[go: up one dir, main page]

JP5271700B2 - 光反射率測定値を補正するためのシステム及び方法 - Google Patents

光反射率測定値を補正するためのシステム及び方法 Download PDF

Info

Publication number
JP5271700B2
JP5271700B2 JP2008509106A JP2008509106A JP5271700B2 JP 5271700 B2 JP5271700 B2 JP 5271700B2 JP 2008509106 A JP2008509106 A JP 2008509106A JP 2008509106 A JP2008509106 A JP 2008509106A JP 5271700 B2 JP5271700 B2 JP 5271700B2
Authority
JP
Japan
Prior art keywords
spectra
light
port
internal target
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008509106A
Other languages
English (en)
Other versions
JP2008539441A (ja
Inventor
アール. ソリェル、バブス
ヤン、イエ
エイ. シェアー、マイケル
オー. ヨセミ、オルソラ
Original Assignee
ユニバーシティ オブ マサチューセッツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーシティ オブ マサチューセッツ filed Critical ユニバーシティ オブ マサチューセッツ
Publication of JP2008539441A publication Critical patent/JP2008539441A/ja
Application granted granted Critical
Publication of JP5271700B2 publication Critical patent/JP5271700B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14535Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring haematocrit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、分光計システム及び方法に関し、さらに詳細には反射率測定のための分光計に関する。
(関連出願の相互参照)
本願は、その内容全体が参照することにより本明細書に組み込まれている、2005年4月25日に出願された「光反射率測定値を補正するためのシステム及び方法」と題される米国仮出願番号第60/674,379号に対する優先権を主張する。
(連邦支援の研究に関する供述)
本明細書に説明されている研究のための財源は、NASA協同契約NCC9−58の元で資金を供給されている国立宇宙生医学研究所、認可番号第SMS00403号、及び米陸軍、議会により指示された医療研究プログラム、認可番号第DAMD17−03−1−0005号によって提供された。連邦政府は本発明に特定の権利を有する。
光学分光学は気体標本、液体標本及び固体標本の化学種の濃度を決定するために使用できる。特定の化学種によって吸収される光量は、多くの場合ビアの法則、A=εlcによってその濃度に直線性を有し、この場合Aは該化学種の吸光度であり、εは該化学物質に特殊な定数であり、lは光路長であり、cは該化学物質の濃度である。輝度Iの入射光が標本に入射し、Iが、それが測定される該化学物質を含有する溶液を通過した後の光の輝度であるときに、吸光度はA=対数(I/I)で示される。
する。
粉体、錠剤、天然材料(例えば土壌、農作物)、血液、皮膚、及び筋肉等の複合材料を含む透明性のない物質の場合、光情報は拡散反射分光学を用いて収集できる。この設定ではA=(I100/I)であり、この場合I100は100%拡散反射率規格、つまり該入射光の同等物から反射される光であり、Iは研究中の標本から反射される光である。これらの複合材料の1つにおける化学成分の濃度は、多くの場合線形ではないが、Aに関係している。濃度と吸光度の関係性を決定するためには、例えば、部分最小二乗法回帰及び他の多変量較正法等のより精密な数学技法が使用される。いったんこれらの較正方法が引き出されると、それらは透過率モードまたは反射率モードで吸光度を測定することによって化学成分を決定するために使用できる。
近赤外分光法(「NIRS」)を用いる拡散反射分光法技法は、人間の被験者及び動物の被験者における血液及び組織の化学的性質の非侵襲計測のために使用されてきた。(例えば、約650から1000nmの波長範囲を使用している)NIRSは、組織酸素化、組織pH、血液ヘマトクリット値(「Hct」)、及びグルコース等の多くの重要な医療パラメータを測定するために使用できるが、その医学における幅広い応用は、測定される構造内部だけではなく、覆う組織における被験者間、及び被験者内両方の分析対象に無関係な変形によって妨げられてきた。例えば、拡散反射率NIRSが筋肉または器官内の血液ヘマトクリット値を測定するために使用されると、測定値の精度は、(例えば、患者集団の異なる患者間、あるいは個々の患者でのさまざまな位置間の脂肪層と皮膚層の厚さの変動のため等の)該筋肉または器官を覆う層内での吸光度変動、及び/または該測定に無関係である筋肉及び/または器官での構造上の変動からのスペクトル干渉によって影響を及ぼされることがある。
近赤外光は、血液及び下にある組織に存在する化学種に関する情報を提供するために、被験者の皮膚及び骨を貫通できる。例えば、パルス酸素濃度計、つまり動脈ヘモグロビン酸素飽和を測定するユビキタスな病院監視システムは二波長NIRSに基づいている。ケモメトリックス(つまり、複素スペクトルを分析する統計をベースにした方法)と組み合わされた多波長NIRSは、血液と組織内に存在するいくつかの追加の分析対象の非侵襲計測のためのプラットホーム技術を提供できる。NIRSは、患者から血液または組織の標本を取り除く必要なく医療分析対象の正確且つ連続的な測定を提供できる。この技法の適用は、直接的にまたは光ファイババンドルを通して皮膚の上に近赤外線を照射させることと、血液を含む筋肉から反射して戻される光のスペクトルを測定することを必要とする。ヘモグロビン及びデオキシヘモグロビンによる近赤外吸収は、多様な組織層の酸素飽和レベルを測定するために使用されてきたが、多くの場合、追加の数学的な技法と組み合わされた多波長分光法が、追加の重要な血液と組織の分析対象を測定するために必要とされる。ケモメトリックスは、分析対象の濃度が生物組織等の複雑な媒体から記録される反射率スペクトルから計算できるように、統計に基づいた技法を提供して多波長スペクトルを処理する化学の一部門である。
ケモメトリックスは、標本から収集されるスペクトルの関連性のある部分と該標本の中の関心のある該分析対象の濃度または量の間の数学的な関係性を引き出すために使用される。該スペクトルと該化学的濃度の該関係性は、患者のモニタの中にプログラミングし、該測定された反射率スペクトルに基づいて分析対象の濃度を決定するために使用できる「検定方程式」として表すことができる。患者から収集されたスペクトルは、該患者モニタに記憶されている検定方程式(複数の場合がある)を通して処理することができ、それらの患者の該分析対象の濃度は該収集されたスペクトルと該検定方程式に基づいて報告できる。該光反射率技法は非侵襲的であるため、該医学的な測定は、スペクトルが収集されるのと同程度に頻繁に、通常は約数秒で更新できる。この方法を使用する実行可能性は、血液ヘマトクリット値、グルコース、コレステロール、電解液、乳酸塩、ミオグロビン飽和、筋肉pH、及び酸素圧(「PO」)の評価について、作業台で、動物で、及び人間の被験者で立証されてきた。
検定方程式がケモメトリックスを使用して作成されるとき、少なくとも2セットのデータが収集される。NIRSスペクトルのセットが、生理学的な及び病態生理学的な範囲全体で該分析対象の独立した信頼できる測定でほぼ同時に記録される。例えば、測定された反射率スペクトルから血液ヘマトクリット値を求めるために検定方程式を作成することを希望すると、被験者からの複数のスペクトルはそれらの被験者から採取される血液標本と比較され、臨床実験室でヘマトクリット値について分析されるであろう。例えば、部分最小二乗法(「PLS」)回帰は、該スペクトルの部分を特定し、該測定されたヘマトクリットに相互に関連付けるために使用できる。該回帰係数は該検定方程式を生成するために使用される。
したがって、以後の反射率スペクトルが他の患者から収集されるとき、回帰係数を他の患者の該スペクトルと結合して、他の患者のための該NIRSによって決定されるヘマトクリット値を生成することができる。単純な直線回帰よりむしろ検定方程式を引き出すためにPLS等のケモメトリックス技法を使用する優位点は、該分析対象スペクトルが他の吸収側の種と(細胞及び筋肉繊維等の)散乱する要素によって複雑化された場合、スペクトルと分析対象の間に相互関連を確立することに良好に対処するという点である。
該検定方程式が広範囲の計器状態と環境状態、及びさまざまな患者特性で患者に対して正確に機能するために、該較正データセットのデータは可能な限り幅広い値をカバーし、臨床的に重要な範囲全体を包含しなければならない。該データが、該NIRSスペクトルに影響を及ぼす可能性のある可変患者状態のタイプの下で収集されることも重要である。スペクトルに影響を及ぼす条件は、温度の変動、水分含有量、及び患者を治療するために使用される妨害化学薬品の存在を含む。該妨害する薬品の影響は該検定方程式の一部としてもモデル化されるため、これは、将来の被験者に使用されるときに該検定方程式が正確であることを保証するのに役立つ。
医用測定のためのNIRSの応用は、筋肉等の目標組織、あるいは目標器官を覆う組織での被験者間の変動と被験者内の変動の両方により阻まれてきた。加えて、NIRS測定技法は皮膚血流の短期の変化に起因する、または創傷治癒の間の皮膚表面及び組織の長期的な変動に起因するそれらの不正確な性能により制限されてきた。
本発明は、標本から反射率スペクトルを記録するために分光計が使用されるときに、光源−検出器の距離が長いほど、該標本の表面特徴とより深くにある(例えば内部の)特徴の両方に敏感であるスペクトルが生じる一方、該標本を照明するために使用される光源と、反射光を測定するために使用される検出器との間の短い距離は該標本の該表面に相対的に近い特徴に敏感であるスペクトルの読取値を生じさせるという発見に少なくとも部分的に基づいている。光源−検出器の短い間隔で記録されるスペクトルと対照して光源−検出器の長い距離で記録されるスペクトルを補正すると、該内部のより深くにある特徴の該スペクトルから覆っている特徴の該スペクトル特徴を取り除くことができる。該スペクトルは、さらに、下にある層のうち関心のある分析対象の測定値に関連していない内部特徴の光散乱特性の変動から生じる特徴を取り除くためにさらに補正できる。
