit. An inspection unit that inspects the inspection object based on inspection light that has received the physical modulation in the inspection object received by the light receiving unit, and an inspection state detection unit that detects the state of the inspection, The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit, and the inspection state detection unit is the modulation unit and the physical modulation Wherein detecting the state of the inspection on the basis of the inspection light received, a plurality of the modulating portion having a property equivalent the physical modulation, configured with a symmetrical position through the test object.

なお、上述の検査装置において、前記変調部の前記検査用照射光の受光面と前記被検物の前記検査用照射光の受光面とが略同一平面となるように配置されることが好ましい。 In the inspection apparatus described above, it is preferable that the light receiving surface for the irradiation light for inspection of the modulation unit and the light receiving surface for the irradiation light for inspection of the test object are arranged substantially in the same plane.

また、上述の検査装置において、前記被検物を支持する支持部を備え、前記変調部は前記支持部近傍に配置されることが好ましい。または、前記変調部は前記支持部に配置されることが好ましい。この場合、前記支持部は、前記被検物を傾動させることで前記被検物への前記検査用照射光の入射角度および前記被検物で前記物理的変調を受けた検査光の前記受光部の受光位置を調整可能であり、前記被検物の傾動軸は前記被検物の中央付近を通り前記被検物の前記受光面と略同一平面もしくは該同一平面近傍に設定されることが好ましい。   In the above-described inspection apparatus, it is preferable that a support unit that supports the test object is provided, and the modulation unit is disposed in the vicinity of the support unit. Or it is preferable that the said modulation | alteration part is arrange | positioned at the said support part. In this case, the support unit tilts the test object, so that the inspection light is incident on the test object and the light receiving unit of the test light subjected to the physical modulation on the test object. It is preferable that the light receiving position of the test object can be adjusted, and the tilt axis of the test object passes through the vicinity of the center of the test object and is set substantially on the same plane as the light reception surface of the test object or in the vicinity of the same plane. .

また、上述の検査装置において、前記変調部は、前記傾動軸近傍に配置されることが好ましい。または、前記変調部は、前記傾動軸近傍で前記被検物を介して対称な位置、および前記被検物の中央付近で前記傾動軸と直交する直交軸近傍で前記被検物を介して対称な位置に配置されることが好ましい。   Moreover, in the above-described inspection apparatus, it is preferable that the modulation unit is disposed in the vicinity of the tilt axis. Alternatively, the modulation unit is symmetric with respect to the test object in the vicinity of the tilt axis and symmetric with respect to the test object in the vicinity of the orthogonal axis perpendicular to the tilt axis near the center of the test object. It is preferable that they are arranged at various positions.

また、上述の検査装置において、前記検査状態検出部は、前記予め設定された物理的変調に基づいて前記検査の状態を検出することが好ましい。この場合、前記検査状態検出部は、前記変調部で生じた回折光もしくは正反射光に基づいて前記検査の状態を検出することが好ましい。   In the inspection apparatus described above, it is preferable that the inspection state detection unit detects the state of the inspection based on the preset physical modulation. In this case, it is preferable that the inspection state detection unit detects the inspection state based on diffracted light or specularly reflected light generated by the modulation unit.

また、本発明に係る検査装置は、被検物に検査用照射光を照射する照射部と、前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、前記検査の状態を検出する検査状態検出部とを備え、前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出し、前記検査状態検出部は、前記変調部で前記物理的変調を受けた検査光に基づいて、前記検査用照射光の入射角度、前記検査用照射光の波長、前記被検物の傾動角度、前記受光部による前記物理的変調を受けた検査光の受光位置、および前記被検物を回転させたときの前記被検物の方位角度の少なくともいずれかの前記検査の状態を検出する構成される。 Further, the inspection apparatus according to the present invention includes an irradiation unit that irradiates the inspection object with the irradiation light for inspection, and irradiation with the irradiation light for inspection, and physical modulation set in advance according to the wavelength of the irradiation light for inspection And a light receiving unit that receives the inspection light that has been irradiated with the inspection irradiation light and is subjected to the physical modulation in the modulation unit. An inspection unit that inspects the inspection object based on inspection light that has received the physical modulation in the inspection object received by the light receiving unit, and an inspection state detection unit that detects the state of the inspection, The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit, and the inspection state detection unit is the modulation unit and the physical modulation Based on the inspection light received detects the state of the inspection, the inspection state detecting unit, on the basis of the inspection light receiving said physical modulated by the modulation unit, the incident angle of the inspection illumination light, the inspection Wavelength of irradiation light, tilt angle of the test object, light receiving position of the inspection light subjected to the physical modulation by the light receiving unit, and azimuth angle of the test object when the test object is rotated It is configured to detect the state of at least one of the examinations.

なお、上述の検査装置において、前記検査状態検出部は、前記受光部による前記変調部で生じた回折光の受光位置に基づいて前記検査用照射光の波長を検出することが好ましい。 In the inspection apparatus described above, it is preferable that the inspection state detection unit detects the wavelength of the irradiation light for inspection based on a light receiving position of diffracted light generated by the modulation unit by the light receiving unit.

また、上述の検査装置において、前記検査状態検出部は、前記被検物および変調部を傾動させる傾動軸と直交する直交軸近傍に配置された前記変調部もしくは前記直交軸方向における前記被検物の側部で前記物理的変調を受けた検査光と、前記傾動軸近傍に配置された前記変調部もしくは前記傾動軸近傍の前記被検物で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の傾動角度の不具合を検出することが好ましい。   Further, in the above-described inspection apparatus, the inspection state detection unit includes the modulation unit disposed in the vicinity of an orthogonal axis orthogonal to a tilt axis that tilts the test object and the modulation unit, or the test object in the orthogonal axis direction. The inspection light that has undergone the physical modulation at the side of the optical axis and the inspection light that has undergone the physical modulation at the modulation unit disposed near the tilt axis or the test object near the tilt axis are predetermined. When there is a difference in luminance exceeding the reference range, it is preferable to detect a defect in the tilt angle of the test object.

また、上述の検査装置において、前記検査状態検出部は、前記変調部で前記物理的変調を受けた検査光と、前記被検物および変調部を傾動させる傾動軸と直交する直交軸近傍の前記被検物もしくは前記傾動軸方向における前記被検物の側部で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の方位角度の不具合を検出することが好ましい。   In the inspection apparatus described above, the inspection state detection unit includes the inspection light that has been subjected to the physical modulation by the modulation unit, and the vicinity of the orthogonal axis that is orthogonal to the tilt axis that tilts the test object and the modulation unit. When the inspection object or the inspection light subjected to the physical modulation at the side of the inspection object in the direction of the tilt axis has a luminance difference exceeding a predetermined reference range, the azimuth angle of the inspection object It is preferable to detect defects.

また、上述の検査装置において、前記検査状態検出部は、異なる複数の位置に配置された前記変調部で前記物理的変調を受けた検査光が、それぞれ所定の基準範囲から同程度に外れた場合に、前記照射部の照明光学系、および前記受光部の受光光学系もしくは受光感度の少なくともいずれかの不具合を検出することが好ましい。   In the inspection apparatus described above, the inspection state detection unit may be configured such that the inspection light subjected to the physical modulation by the modulation units arranged at a plurality of different positions deviates from a predetermined reference range to the same extent. Further, it is preferable to detect at least one of the illumination optical system of the irradiating unit and the light receiving optical system or the light receiving sensitivity of the light receiving unit.

また、本発明に係る検査装置は、被検物に検査用照射光を照射する照射部と、前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、前記検査の状態を検出する検査状態検出部とを備え、前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態として少なくとも前記検査用照明光の波長を検出し、前記検査状態検出部で検出した前記波長に基づいて前記被検物の傾動角度を設定または変更する検査状態制御部を備えて構成される。 Further, the inspection apparatus according to the present invention includes an irradiation unit that irradiates the inspection object with the irradiation light for inspection, and irradiation with the irradiation light for inspection, and physical modulation set in advance according to the wavelength of the irradiation light for inspection And a light receiving unit that receives the inspection light that has been irradiated with the inspection irradiation light and is subjected to the physical modulation in the modulation unit. An inspection unit that inspects the inspection object based on inspection light that has received the physical modulation in the inspection object received by the light receiving unit, and an inspection state detection unit that detects the state of the inspection, The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit, and the inspection state detection unit is the modulation unit and the physical modulation Examination received on the basis of the inspection light detecting a wavelength of at least the inspection illumination light as the state of the test was to set or change the tilt angle of the test object on the basis of the wavelength detected by the inspection state detector It is configured with a state control unit.

また、本発明に係る検査方法は、被検物に検査用照射光を照射し、前記被検物で物理的変調を受けた検査光に基づいて前記被検物の検査を行うものであって、前記被検物および、前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された前記物理的変調を前記検査用照射光に生じさせる変調部に前記検査用照射光を照射し、前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する第1のステップと、前記第1のステップで受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行うとともに、前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出する第2のステップとを有し、前記第1のステップで、複数の異なる波長の前記検査用照射光に対応した複数の前記変調部で前記物理的変調を受けた検査光を受光し、前記第2のステップにおいて、複数の前記変調部のうち前記被検物の検査部分に対応する前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出するFurther, the inspection method according to the present invention is to inspect the inspection object based on the inspection light that is irradiated with the inspection irradiation light and is physically modulated by the inspection object. The inspection irradiation light is applied to the test object and a modulation unit that receives irradiation of the inspection irradiation light and causes the inspection irradiation light to generate the physical modulation set in advance according to the wavelength of the inspection irradiation light. A first step of receiving the inspection light emitted by receiving the physical modulation by the test object and the modulation unit, and the physical object by the test object received in the first step performs inspection of the test object on the basis of the inspection light being modulated, have a second step of detecting a state of the inspection based on the inspection light received the physical modulated by the modulation section In the first step, the inspection irradiation light having a plurality of different wavelengths is applied. In the second step, the modulation unit corresponding to the inspection portion of the test object among the plurality of modulation units is received in the second step. The state of the inspection is detected based on the inspection light subjected to physical modulation .

また、上述の検査方法において、前記第1のステップで、前記被検物および前記変調部で生じた回折光もしくは正反射光を受光し、前記第2のステップにおいて、前記被検物で生じた回折光もしくは正反射光に基づいて前記被検物の検査を行うとともに、前記変調部で生じた回折光もしくは正反射光に基づいて前記検査の状態を検出することが好ましい。   Further, in the inspection method described above, diffracted light or specularly reflected light generated in the test object and the modulation unit is received in the first step, and generated in the test object in the second step. Preferably, the inspection object is inspected based on diffracted light or specularly reflected light, and the state of the inspection is detected based on diffracted light or specularly reflected light generated by the modulation unit.

また、上述の検査方法において、前記被検物を傾動させることで前記被検物への前記検査用照射光の入射角度および前記被検物で前記物理的変調を受けた検査光の受光位置を調整することが可能であり、前記被検物の傾動軸は前記被検物の中央付近を通り前記被検物の前記検査用照射光の受光面と略同一平面もしくは該同一平面近傍に設定され、前記第2のステップにおいて、前記変調部で前記物理的変調を受けた検査光に基づいて、前記検査用照射光の入射角度、前記検査用照射光の波長、前記被検物の傾動角度、前記物理的変調を受けた検査光の受光位置、および前記被検物を回転させたときの前記被検物の方位角度の少なくともいずれかの前記検査の状態を検出することが好ましい。   Further, in the inspection method described above, by tilting the test object, the incident angle of the test irradiation light to the test object and the light receiving position of the test light subjected to the physical modulation by the test object are determined. The tilt axis of the test object passes through the vicinity of the center of the test object and is set substantially on the same plane as or near the same plane as the light receiving surface of the test irradiation light of the test object. In the second step, based on the inspection light subjected to the physical modulation by the modulation unit, the incident angle of the inspection irradiation light, the wavelength of the inspection irradiation light, the tilt angle of the test object, It is preferable to detect the inspection state of at least one of a light receiving position of the inspection light subjected to the physical modulation and an azimuth angle of the inspection object when the inspection object is rotated.

また、上述の検査方法において、前記第1のステップで、前記変調部で生じた回折光を受光し、前記第2のステップにおいて、前記第1のステップで受光した前記回折光の受光位置に基づいて前記検査用照射光の波長を検出することが好ましい。   In the inspection method described above, in the first step, diffracted light generated in the modulation unit is received, and in the second step, based on a light receiving position of the diffracted light received in the first step. It is preferable to detect the wavelength of the irradiation light for inspection.

また、上述の検査方法において、前記第2のステップで、前記被検物の中央付近で前記傾動軸と直交する直交軸近傍に配置された前記変調部もしくは前記直交軸方向における前記被検物の側部で前記物理的変調を受けた検査光と、前記傾動軸近傍に配置された前記変調部もしくは前記傾動軸近傍の前記被検物で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の傾動角度の不具合を検出することが好ましい。   Further, in the inspection method described above, in the second step, the modulation unit disposed in the vicinity of the orthogonal axis orthogonal to the tilt axis in the vicinity of the center of the inspection object or the test object in the orthogonal axis direction. The inspection light that has undergone the physical modulation at the side and the inspection light that has undergone the physical modulation at the modulation unit disposed near the tilt axis or the test object near the tilt axis are a predetermined reference. When there is a difference in luminance exceeding the range, it is preferable to detect a defect in the tilt angle of the test object.

また、上述の検査方法において、前記第2のステップで、前記変調部で前記物理的変調を受けた検査光と、前記直交軸近傍の前記被検物もしくは前記傾動軸方向における前記被検物の側部で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の方位角度の不具合を検出することが好ましい。   Further, in the inspection method described above, in the second step, the inspection light that has undergone the physical modulation in the modulation unit and the inspection object in the vicinity of the orthogonal axis or the inspection object in the direction of the tilt axis It is preferable that a defect in the azimuth angle of the test object is detected when the inspection light subjected to the physical modulation at the side portion has a luminance difference exceeding a predetermined reference range.

また、上述の検査方法において、前記第2のステップで、異なる複数の位置に配置された前記変調部で前記物理的変調を受けた検査光が、それぞれ所定の基準範囲から同程度に外れた場合に、前記照射部の照明光学系、および前記受光部の受光光学系もしくは受光感度の少なくともいずれかの不具合を検出することが好ましい。   In the inspection method described above, in the second step, when the inspection light that has undergone the physical modulation by the modulation units arranged at a plurality of different positions deviates from a predetermined reference range to the same extent. Further, it is preferable to detect at least one of the illumination optical system of the irradiating unit and the light receiving optical system or the light receiving sensitivity of the light receiving unit.

また、上述の検査装置において、前記第2のステップで検出した前記検査の状態に基づいて該検査の状態を設定または変更する第3のステップを備えることが好ましい。この場合、前記第3のステップにおいて、前記第2のステップで検出した前記波長に基づいて前記被検物の傾動角度を設定または変更することが好ましい。   The inspection apparatus preferably includes a third step of setting or changing the state of the inspection based on the state of the inspection detected in the second step. In this case, in the third step, it is preferable to set or change the tilt angle of the test object based on the wavelength detected in the second step.

本発明によれば、検査用照射光の波長変動の影響を低減した正確な検査が可能であり、また、複数の検査装置間で検査結果のバラツキがなく半導体製造工程の工程管理精度を向上させることが可能となる。   According to the present invention, it is possible to perform an accurate inspection with reduced influence of wavelength variation of the irradiation light for inspection, and there is no variation in inspection results among a plurality of inspection apparatuses, thereby improving the process management accuracy of the semiconductor manufacturing process. It becomes possible.

以下、図面を参照して本発明の好ましい実施形態について説明する。本発明を適用した検査装置の一例を図1に示しており、この装置により被検物である半導体ウエハ5(以下、単にウエハ5と称する)の表面欠陥(異常)を検査する。この検査装置1は、ウエハ5を載置保持するホルダ機構40と、ウエハ5に検査用照明光(以下、単に照明光と称する)を照射する照明光学系10と、照明光の照射を受けたときのウエハ5からの反射光や回折光等(検査光)を集光する集光光学系20と、集光光学系20により集光された検査光を受光してウエハ5の像を検出する撮像装置30とを備えて構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. An example of an inspection apparatus to which the present invention is applied is shown in FIG. 1, and a surface defect (abnormality) of a semiconductor wafer 5 (hereinafter simply referred to as a wafer 5), which is an object to be inspected, is inspected by this apparatus. The inspection apparatus 1 receives a holder mechanism 40 for mounting and holding the wafer 5, an illumination optical system 10 that irradiates the wafer 5 with inspection illumination light (hereinafter simply referred to as illumination light), and illumination light irradiation. The condensing optical system 20 that condenses the reflected light, diffracted light, etc. (inspection light) from the wafer 5 and the inspection light collected by the condensing optical system 20 are received to detect the image of the wafer 5. And an imaging device 30.

ホルダ機構40は、図2に示すように、ウエハ載置面にウエハ5を固定支持するホルダ部41と、ホルダ部41のウエハ載置面の一部(中央部)を成し、このウエハ載置面が上下方向および回転方向に駆動可能なウエハテーブル42と、ウエハテーブル42を上下動および回転させるテーブル駆動部43と、ウエハテーブル42と一体的に構成されテーブル駆動部43の駆動力をウエハテーブル42に伝達する駆動伝達部44と、ホルダ機構40全体をチルト(傾動)駆動するときに不図示のチルト駆動機構からの駆動力を受け、駆動軸となる一対のチルト軸部45とを備えている。   As shown in FIG. 2, the holder mechanism 40 includes a holder portion 41 that fixes and supports the wafer 5 on the wafer placement surface, and a part (center portion) of the wafer placement surface of the holder portion 41. A wafer table 42 whose mounting surface can be driven in the vertical direction and rotational direction, a table drive unit 43 that moves the wafer table 42 up and down, and a wafer table 42 that are integrated with the wafer table 42 to drive the driving force of the table drive unit 43 to the wafer. A drive transmission portion 44 that transmits to the table 42 and a pair of tilt shaft portions 45 that receive a driving force from a tilt drive mechanism (not shown) when the entire holder mechanism 40 is driven to tilt (tilt) and serve as a drive shaft are provided. ing.

ホルダ部41のウエハ載置面は、ホルダ機構40の上面よりもウエハ5の厚み分低く加工され、さらに不図示の吸着溝が設けられており、載置されたウエハ5を不図示の減圧機構により減圧チャック(真空吸着)することで固定支持することができる。また、ホルダ部41の側壁部41aはウエハ5のガイドとして機能している。テーブル駆動部43は、不図示のウエハ搬送機構によって搬送されてくるウエハ5を受けるときに、ウエハテーブル42を上昇させて(図2(b)において破線で示した状態)ウエハ搬送機構からウエハ5を受け取った後に降下し、ウエハテーブル42のウエハ載置面がホルダ部41のウエハ載置面と略同一平面となった状態で止まる。なお、略同一平面よりもわずかに降下してもよい。   The wafer mounting surface of the holder unit 41 is processed to be lower than the upper surface of the holder mechanism 40 by the thickness of the wafer 5, and further, a suction groove (not shown) is provided. Can be fixedly supported by vacuum chucking (vacuum adsorption). Further, the side wall portion 41 a of the holder portion 41 functions as a guide for the wafer 5. When the table drive unit 43 receives the wafer 5 transferred by a wafer transfer mechanism (not shown), the table drive unit 43 raises the wafer table 42 (a state indicated by a broken line in FIG. 2B) from the wafer transfer mechanism. , And stops in a state where the wafer placement surface of the wafer table 42 is substantially flush with the wafer placement surface of the holder portion 41. In addition, you may descend | fall slightly from substantially the same plane.

また、テーブル駆動部43は、不図示の回転位置検出エンコーダを備えており、ウエハ5のアライメント情報(ウエハ5上のアライメントマーク位置情報)に基づいて、ウエハ5の中心(ウエハテーブル42および駆動伝達部44の中心)を通りウエハ5に垂直な軸Ax1(以下、垂直軸Ax1と称する)を中心として回転(ウエハ表面が同一平面にある状態を保持して回転)させ、ウエハ5の方位角度(回転角度)を正確に位置決めした状態でウエハ5をホルダ部41で固定支持することができる。また、このように固定支持したウエハ5の表面と平行な軸(好ましくはウエハ5の表面を通る軸)Ax2(以下、チルト軸Ax2と称する)を中心として不図示のチルト駆動機構によりチルト軸部45を介してホルダ機構40全体をチルト(傾動)させることができる。   The table driving unit 43 includes a rotation position detection encoder (not shown), and based on the alignment information of the wafer 5 (alignment mark position information on the wafer 5), the center of the wafer 5 (wafer table 42 and drive transmission). Rotating around the axis Ax1 (hereinafter referred to as the vertical axis Ax1) that passes through the center of the portion 44 and is perpendicular to the wafer 5 (rotating while maintaining the wafer surface in the same plane), the azimuth angle of the wafer 5 ( The wafer 5 can be fixedly supported by the holder portion 41 in a state where the rotation angle) is accurately positioned. Further, a tilt shaft portion is arranged by a tilt drive mechanism (not shown) around an axis (preferably an axis passing through the surface of the wafer 5) Ax2 (hereinafter referred to as a tilt axis Ax2) parallel to the surface of the wafer 5 fixedly supported in this way. The entire holder mechanism 40 can be tilted through 45.

なお、検査装置1はホルダ機構40に固定支持されたウエハ5を観察可能な不図示の観察部を有しており、ウエハ5上に形成されたアライメントマーク(図示せず)を観察してウエハ5上の座標とホルダ機構40の座標との相関関係を検出し、これにより、上述のウエハ5のアライメントが可能となっている。   The inspection apparatus 1 has an observation unit (not shown) that can observe the wafer 5 fixedly supported by the holder mechanism 40, and observes an alignment mark (not shown) formed on the wafer 5 to observe the wafer. 5 is detected, and the above-described alignment of the wafer 5 is possible.

照明光学系10は、メタルハライドランプや超高圧水銀ランプ等の光源11と、この光源11からの照明光束を集光するコレクタレンズ12と、コレクタレンズ12により集光された照明光束を透過させて波長選択を行う波長選択フィルタ13と、光量を調整するニュートラルデンシティフィルタ14(以下、NDフィルタ14と称する)とを備える。さらに、これらフィルタ13,14を透過した照明光束を集光させるインプットレンズ15を有し、インプットレンズ15により集光された照明光がファイバ16の一端16aに導入される。   The illumination optical system 10 has a light source 11 such as a metal halide lamp or an ultra-high pressure mercury lamp, a collector lens 12 that collects the illumination light beam from the light source 11, and a wavelength through which the illumination light beam collected by the collector lens 12 is transmitted. A wavelength selection filter 13 that performs selection and a neutral density filter 14 that adjusts the amount of light (hereinafter referred to as ND filter 14) are provided. Furthermore, an illumination lens having an input lens 15 that condenses the illumination light beam that has passed through the filters 13 and 14 is provided, and the illumination light condensed by the input lens 15 is introduced into one end 16 a of the fiber 16.

ここで、波長選択フィルタ13は、切替駆動機構13aを有した円盤(ターレット)13b内に設けられており、切替駆動機構13aによっていくつかの種類のフィルタを切替えて使用することが可能となっている。例えば、i線(波長365nm)、248nm帯等の特定の波長の光を透過させる干渉フィルタ、あるいは特定の波長帯域の光を透過させるバンドパスフィルタ、あるいは所定の波長より長い波長の光だけを透過させるシャープカットフィルタ等を必要に応じて選択して用いることができる。NDフィルタ14は、回転角に応じて透過光量が順次変化する円盤状のフィルタからなり、回転駆動機構14aにより回転制御されて透過光量を制御できるように構成されている。   Here, the wavelength selection filter 13 is provided in a disk (turret) 13b having a switching drive mechanism 13a, and several types of filters can be switched and used by the switching drive mechanism 13a. Yes. For example, an interference filter that transmits light of a specific wavelength such as i-line (wavelength 365 nm) or 248 nm band, a band-pass filter that transmits light of a specific wavelength band, or only light of a wavelength longer than a predetermined wavelength. A sharp cut filter or the like to be used can be selected and used as necessary. The ND filter 14 is composed of a disk-shaped filter in which the amount of transmitted light sequentially changes according to the rotation angle, and is configured to be able to control the amount of transmitted light by being rotationally controlled by the rotation drive mechanism 14a.

一端16aから照明光が入射したファイバ16は、途中で分岐して一方は他端16bから出射し、もう一方は別端16cから出射する。別端16cから出射した照明光は照度計18に入射して波長選択フィルタ13に加わった光エネルギーを検出可能になっている。なお、他端16bと別端16cのファイバ数は1000対1程度にランダムに振り分けられているため、他端16bと別端16cからそれぞれ出射される光量も1000対1程度となっている。   The fiber 16 in which the illumination light is incident from the one end 16a branches in the middle, one exits from the other end 16b, and the other exits from the other end 16c. Illumination light emitted from the other end 16 c is incident on the illuminometer 18 and can detect light energy applied to the wavelength selection filter 13. Since the number of fibers at the other end 16b and the other end 16c is randomly distributed to about 1000 to 1, the amount of light emitted from the other end 16b and the other end 16c is about 1000 to 1, respectively.

照明光学系10はさらに、ファイバ16の他端16bから出射される発散光束を受ける照明系凹面鏡17を有しており、ファイバ16の他端16bはこの照明系凹面鏡17のほぼ焦点位置に配置されている。このため、ファイバ16の一端16aに導入されてファイバ16の他端16bから照明系凹面鏡17に発散照射された照明光は、照明系凹面鏡17によってほぼ平行光束となってホルダ機構40に支持されたウエハ5の表面に照射される。このときウエハ5の表面に照射される照明光束は、ウエハ5の表面と垂直な軸(垂直軸)Ax1に対して角度θiを有して照射され、ウエハ5からの光(検査光)が角度θrを有して出射される。これら入射角θiと出射角θrとの関係が、チルト軸Ax2を中心としてホルダ機構40をチルト(傾動)させることにより調整可能である。すなわち、ホルダ機構40のチルトによりウエハ5の載置角度を変化させて、入射角θiと出射角θrとの関係を調整可能である。   The illumination optical system 10 further includes an illumination system concave mirror 17 that receives a divergent light beam emitted from the other end 16 b of the fiber 16, and the other end 16 b of the fiber 16 is disposed at a substantially focal position of the illumination system concave mirror 17. ing. For this reason, the illumination light introduced into one end 16a of the fiber 16 and diverged and irradiated from the other end 16b of the fiber 16 to the illumination system concave mirror 17 is supported by the holder mechanism 40 as a substantially parallel light beam by the illumination system concave mirror 17. The surface of the wafer 5 is irradiated. At this time, the illumination light beam irradiated onto the surface of the wafer 5 is irradiated with an angle θi with respect to an axis (vertical axis) Ax1 perpendicular to the surface of the wafer 5, and the light (inspection light) from the wafer 5 is angled. It is emitted with θr. The relationship between the incident angle θi and the outgoing angle θr can be adjusted by tilting (tilting) the holder mechanism 40 about the tilt axis Ax2. That is, the relationship between the incident angle θi and the outgoing angle θr can be adjusted by changing the mounting angle of the wafer 5 by the tilt of the holder mechanism 40.

ウエハ5の表面からの出射光(ここでは回折光を用いる)は集光光学系20により集光される。この集光光学系20は、垂直軸Ax1に対して角度θrを有した方向に対向して配設された集光系凹面鏡21と、この集光系凹面鏡21の集光位置(焦点位置)に配設された絞り22と、この絞り22の後側に配設された結像レンズ23とから構成される。この結像レンズ23の後側に撮像装置30が配設されている。集光系凹面鏡21により集光されるとともに絞り22によって制限された出射光(n次の回折光)は、結像レンズ23によって撮像装置30のCCD撮像素子(イメージデバイス)31に結像される。この結果、ウエハ5の表面の回折像(回折光による像)がCCD撮像素子31によって検出される。   Light emitted from the surface of the wafer 5 (here, diffracted light is used) is collected by the condensing optical system 20. The condensing optical system 20 includes a condensing concave mirror 21 disposed opposite to a direction having an angle θr with respect to the vertical axis Ax1, and a condensing position (focal position) of the condensing concave mirror 21. The diaphragm 22 is disposed, and an imaging lens 23 disposed on the rear side of the diaphragm 22. An imaging device 30 is disposed on the rear side of the imaging lens 23. The outgoing light (n-order diffracted light) that is condensed by the condensing concave mirror 21 and restricted by the diaphragm 22 is imaged on the CCD image sensor (image device) 31 of the imaging device 30 by the imaging lens 23. . As a result, a diffraction image (image by diffracted light) of the surface of the wafer 5 is detected by the CCD image pickup device 31.