スペクトルは、さまざまな波長の光を使用して記録できる。例えば、該光源は、電磁スペクトルの近赤外領域、赤外領域、可視領域、紫外領域、及び他の領域の1つまたは複数で光を提供できる。
第1の態様では、本発明は、(a)光源と、(b)検出システムと、(c)該光源から標本に光を伝達し、該標本から反射される光を受光し、該検出システムに向ける少なくとも第1の光ポート、第2の光ポート、及び第3の光ポートのセットであって、該第1のポートと該第3のポートの間の距離は第1の検出距離に対応し、該第2のポートと該第3のポートの間の距離は第2の検出距離に対応し、該第1の検出距離は該第2の検出距離より大きい少なくとも第1の光ポート、第2の光ポート、及び第3の光ポートのセットと、(d)プロセッサとを含む測定システムを特色とする。(i)該第1のポートと第2のポートは送信側ポートであり、かつ該第3のポートは受信側ポートであるか、あるいは(ii)該第1のポートと第2のポートは受信側ポートであり、かつ該第3のポートは送信側ポートであるかのどちらかである。該検出システムは、該第1の検出距離に対応し、該標本のうち内部目標と該内部目標を覆う特徴の両方に対応する情報を含む第1のセットのデータと、該第2の検出距離に対応し、かつ該内部目標を覆う特徴に対応する情報を含む第2のセットのデータとを生成する。該プロセッサは、該第1のセットのデータと第2のセットのデータを使用して、該第1のセットのデータから覆っている特徴の情報特性を除去して、該内部目標を表す補正された情報を生成するように構成されている。
実施形態は、以下の特徴のどれかを含むことができる。
少なくとも第1のポート、第2のポート、及び第3のポートのセットは単一のプローブ上に位置付けることができる。該第2の検出距離は、例えば約1.5mmと約3.5mmの間等の、約1mmと約5mmの間であってよい。該第1の検出距離は約10mmより大きい場合がある(例えば、約15mmより大きい、約20mmより大きい、約30mmより大きい、約50mmより大きい)。該システムは、該第1の送信側ポートからの光が該標本を照明するのか、該第2の送信側ポートからの光が該標本を照明するのかを制御するためのシャッターシステムを含むことができる。
該プローブヘッドは、該標本からの熱を消散するための熱的に伝導性の材料を含むことができる。該システムは、さらに光伝達ポートと受信側ポートの間の熱的に伝導性のブリッジを含む。
該光源は、該電磁スペクトルの該近赤外領域で光を提供できる。該光源は白熱光源素子、発光ダイオード、レーザダイオード、及びレーザの内の少なくとも1つを含むことができる。例えば、該光源は発光ダイオードのアレイを含むことができる。
該検出システムは、スペクトル検出システムである場合があり、該第1のセットのデータと第2のセットのデータは、第1のセットのスペクトルと第2のセットのスペクトルとを含み、該プロセッサは、該第1のセットのスペクトルと第2のセットのスペクトルを使用して、該第1のセットのスペクトルから覆っている特徴のスペクトル情報特性を除去して、該内部ターゲットを表す補正されたスペクトル情報を生成することができる。該スペクトル検出システムは、光を受光し、該受光された光からスペクトルのセットを生成するように構成された分光計を含むことができる。代りに、該スペクトル検出システムは、該第1の受信側ポートから光を受光し、該第1のセットのスペクトルを生成するように構成される第1の分光計と、該第2の受信側ポートから光を受光し、該第2のセットのスペクトルを生成するように構成された第2の分光計とを含むことができる。
該プロセッサは、内部目標のうち関心のある分析対象に無関係な、該内部目標の光散乱特性の変動特性である第1のセットのスペクトルからスペクトル情報を除去するように構成できる。該プロセッサは、内部目標のうち関心のある分析対象に無関係な、該内部目標の光散乱特性の変動特性であるスペクトル情報を該内部目標を表す該補正されたスペクトル情報から除去するように構成できる。該プロセッサは、以下の方程式に従って該第1のセットのスペクトルと第2のセットのスペクトルとを使用して、該第1のセットのスペクトルから覆っている特徴のスペクトル情報特性を除去するように構成でき、
この場合、Rsfmは該第1のセットのスペクトルからのスペクトルであり、~sfは、該第2のセットのスペクトルからのスペクトルであり、wは重みであり、「T」は行列転置演算を示し、^ortは該内部目標を表す補正スペクトル情報からなる。該プロセッサは、該補正スペクトル情報を生成する前に互いに関して該第1のセットのスペクトルと第2のセットのスペクトルを正規化するようにさらに構成できる。
該プロセッサは、複数の標本からのスペクトルのセットから決定される主要な成分の負荷ベクトルのセットに関して、該第1のセットのスペクトルを直交させることによって、該第1のセットのスペクトルから該内部ターゲットの光散乱特性の変動特性であるスペクトル情報を除去するように構成できる。該複数の標本は、選択された範囲内で該内部標本の特性を有することができる。例えば、該内部ターゲットの該特性は、pH、ヘマトクリット値、組織酸素化、または別の特性等の分析対象の値である。該範囲は、該スペクトルの補正及び/または分析を容易にするために選択できる。例えば、pHのための選択された範囲は、7.37±0.001pH単位である。
該プロセッサは、(a)較正スペクトルのセットに対して主成分分析を実行して、該較正スペクトルの主要な成分に対応する負荷ベクトルのセットを決定すること、(b)該主成分分析から1つ以上の直交化因子を決定すること、(c)直交化因子の数に等しい少なくとも1つの次元を有する負荷行列を形成すること、(d)該負荷行列に関して該第1のセットのスペクトルを直交化すること、を含むステップのセットを実行することによって、該第1のセットのスペクトルを直交化するように構成できる。
別の態様では、本発明は、光源と、検出システムと、光源から標本まで光を伝達し、該標本から反射される光を検出システムに向ける少なくとも第1の、第2の、及び第3の光ポートのセットを有するシステムによって測定される標本の中の内部目標に対応する情報を補正するための方法を特色とし、該第1のポートと該第3のポート間の距離は第1の検出距離に対応し、該第2のポートと該第3のポートの間の距離は第2の検出距離に対応し、該第1の検出距離が該第2の検出距離より大きく、(i)該第1のポートと第2のポートが伝達側ポートであり、かつ該第3のポートが受信側ポートであるか、あるいは(ii)該第1のポートと第2のポートが受信側ポートであり、かつ第3のポートが伝達側ポートであるかのどちらかである。該方法は、(a)該セットの1つ以上の光ポートで該標本を照明すること、(b)該検出システムで反射光を検出すること、(c)該第1の検出距離に相当し、該標本の中の内部目標と該内部目標を覆う特徴の両方に対応する情報を含む第1のセットのデータと、該第2の検出距離に相当し、該内部目標を覆う特徴に対応する情報を含む第2のセットのデータとを生成すること、(d)該第1のセットのデータと第2のセットのデータを使用して、該第1のセットのデータから覆っている特徴の情報特性を除去して、該内部目標を表す補正情報を生成すること、を含む。
該方法の実施形態は、以下の特徴のどれかを含む。
該検出システムはスペクトル検出システムである場合があり、該第1のセットのデータと第2のセットのデータは第1のセットのスペクトルと第2のセットのスペクトルとを含むことがあり、該第1のセットのデータから覆っている特徴の情報特性を除去することは、該第1のセットのスペクトルと第2のセットのスペクトルを使用して該第1のセットのスペクトルから該上にある特徴のスペクトル情報特性を除去して、該内部目標を表す補正スペクトル情報を生成することを含む。該第1のセットのスペクトルから覆っている特徴のスペクトル情報特性を除去することは、以下の方程式に従って該第1のセットのスペクトルと第2のセットのスペクトルを結合することを含み、
ここで、Rsfmは該第1のセットのスペクトルからのスペクトルであり、~sfは、該第2のセットのスペクトルからのスペクトルであり、wは重みであり、「T」は行列転置演算を示し、^ortは該内部目標を表す補正スペクトル情報からなる。
該方法は、該補正スペクトル情報を生成する前に互いを基準にして該第1のセットのスペクトルと第2のセットのスペクトルとを正規化することをさらに含むことができる。スペクトルの該セットを正規化することは、該第1のセットのスペクトルと第2のセットのスペクトルとの間に多項式フィットを適用することを含む。該多項式フィットに使用される係数は、1つまたは複数の反射率規格から記録される第1のセットのスペクトルと第2のセットのスペクトルから引き出すことができる。
該方法は、スペクトルの該第1のセットを処理して、内部目標のうち関心のある分析対象に無関係な、該内部目標の光学特性の変動のスペクトル情報特性を除去することを含む。該方法は、該内部目標を表す該補正スペクトル情報を処理して、内部目標のうち関心のある分析対象に無関係な、該内部目標の光散乱特性の変動のスペクトル情報特性を除去することを含むことができる。内部目標のうち関心のある分析対象に無関係な、該内部目標の光学特性の変動のスペクトル情報特性を除去することは、較正スペクトルのセットから決定される主成分の負荷ベクトルのセットに関して第1のセットのスペクトルを直交化することを含む。
負荷ベクトルのセットに関して該第1のセットのスペクトルを直交化することは、(a)較正スペクトルのセットに対して主成分分析を実行して、較正スペクトルの該セットの主成分に対応する負荷ベクトルのセットを決定することと、(b)該主成分分析から1つ以上の直交化因子を決定すること、(c)直交化因子の数に等しい少なくとも1つの次元を有する負荷行列を形成すること、(d)該負荷行列に関して該第1のセットのスペクトルを直交化することを含む。
別の態様では、本発明は、(a)本明細書に開示されている該方法に従って動物からの反射率測定値に基づいて補正スペクトルのセットを生成すること、(b)該動物の該分析対象の測定値と該動物からの補正スペクトルのセットとの間の関係性に基づいて1つ以上の検定方程式を作成すること、(c)本明細書に開示されている該方法に従って該被験者からの反射率測定値に基づき補正スペクトルのセットを生成すること、(d)該1つ以上の検定方程式及び該被験者からの補正スペクトルの該セットに基づいて該被験者の該分析対象の値を決定することによって分析対象を測定する方法を特色とする。該被験者は、例えば人間である。補正スペクトルの該セットは、該動物及び該被験者からの反射率測定値に基づいて生成でき、該分析対象を含む内部目標の光学特性の変動特性であるスペクトル情報を除去するためにさらに処理できる。