CCD撮像素子31は、その受像面に形成されたウエハ表面の像(回折光の像)を光電変換して画像信号を生成し、画像信号を画像処理検査装置35に出力する。画像処理検査装置35の内部には、制御部37と、CCD撮像素子31による回折像検出時の状態(検査状態)を検出する検査状態検出部38と、ウエハ5の欠陥を検出する欠陥検出部39と、メモリ(記憶装置)36が設けられている。   The CCD image sensor 31 photoelectrically converts an image (diffracted light image) on the wafer surface formed on the image receiving surface to generate an image signal, and outputs the image signal to the image processing inspection device 35. Inside the image processing inspection apparatus 35, there are a control unit 37, an inspection state detection unit 38 for detecting a state (inspection state) at the time of diffraction image detection by the CCD imaging device 31, and a defect detection unit for detecting defects on the wafer 5. 39 and a memory (storage device) 36 are provided.

制御部37は、切替駆動機構13aによる波長選択フィルタ13の切替作動制御、回転駆動機構14aによるNDフィルタ14の回転制御、垂直軸Ax1を中心としたホルダ機構40(ウエハテーブル42)の回転制御、チルト軸Ax2を中心としたホルダ機構40のチルト制御等を行う。さらに、制御部37は、CCD撮像素子31から得られるウエハ5の画像を所定ビット(例えば16ビット)のデジタル画像に変換する。このように構成された制御部37は、ウエハ5の最適チルト角の決定時には、チルト角を変更させながらウエハ5の画像を取り込み、チルト角が異なるときのデジタル画像を順次メモリ36に記憶する。   The control unit 37 performs switching operation control of the wavelength selection filter 13 by the switching drive mechanism 13a, rotation control of the ND filter 14 by the rotation drive mechanism 14a, rotation control of the holder mechanism 40 (wafer table 42) around the vertical axis Ax1, Tilt control of the holder mechanism 40 about the tilt axis Ax2 is performed. Further, the control unit 37 converts the image of the wafer 5 obtained from the CCD image sensor 31 into a digital image of a predetermined bit (for example, 16 bits). When determining the optimum tilt angle of the wafer 5, the control unit 37 configured as described above captures an image of the wafer 5 while changing the tilt angle, and sequentially stores digital images at different tilt angles in the memory 36.

メモリ(記憶装置)36には、制御部37からのデジタル画像とそのときの検査状態(ホルダ機構40のチルト角、照明光の波長、およびウエハホルダ42の回転角度等)が記憶される。記憶されたデジタル画像は、検査状態の検出時には検査状態検出部38に、ウエハ5の欠陥検出時には欠陥検出部39に出力される。   The memory (storage device) 36 stores the digital image from the control unit 37 and the inspection state at that time (tilt angle of the holder mechanism 40, wavelength of illumination light, rotation angle of the wafer holder 42, etc.). The stored digital image is output to the inspection state detection unit 38 when an inspection state is detected, and to the defect detection unit 39 when a defect of the wafer 5 is detected.

検査状態検出部38は、検査状態の検出にあたって、メモリ36に記憶されたウエハ5および後述する基準変調部50のデジタル画像を取り込んで、照明光の入射角θiおよび出射角θr(すなわちホルダ機構40のチルト角)、照明光の波長、およびウエハホルダ42(ウエハ5)の垂直軸Ax1を中心とした方位角度(回転角度)等の検査状態を検出する。   When detecting the inspection state, the inspection state detection unit 38 takes in the digital image of the wafer 5 and the reference modulation unit 50 described later, and stores the incident angle θi and the emission angle θr of illumination light (that is, the holder mechanism 40). Tilt angle), the wavelength of the illumination light, and the inspection state such as the azimuth angle (rotation angle) about the vertical axis Ax1 of the wafer holder 42 (wafer 5).

欠陥検出部39は、ウエハ5の欠陥検出にあたって、メモリ36に記憶されたウエハ5のデジタル画像を取り込んで画像処理を行う他に、画像の光量をモニタし、画像の明暗に基づいてウエハ5の膜厚ムラ・塗布ムラ(ゴミの影響で膜が形成されていない部分等)、パターン形状の異常、傷等の欠陥箇所を特定する。   The defect detection unit 39, when detecting a defect on the wafer 5, captures a digital image of the wafer 5 stored in the memory 36 and performs image processing, and also monitors the light quantity of the image and determines the wafer 5 based on the brightness of the image. Defect locations such as film thickness unevenness / coating unevenness (portions where no film is formed due to the influence of dust, etc.), pattern shape abnormalities, scratches, and the like are specified.

ここで、被検物であるウエハ5の表面には周期的に繰り返される線配列形状の回路パターン(以下、単にパターンと称する)が形成されており、ウエハ5の表面においてはこれらパターンを構成する線(線状の突起)が周期的に繰り返して配列されている。このため、パターンを構成する線の繰り返しピッチがpであり、照明光の波長がλであるときに、ホルダ機構40をチルトさせてウエハ5の表面のチルト角Tを次式(1)が成立するように設定すれば、ウエハ5から出射されるn次の回折光が集光光学系20を介して撮像装置30(CCD撮像素子31)に集光されるようになる。このようにして、n次の回折光を受光してCCD撮像素子31により得られたウエハ5の表面の像からパターンの線幅異常等の欠陥の有無の検査を行う。   Here, periodically repeated circuit patterns (hereinafter simply referred to as patterns) are formed on the surface of the wafer 5 as the test object, and these patterns are formed on the surface of the wafer 5. Lines (linear protrusions) are periodically and repeatedly arranged. For this reason, when the repetition pitch of the lines constituting the pattern is p and the wavelength of the illumination light is λ, the holder mechanism 40 is tilted to obtain the tilt angle T of the surface of the wafer 5 by the following equation (1). With this setting, the nth-order diffracted light emitted from the wafer 5 is condensed on the imaging device 30 (CCD imaging element 31) via the condensing optical system 20. In this manner, the presence or absence of defects such as an abnormal line width of the pattern is inspected from the image of the surface of the wafer 5 obtained by the CCD image pickup device 31 by receiving the nth order diffracted light.

(数1)
sin(θi−T) − sin(θr+T) = n・λ/p ・・・(1)
(Equation 1)
sin (θi−T) −sin (θr + T) = n · λ / p (1)

式(1)において、θiおよびθrがチルト角Tを変化させる前(チルト角T=0のとき)の入射角および出射角の値、すなわち初期値である。チルト角Tを変化させた場合に、入射角(θi−T)およびn次の回折光の出射角(θr+T)は、ウエハ5の表面に対する法線(垂直軸)Ax1(ウエハ5は平板と見なせるため、ホルダ部41のウエハ載置面の法線とウエハ表面の法線は同一と見なせる)を基準として入射側に見込む角度方向をプラス、その反対側に見込む角度方向をマイナスとする。回折次数nは、n=0の0次光(正反射光)を基準として入射側に見込む角度方向をプラス、その反対側に見込む角度方向をマイナスとする。チルト角Tを変化させると入射角(θi−T)、出射角(θr+T)が変化するわけであるが、チルト角Tは、例えば、ホルダ機構40が水平状態にあるときを0度とし、入射側への角度方向をプラス、出射側への角度方向をマイナスとする。ここでは、チルト角が0度(基準状態)のときに入射角をθi、出射角をθrとしている。   In Expression (1), θi and θr are values of the incident angle and the outgoing angle before the tilt angle T is changed (when the tilt angle T = 0), that is, initial values. When the tilt angle T is changed, the incident angle (θi−T) and the emission angle (θr + T) of the nth-order diffracted light are normal (vertical axis) Ax1 to the surface of the wafer 5 (the wafer 5 can be regarded as a flat plate). Therefore, the normal direction of the wafer mounting surface of the holder portion 41 and the normal surface of the wafer surface can be regarded as the same), and the angle direction seen on the incident side is plus, and the angle direction seen on the opposite side is minus. With respect to the diffraction order n, the angle direction expected on the incident side with respect to 0th order light (regular reflection light) of n = 0 is plus, and the angle direction expected on the opposite side is minus. When the tilt angle T is changed, the incident angle (θi−T) and the outgoing angle (θr + T) change. For example, the tilt angle T is set to 0 degrees when the holder mechanism 40 is in a horizontal state. The angle direction to the side is plus, and the angle direction to the emission side is minus. Here, when the tilt angle is 0 degree (reference state), the incident angle is θi, and the exit angle is θr.

まず、正反射像での検査を行うため、入射角(θi−T)=出射角(θr+T)として、CCD撮像素子31により撮像されたウエハ5の表面の画像信号が画像処理検査装置35に送られる。画像処理検査装置35においては、CCD撮像素子31からの画像信号により得られるウエハ5の表面の画像と、予め記憶されている良品ウエハの表面の画像(検査基準画像)とをアライメント(対応するパターンの位置がお互いに重なる状態とする)した後に比較検査を行う。比較検査には、パターンのマッチング検査や、予め学習させておいた検査基準画像との差分からなる差分画像に基づく欠陥検査等がある。検査対象となるウエハ5に膜厚ムラがある場合は干渉色が異なるため欠陥として検出され、パターン形状の異常や傷等の欠陥が存在する場合には明暗差となって欠陥を検出することができる。   First, in order to perform inspection with a specular reflection image, an image signal of the surface of the wafer 5 captured by the CCD image sensor 31 is sent to the image processing inspection apparatus 35 with an incident angle (θi−T) = an exit angle (θr + T). It is done. In the image processing inspection apparatus 35, the image of the surface of the wafer 5 obtained from the image signal from the CCD image pickup device 31 and the image of the surface of the non-defective wafer (inspection reference image) stored in advance are aligned (corresponding pattern). After the positions of the two overlap each other), a comparative inspection is performed. The comparison inspection includes a pattern matching inspection, a defect inspection based on a difference image made up of a difference from an inspection reference image learned in advance, and the like. If the wafer 5 to be inspected has a film thickness unevenness, the interference color is different, so it is detected as a defect. If there is a defect such as an abnormal pattern shape or a scratch, the defect is detected as a light / dark difference. it can.

次に、回折像での検査を行うために、照明光学系10からホルダ機構40に支持されたウエハ5の表面に照明光を照射したときに、ウエハ5からの回折光が集光光学系20を介して撮像装置30に集光されるように、ウエハ5に照射される照明光の波長λ、この照明光の入射角θi、ウエハ5から集光光学系20への出射角θr、およびウエハ5(ホルダ機構40)のチルト角Tが、ウエハ5の表面に形成されたパターンのピッチpに対して上述の条件式(1)を満足するように設定して表面検査を行うことが必要である。例えば、入射角θi=30度、出射角θr=0度の検査装置で、パターンピッチp=330nmのパターンを形成したウエハ5を波長λ=365nmの照明光で1次回折光の回折像で検査する場合、ウエハ5(ホルダ機構40)のチルト角T=−19.9度となる。   Next, when the illumination light is irradiated from the illumination optical system 10 to the surface of the wafer 5 supported by the holder mechanism 40 in order to inspect the diffraction image, the diffracted light from the wafer 5 is collected by the condensing optical system 20. , The wavelength λ of the illumination light applied to the wafer 5, the incident angle θi of this illumination light, the exit angle θr from the wafer 5 to the condensing optical system 20, and the wafer It is necessary to perform surface inspection by setting the tilt angle T of 5 (holder mechanism 40) to satisfy the above-described conditional expression (1) with respect to the pitch p of the pattern formed on the surface of the wafer 5. is there. For example, a wafer 5 on which a pattern with a pattern pitch p = 330 nm is inspected with an illumination light having a wavelength λ = 365 nm as a diffraction image of the first-order diffracted light with an inspection apparatus having an incident angle θi = 30 degrees and an emission angle θr = 0 degrees. In this case, the tilt angle T of the wafer 5 (holder mechanism 40) is −19.9 degrees.

なお、回折光による検査では、入射角(θi−T)と出射角(θr+T)を上述の条件式(1)を満たすように設定するが、条件式(1)の条件を満たすチルト角の前後で、例えば0.1度刻みでチルト角を変化させて受光する光量をモニターし、光量が最大となるチルト角を回折検査時のチルト角として記憶してもよい。   In the inspection using diffracted light, the incident angle (θi−T) and the emission angle (θr + T) are set so as to satisfy the above-described conditional expression (1), but before and after the tilt angle that satisfies the conditional expression (1). Thus, for example, the amount of received light may be monitored by changing the tilt angle in increments of 0.1 degrees, and the tilt angle at which the light amount is maximum may be stored as the tilt angle at the time of diffraction inspection.

なお、回折像は、パターンを照射する光の回折光を観察しているため、その像の輝度はパターンの形状変化の影響を受ける。例えば、塗布されたレジストへの適切な露光条件(ドーズ(露光量)やフォーカス状態等)で露光され、適切なレジスト現像工程を経て形成されたパターンは断面がきれいな矩形となっており、回折光を最も強く発生させる。しかし、露光条件や現像条件に不適切(ドーズ不良、フォーカス不良、現像液量不良、現像時間不良等)な条件があると、パターンの線幅が細くなったり断面がきれいな矩形とはならずにだれた形状(台形や蒲鉾形状など)となり、その結果、回折光の輝度(光量)が低下してしまう。   In addition, since the diffraction image observes the diffracted light of the light which irradiates a pattern, the brightness | luminance of the image is influenced by the shape change of a pattern. For example, a pattern formed by exposing the coated resist under appropriate exposure conditions (dose (exposure amount), focus state, etc.) and undergoing an appropriate resist development process has a rectangular shape with a fine cross section, and diffracted light. Is generated most strongly. However, if the exposure conditions and development conditions are inappropriate (dose failure, focus failure, developer amount failure, development time failure, etc.), the line width of the pattern will not become thin or the cross section will not be a clean rectangle. As a result, the luminance (light quantity) of the diffracted light decreases.