本発明は、(a)本明細書に開示されている該方法に従って被験者の第1の身体部位からの反射率測定値に基づいて補正スペクトルのセットを生成すること、(b)該第1の身体部位での分析対象の測定値と該第1の身体部位からの補正スペクトルの該セットとの間の関係性に基づいて1つ以上の検定方程式を作成すること、(c)本明細書に開示されている該方法に従って、該被験者の第2の身体部位からの反射率測定値に基づいて補正スペクトルのセットを生成すること、(d)該1つ以上の検定方程式及び該第2の身体部位からの補正スペクトルの該セットに基づいて該第2の身体部位での該分析対象の値を決定することによって該被験者の該分析対象を測定する方法も特色とする。該被験者は人間である場合があり、該第1の身体部位は腕である場合があり、該第2の身体部位は脚である。該第1の身体部位と第2の身体部位からの反射率測定値に基づいて生成された補正スペクトルの該セットは、該分析対象を含む内部目標の光学特性の変動のスペクトル情報特性を除去するためにさらに処理できる。
特に別の定義がなければ、本明細書で使用されるすべての技術用語及び科学用語は、本発明が属する当業者によって共通して理解されるのと同じ意味を有する。本明細書に説明されているものに類似するまたは同等な方法及び材料は本発明の実践または試験で使用できるが、適切な方法及び材料は後述される。本明細書に言及されるすべての出版物、特許明細書、特許及び他の参考資料は、その全体として参照することにより本明細書に組み込まれる。矛盾がある場合は、定義を含む本明細書が優先する。加えて、該材料、方法及び例は例証的にすぎず、制限的となることを目的としていない。
本発明の他の特徴及び優位点は、以下の詳細な説明から、及び請求項から明らかになる。
多様な図中の類似する参照番号は同様の要素を示す。
一般的な方法論
本明細書に説明されるように、新しい光ファイバセンサ及び特定の数学アルゴリズムを実行するようにプログラミングされ、構成されている関連するプロセッサは、血液と組織の化学的性質の非侵襲計測のためのNIRSの適用性を拡張するために使用される。センサは、関心のある組織を覆い、筋肉組織から、及び/または患者の器官の組織からの散乱のようなそれらの組織からの測定信号を複雑化する、皮膚及び脂肪のような関心のない1つ以上の組織の干渉するスペクトル影響を取り除き、このようにしてケモメトリックスをベースにした較正方程式のさらに大規模な一般化を可能にするように設計、使用されている。特にセンサは、散乱し、患者から反射される光を検出するための検出ポートと、検出ポートからさまざまな距離に配置されている少なくとも2つの照明ポートとを有する。検出ポートからより遠い照明ポートからの光は、より深い筋肉層及び/または器官層だけではなくその上にある皮膚層と脂肪層からの反射率の組み合わせにも起因する反射スペクトルを引き起こすが、検出ポートに近い照明ポートからの光は、その上にある脂肪層と皮膚層におもに起因する反射スペクトルを引き起こす。2つのスペクトル、及び一般化されたケモメトリックスをベースにした較正方程式の中の情報は、例えば、下にある筋肉層及び/または組織層等の関心のある組織だけの化学的な情報を抽出するために使用できる。
また、センサは関心のある組織での標本対標本の構造変動に起因して生じる干渉するスペクトル影響を削減する、及び/または取り除くためにも使用できる。例えば、センサは、皮膚層と脂肪層の下にある1つまたは複数の筋肉組織層の中の特定の分析対象を測定するために使用できる。皮膚層及び脂肪層のスペクトル影響を、測定された干渉スペクトルから取り除いた後、追加のステップをセンサによって実行して、筋肉組織の光学特性の変動から生じるスペクトル影響を取り除くことができる。例えば、筋肉組織の光学特性は、表面組織、及び/または毛細血管密度、及び/またはファイバ構造、及び/または筋肉組織の他の構造特性に応じて変わることがある。関心のある組織の光学特性の変動は、通常組織の光散乱係数に影響を及ぼす。
補正された反射率スペクトルに基づいて較正方程式を一般化することにより、センサは、較正作成のために使用されるものとは異なる筋肉または他の組織部位に設置されたときに正確な測定を実行するために使用することができ、病態生理学の動物モデルから作成される較正方程式は人間の被験者に適用可能で、臨床上許容できる結果を伴う。方法は、創傷治癒の間に発生する皮膚血液流及び表面変化等の、スペクトルを改変する変化する患者の状態について絶えず補正するために臨床測定の間にも適用できる。
本明細書に説明されている新しい装置及び技法は、下にある筋肉及び/または器官から測定されるスペクトルに対する、皮膚及び脂肪等の上にある組織からのスペクトル干渉を削減することを目的としている。良好に実現されると、これらの装置及び技法を使用して作成される較正方程式はその上にある層(複数の場合がある)の光学特性とは無関係に、ほぼあらゆる解剖学上の部位から獲得されるスペクトルに適用できる。さらに、新しい装置及び技法は、関心のある組織の中の特定の分析対象の測定に相関していない関心のある組織における構造変動からのスペクトル干渉を削減することを目的とする。関心のある組織の光学特性に影響を及ぼす変動等の関心のある組織での構造変動について補正されるスペクトルに基づいて作成される較正方程式は、単一の測定被験者での異なる測定領域に、及び/または異なる測定被験者に適用できる。例えば、薄い脂肪と皮膚の層を有する患者の腕で実行される測定に基づいて測定される較正方程式は、より厚い脂肪と皮膚の層を有する患者の脚から収集されるスペクトルに適用できる。
強力な光源及び敏感な検出器を使用すると、本明細書に説明されている装置及び技法は、上にある皮膚層、脂肪層及び筋肉層からスペクトル干渉を削減することによって、内部器官から、及び内部器官組織の構造上の変動から正確なスペクトルを収集できるようにする。新しい手法の別の優位点は、皮膚血液流及び表面組織における変動等の変化する患者状態を絶えず補償できる能力である。下にある層のスペクトルから、上にある層からのスペクトル干渉を取り除くことによって、上にある層スペクトルの変動は、干渉スペクトルから得られる下にある層の測定情報でほとんど変動を引き起こさない。関心のある組織(例えば、下にある層)の構造上の変動からスペクトル干渉を取り除くことによって、関心のある組織の構造における変動は、関心のある組織の選択された分析対象のための測定情報に対して相対的に小さな変動だけしか影響しない。これらのスペクトル干渉の補正により、患者から、重要な血液及び組織の化学的性質パラメータをさらに正確に決定できるようになる。
生体内較正は、測定される分析対象の変動を有し、装置及び技法の将来の適用で予測されるのと同じまたは類似した病態生理学を提供する患者にアクセスすることを必要とする。多くの場合、十分な数の被験者へのアクセスを得ることは困難であり、たとえ被験者が入手できるとしても、変動は、モデル化及び測定が求められているパラメータにとっての病態生理学範囲全体を包含するほど十分に大きくない可能性がある。別の問題は、新しい治療方法からの潜在的なスペクトル干渉率をどのようにして組み込むかである。例えば、患者のショックからの蘇生を誘導するのに役立つ筋肉pHを測定する方法を開発するとき、患者がショック状態にあるときに使用される新しい治療薬を考慮に入れるために、使用される較正方程式を更新して筋肉pHを決定することが必要となる可能性がある。しかしながら、更新された較正方程式を作成するために人間の試験被験者を故意にショック状態にすることは不可能である。広い範囲の医療パラメータに及び、新しい状態及び薬物について改変できる堅牢な較正方程式を作成するための秀逸な方法は、動物で較正方程式を作成し、それらを直接的に人間に移行することであろう。動物を使用することによって、例えば深刻なショックによって引き起こされる分析対象値の変動を観察することが可能である。これは、センサが重病の人間に対して使用される前に、この応用例についてセンサを確証するために複数の動物で行うことができる。また、いくつかの分析対象は臨床環境で確実に変えることが困難である。しかしながら、本明細書に説明されている方法によって、人間の被験者での使用のために、動物で作成された較正方程式を良好に移行することができる。上にある組織層のスペクトル影響がいったん取り除かれると、豚等の動物の筋肉スペクトルは人間の被験者の筋肉スペクトルに類似する可能性がある。人間の筋肉構造と動物の筋肉構造のスペクトル差異は、これらの変動を取り除く方法を使用して補正できる。その結果、豚の筋肉から引き出される較正方程式は、人間の被験者に使用できる。
全体的なシステム
図1に示されているように、システムから遠く離れて位置する標本102からの反射スペクトル率の測定のための携帯型の、光ファイバをベースにした分光システム100は、ランプ104と、ランプ用電源106と、光学作業台108と、シャッターシステム110と、シャッターシステム用ドライバ112と、スペクトログラフ114と、光ファイバケーブル116と、コンピュータ118とを含む。ランプからの光は光学作業台106の中の光学部品によって操作され、かつシャッタードライバ112によって駆動されるシャッターシステム110によって制御できる。光はシャッターシステム110によって、標本を照明するために標本102に光を誘導する第1の光ファイバケーブル116aまたは第2の光ファイバケーブル116dの中に選択的に通すことができる。
光が光ファイバケーブル116aまたは116dに誘導されると、光は標本102から反射され、標本102からスペクトログラフ114に反射光を誘導する光ファイバケーブル116cの第3の部分によって収集される。反射光は標本102についての情報を収集するためにスペクトログラフ114によって分析される。
スペクトログラフ114は、コンピュータ制御で操作できる市販されている携帯型スペクトログラフである。例えば、500から1000nmの波長範囲での性能について最適化されている格子付きオーシャン・オプティックス(Ocean Optics)USB2000スペクトログラフが使用できる。スペクトログラフ検出器は、2048素子の浅井戸の線形CCDアレイである。スペクトログラフは、分解能を高めるために200ミクロン幅のスリットと、検出器での光収集効率を高めるための収集レンズと、475nm未満の波長の光が検出器に到達するのを阻むためのロングパスフィルタとを具備できる。USB2000スペクトログラフは例えばUSBまたはRS232ポートのどちらかを通してコンピュータ118と接続する。