回折像検査では、前述のようにしてチルト角を設定し、CCD撮像素子31により撮像されたウエハ5の表面の画像信号が画像処理検査装置35に送られる。画像処理検査装置35においては、CCD撮像素子31からの画像信号により得られるウエハ5の表面画像の輝度に基づいて検査を行う。ウエハ5の表面上には複数のチップ(パターン)が規則的に配列しており、チップとチップとの間にはストリートラインと呼ばれる部分がある。このストリートライン部は完成後にICチップを切り出す際の切り代となる部分であり、パターンは形成されていない。そのため、このストリートライン部では回折は起こらず回折像は暗くなっている。つまり、ウエハ5の表面上で各チップはストリートラインで区切られて見えるため、回折像でチップとチップとの比較が可能となる。具体的には、得られた回折像の各チップの輝度を比較してチップ単位での検査を行うことができる。ここで、各チップの輝度比較は全チップの平均輝度を求め、各チップの輝度がこの平均輝度に対して所定の閾値より輝度差があれば異常としてもよい。また、予め学習させておいた検査基準画像との差分を表示させた差分画像に基づいて欠陥検査も可能である。   In the diffraction image inspection, the tilt angle is set as described above, and the image signal of the surface of the wafer 5 picked up by the CCD image pickup device 31 is sent to the image processing inspection device 35. In the image processing inspection apparatus 35, an inspection is performed based on the luminance of the surface image of the wafer 5 obtained from the image signal from the CCD image sensor 31. A plurality of chips (patterns) are regularly arranged on the surface of the wafer 5, and there is a portion called a street line between the chips. This street line portion is a portion used as a cutting allowance when the IC chip is cut out after completion, and no pattern is formed. Therefore, diffraction does not occur in this street line portion, and the diffraction image is dark. In other words, since each chip appears to be separated by street lines on the surface of the wafer 5, it is possible to compare the chip with the chip in the diffraction image. Specifically, the inspection of each chip can be performed by comparing the brightness of each chip of the obtained diffraction image. Here, the luminance comparison of each chip obtains the average luminance of all the chips, and it may be abnormal if the luminance of each chip has a luminance difference with respect to this average luminance from a predetermined threshold. Moreover, defect inspection is also possible based on the difference image displaying the difference from the inspection reference image learned in advance.

ここで、正反射光検査では入射角(θi−T)=出射角(θr+T)とすれば、パターンのピッチに影響されることなく正反射像を得ることができた。しかし、回折光検査では回折像を得られる条件は、パターンピッチpと照明光の波長λに依存している。言い換えると、同じパターンピッチpの被検物であっても照明光の波長λが変化すると、得られていた回折像が得られなくなる場合がある。   Here, in the specular reflection inspection, if the incident angle (θi−T) = the outgoing angle (θr + T), a regular reflection image could be obtained without being affected by the pitch of the pattern. However, the condition for obtaining a diffraction image in the diffracted light inspection depends on the pattern pitch p and the wavelength λ of the illumination light. In other words, even if the test object has the same pattern pitch p, if the wavelength λ of the illumination light changes, the obtained diffraction image may not be obtained.

本実施形態の表面検査装置1では、図1に示すように、干渉フィルタ等からなる波長選択フィルタ13により照明光の波長を調整している。前述のように従来は、水銀の輝線スペクトル(図3を参照)であるh線(405nm)やi線(365nm)等を用いており、波長選択フィルタ13の透過波長域に対して輝線スペクトルの幅が十分に狭かったため、波長選択フィルタ13の透過波長域が多少変化しても、照明光の波長λが実質的に変化しなかった(図4を参照)。しかし、パターン線幅の微細化に伴い用いられる、例えば248nm波長帯の照明光は、図3に示すように、水銀の輝線スペクトルではなく比較的なだらかな(ブロードな)ピークとなっているため、波長選択フィルタ13の透過特性が変化すると照明光の波長も変化してしまう。   In the surface inspection apparatus 1 of the present embodiment, as shown in FIG. 1, the wavelength of illumination light is adjusted by a wavelength selection filter 13 made of an interference filter or the like. As described above, conventionally, the h line (405 nm), i line (365 nm), etc., which are the emission line spectrum of mercury (see FIG. 3), are used. Since the width was sufficiently narrow, the wavelength λ of the illumination light did not substantially change even if the transmission wavelength range of the wavelength selection filter 13 changed somewhat (see FIG. 4). However, as shown in FIG. 3, for example, the illumination light used in the 248 nm wavelength band, which is used as the pattern line width is reduced, has a comparatively broad (broad) peak instead of the mercury emission line spectrum. When the transmission characteristic of the wavelength selection filter 13 changes, the wavelength of the illumination light also changes.

例えば、波長選択フィルタ13として用いている干渉フィルタは、基材である石英ガラスの上に酸化チタン(TiO2)、二酸化珪素(SiO2)、ジルコン(ZrO2)、アルミナ(Al2O3)等の誘電体の薄膜を積層して薄膜の干渉作用により透過する波長の調整をしている。この誘電体の薄膜は、微視的に見るとポーラス(空孔部の多い構造)となっており、空気中の水分等を取り込み見かけ上の屈折率を有している。また、各誘電体薄膜層は、光学的厚さはn・d(nは屈折率、dは幾何的な膜厚)として機能しているため、薄膜に含まれる水分量によって光学的厚さが変わってしまう。 For example, the interference filter used as the wavelength selection filter 13 is made of titanium oxide (TiO 2 ), silicon dioxide (SiO 2 ), zircon (ZrO 2 ), alumina (Al 2 O 3 ) on quartz glass as a base material. The thickness of the transmitted light is adjusted by the interference effect of the thin film by laminating a thin film of a dielectric material such as the above. When viewed microscopically, this dielectric thin film has a porous structure (a structure having a large number of pores) and takes in moisture in the air and has an apparent refractive index. In addition, each dielectric thin film layer functions as an optical thickness of n · d (n is a refractive index, d is a geometric film thickness), and therefore the optical thickness depends on the amount of moisture contained in the thin film. It will change.

本実施形態では、超高圧水銀ランプ等からなる光源11から強力な光線が発せられており、波長選択フィルタ13は透過する波長以外の波長の光の多くを吸収している。そのため、波長選択フィルタ13は活性化するとともに非常に高温となり、その結果、各誘電体薄膜層は水分を放出して屈折率が低下し、光学的薄膜層が薄くなってしまう。各誘電体薄膜の光学的膜厚が薄くなる結果、透過特性は短波長側にシフトして前述のように回折像に影響が生じ、著しい場合は回折像が得られなくなってしまう。   In the present embodiment, a strong light beam is emitted from the light source 11 such as an ultra-high pressure mercury lamp, and the wavelength selection filter 13 absorbs most of light having a wavelength other than the transmitted wavelength. For this reason, the wavelength selective filter 13 is activated and becomes very high in temperature. As a result, each dielectric thin film layer releases moisture, the refractive index is lowered, and the optical thin film layer becomes thin. As a result of the optical film thickness of each dielectric thin film being thinned, the transmission characteristics are shifted to the short wavelength side, affecting the diffraction image as described above, and if it is significant, the diffraction image cannot be obtained.

そのため、検査を行うときの照明光の波長を把握する必要があり、本実施形態では、基準変調部50を用いて回折角から波長を求めている。つまり、検査に先立ち照明光(248nm波長帯の照明光)を基準変調部50に照射し、その時に発生する回折光の出射角度を求め照明光の波長を確認するようにしている。以下、基準変調部50で生じた回折光に基づいて照明光の波長を検出する本実施形態の検査装置および検査方法について説明する。   Therefore, it is necessary to grasp the wavelength of the illumination light when performing the inspection, and in this embodiment, the wavelength is obtained from the diffraction angle using the reference modulation unit 50. That is, prior to the inspection, illumination light (illumination light in the 248 nm wavelength band) is irradiated onto the reference modulation unit 50, and the emission angle of the diffracted light generated at that time is obtained to confirm the wavelength of the illumination light. Hereinafter, the inspection apparatus and the inspection method of this embodiment for detecting the wavelength of the illumination light based on the diffracted light generated by the reference modulation unit 50 will be described.

まず、第1の実施形態における基準変調部50を図5に示している。本実施形態の基準変調部50は、ガラス基板にクロムめっきを施しエッチング処理にて所定間隔で基準パターンが設けられた複数の第1基準回折格子51a〜51pからなり、ホルダ機構40のウエハ5を固定支持するホルダ部41の外周に配設されている。また、第1基準回折格子51a〜51pは、基準パターンが形成された面(表面)とホルダ部41に支持されたウエハ5の表面(回路パターンが形成された面)とが略同一面なるように配設されている。各第1基準回折格子51a〜51pでは、表面に形成された基準パターンを構成する線の繰り返しピッチがそれぞれ異なっており、また、基準パターンの形状は高精度に保証されている。なお、第1基準回折格子51a〜51pはシリコンウエハにレジストを塗布し所定間隔で基準パターンを露光し現像したものを用いることもできる。   First, the reference modulation unit 50 in the first embodiment is shown in FIG. The reference modulation unit 50 according to the present embodiment includes a plurality of first reference diffraction gratings 51a to 51p in which a glass substrate is subjected to chromium plating and a reference pattern is provided at a predetermined interval by an etching process. It is arranged on the outer periphery of the holder part 41 that is fixedly supported. Further, in the first reference diffraction gratings 51a to 51p, the surface (surface) on which the reference pattern is formed and the surface of the wafer 5 (surface on which the circuit pattern is formed) supported by the holder portion 41 are substantially the same surface. It is arranged. In each of the first reference diffraction gratings 51a to 51p, the repetition pitch of the lines constituting the reference pattern formed on the surface is different, and the shape of the reference pattern is guaranteed with high accuracy. The first reference diffraction gratings 51a to 51p may be formed by applying a resist on a silicon wafer, exposing a reference pattern at a predetermined interval, and developing it.

なお、ウエハ5の表面検査を行う場合に、ウエハ5の表面全域が撮像装置30の撮像範囲となれば検査可能であるが、撮像装置30では余裕をもってウエハ5よりも外側も撮像可能となっている。基準変調部50(第1基準回折格子51a〜51p)は、この余裕の部分であるホルダ部41の外周に配置されており、第1基準回折格子51a〜51pの表面からの回折光も撮像装置30のCCD撮像素子31によって検出可能となっている。   When the surface inspection of the wafer 5 is performed, the inspection can be performed if the entire surface of the wafer 5 is within the imaging range of the imaging device 30, but the imaging device 30 can also capture the outside of the wafer 5 with a margin. Yes. The reference modulation section 50 (first reference diffraction gratings 51a to 51p) is disposed on the outer periphery of the holder section 41, which is the margin, and the diffracted light from the surfaces of the first reference diffraction gratings 51a to 51p is also imaged. Detection is possible by 30 CCD image sensors 31.

以上のように構成された検査装置1を用いたウエハ5の回折像での検査方法について、図6のフローチャートも参照しながら以下に説明する。   An inspection method using a diffraction image of the wafer 5 using the inspection apparatus 1 configured as described above will be described below with reference to the flowchart of FIG.

まず、検査対象となるウエハ5をホルダ機構40上に搬送し(ステップS101)、ウエハ5のアライメントを実施する(ステップS102)。ウエハ5は、上述のように不図示のウエハ搬送機構により搬送され、テーブル駆動部43により上方に移動したウエハテーブル42のウエハ載置面(上面)に載置される。テーブル駆動部43は、ウエハテーブル42がウエハ搬送機構からウエハ5を受け取った後、ウエハ5の表面におけるパターンの繰り返し方向と照明光の照射方向とが一致するように、ウエハテーブル42を回転させてウエハ5の回転方向の位置決めを行い、ウエハテーブル42を降下させる。これにより、ウエハ5は方位角度(回転角度)を正確に位置決めされた状態(アライメントされた状態)でホルダ部41のウエハ載置面に固定支持される。   First, the wafer 5 to be inspected is transferred onto the holder mechanism 40 (step S101), and the wafer 5 is aligned (step S102). The wafer 5 is transferred by the wafer transfer mechanism (not shown) as described above, and is mounted on the wafer mounting surface (upper surface) of the wafer table 42 moved upward by the table driving unit 43. After the wafer table 42 receives the wafer 5 from the wafer transfer mechanism, the table driving unit 43 rotates the wafer table 42 so that the pattern repetition direction on the surface of the wafer 5 matches the illumination light irradiation direction. The wafer 5 is positioned in the rotational direction, and the wafer table 42 is lowered. Thereby, the wafer 5 is fixedly supported on the wafer placement surface of the holder portion 41 in a state where the azimuth angle (rotation angle) is accurately positioned (aligned state).

ウエハ5がホルダ部41に固定支持されると、ウエハ5および第1基準回折格子51a〜51bの表面に照明光を照射する(ステップS103)。光源11からの光は、波長選択フィルタ13およびNDフィルタ14等を透過してファイバ16から照明系凹面鏡17へ出射され、照明系凹面鏡17により並行光束となってホルダ部41(ホルダ機構40)に支持されたウエハ5の表面、およびホルダ部41の外周に配設された第1基準回折格子51a〜51pの表面に照明光が照射される。このとき、波長選択フィルタ13によりウエハ5の表面に形成された検査対象の回路パターンのピッチに応じた照明光の波長が設定される。   When the wafer 5 is fixedly supported by the holder portion 41, the illumination light is irradiated onto the surface of the wafer 5 and the first reference diffraction gratings 51a to 51b (step S103). The light from the light source 11 passes through the wavelength selection filter 13 and the ND filter 14 and is emitted from the fiber 16 to the illumination system concave mirror 17, and becomes a parallel light beam by the illumination system concave mirror 17 to the holder unit 41 (holder mechanism 40). Illumination light is irradiated to the surface of the supported wafer 5 and the surfaces of the first reference diffraction gratings 51 a to 51 p disposed on the outer periphery of the holder portion 41. At this time, the wavelength of the illumination light corresponding to the pitch of the circuit pattern to be inspected formed on the surface of the wafer 5 is set by the wavelength selection filter 13.

そして、ウエハ5および第1基準回折格子51a〜51pの表面からの所望次数の回折光(検査光)が集光光学系20に取り込まれるようにホルダ機構40をチルトさせる(ステップS104)。ウエハ5および第1基準回折格子51a〜51pの表面からの所望次数の回折光が集光系凹面鏡21により集光されるとともに絞り22によって制限され、結像レンズ23によって撮像装置30のCCD撮像素子31に結像するように、照明光の入射角および出射角、すなわちホルダ機構40(ウエハ5)のチルト角を設定する。   Then, the holder mechanism 40 is tilted so that diffracted light (inspection light) of a desired order from the surface of the wafer 5 and the first reference diffraction gratings 51a to 51p is taken into the condensing optical system 20 (step S104). A desired order of diffracted light from the surfaces of the wafer 5 and the first reference diffraction gratings 51 a to 51 p is collected by the condensing concave mirror 21 and restricted by the diaphragm 22, and the CCD imaging element of the imaging device 30 by the imaging lens 23. The incident angle and the emission angle of the illumination light, that is, the tilt angle of the holder mechanism 40 (wafer 5) is set so as to form an image on the lens 31.

ホルダ機構40のチルト角が設定されると、第1基準回折格子51a〜51pからの回折光に基づいて照明光の波長を確認(検出)する(ステップS105)。このとき、第1基準回折格子51a〜51pのうち、ウエハ5の検査対象の回路パターンと近似したピッチを有する基準回折格子に着目し、この基準回折格子の表面からの所望次数の回折光(検査光)の出射角度、すなわち集光光学系20を介してCCD撮像素子31に結像する回折光の受光位置から、上述の式(1)に基づいて照明光の波長(実際の波長)が検出される。   When the tilt angle of the holder mechanism 40 is set, the wavelength of the illumination light is confirmed (detected) based on the diffracted light from the first reference diffraction gratings 51a to 51p (step S105). At this time, attention is paid to the reference diffraction grating having a pitch approximate to the circuit pattern to be inspected on the wafer 5 among the first reference diffraction gratings 51a to 51p, and diffracted light of a desired order (inspection) from the surface of the reference diffraction grating. The wavelength of the illumination light (actual wavelength) is detected based on the above equation (1) from the light emission angle, that is, the light receiving position of the diffracted light imaged on the CCD image pickup device 31 via the condensing optical system 20. Is done.

そして、検出された照明光の波長に基づいてホルダ機構40のチルト角を調整し(ステップS106)、ウエハ5の表面の回折像を撮像する(ステップS107)。検出された照明光の波長が、ステップS103において波長選択フィルタ13で設定された照明光の波長と異なる場合(波長変動が生じた場合)、上述の式(1)に基づいて検出された波長からホルダ機構40のチルト角が再設定される。なお、波長変動が生じていない場合は、ステップS104で設定されたホルダ機構40のチルト角がそのまま保持される。ウエハ5から出射される回折光(検査光)は、集光光学系20によってCCD撮像素子31に結像し、ウエハ表面の像の画像信号を生成して画像処理検査装置35に出力し、制御部37でデジタル画像に変換してウエハ5の画像を生成する。   Then, the tilt angle of the holder mechanism 40 is adjusted based on the detected wavelength of the illumination light (step S106), and a diffraction image of the surface of the wafer 5 is captured (step S107). When the wavelength of the detected illumination light is different from the wavelength of the illumination light set by the wavelength selection filter 13 in step S103 (when wavelength variation occurs), from the wavelength detected based on the above equation (1) The tilt angle of the holder mechanism 40 is reset. If no wavelength variation has occurred, the tilt angle of the holder mechanism 40 set in step S104 is maintained as it is. The diffracted light (inspection light) emitted from the wafer 5 forms an image on the CCD image pickup device 31 by the condensing optical system 20, generates an image signal of the image on the wafer surface, and outputs the image signal to the image processing inspection device 35 for control. The image is converted into a digital image by the unit 37 to generate an image of the wafer 5.

画像処理検査装置35でウエハ5の画像が生成されると、この画像に基づいてウエハ5の表面における異常(欠陥等)の有無を検査する(ステップS108)。このとき、ウエハ5の表面におけるパターン内の周期構造の形状(例えば、ラインとスペースの比やテーパー度、エッジラフネス等)に異常があれば受光している回折光の強度が変化する。そのため、例えば、メモリ36に予め記憶されている良品ウエハ(パターン)の画像データと比較することで、ウエハ5の表面における異常の有無を検査することができる。なお、この検査結果およびそのときのウエハ5の画像は不図示の画像表示装置で表示される。   When an image of the wafer 5 is generated by the image processing inspection device 35, the presence or absence of an abnormality (such as a defect) on the surface of the wafer 5 is inspected based on this image (step S108). At this time, if there is an abnormality in the shape of the periodic structure in the pattern on the surface of the wafer 5 (for example, the ratio of line to space, taper degree, edge roughness, etc.), the intensity of the received diffracted light changes. Therefore, for example, by comparing with image data of a non-defective wafer (pattern) stored in advance in the memory 36, it is possible to inspect whether there is an abnormality on the surface of the wafer 5. The inspection result and the image of the wafer 5 at that time are displayed on an image display device (not shown).

このように、第1基準回折格子51a〜51pからの回折光に基づいて照明光の波長を確認(検出)し、実際の照明光の波長に基づいてホルダ機構40(ウエハ5)のチルト角を調整した後に回折像による検査を行うことにより、波長変動の影響を受けない正確な検査が可能となる。また、第1基準回折格子51a〜51pの表面に形成された基準パターンの形状は高精度に保証されているため、第1基準回折格子51a〜51pからの光の強度を基準とすることで規格化でき、複数の検査装置間で検査結果のバラツキがなく半導体製造工程の工程管理精度を向上させることが可能となる。   As described above, the wavelength of the illumination light is confirmed (detected) based on the diffracted light from the first reference diffraction gratings 51a to 51p, and the tilt angle of the holder mechanism 40 (wafer 5) is determined based on the actual wavelength of the illumination light. By performing the inspection using the diffraction image after the adjustment, it is possible to perform an accurate inspection that is not affected by the wavelength variation. Moreover, since the shape of the reference pattern formed on the surface of the first reference diffraction gratings 51a to 51p is guaranteed with high accuracy, the standard is established by using the intensity of light from the first reference diffraction gratings 51a to 51p as a reference. Thus, there is no variation in inspection results among a plurality of inspection apparatuses, and it becomes possible to improve the process control accuracy of the semiconductor manufacturing process.

次に、第2の実施形態における基準変調部50を図7に示している。本実施形態の基準変調部50は、上述の第1基準回折格子51a〜51pと同様に、ガラス基板にクロムめっきを施しエッチング処理にて所定間隔で基準パターンが設けられた、もしくはシリコンウエハにレジストを塗布し所定間隔で基準パターンを露光し現像した第2基準回折格子52a〜52jからなる。第2基準回折格子52a〜52jは、ホルダ機構40のホルダ部41の外周でチルト軸Ax2の近傍に配設されている。また、第2基準回折格子52a〜52jも、基準パターンが形成された面(表面)とホルダ部41に支持されたウエハ5の表面(回路パターンが形成された面)とが略同一面なるように配設されている。   Next, the reference modulation unit 50 in the second embodiment is shown in FIG. As in the first reference diffraction gratings 51a to 51p described above, the reference modulation unit 50 according to the present embodiment is formed by applying a chrome plating to a glass substrate and providing a reference pattern at a predetermined interval by etching, or by applying a resist to a silicon wafer. The second reference diffraction gratings 52a to 52j are formed by applying and developing a reference pattern at a predetermined interval. The second reference diffraction gratings 52a to 52j are disposed in the vicinity of the tilt axis Ax2 on the outer periphery of the holder portion 41 of the holder mechanism 40. The second reference diffraction gratings 52a to 52j also have a surface (surface) on which the reference pattern is formed and a surface of the wafer 5 (surface on which the circuit pattern is formed) supported by the holder portion 41 so as to be substantially the same surface. It is arranged.

また、各第2基準回折格子52a〜52jは、上述の基準回折格子51a〜51pと同様に、表面に形成された基準パターンを構成する線の繰り返しピッチがそれぞれ異なっており、また、基準パターンの形状は高精度に保証されている。さらに、第2基準回折格子52a〜52jも、ホルダ部41(ホルダ機構40)のウエハ5を支持したときの余裕となり且つ撮像装置30の撮像範囲内に配置されている。   Each of the second reference diffraction gratings 52a to 52j is different from the reference diffraction gratings 51a to 51p described above in that the repetitive pitches of the lines constituting the reference pattern formed on the surface are different from each other. The shape is guaranteed with high accuracy. Further, the second reference diffraction gratings 52 a to 52 j are also provided when the wafer 5 of the holder unit 41 (holder mechanism 40) is supported and are disposed within the imaging range of the imaging device 30.

本実施形態でも、第1の実施形態と同様に検査装置1を用いたウエハ5の回折像での検査を行う。この場合にも、まず、検査対象となるウエハ5をホルダ機構40上に搬送し、ウエハ5のアライメントを実施する。ウエハ5がアライメントされた状態でホルダ部41に固定支持されると、ウエハ5および第2基準回折格子52a〜52jの表面に照明光を照射する。そして、ウエハ5および第2基準回折格子52a〜52jの表面からの所望次数の回折光(検査光)が集光光学系20に取り込まれるように、照明光の入射角および出射角、すなわちホルダ機構40(ウエハ5)のチルト角を設定する。   Also in this embodiment, the inspection is performed on the diffraction image of the wafer 5 using the inspection apparatus 1 as in the first embodiment. Also in this case, first, the wafer 5 to be inspected is transferred onto the holder mechanism 40 and the wafer 5 is aligned. When the wafer 5 is fixedly supported by the holder portion 41 in an aligned state, illumination light is irradiated onto the wafer 5 and the surfaces of the second reference diffraction gratings 52a to 52j. Then, the incident angle and the emission angle of the illumination light, that is, the holder mechanism so that the desired order of diffracted light (inspection light) from the surfaces of the wafer 5 and the second reference diffraction gratings 52a to 52j is taken into the condensing optical system 20. The tilt angle of 40 (wafer 5) is set.

次に、ホルダ機構40のチルト角が設定されると、第2基準回折格子52a〜52jからの回折光に基づいて照明光の波長を確認(検出)する。このとき、第2基準回折格子52a〜52jのうち、ウエハ5の検査対象の回路パターンと近似したピッチを有する基準回折格子に着目し、この基準回折格子の表面からの所望次数の回折光(検査光)の出射角度、すなわち集光光学系20を介してCCD撮像素子31に結像する回折光の受光位置から、上述の式(1)に基づいて照明光の波長(実際の照明光の波長)が検出される。そして、検出された照明光の波長に基づいてホルダ機構40のチルト角を調整し、ウエハ5の表面の回折像を撮像する。このようにして得られたウエハ5の画像に基づいて、例えば、予め記憶されている良品ウエハ(パターン)の画像データと比較することでウエハ5の表面における異常の検査を行う。   Next, when the tilt angle of the holder mechanism 40 is set, the wavelength of the illumination light is confirmed (detected) based on the diffracted light from the second reference diffraction gratings 52a to 52j. At this time, attention is paid to the reference diffraction grating having a pitch approximate to the circuit pattern to be inspected on the wafer 5 among the second reference diffraction gratings 52a to 52j, and diffracted light of desired order (inspection) from the surface of the reference diffraction grating. The wavelength of the illumination light (the wavelength of the actual illumination light) based on the above equation (1) from the light emission angle, that is, the light receiving position of the diffracted light imaged on the CCD image pickup device 31 via the condensing optical system 20 ) Is detected. Then, the tilt angle of the holder mechanism 40 is adjusted based on the detected wavelength of the illumination light, and a diffraction image of the surface of the wafer 5 is captured. Based on the image of the wafer 5 obtained in this manner, for example, the abnormality of the surface of the wafer 5 is inspected by comparing with image data of a good wafer (pattern) stored in advance.

このように第2の実施形態では、第2基準回折格子52a〜52jがチルト軸Ax2の近傍に集まって配設されている。これにより、例えば、チルト軸Ax2および垂直軸Ax1に直交する軸Ax3(以下、直交軸Ax3と称する)の近傍に配設される基準回折格子52x,52x′の回折条件が、偶然に検査中のウエハ画像に入り込む回折光を発生する条件を満たした場合に、ウエハ5の検査画像に不要な光が入り込む可能性がある。第2の実施形態では、第2基準回折格子52a〜52jをチルト軸Ax2の近傍に配置しているので、ウエハ5の検査時に意図しない正反射光または回折光が検査画像に入り込む虞がない。   As described above, in the second embodiment, the second reference diffraction gratings 52a to 52j are arranged near the tilt axis Ax2. As a result, for example, the diffraction conditions of the reference diffraction gratings 52x and 52x ′ disposed in the vicinity of the axis Ax3 orthogonal to the tilt axis Ax2 and the vertical axis Ax1 (hereinafter referred to as the orthogonal axis Ax3) are accidentally being inspected. If the condition for generating diffracted light entering the wafer image is satisfied, unnecessary light may enter the inspection image of the wafer 5. In the second embodiment, since the second reference diffraction gratings 52a to 52j are disposed in the vicinity of the tilt axis Ax2, there is no possibility that unintended regular reflection light or diffracted light enters the inspection image when the wafer 5 is inspected.

次に、第3の実施形態における基準変調部50を図8に示している。本実施形態の基準変調部50は、上述の第1基準回折格子51a〜51p等と同様に、ガラス基板にクロムめっきを施しエッチング処理にて所定間隔で基準パターンが設けられた、もしくはシリコンウエハにレジストを塗布し所定間隔で基準パターンを露光し現像した第3基準回折格子53a〜53dからなる。第3基準回折格子53a〜53dは、ホルダ機構40のホルダ部41の外周で、チルト軸Ax2の近傍および直交軸Ax3の近傍でウエハ5を介して対称な位置に配設されている。また、第3基準回折格子53a〜53dも、基準パターンが形成された面(表面)とホルダ部41に支持されたウエハ5の表面(回路パターンが形成された面)とが略同一面なるように配設されている。さらに、第3基準回折格子53a〜53dも、ホルダ部41(ホルダ機構40)のウエハ5を支持したときの余裕となり且つ撮像装置30の撮像範囲内に配置されている。   Next, the reference modulation unit 50 in the third embodiment is shown in FIG. As in the first reference diffraction gratings 51a to 51p and the like described above, the reference modulation unit 50 of the present embodiment is formed by applying a chrome plating to a glass substrate and providing a reference pattern at a predetermined interval by an etching process, or on a silicon wafer. It comprises third reference diffraction gratings 53a to 53d which are coated with a resist, exposed with a reference pattern at a predetermined interval, and developed. The third reference diffraction gratings 53a to 53d are arranged on the outer periphery of the holder portion 41 of the holder mechanism 40 at symmetrical positions via the wafer 5 in the vicinity of the tilt axis Ax2 and in the vicinity of the orthogonal axis Ax3. Further, the third reference diffraction gratings 53a to 53d are also configured so that the surface (surface) on which the reference pattern is formed and the surface of the wafer 5 (surface on which the circuit pattern is formed) supported by the holder portion 41 are substantially the same surface. It is arranged. Further, the third reference diffraction gratings 53 a to 53 d are also provided when the wafer 5 of the holder portion 41 (holder mechanism 40) is supported and are disposed within the imaging range of the imaging device 30.