システム100は、シャッタードライバ112、スペクトログラフ114を制御するための、及びスペクトログラフからのデータを処理する、記憶する、及び表示するためのオンボードコンピュータ118をさらに含む。
図2に示されているように、光学作業台108は、システムのいくつかの主要な光学部品を含んでいる。照明ランプ104は標本を照明するための光を提供する。第1の光コネクタ212は、光を搬送して標本102を照明するための第1の光ファイバケーブル116aに光を結合する。第2の光コネクタ214は、光を搬送して標本102を照明するための第2の光ファイバケーブル116dに光を結合する。シャッター250は、ランプ光で第1の光ファイバケーブル116aが照明されるのか、または第2の光ファイバケーブル116dが照明されるのかを選択できる。光学作業台108は、前述された光学部品の適切な位置合わせをセットアップし、維持して、反射分光学測定システムとしてシステム100の精度及び再現性を強調するために使用される。アルミニウムは公差を小さくするために容易に機械加工でき、熱消散を促進し、システム100の部品に対する熱応力及び歪みを最小限に抑えるような高い熱伝導率を有するため、光学作業台108はアルミニウムから製造できる。
ランプ104は、ランプの高速起動及び安定動作を可能にするために特別に設計された電源106によって駆動される白色光源(例えば、ウェルチ−アライン(Welch−Allyn 8106−001電球等のタングステン−ハロゲン9W電球)である。ランプ104は、連続波(「cw」)光源またはパルス化光源である。ランプ104は、専用の機械加工された反射体の中に収容され、その結果必要時に交換することが比較的に容易であり、その光学位置合わせは光学作業台の設計を通して保証される。ランプは、光ファイバケーブル116aと116dに関してそれが正確に配置されることを保証する機械的な止め具に支えられている。ランプ104からの光は、後部反射体220(例えば、楕円リフレクタ)によって光学作業台108の中心軸下方に焦点を合わせることができる。
一般的なランプ構成は、透明電球304の中に電気抵抗フィラメント302を含む白熱光源300を示す図3に描かれている。フィラメント302は、一般的にはタングステン製である。電球304はガラス、石英、または他の材料から作ることができ、空にするあるいはハロゲンガス、不活性ガス、またはガスの組み合わせで充填することができる。電流は、光源の基部310に電気的に接続されている導電性のリードワイヤ308を通して電源306からフィラメント302に供給される。電流によって、フィラメントは黒体として放射させる。電源306は、直流(DC)または交流(AC)を供給できる。ランプ104の安定した動作及び電球から発せられる一定のスペクトルを保証するために、フィラメントはフィラメントの温度が実質的に一定に留まるようにフィラメントに電流を供給する電気回路によって駆動され、その結果、安定した黒体放射線スペクトルが電球から発せられる。
光ファイバケーブルシステム
再び図1を参照すると、光源104からの光は、標本102の電磁反射スペクトルを励起するために使用できる。光は、標本を照明するため、及び標本を光学的に励起するために光ファイバケーブル116a及び/または116dにおいて光源104から標本102に移すことができる。標本102から反射される光は、光ファイバケーブル116c内の標本から、標本102の反射率スペクトルを測定するスペクトログラフ114に収集、送達できる。ケーブル116aの中の照明光はケーブルを出て、入口から、標本からの反射光を収集し、反射光を分析のためにスペクトログラフ114に誘導するケーブル116cまでの第1の距離(例えば、約32mm)で標本102に入射する。ケーブル116dの中の照明光はケーブルを出て、第1の距離未満である入口からケーブル116cまでの第2の距離(例えば、約2.5mm)で標本102に入射する。標本がケーブル116aから及びケーブル116dからの光で照明されるときに収集される標本からのスペクトルは、後述されるように標本についての詳細な情報を抽出するために使用できる。
図2を参照すると、標本102を照明するための光ファイバ照明ケーブル116aは、光ファイバケーブル116aの端部がランプ104から発せられる光の焦点にある状態でランプ104の前に直接的に配置できる。ケーブル116aはシステム使用の前の位置に差し込まれ、機械的なつめ付き止め具が、ケーブル116aがランプ104と反射体220に関して適切に配置され、固定されることを保証する。
標本102を照明するためにも使用される第2の光ファイバケーブル116dは、焦点が合わせられたビーム軸に関して、例えば約5度と約90度の間(例えば、約10度と約60度の間、約15℃と約35度の間等)の反射体220の光学軸に対する角度で、光学作業台の中のポート214の中に螺入される。焦点が合わされたビーム軸に対してある角度をなしてケーブル116dをポート214に入れると、ケーブル116dに入射する光の輝度が、ケーブル116dの軸上の位置に比較して削減される。しかしながら、ケーブル116aよりもケーブル116dのほうが、検出ケーブル116cに対して近い距離で標本に光を送達するため、標本がケーブル116aからさらに高い輝度の光で照明されても、あるいはケーブル116d内でさらに低い輝度の光で照明されても、標本によって反射され、検出ケーブル116cで収集される光量は同じようになる。
図4Aに示されるように、光ファイバケーブルはさまざまなファイババンドル116a、116c及び116dを含む。標本バンドル116aまたは116dを保持するケーブルは共通の保護鞘の中に入れることができ、ケーブルは、スペクトログラフ114と光源104を収容する装置100の外側で戻りバンドル116cを保持する。標本バンドル116a、116c及び116dは、筐体から約8から12インチ(20.3から30.5センチメートル)下流で、スペクトログラフ114と、ランプ104とが入ったシステム100の筐体の外部でともに集めることができる。バンドル116a、116c、及び116dを含むケーブルはスペクトログラフ114とランプ104を、標本102上で反射率測定を実行するために標本102に配置できるプローブヘッド400に連結する。
図4Bに示されているように、ケーブルシステムの標本端部で、プローブヘッド400が、筐体400の表面に垂直に、及び標本102の表面に垂直に向けられる照明バンドル116aと116dを含む。筐体400は照明ファイババンドル116aと、照明ファイババンドル116dと、検出ファイババンドル116cの端部を保持できる。ファイババンドル116aは、開口数(NA)が約0.66の、約2666,50μmガラス繊維を含む。戻りケーブル116c内のファイバの検出バンドルは、標本からスペクトログラフ114に反射光を戻し、一実施形態では、NAが約0.66の109,50μmのガラス繊維を含む。ファイバの標本端部では、ファイバは標本102に垂直に向けられている。光ファイバケーブルの全長に沿って、一方の端部にある光源104とスペクトログラフ114と、他方の端部にある標本102の間で、標本に光を送達する標本照明バンドル116aが、不透明なテープまたはプラスチックシースまたは管等の不透明な材料で戻りバンドル116cから光学的に遮蔽され、その結果照明バンドル116a及び/または116dから漏れ出す光は戻りバンドル116cの中に結合されない。ランプ104と標本ファイババンドル116aと116dの間の光結合を改善するために、先細のNA変換器が標本ケーブルバンドル116aと116dの端部に設置され、光源の0.42NAをファイバの0.66NAに変換できる。これにより、ファイバの中への収集効率は約15%上昇する。
スペクトログラフ114との適切な接続を保証するために必要とされるような戻りファイババンドルのNAを0.22に削減するために、直径600μmの石英ガラスロッドをファイババンドル116cの端部に設置できる。迷光がスペクトログラフ114に入らないようにするために、黒い光吸収エポキシ樹脂または他の物質がシリカロッドを囲むために使用できる。
図5に示されているように、光はランプ104とスペクトログラフ114を収容する装置502から、ファイババンドル116a及び/または116dの標本102に光を送達するプローブヘッド400に送達でき、標本から散乱した光は収集し、ファイババンドル116cにおけるスペクトログラフ114に戻すことができる。バンドル116a、116c及び116dは筐体装置502とプローブヘッド400の間を通る単一のケーブルに含むことができ、ケーブルは標本または患者への便利なアクセス及び標本または患者からのデータ収集を可能にするために数メートルの長さである。光照明バンドル116aと116dと光検出バンドル116cの間のクロストークを最小限に抑えるために、ランプ104から標本102まで照明光を送達するバンドル116aと116dは、漏れた光が光り戻りバンドル116cの中に結合しないように、黒いテープまたは他の不透明材料で包囲することができる。
図5に示されるように、プローブヘッド400は、標本から光を受光するための検出光ポート508から距離(SD)だけ空間的に分離される、標本に光を送達するための照明光ポート506を有する。ファイババンドル116aは、プローブヘッド400の中に水平に結合することができ、バンドル116aからの光はプローブヘッド内の45度の鏡510から反射され、光ポート506から標本102に向かって垂直に向けることができる。同様に、標本102から散乱した光は光ポート508によって収集され、鏡510によって検出器ファイババンドル116cの中に反射できる。代りに、ファイババンドル116aと116cはプローブヘッド400に水平に入ってから、それらがそれぞれ光ポート506と508に直接的に結合されるように垂直方向で90度曲がることができる。
照明光ポート506は筐体装置502から標本102に光を向けるための、0.66という総合NAを有する50μmのガラス繊維の3.5mmのバンドルを含むことができる。標本102は最上層(例えば、皮膚層)102sと、上位層(例えば、脂肪層)102fと、下位層(例えば、筋肉層)102mとを含むことがあり、光は層のどれかまたはすべてから検出器ファイババンドル116cに反射できる。バンドル116cに結合される検出光ポート508は、照明光ポート506から約10mmと約100mmの間(例えば、約20mmと約50mm、約30mmと約40mm、約30mmと約32mm)の距離で離間され、標本からの拡散反射光を、反射光を分析できるスペクトログラフ114を収納する装置502に向ける。光ポート508は、集合的なNAが0.66の50μmのガラス繊維の直径1mmの検出バンドルを有する。