第3基準回折格子53a〜53dそれぞれの表面には、一つの表面に繰り返しピッチが異なる複数の基準パターン(例えば、70nm、90nm、150nmピッチの基準パターン)が形成されており、また、各基準パターンの形状は高精度に保証されている。なお、第3基準回折格子53a〜53dの表面にはそれぞれ同様の基準パターンが形成されている(すなわち、第3基準回折格子53a〜53dは同様の回折特性を有している)。   A plurality of reference patterns (for example, 70 nm, 90 nm, and 150 nm pitch reference patterns) having different pitches are formed on the surface of each of the third reference diffraction gratings 53a to 53d. The shape is guaranteed with high accuracy. Note that similar reference patterns are formed on the surfaces of the third reference diffraction gratings 53a to 53d (that is, the third reference diffraction gratings 53a to 53d have similar diffraction characteristics).

本実施形態でも、第1,第2の実施形態と同様に検査装置1を用いたウエハ5の回折像での検査を行う。この検査方法について図9のフローチャートも参照しながら以下に説明する。この場合にも、まず、検査対象となるウエハ5をホルダ機構40上に搬送し(ステップS301)、ウエハ5のアライメントを実施する(ステップS302)。ウエハ5がアライメントされた状態でホルダ部41に固定支持されると、ウエハ5および第3基準回折格子53a〜53dの表面に照明光を照射する(ステップS303)。そして、ウエハ5および第3基準回折格子53a〜53dの表面からの所望次数の回折光(検査光)が集光光学系20に取り込まれるように、照明光の入射角および出射角、すなわちホルダ機構40(ウエハ5)のチルト角を設定する(ステップS304)。   Also in the present embodiment, the inspection is performed on the diffraction image of the wafer 5 using the inspection apparatus 1 as in the first and second embodiments. This inspection method will be described below with reference to the flowchart of FIG. Also in this case, first, the wafer 5 to be inspected is transferred onto the holder mechanism 40 (step S301), and alignment of the wafer 5 is performed (step S302). When the wafer 5 is fixedly supported by the holder 41 in the aligned state, the illumination light is irradiated to the surface of the wafer 5 and the third reference diffraction gratings 53a to 53d (step S303). Then, the incident angle and the emission angle of the illumination light, that is, the holder mechanism, so that diffracted light (inspection light) of a desired order from the surface of the wafer 5 and the third reference diffraction gratings 53a to 53d is taken into the condensing optical system 20. The tilt angle of 40 (wafer 5) is set (step S304).

次に、ホルダ機構40のチルト角が設定されると、上述の第1,第2実施形態と同様に、第3基準回折格子53a〜53dにおいて、ウエハ5の検査対象のパターンと近似したピッチを有する基準パターンの部位に着目し、この基準パターンの部位からの所望次数の回折光の出射角度、すなわち集光光学系20を介してCCD撮像素子31に結像する回折光の受光位置から、上述の式(1)に基づいて照明光の波長(実際の照明光の波長)が検出される。そして、検出された照明光の波長に基づいてホルダ機構40のチルト角を調整し(ステップS305)、ウエハ5の表面の回折像を撮像する(ステップS306)。そして、得られたウエハ5の画像に基づいて、例えば、予め記憶されている良品ウエハ(パターン)の画像データと比較することでウエハ5の表面における異常の検査を行う(ステップS307)。   Next, when the tilt angle of the holder mechanism 40 is set, in the third reference diffraction gratings 53a to 53d, a pitch approximate to the pattern to be inspected on the wafer 5 is set as in the first and second embodiments described above. Focusing on the portion of the reference pattern that has the above, from the emission angle of the desired order of diffracted light from the portion of the reference pattern, that is, from the light receiving position of the diffracted light that forms an image on the CCD image pickup device 31 via the condensing optical system 20 The wavelength of the illumination light (actual wavelength of the illumination light) is detected based on Equation (1). Then, the tilt angle of the holder mechanism 40 is adjusted based on the detected wavelength of illumination light (step S305), and a diffraction image of the surface of the wafer 5 is captured (step S306). Then, based on the obtained image of the wafer 5, for example, an abnormal inspection on the surface of the wafer 5 is performed by comparing with image data of a good wafer (pattern) stored in advance (step S 307).

このように実際の照明光の波長に基づいてホルダ機構40(ウエハ5)のチルト角を調整した後に回折像による検査を行うことにより、波長変動の影響を受けない正確な検査が可能であるが、スループット(時間当たりの検査数)を高めるため、通常このようなチルト角の調整は1ロット(25枚)の複数のウエハに対して1回行い、調整されたチルト角で複数のウエハの検査を行っている。このような検査では、複数のウエハを検査していくうちに、ステップS306において正常なウエハ画像が得られなくなる場合がある。すなわち、これまで得られていたウエハ画像(もしくは良品のウエハ画像)と比較して所定の基準範囲を超える輝度劣化を生じる場合がある。この場合、例えば、前述のチルト駆動機構(図示せず)の機械的不具合によるチルト角度ずれ、ホルダ部41に支持されたウエハ5の垂直軸Ax1を中心とした方位角度ずれ(アライメントの不具合)、照明光学系10、集光光学系20もしくは撮像装置30(CCD撮像素子31の受光感度)に何らかの不具合(異常)がある場合などが考えられる。   As described above, the inspection by the diffraction image is performed after the tilt angle of the holder mechanism 40 (wafer 5) is adjusted based on the actual wavelength of the illumination light. In order to increase the throughput (number of inspections per hour), such tilt angle adjustment is usually performed once for a plurality of wafers in one lot (25 sheets), and inspection of a plurality of wafers is performed with the adjusted tilt angle. It is carried out. In such an inspection, a normal wafer image may not be obtained in step S306 while a plurality of wafers are inspected. That is, there is a case where luminance deterioration exceeding a predetermined reference range may occur as compared with a wafer image (or a non-defective wafer image) obtained so far. In this case, for example, a tilt angle shift due to a mechanical failure of the tilt drive mechanism (not shown), an azimuth angle shift (alignment failure) about the vertical axis Ax1 of the wafer 5 supported by the holder unit 41, The illumination optical system 10, the condensing optical system 20, or the image pickup device 30 (light receiving sensitivity of the CCD image pickup device 31) may have some problem (abnormality).

まず、直交軸Ax3近傍に配設された第3基準回折格子53a,53cもしくは直交軸Ax3方向におけるウエハ5の側部の被検査パターンと、チルト軸Ax2近傍に配設された53b,53dもしくはウエハ5のチルト軸Ax2近傍(ウエハ5の中央部)の被検査パターンに着目し、これらからの検査光(回折光もしくは反射光)が所定の基準範囲を超える輝度の差異を有する場合(例えば、5%の輝度劣化が発生した場合)、チルト駆動機構等の機械的不具合によるチルト角度ずれと判断(検出)する。そして、検出された検査光の輝度の差異に基づいてホルダ機構40のチルト角度ずれを調整する(ステップS308)。   First, the third reference diffraction gratings 53a and 53c disposed in the vicinity of the orthogonal axis Ax3 or the pattern to be inspected on the side of the wafer 5 in the direction of the orthogonal axis Ax3, and 53b and 53d or the wafer disposed in the vicinity of the tilt axis Ax2 Focusing on the pattern to be inspected in the vicinity of the tilt axis Ax2 of 5 (the central portion of the wafer 5), the inspection light (diffracted light or reflected light) from these has a luminance difference exceeding a predetermined reference range (for example, 5 % Brightness degradation), it is determined (detected) as a tilt angle shift due to a mechanical malfunction of the tilt drive mechanism or the like. Then, the tilt angle deviation of the holder mechanism 40 is adjusted based on the detected luminance difference of the inspection light (step S308).

実際には、図10に示すように、±方向に約0.16度以上のチルト角度ずれが生じた場合に、チルト角度のずれがない場合と比較して5%以上の輝度劣化が生じ、また、ウエハ画像において直交軸Ax3方向(図中における上下方向)に明部と暗部が生じている。具体的に、+方向に約0.16度以上のチルト角ずれが生じた場合に、ウエハ画像の中央チルト軸Ax2方向(図中における左右方向)が暗くなる。また、−方向に約0.16度以上のチルト角ずれが生じた場合に、ウエハ画像の直交軸Ax3方向の側部が暗くなる。   Actually, as shown in FIG. 10, when a tilt angle deviation of about 0.16 degrees or more in the ± direction occurs, a luminance deterioration of 5% or more occurs as compared with the case where there is no deviation of the tilt angle, In the wafer image, bright portions and dark portions are generated in the direction of the orthogonal axis Ax3 (vertical direction in the drawing). Specifically, when a tilt angle shift of about 0.16 degrees or more occurs in the + direction, the center tilt axis Ax2 direction (left and right direction in the drawing) of the wafer image becomes dark. Further, when a tilt angle deviation of about 0.16 degrees or more occurs in the negative direction, the side portion of the wafer image in the direction of the orthogonal axis Ax3 becomes dark.

また、第3基準回折格子53a〜52dと、ウエハ5の直交軸Ax3近傍(ウエハ5の中央部)もしくはチルト軸Ax2方向におけるウエハ5の側部とに着目し、これらからの検査光(回折光もしくは反射光)が所定の基準範囲を超える輝度の差異を有する場合(例えば、5%の輝度劣化が発生した場合)、テーブル駆動部43等によるウエハ5の方位角度(回転角度)のずれ(アライメントの不具合)と判断(検出)する。そして、検出された検査光の輝度の差異に基づいてウエハ5の方位角度ずれを調整する(ステップS309)。   Further, paying attention to the third reference diffraction gratings 53a to 52d and the vicinity of the orthogonal axis Ax3 of the wafer 5 (the central part of the wafer 5) or the side part of the wafer 5 in the tilt axis Ax2 direction, the inspection light (diffracted light) from these Alternatively, when the reflected light) has a luminance difference exceeding a predetermined reference range (for example, when a luminance deterioration of 5% occurs), the azimuth angle (rotation angle) of the wafer 5 by the table driving unit 43 or the like (alignment) (Defect). Then, the orientation angle deviation of the wafer 5 is adjusted based on the detected luminance difference of the inspection light (step S309).

実際には、図11に示すように、±方向に約4分以上の方位角度(回転角度)ずれが生じた場合に、方位角度ずれがない場合と比較して5%以上の輝度劣化が生じ、また、ウエハ画像においてチルト軸Ax2方向(図中における左右方向)に明部と暗部が生じている。具体的に、+方向に約4分以上の方位角度ずれが生じた場合に、ウエハ画像の中央直交軸Ax3方向(図中における上下方向)が暗くなる。また、−方向に約4分以上の方位角度ずれが生じた場合に、ウエハ画像のチルト軸Ax2方向の側部が暗くなる。   Actually, as shown in FIG. 11, when an azimuth angle (rotation angle) deviation of about 4 minutes or more occurs in the ± direction, a luminance deterioration of 5% or more occurs as compared with the case where there is no azimuth angle deviation. In the wafer image, a bright portion and a dark portion are generated in the tilt axis Ax2 direction (left and right direction in the drawing). Specifically, when the azimuth angle deviation of about 4 minutes or more occurs in the + direction, the direction of the center orthogonal axis Ax3 (up and down direction in the drawing) of the wafer image becomes dark. Further, when the azimuth angle shift of about 4 minutes or more occurs in the negative direction, the side portion of the wafer image in the direction of the tilt axis Ax2 becomes dark.

また、第3基準回折格子53a〜52dに着目し、これらからの検査光(回折光もしくは反射光)の輝度が、それぞれ所定の基準範囲から同程度に外れた場合に、照明光学系10、集光光学系20もしくは撮像装置30(CCD撮像素子31の受光感度)に何らかの不具合(異常)があると判断(検出)する。そして、検出された検査光の輝度に基づいて照明光学系10、集光光学系20もしくは撮像装置30の不具合を調整(または交換)する(ステップS310)。   Further, paying attention to the third reference diffraction gratings 53a to 52d, when the luminance of the inspection light (diffracted light or reflected light) therefrom deviates from the predetermined reference range to the same extent, the illumination optical system 10, It is determined (detected) that the optical optical system 20 or the imaging device 30 (the light receiving sensitivity of the CCD imaging device 31) has some trouble (abnormality). Then, the malfunction of the illumination optical system 10, the condensing optical system 20, or the imaging device 30 is adjusted (or replaced) based on the detected luminance of the inspection light (step S310).

そして、各々の検査光の輝度に基づいて、ホルダ機構40のチルト角度ずれ、ウエハ5(ホルダ機構40)の方位角度ずれ、照明光学系10、集光光学系20、および撮像装置30等を調整した後、ウエハ5の表面の回折像を再び撮像し、得られたウエハ5の画像に基づいて、上記ステップS307において、ウエハ5の表面における異常の検査を行う。   Then, based on the brightness of each inspection light, the tilt angle deviation of the holder mechanism 40, the azimuth angle deviation of the wafer 5 (holder mechanism 40), the illumination optical system 10, the condensing optical system 20, and the imaging device 30 are adjusted. After that, the diffraction image of the surface of the wafer 5 is picked up again, and based on the obtained image of the wafer 5, the abnormality on the surface of the wafer 5 is inspected in step S307.

このように第3の実施形態では、チルト軸Ax2の近傍および直交軸Ax3の近傍に配設された第3基準回折格子53a〜52dと、ウエハ5の表面からの検査光(回折光もしくは反射光)に基づいて、照明光の波長変動だけでなく、チルト駆動機構やテーブル駆動部43等の機械的不具合、ウエハ5のアライメント不具合等も検出することができ、これらを調整して正確な検査が可能となる。   As described above, in the third embodiment, the third reference diffraction gratings 53a to 52d disposed in the vicinity of the tilt axis Ax2 and the orthogonal axis Ax3, and the inspection light (diffracted light or reflected light) from the surface of the wafer 5 are used. ), It is possible to detect not only the wavelength variation of the illumination light, but also mechanical defects such as the tilt drive mechanism and the table drive unit 43, the alignment defect of the wafer 5, etc., and these can be adjusted for accurate inspection. It becomes possible.