プローブヘッド400は、第1の照明光ポート506に同様に構成されるが、距離(SD)で第1の照明光ポート506より検出光ポート508にさらに近くに配置される追加の照明光ポート514を含む。距離(SD)は約1mmと約5mmの間である(例えば、約1.5mm、約2.5mm、約3mm、約4mm)。第1の照明光ポート506の直径3.5mmのファイババンドルは検出光ポート508の中心から約30mmに配置できるが、例えば、第2の照明光ポート514の1mmのファイババンドルの中心は検出光ポート508の直径1mmのファイババンドルの中心から約2.5mmに配置できる。光ポート514の直径は、光ポート506の直径より小さいことがあり、その結果さらに多くの光が光ポート514より光ポート506から標本102に入射するが、標本が照明ポート506または514からの光で照明されるかどうかに関係なく、ほぼ同じ反射輝度が検出光ポート508によって収集される。標本が照明ポート506からの光で照明されようと、あるいは照明ポート514からの光で照明されようと、反射されたスペクトルで同様の輝度を有することで、2つの照明ポートの一方が使用されるときにより長い時間検出器で統合する必要なく良好な信号対雑音比を取得できる。
2つの照明光ポート506と514と、検出光ポート((SD)と(SD))の間のそれぞれの間隔は、標本102について特定の情報を取得するために、照明光ポート506と514から発せられる光の輝度とスペクトル、及び標本102の反射率スペクトルと連動して選ばれる。例えば、分光システム100は、患者から血液または組織の標本を取り除くことなく、血液の化学的性質、または皮膚の下の組織の中の化学的性質の直接的な非侵襲計測を可能にするために、人間の患者の皮膚を通して近赤外放射(例えば、700から1000nmという波長を有する放射線)を向けるために使用できる。特に、システム100は、システムを用いて取得される連続波近赤外スペクトルから筋肉pH、筋肉酸素圧(PO)、及び血液ヘマトクリット値を測定するために使用できる。筋肉または器官の組織等の関心のある組織を覆う皮膚及び脂肪のような関心のない組織からだけ反射を適切に誘発するためにはより短い距離(SD)が選択されなければならない。以下に示されるように、この距離は、筋肉が関心のある組織である場合に、上にある皮膚及び脂肪について計算された。
スペクトル情報を人間の患者から記録するためには、プローブヘッド400の熱的に伝導する足520が患者の体の一部と接触して設置され、光が照明ポート506及び/または514から患者に向けられ、反射光は検出ポート508で収集される。例えば、プローブヘッド400の足520は、患者の前腕の表面の皮膚と接触して設置でき、その結果光は照明光ポート506及び/または514から発せられ、患者の体の一部(例えば、患者の手、前腕、ふくらはぎ、大腿部、胃、または胸郭)の中の組織から反射され、検出光ポート508を介して収集できる。患者の筋肉から情報を記録するために、照明光ポート506及び/または514からの光が、筋肉層102mに達するために、一般的には厚さ約3mmと約10mmの間(例えば、厚さ約4mmと約5mmの間)の皮膚層102s及び脂肪層102fを貫通し、次に光が筋肉層から散乱され、検出光ポート508で収集される。いくつかの実施形態では、第2の照明光ポート514と検出光ポート508は、例えば、人間の筋肉の中での分析対象の検出を必要とする実施形態において等、1つの熱的に伝導する足520にともに配置できる。
例えば8ワットランプ等のランプ104を使用すると、約7ルーメンの光を直径3.5mmの照明光ポート506または514から発すことができる、あるいは約25ルーメンの光を直径6mmの照明光ポートから発することができる。照明光ポート506と検出光ポート508の間の約30mmという間隔により、検出光ポート508で収集される光が皮膚層と脂肪層102sと102fの下にある筋肉組織102mから散乱する光に起因する重要な信号を含むことができることが実験的に決定された。光が、第1の照明光ポート506よりも、検出光ポート508の近くに配置される第2の照明光ポート514から発せられるとき、検出光ポート508で収集される光は上にある皮膚層と脂肪層102sと102fから散乱する光からの重要な信号を含む。この第2の信号は、患者の腕が第1の照明光ポート506からの光で照明されるときに記録される全体的な信号において上にある皮膚層/脂肪層102sと102fからの散乱及び/または吸収に起因して発生する信号成分を取り除くために使用できる。2つの照明光ポート506と514から発せられる光は同じランプ104から発することができ、シャッター250は、さらに詳細に後述されるように、第1の照明光ポート506と第2の照明ポート514のそれぞれからの光の発射を制御するために使用できる。
浅い皮膚層/脂肪層102sと102fから、及びより深い筋肉層102mから散乱する光に対応する2つの信号も、単一の照明光ポートと2つの光検出ポートを使用することによって取得することができ、その内の一方は他方より照明光ポートにより近くに配置される。
プローブヘッド400及びその足520は、患者の皮膚から熱を遠ざけて伝導するために、熱伝導材料(例えばアルミニウムまたは銅)から作ることができる。プローブヘッドが非導電材料(例えばプラスチック)から作られる場合には、照明光ポート506及び/または514を通して送達される熱は、患者の皮膚の血管を拡張させ、皮膚血液容量を改変するほど十分である。熱の皮膚血流に対する影響は、患者から記録される反射率スペクトルを変更することがある。プローブヘッド400の中の熱伝導体は、プローブヘッド400の対向する端部にある足520の間に熱の逃げ道を提供し、その結果患者の組織の温度は2つの照明ポート506と514、及び検出ポート508の近傍において実質的に同じである。
図5Bを参照すると、いくつかの実施形態では、光源は1つまたは複数の発光ダイオードを含む。プローブヘッド400は、検出ポート584から距離(SD)で照明ポートを形成するためにプローブヘッド400の内部に配置される第1の光源580を含む。プローブヘッド400は、検出ポート584から距離(SD)で照明ポートを形成するために、プローブヘッド400の中に配置される第2の光源582も含む。光源580と582は、光ファイバケーブルまたは他の結合要素を含まず、光源のそれぞれからの光が標本を直接的に照明するように設置される。標本によって反射される光は検出ポート584を介してシステムによって受光される。
光源580と582は、それぞれ発光ダイオード(LED)のアレイを含む。LEDの数及び空間分布は、各光源から検出ポート584の特定の反射光輝度を提供するために選択できる。例えば、光源580は、相対的に高密度で実装されるLEDのアレイを含むことがあり、光源582は低密度で実装されるLEDのアレイを含むことがあり、その結果、2つの光源から検出ポート584で受光される反射光は輝度がほぼ等しい。
光源580及び/または582で使用されるLEDは、電磁スペクトルの可変領域で光を提供できる。例えば、LEDは、スペクトルの可視領域及び/または紫外領域及び/または近赤外領域及びまたは赤外領域の波長を有する光を提供できる。LEDは、スペクトルの他の領域、及び同時にスペクトルの複数の領域でも光を提供することができる。いくつかの実施形態では、異なる光発射特性(例えば、波長、強度、及び他の特性)を有する複数の異なるタイプのLEDが光源580及び/または光源582のような単一の光源で提供できる。
特定の実施形態では、光源580及び/または582は、プローブヘッド400で統合されている、あるいはプローブヘッド400に結合されている、他のタイプの光源(例えば、白熱光源、レーザをベースにした光源)を含む。分光計のような検出器は、プローブヘッド400の中に組み込むことができる、あるいは例えば光ファイバケーブルを使用してプローブヘッド400に光結合できる。
図6A及び図6Bを参照すると、プローブヘッド400は、遮光600によって適切な位置に配置できる。遮光600は、プローブ400の足520が嵌る開口部602と、照明光ポート506が嵌る開口部604と、第2の足520が嵌る開口部606とを有する。第2の足は、照明光ポート514と検出光ポート508とを収容できる。したがって、遮光は、プローブヘッド400の足520及び照明光ポートと検出光ポート506、514及び508を固定位置に配置する。遮光600は、患者の身体を迷光から遮蔽する不透明な材料を含み、その結果、照明光ポート506及び/または514からの光だけが患者に届き、及びその結果検出光ポート508で収集される光は照明光ポート506から出現する公知のスペクトルを有する光だけに起因する。遮光600は、迷光から検出ポートを遮光するために検出光ポート508からすべての方向で約3.5cm伸長できる。プローブヘッド400が遮光600に設置された状態で、プローブヘッドは、例えば、遮光を患者の身体に対してテープで留める、ストラップで固定する、または貼り付けることによって患者の身体を背景に設置できる。例えば、プローブヘッド400は、両面接着剤で遮蔽600に対して保持でき、プローブヘッドの下の血液容量を改変できるであろう過剰な圧力なしに、プローブヘッド400が患者の皮膚に接触できるようにする。
図6Aに示されるように、いくつかの実施形態では、遮光は、多様な開口部または開口を有する主要部分601、及び狭い接続領域605によって主要部分601に接続されるケーブル管理部分603を有して一体に作ることができる。他の実施形態では、図6Bに示されるように、遮蔽はケーブル管理部分603が主要上部601から分離しているツーピース設計を有する。この配置により、2つの部分を接続領域605の長さより大きい距離で分離できる。これらの実施形態の多くでは、遮蔽ケーブル管理部分603は、通常、つめ608または分光計装置502とプローブヘッド400の間で光を移送するファイババンドル116a、116c、及び116dを含むケーブルを固定できる他の機構を含む。つめ608はケーブルを固定し、その結果ケーブルの重量によりプローブヘッドが患者の上のその位置から移動しない。シールド600は例えばプラスチックから、あるいは別の軽量の不透明な材料から作ることができる。軽量のシールドは、過剰な熱の消散を支援するために銅またはアルミニウムの薄板等の熱伝導材料から作ることもでき、その結果、熱は患者の皮膚に伝達されない。
光学作業台及びシャッターシステム
光学作業台は、光ファイバケーブルシステムのさまざまな脚部に光を向けるためのシャッターシステム110を含む。ケーブルシステム内の光の経路を制御することによって、シャッターシステムは異なる照明ファイバ116aまたは116dで標本を選択的に照明するために使用できる。
再び図2を参照すると、光学作業台108は、シャッターシステム110の光シャッター250を作動するステッピングモータ240のためのマウントとなる。シャッター250は、ランプ104と2本の光ファイバケーブル116aと116dの間に設置され、それが2本の光ファイバケーブルのそれぞれに対する光を遮ることができるか、または光を通すことができるかのどちらかである。図2では、シャッター250の上端縁だけが示されている。不透明なシャッター250の輪郭は図7に示されている。シャッター250は、シャッターの中の穴710を通過するシャフトによってステッピングモータ240に結合される。シャフトが回転すると、シャッターは穴710の中心を通過する軸の回りで回転される。光学作業台108に固定されている第2のシャフト(不図示)は、シャッター250の第2の穴720を通過し、シャッター250の回転運動を制限する。
シャッター250が右回り方向で最大限に回転すると、図7に示されているように、シャッターの中の穴730はランプ104と、標本102につながる光ファイバケーブル116aの間に位置し、その結果光は穴730を通って伝搬し、標本102はファイババンドル116aから出現する光で照明される。シャッター250がこの位置にある状態で、標本102から反射される光はケーブル116cによって収集され、スペクトログラフ114に誘導される。この位置では、シャッター250の端部740がケーブル116dに入る光を遮る。
シャッター250が真中の位置まで左回りに回転すると、その結果穴720を通過するシャフトは穴720の真中に設置され、穴730はランプ104から発せられる光のビーム経路の中から回転する。したがって、光は穴730を通過せず、不透明なシャッター250によって標本ケーブル116aに入るのを遮られる。また、光は、シャッター250の端部740によってファイババンドル116dに入るのを遮られる。
シャッター250が右回りの方向で最大限に回転すると、光は穴720を通過せず、不透明なシャッターによって標本ケーブル116aに入るのを遮られる。光はシャッター250の斜めの端縁750の上を通過し、ファイババンドル116dに入射し、スペクトログラフ114に達する。この位置では、スペクトログラフ114は、標本がファイババンドル116dによって照明されるときの標本102の反射率スペクトルを測定する。
コンピュータ118は、第1の経路でのデータ収集(つまり、標本102がファイババンドル116aからの光で照明されるとき)と、第2の経路でのデータ収集(つまり、標本102がファイババンドル116dからの光で照明されるとき)の間でスペクトログラフ114でのデータ獲得を切り替えるためにシャッター250を制御する。コンピュータ118は、シャッタードライバ回路を介してシャッター250を制御できる。適切なシャッタードライバ回路の一実施形態は、図8に示されている。この回路の動作は、2005年4月25日に出願され、現在では米国公開番号第2005/0259254号として公開されている、その内容全体が参照することにより本明細書に組み込まれている「光反射率測定のための分光計システム(SPECTROMETER SYSTEM FOR OPTICAL REFLECTANCE MEASUREMENT)」と題される米国出願番号第11/113,347号に説明されている。
コンピュータ118は、スペクトログラフ114がどのようにしてデータを収集するのかも制御する。例えばコンピュータ118は、スペクトログラフ検出器の積分時間、平均化されるスペクトル数、及びスペクトルがコンピュータに記憶される前の平滑化の量を制御できる。コンピュータ118はこれをデータ獲得の経路ごとに無関係に行うことが可能である。パラメータは、検出器を飽和することなく、基準経路及び標本経路のそれぞれでの応答を最大限にするために選ぶことができる。
他の分光計システム
分光計システム100用の適切な光源は、例えばランプ、発光ダイオード(LED)、レーザを基にした光源、及び他の光源等の白熱光源を含む。例えば、標本から反射率測定を行う際に使用するための光を提供するために、1つ以上のLEDを結合できる。多様な光源により提供される光は、例えば、電磁スペクトルの赤外領域及び/または近赤外領域、可視領域、紫外領域、及び/または他の領域等の電磁スペクトルの選択された領域における波長を含む。
いくつかの実施形態では、分光計システム100は、光ファイバケーブルを通して光源から照明光を結合することなく、直接的に標本を照明するように構成されてよい。例えば、光源は開口等の照明ポートを通して標本を直接的に照明するために設置される白熱電灯である。その結果、標本から反射される光は、1台または複数の検出器によって受光され、分析できる。
特定の実施形態では、複数の検出器を使用できる。例えば、光は、照明ポートから標本を照明するために使用でき、標本から反射される照明光は2つの検出ポートで受光できる。2つの検出ポートのそれぞれは、反射光のスペクトルを測定するように構成された分光計に結合することができ、その結果検出システムは平行に動作する2台の分光計を含む。スペクトルデータは、各検出ポートで同時に獲得でき、単一の分光計しか有さないシステムに比して速度の優位点を提供できる。システムは照明ポートを遮る、及び照明ポートの障害物を取り除くためのシャッターシステムを使用しなくても動作することができ、システムの費用を削減し、システムの機械的な信頼性を高めることができる。
スペクトル補正アルゴリズム
実現できる3つの異なった補正アルゴリズムがある。各補正アルゴリズムは個別に良好に作用するが、任意の2つのアルゴリズム、あるいは3つすべてのアルゴリズムを共に使用して測定されたスペクトルデータを補正できる。
1.短距離補正
関心のある組織層(例えば下にある組織)を覆う組織層から生じるスペクトルの影響は、上位層に起因する影響を、上位層と下位層両方からの影響を含む反射率スペクトルから差し引くことによって補正できる。両方のタイプの層からの影響を含む反射率スペクトルと、実質的には上位層だけからの影響を含む反射率スペクトルは、分光計システム100を使用して別々に測定できる。例えば、図5に示されているように、照明ポート506と検出光ポート508間の距離(SD)は、照明ポート514と検出光ポート508の間の距離(SD)より大きい。距離(SD)は、標本102が照明ポート506からの光で照明されるときに記録される反射率スペクトルRsfmが、皮膚層102s、脂肪層102f、及び筋肉層102mについてのスペクトル情報を含むように選択できる。距離(SD)は、標本102が照明ポート514からの光で照明されるときに記録される反射率スペクトルRsfが、皮膚層102s及び脂肪層102fについてだけのスペクトル情報を実質的に含むように選択できる。システム100の計器パラメータ、ファイバサイズ及び分光計積分時間は、照明ポートと検出ポートごとにシステムのダイナミックレンジの反射率スペクトルで高い信号対雑音比を取得するために選ぶことができる。
上位層に起因するRsfスペクトルに含まれるスペクトル情報を、上位と下位の組織層両方についての情報を含むスペクトルRsfmから差し引く前に、RsfスペクトルはRsfmスペクトルに対して正規化することができ、その結果スペクトルは1つの共通した測定空間を共有する。RsfをRsfmの測定空間に変換するために、RsfmスペクトルへのRsfスペクトルの測光マッピングが実行される。第1に、反射率スペクトルは、光が照明ポート506から、及び照明ポート514から入射するときに2%から99%の範囲の反射率値を有する3つまたは4つ以上の光学的に均質な反射率標準から記録される。次に、参照基準ごとの反射率スペクトルは、各測定輝度スペクトルを99%の参照基準で除算することによって推定される。例えば、50%基準の推定反射率Rは50/99(つまり、50.5%)である。同様に、99%基準の推定反射率は99/99(つまり100%)である。最後に、波長に特殊な多項式モデルは基準が第2の光ポート514からの光で照明されるときに記録されるスペクトルRsfを、基準が第1の光ポート506からの光で照明されるときに記録されるスペクトルRsfmと相互に関連付ける。各波長に特殊なモデルは、反射率推定値の規模をRsfからRsfmに調整するために使用される。この手順は、さまざまな照明ポート506と514が使用されるときの光スループット及び収集効率の差異を補正する。多項式モデルは以下のように実現でき、
この場合、nとλは、それぞれ目標反射率値(2から99%)と光波長を表す指数であり、a、b、及びcは波長に特殊な多項式係数である。多項式係数は、組織スペクトルRsfの将来の測定値の、Rsfmスペクトルに正規化されるスペクトル~sfへのマッピングを可能にする。方程式1は、二次多項式モデルを説明する。しかしながら、一般的には、高次の(例えば、三次、四次、及びさらに高次の)多項式モデルを実現できる。
2つの異なる照明光ポート506と514からの光で記録されたスペクトルの正規化の後、異なる照明光場所で記録されるスペクトルは直交化される(つまり、上位層に起因するスペクトル成分は、上位層と下位層両方に起因する成分を含むスペクトルから取り除かれる)。直交化は、マトリクス乗算を必要とする。第1に、スペクトルRsfとRsfmの間の相互関係を示す波長に依存する重みwは、以下の方程式から求められ、
ここでは下付き文字Tは、行列の転置を示し、~sfは光が照明ポート514から標本102に入射してから、光学的にRsfmの測定空間の上にマッピングされるときに記録される反射光のスペクトルに対応するベクトルである。重みが求められた後に、上位層のスペクトル特徴を以下の方程式を使用して取り除くことができ、
ここで、ortは、皮膚及び脂肪に起因する反射率成分が取り除かれた後に生じ、下位(筋肉)層102mからの情報だけを実質的に含む直交化されたスペクトルである。ortは、PLSまたは他の多変量較正技法と共に使用して、直交化された反射率スペクトルortから下位層102mの化学的特性を決定するための較正方程式を作成することができ、ここでは較正方程式は上位層の光学効果とは無関係である。
較正方程式が医療監視装置で使用されると、患者スペクトルは較正方程式を生成するために使用されるのと同じ設計の光ファイバプローブを用いて収集することができ、直交化されたスペクトルは、それが較正方程式で使用される前に計算されなければならない。
2.基準標準変量スケーリングによる補正
測定された反射率スペクトルに対する散乱及び他の望ましくない影響を削減するために、基準標準変量(SNV)スケーリング技法が使用できる。適切なSNV実現例は、例えば、その内容全体が参照することにより本明細書に組み込まれているアール.ジェイ バーネス(R.J.Barnes)ら、応用分光学43,772(1989年)に開示されている。SVN方法は、例えば、筋肉組織等の関心のある組織の光学特性の変動から生じる、測定された反射率スペクトルに対する影響を削減するために使用できる。