以上のように構成された検査装置1およびこの検査装置1を用いた検査方法によれば、
ウエハ5および基準変調部50からの回折光に基づいて、照明光の波長、ホルダ機構40(ウエハ5)のチルト角(照明光の入射角および出射角)、ホルダ部41に支持されたウエハ5の方位角度(アライメント状態)等の検査状態を検出し、これらを調整した後に回折像や正反射像等による検査を行うことにより、波長変動の影響や検査装置1の機械的不具合の影響等を受けない正確な検査が可能となる。また、基準変調部50の表面に形成された基準パターンの形状は高精度に保証されているため、基準変調部50からの光の強度を基準とすることで規格化でき、複数の検査装置間で検査結果のバラツキがなく半導体製造工程の工程管理精度を向上させることが可能となる。
According to the inspection apparatus 1 configured as described above and the inspection method using the inspection apparatus 1,
Based on the diffracted light from the wafer 5 and the reference modulation unit 50, the wavelength of the illumination light, the tilt angle of the holder mechanism 40 (wafer 5) (the incident angle and the emission angle of the illumination light), and the wafer 5 supported by the holder unit 41 The inspection state such as the azimuth angle (alignment state) is detected, and after adjusting these, the inspection by the diffraction image, the specular reflection image, etc. is performed. Accurate inspection that is not received is possible. In addition, since the shape of the reference pattern formed on the surface of the reference modulation unit 50 is guaranteed with high accuracy, it can be normalized by using the intensity of light from the reference modulation unit 50 as a reference, and between a plurality of inspection apparatuses. Thus, there is no variation in inspection results, and it becomes possible to improve the process control accuracy of the semiconductor manufacturing process.

なお、上述の実施形態において、基準変調部50は、ホルダ機構40に配設され構成されているが、この構成に限定されず、撮像装置30の撮像範囲内に配置されていればホルダ機構40に配設されていなくてもよい。また、撮像装置としてCCDを例として説明したが、CMOS等の固体増幅型撮像素子を用いてもよい。また、撮像装置にラインセンサを用いて被検画像を走査することもできる。また、被検査対象のウエハ全面を分割して撮像して検査を行うこともできる。   In the above-described embodiment, the reference modulation unit 50 is arranged and configured in the holder mechanism 40, but is not limited to this configuration, and the holder mechanism 40 as long as it is arranged within the imaging range of the imaging device 30. It does not need to be arranged in the. Further, although the CCD has been described as an example of the imaging device, a solid amplification type imaging device such as a CMOS may be used. In addition, it is possible to scan a test image using a line sensor in the imaging apparatus. It is also possible to divide and image the entire wafer to be inspected for inspection.

本発明に係る検査装置の全体構成を示す図である。It is a figure showing the whole inspection device composition concerning the present invention. 上記検査装置におけるホルダ機構の構成を示す図である。It is a figure which shows the structure of the holder mechanism in the said inspection apparatus. (a)水銀ランプの輝線スペクトルを示す図であり、(b)は(a)の図の一部を拡大した図である。(A) It is a figure which shows the emission line spectrum of a mercury lamp, (b) is the figure which expanded a part of figure of (a). 波長選択フィルタの透過波長域を示した図である。It is the figure which showed the transmission wavelength range of the wavelength selection filter. 本発明に係る第1の基準変調部の構成を示す図であり、(a)は基準変調部およびホルダ機構の平面図、(b)は(a)に示すチルト軸Ax2での断面図である。It is a figure which shows the structure of the 1st reference modulation part which concerns on this invention, (a) is a top view of a reference modulation part and a holder mechanism, (b) is sectional drawing in the tilt axis Ax2 shown to (a). . 本発明に係る検査方法を示す第1のフローチャートである。It is a 1st flowchart which shows the inspection method which concerns on this invention. 本発明に係る第2の基準変調部の構成を示す図であり、(a)は基準変調部およびホルダ機構の平面図、(b)は(a)に示すチルト軸Ax2での断面図である。It is a figure which shows the structure of the 2nd reference | standard modulation | alteration part based on this invention, (a) is a top view of a reference | standard modulation | alteration part and a holder mechanism, (b) is sectional drawing in the tilt axis Ax2 shown to (a). . 本発明に係る第3の基準変調部の構成を示す図であり、(a)は基準変調部およびホルダ機構の平面図、(b)は(a)に示すチルト軸Ax2での断面図である。It is a figure which shows the structure of the 3rd reference | standard modulation part which concerns on this invention, (a) is a top view of a reference | standard modulation part and a holder mechanism, (b) is sectional drawing in the tilt axis Ax2 shown to (a). . 本発明に係る検査方法を示す第3のフローチャートである。It is a 3rd flowchart which shows the inspection method which concerns on this invention. チルト角度ずれとウエハ画像との相関関係を説明する図である。It is a figure explaining the correlation with a tilt angle shift | offset | difference and a wafer image. 方位角度(回転角度)ずれとウエハ画像との相関関係を説明する図である。It is a figure explaining the correlation with an azimuth (rotation angle) shift | offset | difference and a wafer image.

符号の説明Explanation of symbols

1 検査装置 5 ウエハ(被検物)
10 照明光学系(照射部) 30 撮像装置(受光部)
37 制御部(検査状態制御部) 38 検査状態検出部
39 欠陥検出部(検査部) 40 ホルダ機構(支持部)
50 基準変調部(変調部)
51a〜51p 第1基準回折格子(変調部)
52a〜52j 第2基準回折格子(変調部)
53a〜53d 第3基準回折格子(変調部)
1 Inspection device 5 Wafer (test object)
DESCRIPTION OF SYMBOLS 10 Illumination optical system (irradiation part) 30 Imaging device (light-receiving part)
37 Control part (inspection state control part) 38 Inspection state detection part 39 Defect detection part (inspection part) 40 Holder mechanism (support part)
50 Reference modulation section (modulation section)
51a to 51p first reference diffraction grating (modulation unit)
52a to 52j Second reference diffraction grating (modulation unit)
53a to 53d Third reference diffraction grating (modulation unit)

Claims (27)