3.主成分分析負荷による補正
いくつかの実施形態では、スペクトル反射測定値は、一人の被験者の身体の複数の位置から、及び/または複数の被験者から記録される。例えば、ある被験者から別の被験者での関心のある組織の光学特性の変動は、関心のある測定分析対象に関係がない反射率データに変動をもたらす。例えば、被験者のセットから記録される筋肉組織反射率スペクトルでは、関心のある測定分析対象は筋肉組織pHであってもよい。しかしながら、筋肉組織pHの変化に起因して発生する変動に加えて、さまざまな被験者の筋肉組織から記録される反射率スペクトルは、筋肉組織構成、及び/または毛細血管密度、及び/または繊維構造、及び/または異なる被験者での筋肉組織の他の構造特性の変動から生じるスペクトル影響も含む。構造特性のこれらの変動は、通常、異なる被験者の筋肉組織に対する、波長に依存する散乱係数の変動を生じさせる。
被験者の多数のセットは、関心のある組織における光学特性の変動をモデル化するために使用されてよい。しかしながら、被験者の多数のセットから反射率スペクトルを測定し、分析することに係る時間及び費用は、この手法を臨床応用例に対して非実用的にする可能性がある。代りに、PLSモデル化アプリケーションの反射率スペクトルデータを使用して関心のある分析対象を測定する前に、数値アルゴリズムを使用して、関心のある組織の光学特性変動から生じる反射率スペクトルのスペクトル影響を削減する及び/または取り除くことができる。
主成分分析(PCA)負荷補正は、関心のある組織(例えば、関心のある分析対象が測定される組織)の光学特性の分析対象に無関係な変動から生じる反射率スペクトルに対する影響を削減する、及び/または取り除くために使用できる。このような変動を示す光学特性は、散乱特性、吸収特性、組織屈折率、及び他の特性を含む。一般的には、関心のある組織による赤外線吸収の変動は、1つ以上の関心のある分析対象の濃度に関連する。したがって、関心のある分析対象の正確な測定は、反射率スペクトルに対する分析対象に無関係な影響を決定し、補正することを含んでよい。
PCA分析は分析対象に無関係の変動のスペクトル「シグネチャ」を取得するために使用することができ、その結果、直交化ステップを介してスペクトル反射データから取り除くことができる。PCA負荷補正は、較正ステップと予測ステップの両方の間に適用して、補正されたスペクトル反射データから構築されるPLSモデルをさらに改善することができる。
関心のある組織の光学特性の変動から生じるスペクトル反射測定の変動は、一連のステップで削減する、及び/または取り除くことができる。例えば、いくつかの実施形態では、第1の分析ステップは、分析対象の値が実質的に類似した、同じ較正セットの中の異なる被験者から(及び/または同じ被験者の上の異なる場所から)収集されるスペクトルのセットでのPCAによる目標分析対象に関連しないスペクトル反射データの変動を決定することを含む。変動は、PCAから取得される主要スペクトル成分の負荷ベクトルのセットとして表すことができる。第1の分析ステップは以下の方程式4により説明される。
方程式4では、Xは次元mxnの行列である。Xのm列のそれぞれは、PCAに使用される別のサンプルに記録される反射率スペクトルに相当し、nは各反射率スペクトルの波長点の数である。Xの中のスペクトルは、分析対象に無関係なスペクトル反射率変動を含む。行列X0,meanは、次元mxnを有し、m行を含み、この場合、各行は、その要素がXの列平均値に相当する1xn個のベクトルであり、その結果、XからX0,meanを差し引くと、次元がmxnの行列X0,mcが生じ、この場合、X0,mcはXの平均集中行列である。Sは、次元がmxfのPCAスコア行列であり、ここではfはXの変動をモデル化するために使用される主成分の数である。行列PはPCA負荷行列であり、次元nxfを有する。次元がmxnの行列Eは、PCAによってモデル化されないXのスペクトル残余の行列である。
第2の分析ステップでは、PLS較正に使用されるスペクトルと、PLSをベースにした予測に使用されるスペクトルは、第1のステップで取得される主成分の負荷ベクトルに関して直交化される。関心のある組織の光学特性の変動に起因するスペクトル影響は、第2の分析ステップから生じる補正スペクトルで削減される、及び/または取り除かれる。第2の分析ステップは以下の方程式5によって説明される。
方程式5では、Xortは、次元がmxnの直交化された(例えば補正された)スペクトル行列であり、この場合、mは標本の数であり、例えばm行のXortは、m個の異なる標本から記録される補正済みの反射率スペクトルに相当する。次元がmxnの行列Xは、m個の元の補正されていないスペクトルに相当する。次元mxnの行列X0,mean(m,n)は、m行を含み、この場合、各行は、その要素がXという列平均値に相当する1xnのベクトルである。次元がnxfのPは切り捨てられた負荷行列であり、この場合、列の数fは直交化手順で使用される直交化因子の数に等しい。一般的には、fはf以下であり、fの値は方程式4で計算されたS個の行列とP個の行列の要素数に基づいて選択される。直交化に続き、行列Xortの補正済みの反射率スペクトルをPLS較正及び/またはモデル化で使用して、関心のある分析対象の値を予測することができる。
4.組み合わせ補正方法
特定の実施形態では、関心のある測定分析対象から生じないスペクトル特徴を取り除くことによって反射率スペクトルを補正するために、短距離方法、SNV方法、及びPCA負荷方法の任意の2つまたは3つすべてを組み合わせることができる。例えば、いくつかの実施形態では、短距離補正方法は、第1に、関心のある組織層を覆う組織層に起因するスペクトル特徴を補正するために反射率測定値のセットに適用できる。SNV及びPCA負荷補正は、例えば、反射率測定値のセットが一人の被験者の身体のさまざまな位置で測定された反射率データ、及び/または異なる被験者からの反射率データを含む、関心のある組織層における光学特性の変動を補正するために連続して短距離補正スペクトルに適用できる。
一般的には、本明細書に開示されるアルゴリズムは、スペクトル反射率データを補正するために所望の順序で適用できる。選択された順序で反射率データに適用される1つまたは複数の補正アルゴリズムの適合性は、通常、(例でさらに詳細に説明される)補正済みのスペクトル反射率データに基づいて作成される、関心のある分析対象のためのPLSモデルの精度を決定することによって評価される。
実現例
前述された方程式及びアルゴリズムは、ハードウェアまたはソフトウェアで、あるいは両方の組み合わせで容易に実現できる。本発明は、及び本明細書に開示されている方法ステップ図に従って標準プログラミング技法を使用してコンピュータプログラムで実現できる。プログラムは、それぞれが少なくとも1台のプロセッサ、(揮発性メモリ及び不揮発性メモリ及び/または記憶要素を含む)少なくとも1つのデータ記憶システム、キーボードまたはプッシュボタンアレイ等の少なくとも1台の入力装置、及びCRT、LCD、またはプリンタ等の少なくとも1台の出力装置を含む、マイクロコンピュータ等のプログラム可能プロセッサまたはコンピュータで実行するように設計できる。プログラムコードは、本明細書に説明されている関数を実行するためのデータ入力に適用される。出力情報は、プリンタ、またはCRTまたは他のモニタ等の1台以上の出力装置に、または例えば、遠隔監視のためにウェブサイトにアクセスできるコンピュータモニタ上のウェブページに適用される。
新しいシステムで使用される各プログラムは、好ましくは、コンピュータシステムと通信するために高水準手続き型プログラミング言語またはオブジェクト指向プログラミング言語で実現される。しかしながら、所望される場合、プログラムはアセンブリ言語または機械語で実現できる。任意のケースでは、言語はコンパイルされるか、または解釈される言語である。
それぞれのこのようなプログラムは、記憶媒体または装置が本明細書に説明されている手順を実行するためにコンピュータによって読み取られるときにコンピュータを構成し、操作するために汎用プログラム可能コンピュータまたは特殊目的プログラム可能コンピュータによって読み取り可能な記憶媒体または装置(例えばROMまたは磁気ディスケット)に記憶できる。システムは、このように構成された記憶媒体によりコンピュータ内のプロセッサが、本明細書に説明されている関数を実行するために特殊な、所定の方法で動作する、コンピュータプログラムで構成されるコンピュータ可読記憶媒体として実現されると見なすこともできる。
任意の通信ネットワークは遠隔監視から結果を取得するために使用できるが、インターネットまたは無線システムはデータを送信するために有効な選択肢を提供する。

短距離補正のスペクトル影響
例1
システム100の実施形態において照明プローブ514と検出プローブ508間の最適距離(SD)を決定して、人間の筋肉の上の皮膚及び脂肪の存在を補正するために実験が実行された。2mm〜6mmの調整可能な短い光源−検出器距離(SD)、及び32.5mmという固定された長い光源−検出器距離(SD)のあるプローブ400が、4人の異なる被験者の異なる脂肪層厚さを有する4箇所の異なる解剖学上の位置(腕、ふくらはぎ、肩及び大腿部)からスペクトルを測定し、どの(SD)距離が人物の異なる位置で実行された測定について分析対象の測定値の裁定の変動を生じさせるのかを決定するために使用された。理想的には、ある人物の異なる位置からの異なる脂肪厚さにより引き起こされるスペクトル差異は、直交化の後に補正されなければならない。つまり、どの身体部分が測定されるのかに関係なく、同じ情報がある人物の筋肉から回収されなければならないので、ある人物の異なる身体部分から測定される4つすべてのスペクトルは重複するはずである。さらに、異なる人々における皮膚の色及び異なる脂肪厚さにより引き起こされるスペクトル差異は、減少させる必要がある。つまり、スペクトルが直交化されて上にある皮膚層と脂肪層からスペクトル影響を取り除く際に、患者のスペクトル値とヘマトクリット値(「Hct」)の間のさらに優れた相互関係が得られなければならない。
反射率スペクトルは、32.5mmという固定された(SD)距離、及び1.83mm、2.5mm、3.0mm、4.0mm及び5.4mmという5つの異なる(SD)距離を使用して4人の人間の被験者の腕、ふくらはぎ、肩、及び大腿部から測定された。被験者の実際の脂肪厚さは超音波を使用して異なる位置で測定され、以下の表1に一覧されている。この研究のために選ばれた大腿部位置は、外側広筋(大腿側面)の上部の位置よりもさらに厚い脂肪が発見された大腿直筋(大腿前面)の上部にあった。各人のHctレベルは、侵襲的血液試験を介して測定され、レベルは以下の表2に一覧表示されている。