被検物に検査用照射光を照射する照射部と、
前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、
前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、
前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、
前記検査の状態を検出する検査状態検出部とを備え、
前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出し、
複数の異なる波長の前記検査用照射光に対応した複数の前記変調部を備えることを特徴とする検査装置。
An irradiation unit for irradiating the inspection object with the irradiation light for inspection; and
A modulator that emits the inspection light that has been irradiated with the inspection irradiation light and that has generated a predetermined physical modulation according to the wavelength of the inspection irradiation light;
A light receiving unit that receives the inspection light emitted by receiving the physical modulation in the test object and the modulation unit under irradiation of the inspection irradiation light;
An inspection unit that inspects the inspection object based on inspection light that has been subjected to the physical modulation by the inspection object received by the light receiving unit;
An inspection state detection unit for detecting the state of the inspection,
The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit is arranged, and the inspection state detection unit detects the state of the inspection based on the inspection light subjected to the physical modulation by the modulation unit ,
An inspection apparatus comprising a plurality of the modulation units corresponding to the inspection irradiation lights having a plurality of different wavelengths .
複数の異なる波長の前記検査用照射光に対応した複数の前記変調部が異なる複数の位置に配設されたことを特徴とする請求項1に記載の検査装置。 The inspection apparatus according to claim 1 , wherein the plurality of modulation units corresponding to the plurality of inspection irradiation lights having different wavelengths are arranged at a plurality of different positions. 同等な前記物理的変調の特性を有する複数の前記変調部を、前記被検物を介して対称な位置に備えることを特徴とする請求項1または2に記載の検査装置 The inspection apparatus according to claim 1 , wherein the plurality of modulation units having the same physical modulation characteristics are provided at symmetrical positions via the test object. 被検物に検査用照射光を照射する照射部と、
前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、
前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、
前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、
前記検査の状態を検出する検査状態検出部とを備え、
前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出し、
同等な前記物理的変調の特性を有する複数の前記変調部を、前記被検物を介して対称な位置に備えることを特徴とす検査装置。
An irradiation unit for irradiating the inspection object with the irradiation light for inspection; and
A modulator that emits the inspection light that has been irradiated with the inspection irradiation light and that has generated a predetermined physical modulation according to the wavelength of the inspection irradiation light;
A light receiving unit that receives the inspection light emitted by receiving the physical modulation in the test object and the modulation unit under irradiation of the inspection irradiation light;
An inspection unit that inspects the inspection object based on inspection light that has been subjected to the physical modulation by the inspection object received by the light receiving unit;
An inspection state detection unit for detecting the state of the inspection,
The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit is arranged, and the inspection state detection unit detects the state of the inspection based on the inspection light subjected to the physical modulation by the modulation unit,
A plurality of said modulating portion having a property equivalent the physical modulation, the you characterized in that it comprises a symmetrical position via the specimen inspection apparatus.
前記変調部の前記検査用照射光の受光面と前記被検物の前記検査用照射光の受光面とが略同一平面となるように配置されたことを特徴とする請求項4に記載の検査装置。 The inspection according to claim 4 , wherein the light receiving surface of the inspection irradiation light of the modulation unit and the light receiving surface of the inspection irradiation light of the test object are arranged substantially in the same plane. apparatus. 前記被検物を支持する支持部を備え、前記変調部は前記支持部近傍に配置されたことを特徴とする請求項4または5に記載の検査装置。 The inspection apparatus according to claim 4 , further comprising a support unit that supports the test object, wherein the modulation unit is disposed in the vicinity of the support unit. 前記被検物を支持する支持部を備え、前記変調部は前記支持部に配置されたことを特徴とする請求項4または5に記載の検査装置。 The inspection apparatus according to claim 4 , further comprising a support unit that supports the test object, wherein the modulation unit is disposed on the support unit. 前記支持部は、前記被検物を傾動させることで前記被検物への前記検査用照射光の入射角度および前記被検物で前記物理的変調を受けた検査光の前記受光部の受光位置を調整可能であり、前記被検物の傾動軸は前記被検物の中央付近を通り前記被検物の前記受光面と略同一平面もしくは該同一平面近傍に設定されたことを特徴とする請求項6または7に記載の検査装置。 The support portion tilts the test object, thereby causing an incident angle of the inspection irradiation light to the test object and a light receiving position of the test light that receives the physical modulation on the test object. is adjustable, said billing tilt axis of the object, characterized in that the said set in the light-receiving surface and the vicinity substantially flush or of identity a plane of the street the test object near the center of the object Item 8. The inspection device according to Item 6 or 7 . 前記変調部は、前記傾動軸近傍に配置されたことを特徴とする請求項8に記載の検査装置。   The inspection apparatus according to claim 8, wherein the modulation unit is disposed in the vicinity of the tilt axis. 前記変調部は、前記傾動軸近傍で前記被検物を介して対称な位置、および前記被検物の中央付近で前記傾動軸と直交する直交軸近傍で前記被検物を介して対称な位置に配置されたことを特徴とする請求項8または9に記載の検査装置。 The modulator is symmetric with respect to the test object near the tilt axis, and symmetric with respect to the test object in the vicinity of the orthogonal axis perpendicular to the tilt axis near the center of the test object. The inspection apparatus according to claim 8 , wherein the inspection apparatus is disposed in the area. 前記検査状態検出部は、前記予め設定された物理的変調に基づいて前記検査の状態を検出することを特徴とする請求項4〜10のいずれかに記載の検査装置。 The inspection apparatus according to claim 4 , wherein the inspection state detection unit detects the inspection state based on the preset physical modulation. 前記検査状態検出部は、前記変調部で生じた回折光もしくは正反射光に基づいて前記検査の状態を検出することを特徴とする請求項11に記載の検査装置。   The inspection apparatus according to claim 11, wherein the inspection state detection unit detects the inspection state based on diffracted light or specular reflection light generated by the modulation unit. 被検物に検査用照射光を照射する照射部と、
前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、
前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、
前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、
前記検査の状態を検出する検査状態検出部とを備え、
前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出し、
前記検査状態検出部は、前記変調部で前記物理的変調を受けた検査光に基づいて、前記検査用照射光の入射角度、前記検査用照射光の波長、前記被検物の傾動角度、前記受光部による前記物理的変調を受けた検査光の受光位置、および前記被検物を回転させたときの前記被検物の方位角度の少なくともいずれかの前記検査の状態を検出することを特徴とす検査装置。
An irradiation unit for irradiating the inspection object with the irradiation light for inspection; and
A modulator that emits the inspection light that has been irradiated with the inspection irradiation light and that has generated a predetermined physical modulation according to the wavelength of the inspection irradiation light;
A light receiving unit that receives the inspection light emitted by receiving the physical modulation in the test object and the modulation unit under irradiation of the inspection irradiation light;
An inspection unit that inspects the inspection object based on inspection light that has been subjected to the physical modulation by the inspection object received by the light receiving unit;
An inspection state detection unit for detecting the state of the inspection,
The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit is arranged, and the inspection state detection unit detects the state of the inspection based on the inspection light subjected to the physical modulation by the modulation unit,
The inspection state detection unit is based on the inspection light subjected to the physical modulation by the modulation unit, the incident angle of the inspection irradiation light, the wavelength of the inspection irradiation light, the tilt angle of the test object, Detecting the inspection state of at least one of a light receiving position of the inspection light subjected to the physical modulation by the light receiving unit and an azimuth angle of the inspection object when the inspection object is rotated; It is that the inspection apparatus.
前記検査状態検出部は、前記受光部による前記変調部で生じた回折光の受光位置に基づいて前記検査用照射光の波長を検出することを特徴とする請求項13に記載の検査装置。   The inspection apparatus according to claim 13, wherein the inspection state detection unit detects a wavelength of the inspection irradiation light based on a light receiving position of the diffracted light generated in the modulation unit by the light receiving unit. 前記検査状態検出部は、前記被検物および変調部を傾動させる傾動軸と直交する直交軸近傍に配置された前記変調部もしくは前記直交軸方向における前記被検物の側部で前記物理的変調を受けた検査光と、前記傾動軸近傍に配置された前記変調部もしくは前記傾動軸近傍の前記被検物で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の傾動角度の不具合を検出することを特徴とする請求項13に記載の検査装置。   The inspection state detection unit is configured such that the physical modulation is performed at the modulation unit disposed in the vicinity of the orthogonal axis orthogonal to the tilt axis for tilting the test object and the modulation unit or at the side of the test object in the orthogonal axis direction. The difference in luminance between the inspection light subjected to the physical modulation and the inspection light subjected to the physical modulation by the modulation unit arranged near the tilt axis or the test object near the tilt axis exceeds a predetermined reference range. The inspection apparatus according to claim 13, wherein a defect in a tilt angle of the object to be detected is detected. 前記検査状態検出部は、前記変調部で前記物理的変調を受けた検査光と、前記被検物および変調部を傾動させる傾動軸と直交する直交軸近傍の前記被検物もしくは前記傾動軸方向における前記被検物の側部で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の方位角度の不具合を検出することを特徴とする請求項13に記載の検査装置。   The inspection state detection unit includes the inspection light that has undergone the physical modulation by the modulation unit, and the test object or the tilt axis direction in the vicinity of an orthogonal axis that is orthogonal to a tilt axis that tilts the test object and the modulation unit. A defect in the azimuth angle of the test object is detected when the inspection light subjected to the physical modulation at the side of the test object has a luminance difference exceeding a predetermined reference range. The inspection apparatus according to claim 13. 前記検査状態検出部は、異なる複数の位置に配置された前記変調部で前記物理的変調を受けた検査光が、それぞれ所定の基準範囲から同程度に外れた場合に、前記照射部の照明光学系、および前記受光部の受光光学系もしくは受光感度の少なくともいずれかの不具合を検出することを特徴とする請求項13に記載の検査装置。   The inspection state detection unit is configured to illuminate the illumination unit when the inspection light subjected to the physical modulation by the modulation units arranged at different positions deviates from a predetermined reference range to the same extent. The inspection apparatus according to claim 13, wherein a defect of at least one of a system and a light receiving optical system or light receiving sensitivity of the light receiving unit is detected. 被検物に検査用照射光を照射する照射部と、
前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された物理的変調を生じさせた検査光を出射させる変調部と、
前記検査用照射光の照射を受け前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する受光部と、
前記受光部で受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査部と、
前記検査の状態を検出する検査状態検出部とを備え、
前記受光部で同時に受光可能な範囲内に、前記被検物で前記物理的変調を受けた検査光と前記変調部で前記物理的変調を受けた検査光とが入るように前記被検物と前記変調部とを配置し、前記検査状態検出部は前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態として少なくとも前記検査用照明光の波長を検出し、
前記検査状態検出部で検出した前記波長に基づいて前記被検物の傾動角度を設定または変更する検査状態制御部を備えことを特徴とす検査装置。
An irradiation unit for irradiating the inspection object with the irradiation light for inspection; and
A modulator that emits the inspection light that has been irradiated with the inspection irradiation light and that has generated a predetermined physical modulation according to the wavelength of the inspection irradiation light;
A light receiving unit that receives the inspection light emitted by receiving the physical modulation in the test object and the modulation unit under irradiation of the inspection irradiation light;
An inspection unit that inspects the inspection object based on inspection light that has been subjected to the physical modulation by the inspection object received by the light receiving unit;
An inspection state detection unit for detecting the state of the inspection,
The test object so that the inspection light that has undergone the physical modulation by the test object and the inspection light that has undergone the physical modulation by the modulation part are within a range that can be simultaneously received by the light receiving unit. The modulation unit is arranged, and the inspection state detection unit detects at least the wavelength of the inspection illumination light as the inspection state based on the inspection light subjected to the physical modulation in the modulation unit,
The check state detecting unit based on the wavelength detected by the Ru with a check state control unit to set or change the tilt angle of the object inspection apparatus you said.
被検物に検査用照射光を照射し、前記被検物で物理的変調を受けた検査光に基づいて前記被検物の検査を行う検査方法であって、
前記被検物および、前記検査用照射光の照射を受け該検査用照射光の波長に応じ予め設定された前記物理的変調を前記検査用照射光に生じさせる変調部に、前記検査用照射光を照射し、前記被検物および前記変調部で前記物理的変調を受けて出射された検査光を受光する第1のステップと、
前記第1のステップで受光した前記被検物で前記物理的変調を受けた検査光に基づいて前記被検物の検査を行うとともに、前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出する第2のステップとを備え
前記第1のステップにおいて、複数の異なる波長の前記検査用照射光に対応した複数の前記変調部で前記物理的変調を受けた検査光を受光し、
前記第2のステップにおいて、複数の前記変調部のうち前記被検物の検査部分に対応する前記変調部で前記物理的変調を受けた検査光に基づいて前記検査の状態を検出することを特徴とする検査方法。
An inspection method for inspecting the test object based on the test light irradiated with test irradiation light on the test object and subjected to physical modulation in the test object,
The inspection irradiation light is applied to the test object and a modulation unit that receives the irradiation of the inspection irradiation light and generates the physical modulation preset in accordance with the wavelength of the inspection irradiation light in the inspection irradiation light. A first step of receiving inspection light emitted by receiving the physical modulation in the test object and the modulation unit;
Inspecting the inspection object based on the inspection light that has been subjected to the physical modulation by the inspection object received in the first step, and based on the inspection light that has been subjected to the physical modulation by the modulation unit And a second step of detecting the state of the inspection ,
In the first step, the inspection light having undergone the physical modulation is received by the plurality of modulation units corresponding to the irradiation light for inspection having a plurality of different wavelengths,
In the second step, the state of the inspection is detected based on the inspection light subjected to the physical modulation by the modulation unit corresponding to the inspection portion of the test object among the plurality of modulation units. Inspection method.
前記第1のステップにおいて、前記被検物および前記変調部で生じた回折光もしくは正反射光を受光し、
前記第2のステップにおいて、前記被検物で生じた回折光もしくは正反射光に基づいて前記被検物の検査を行うとともに、前記変調部で生じた回折光もしくは正反射光に基づいて前記検査の状態を検出することを特徴とする請求項19に記載の検査方法。
In the first step, diffracted light or specularly reflected light generated in the test object and the modulation unit is received,
In the second step, the inspection object is inspected based on diffracted light or specular reflection light generated in the inspection object, and the inspection is performed on the basis of diffracted light or specular reflection light generated in the modulation unit. The inspection method according to claim 19 , wherein the state is detected.
前記被検物を傾動させることで前記被検物への前記検査用照射光の入射角度および前記被検物で前記物理的変調を受けた検査光の受光位置を調整することが可能であり、前記被検物の傾動軸は前記被検物の中央付近を通り前記被検物の前記検査用照射光の受光面と略同一平面もしくは該同一平面近傍に設定され、
前記第2のステップにおいて、前記変調部で前記物理的変調を受けた検査光に基づいて、前記検査用照射光の入射角度、前記検査用照射光の波長、前記被検物の傾動角度、前記物理的変調を受けた検査光の受光位置、および前記被検物を回転させたときの前記被検物の方位角度の少なくともいずれかの前記検査の状態を検出することを特徴とする請求項19または20に記載の検査方法。
By tilting the test object, it is possible to adjust the incident angle of the inspection irradiation light to the test object and the light receiving position of the test light subjected to the physical modulation in the test object, The tilt axis of the test object passes through the vicinity of the center of the test object and is set substantially on the same plane as or near the same plane as the light receiving surface of the test irradiation light of the test object,
In the second step, based on the inspection light subjected to the physical modulation in the modulation unit, the incident angle of the inspection irradiation light, the wavelength of the inspection irradiation light, the tilt angle of the inspection object, receiving position of the physical modulating received inspection light, and the claims, characterized in that to detect at least a state of one of the inspection of the azimuth angle of the test object when rotating the test object 19 Or the inspection method of 20 .
前記第1のステップにおいて、前記変調部で生じた回折光を受光し、
前記第2のステップにおいて、前記第1のステップで受光した前記回折光の受光位置に基づいて前記検査用照射光の波長を検出することを特徴とする請求項21に記載の検査方法。
In the first step, diffracted light generated by the modulation unit is received;
The inspection method according to claim 21 , wherein in the second step, the wavelength of the inspection irradiation light is detected based on a light receiving position of the diffracted light received in the first step.
前記第2のステップにおいて、前記被検物の中央付近で前記傾動軸と直交する直交軸近傍に配置された前記変調部もしくは前記直交軸方向における前記被検物の側部で前記物理的変調を受けた検査光と、前記傾動軸近傍に配置された前記変調部もしくは前記傾動軸近傍の前記被検物で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の傾動角度の不具合を検出することを特徴とする請求項21に記載の検査方法。 In the second step, the physical modulation is performed at the modulation unit disposed near the orthogonal axis orthogonal to the tilt axis near the center of the test object or at the side of the test object in the orthogonal axis direction. The inspection light received and the inspection light subjected to the physical modulation by the modulation unit arranged near the tilt axis or the test object near the tilt axis have a luminance difference exceeding a predetermined reference range. The inspection method according to claim 21 , wherein a defect in a tilt angle of the test object is detected. 前記第2のステップにおいて、前記変調部で前記物理的変調を受けた検査光と、前記被検物の中央付近で前記傾動軸と直交する直交軸近傍の前記被検物もしくは前記傾動軸方向における前記被検物の側部で前記物理的変調を受けた検査光とが所定の基準範囲を超える輝度の差異を有する場合に、前記被検物の方位角度の不具合を検出することを特徴とする請求項21に記載の検査方法。 In the second step, the inspection light that has undergone the physical modulation by the modulation unit and the test object in the vicinity of the orthogonal axis that is orthogonal to the tilt axis in the vicinity of the center of the test object or in the direction of the tilt axis A defect in the azimuth angle of the test object is detected when the inspection light subjected to the physical modulation at the side portion of the test object has a luminance difference exceeding a predetermined reference range. The inspection method according to claim 21 . 前記第2のステップにおいて、異なる複数の位置に配置された前記変調部で前記物理的変調を受けた検査光が、それぞれ所定の基準範囲から同程度に外れた場合に、照射部の照明光学系および受光部の受光光学系もしくは受光感度の少なくともいずれかの不具合を検出することを特徴とする請求項19または20に記載の検査方法。 In the second step, the illumination optical system of the irradiation unit when the inspection light that has undergone the physical modulation by the modulation units arranged at a plurality of different positions deviates from a predetermined reference range to the same extent. 21. The inspection method according to claim 19 or 20 , wherein a defect of at least one of the light receiving optical system and the light receiving sensitivity of the light receiving unit is detected. 前記第2のステップで検出した前記検査の状態に基づいて該検査の状態を設定または変更する第3のステップを備えたことを特徴とする請求項19〜25のいずれかに記載の検査方法。 26. The inspection method according to claim 19 , further comprising a third step of setting or changing the state of the inspection based on the state of the inspection detected in the second step. 前記第3のステップにおいて、前記第2のステップで検出した前記波長に基づいて前記被検物の傾動角度を設定または変更することを特徴とする請求項26に記載の検査方法。 27. The inspection method according to claim 26 , wherein, in the third step, a tilt angle of the test object is set or changed based on the wavelength detected in the second step.
JP2008179307A 2008-07-09 2008-07-09 Inspection apparatus and inspection method Active JP5257759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179307A JP5257759B2 (en) 2008-07-09 2008-07-09 Inspection apparatus and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179307A JP5257759B2 (en) 2008-07-09 2008-07-09 Inspection apparatus and inspection method

Publications (2)

Publication Number Publication Date
JP2010019635A JP2010019635A (en) 2010-01-28
JP5257759B2 true JP5257759B2 (en) 2013-08-07

Family

ID=41704703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179307A Active JP5257759B2 (en) 2008-07-09 2008-07-09 Inspection apparatus and inspection method

Country Status (1)

Country Link
JP (1) JP5257759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387416B2 (en) * 2013-11-29 2018-09-05 ネックスティン,インコーポレイテッド Wafer image inspection system
CN112557398A (en) * 2020-11-24 2021-03-26 创新奇智(北京)科技有限公司 Quality inspection system for adhesive surface of adhesive sticker and quality inspection method and device thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237347A (en) * 1984-05-11 1985-11-26 Nippon Kogaku Kk <Nikon> Foreign object inspection device
US5076692A (en) * 1990-05-31 1991-12-31 Tencor Instruments Particle detection on a patterned or bare wafer surface
JP4591802B2 (en) * 2000-09-13 2010-12-01 株式会社ニコン Surface inspection apparatus and method
JP2007017395A (en) * 2005-07-11 2007-01-25 Nikon Corp Surface inspection apparatus and surface inspection method
JP4993934B2 (en) * 2006-03-31 2012-08-08 Hoya株式会社 Pattern defect inspection method, photomask manufacturing method, and display device substrate manufacturing method
JP2009300141A (en) * 2008-06-11 2009-12-24 Nikon Corp Inspection device
JP2009300139A (en) * 2008-06-11 2009-12-24 Nikon Corp Inspection device
JP2009300140A (en) * 2008-06-11 2009-12-24 Nikon Corp Inspection device

Also Published As

Publication number Publication date
JP2010019635A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4529366B2 (en) Defect inspection apparatus, defect inspection method, and hole pattern inspection method
JP5201350B2 (en) Surface inspection device
JP5765345B2 (en) Inspection apparatus, inspection method, exposure method, and semiconductor device manufacturing method
US7697139B2 (en) Surface inspection apparatus
JP5440782B2 (en) Surface inspection apparatus and surface inspection method
US6774987B2 (en) Surface inspection method, surface inspection apparatus, and recording medium and data signal for providing surface inspection program
JP2013083672A (en) Observation device, inspection device, and inspection method
KR100411356B1 (en) Apparatus for inspecting surface
JP6036680B2 (en) Inspection apparatus and semiconductor device manufacturing method
WO2020159737A1 (en) Scaling metric for quantifying metrology sensitivity to process variation
JP5434352B2 (en) Surface inspection apparatus and surface inspection method
JP5500427B2 (en) Surface inspection apparatus and surface inspection method
JP5257759B2 (en) Inspection apparatus and inspection method
JP4605089B2 (en) Surface inspection device
JP2009300139A (en) Inspection device
JP4696607B2 (en) Surface inspection device
JP2009031212A (en) Surface inspection apparatus and surface inspection method
JP2006258472A (en) Defect inspection equipment
JP2009300141A (en) Inspection device
JP2010025657A (en) Inspection device
JP2009300140A (en) Inspection device
JP2011141135A (en) Surface inspection apparatus
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2010133714A (en) Illuminator and surface inspecting apparatus
JP2009300296A (en) Surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250