図9Aから図9Eは、異なる(SD)距離について被験者Aから記録されたスペクトルでの上にある組織層のための短距離補正の影響を示している。図9A、図9B、図9C、図9D及び図9Eの結果は、それぞれ1.83mm、2.5mm、3.0mm、4.0mm、及び5.4mmという(SD)距離について取得された。各図では、スペクトル810は、被験者の身体のさまざまな部分が照明ポート506からの光で照明されたときに取得されたRsfmスペクトルであり、スペクトル820は、被験者の身体のさまざまな部分が照明ポート514からの光で照明されたときに取得されたRsfスペクトルであり、スペクトル830は直交化されたスペクトルである。
被験者の身体のさまざまな位置で記録されるスペクトルの中の差異は、一般的には異なる脂肪厚さによって生じるベースラインのシフトとして表示され、直交化プロセスによって減少される。補正スペクトル830は、未処理のスペクトル810と比較して互いにより近くなっている。1.83mm、2.5mm、及び3.0mmという(SD)距離を有するプローブの場合、直交化されたスペクトルは互いにより近く、それらの形状は未処理スペクトルに比較して未変化である。4.0mmと5.4mmという(SD)距離を有するプローブの場合、スペクトルは補正後に互いにより近くなり、スペクトルの特定の特徴は変更される。例えば、760nmでのヘモグロビン(Hb)に起因する吸収ピークは、4.0mmと5.4mmという(SD)距離での直交化の後にはあまり顕著ではない。これは、(かなりのHb吸収が発生する)筋肉層からの特定の有用な情報が補正プロセスによって減少されることを暗示している可能性がある。これは脂肪層と皮膚層の影響を補正する目的には反するが、筋肉情報を保持する。この影響は大きな(SD)距離でのより深い光の浸透に起因するものであり得る。光が筋肉内部でより深く浸透するにつれて、筋肉層についてさらに多くの情報が取り込まれ、短い(SD)距離と長い(SD)距離の間の補正はなんらかの筋肉情報を犠牲にする。
同様に、図10Aから図10Eは、異なる距離(SD)について被験者Cの4つの身体の部分からのスペクトルについての補正結果を示す。被験者Aは白色人種の皮膚を有し、被験者Cは黒色人種の皮膚を有していたが、直交化プロセスの結果は両方の被験者について類似している。図9Aから図9Eのスペクトル820を図10Aから図10Eのスペクトル820と比較することにより証明されるように、被験者Aの皮膚と被験者Cの皮膚の絶対吸光度値はきわめて異なる。しかしながら、皮膚に起因するスペクトル成分が差し引かれる二人の被験者の補正されたスペクトルはきわめて類似している。
補正されたスペクトル反射率データとHct値との間の相互関係を調べるために、被験者の腕、ふくらはぎ、肩及び大腿部のスペクトルの平均吸光度値が被験者ごとに計算され、被験者の平均吸光度値と短距離補正との間の関係性が、短距離補正が反射スペクトルに適用される前及び適用された後の(SD)距離について確立された。組織吸光度スペクトルの主なヘモグロビン特徴は760nmでのデオキシヘモグロビンピークであり、被験者ごとのスペクトルのこのピークの高さは被験者のヘマトクリット値レベルに直線的に相関しなければならない。
表3は、4つの異なる解剖学上の位置のための730nmでの平均吸光度と、4つの異なる(SD)距離(つまり、1.83mm、2.5mm、3.0mm及び4.0mm)のHct値との間の関係性のR相関値を示す。表3の中の値から、Rが補正後に改善したことが分かる。これは、スペクトル値とHct値との間の強力な相互関係が、(SD)距離スペクトル、Rsfに対して(SD)距離スペクトルRsfmを補正することによって確立されることを示している。
前記結果から、約2.5mmという(SD)距離がこの実施形態に最適な結果を与えて得る。一般的には、短い光源−検出器距離は、前述されたように実験を通して、またはすべての標本層の吸光度及び散乱係数が公知である場合には、モンテカルロ・モデリングを通して決定できる。
例2
測定されたスペクトル輝度と関心のある分析対象との間の相互関係を改善するための短距離補正の別の例は、図11及び図12に示されている。図11は、17人の異なる人間の被験者における(ヘモグロビンとミオグロビンの両方からの影響を含む)最大ヘム吸収の一連の測定値を示す。各被験者からのスペクトルデータは、深指屈筋から収集された。図11のスペクトルデータは補正されておらず、被験者のそれぞれに測定された最大ヘム吸光度と血液ヘマトクリットレベルとの間に強力な相互関係はない。
図12は、17人の被験者において反射率スペクトルに短距離補正を適用して皮膚層と脂肪層に対する補正を行った後、反射率スペクトルから計算された、血液ヘマトクリット値に対する最大ヘム吸光度を示す。補正されたデータではさらに強力な直線関係が観察され、補正済みスペクトルデータに基づいたPLSモデル等の予測モデルが患者及び他の被験者のヘマトクリットレベルをさらに正確に推定することを示唆している。
PCA負荷補正のスペクトル影響
例3
PCA負荷補正の測定されたスペクトル反射率データに対する影響を評価するために、反射率スペクトルのセットがハンドグリップ運動負荷を実行する人間被験者から収集され、複数の被験者の静脈血pHモデルが、反射率測定値に基づいて作成、評価された。ハンドグリップ運動負荷プロトコルは、4つの異なる努力レベル、つまり15%最大随意収縮(MVC)、30%のMVC、45%のMVC、及び60%のMVCでの1秒の弛緩が後に続く、被験者の手の2秒の収縮を含んでいた。運動強度は上昇するにつれ、pHはそれぞれの運動の一時的な期間の最後でさらに低いレベルまで低下する。各一時期間の長さは約5分であり、一時期間は40分離して実施された。血液は、測定筋肉の近くの静脈内に設置された静脈カテーテルから引き出された。標本は(ベースラインpH測定値を提供するために)それぞれの一時期間直前に、つまり運動の一時期間の間、毎分、及び5分、10分及び20分の運動後に取得された。血液標本は、静脈pHを決定するために(i−STAT、ニュージャージー州、イーストウィンザー(East Windsor,NJ)から入手できる)I−Stat CG4+カートリッジを使用して測定された。スペクトル反射率測定が、図13に示されている実施形態に類似した分光計システム100の実施形態を使用して行われた。
スペクトル反射率データは、6人の異なる被験者から測定された。PLSをベースにしたpH予測モデルの精度は、「一人の被験者を除外する」相互検証手順を使用してスペクトル反射率データのPCA負荷補正の前後に推定された。この手順では、被験者ごとのpH決定は、他の5人の被験者について測定されたデータから作成された較正方程式に基づいて行われる。精度は、NIRS反射率測定値から取得されるpH値と、静脈血分析から取得されるpH値との間の予測の二乗平均平方根誤差(RMSEP)を計算することによって推定される。
図14は、PCA負荷補正が適用される前に単一のpH値(約7.35)における異なる被験者からの較正スペクトルのセットを示す。図15は、PCA負荷補正が適用された後の較正スペクトルの同じセットを示す。補正手順の適用に続き、同じpHでのスペクトルはほぼ一致している。これは、例えば筋肉pH等の関心のある分析対象に関係していない、測定された反射率データの被験者対被験者の変動の削減と一貫している。
較正方程式は、ハンドグリップ運動負荷の一時期間中に収集された反射率スペクトル及び血液の標本からPLSを使用して作成された。血液pH値は、適切な場合は、測定されたスペクトルのデータに対応する時間間隔で補間された。図16は、一人の被験者を除外する相互検証に従った較正を用いて、補正されていない反射率スペクトルについて(静脈血の)測定済みpH対(NIRS測定値からの)予測pHの結果を示す。図中の斜線は、測定pH値と予測pH値の間の完全な一致を示す。補正されていないスペクトルに基づいたpHの予測は、約0.44という判定の係数Rによって測定された平均相互関係を有し、測定pH値と予測pH値の間の一致が強力ではないことを示す。
図17は、PCA負荷補正方法を使用して補正された反射率スペクトルに基づく測定pH対予測pHの結果を示す。補正されたスペクトルに基づいた測定pH値と予測pH値との間の一致のためのRは約0.64であり、予測pH値は斜線に沿ってさらに密にクラスタ化され、補正されたスペクトルに基づいたpHモデルは図16の方法よりはるかに正確であることを示す。RMSEPは0.025pH単位であり、斜線周辺で観察された散乱を説明する。
組み合わされた補正アルゴリズムのスペクトル影響
例4
複数のスペクトル相互関係アルゴリズムを結合する影響を評価するために、三層(例えば、皮膚、脂肪及び筋肉)の組織状の固体ファントムが作成された。寒天(ミズーリ州セントルイスのシグマ−アルドリッチ社(Sigma−Aldrich Inc.)から入手できる寒天 A7049)が、固形基材として使用された。イントラリピッド(イリノイ州ディアフィールドのバクスターヘルスケア社(Baxter Healthcare Corp.)から入手可能)が散乱層として使用された。製造は、さまざまな吸収装置が使用された点を除き、その内容全体が参照することにより本明細書に組み込まれる、例えば、アール.カベドゥー(R.Cubeddu)ら、医学及び生物学における物理学(Physics in Medicine and Biology)42、1971年(1977年)に説明されている手順に類似した手順に従った。各層は、別々に製造され、次に皮膚層と脂肪層が筋肉層上部に設置された。
各ファントムは、吸収装置として0.15mg/mLメラニン(ミズーリ州セントルイスのシグマ−アルドリッチ社(Sigma−Aldrich Inc.)から入手できるメラニンM8631)のある厚さ1.0mmの皮膚層を含んでいた。筋肉層における吸収装置は、(イリノイ州デスプレーンズのサイエンティフィックデバイスラボ社(Scientific Device Lab Inc.)から入手できる)6x10−4mL/mLの墨汁の2.2%溶液、及び(カナダ、ケベック州のアメリカンダイソース社(American Dye Source,Inc.)から入手できる)多様な濃度のNIR染料ADS780WSであった。
墨汁の濃度は約2.2%である組織内の血液の濃度に基づいて選択された。墨汁が相対的に波長に依存しない吸収特性を有するのに対して、NIR染料は、酸素を除去したヘモグロビンに類似する約780nmの波長で吸収最大値を有する。人間の脂肪は、通常、非常に低い吸収係数を有するので、吸収装置は人間の脂肪層の中には導入されなかった。皮膚及び脂肪のための削減された散乱係数(μs’)は、それぞれ1.5mm−1と1.2mm−1であった。組織ファントムは、各ファントムが0.5mm−1、0.65mm−1、または0.8mm−1という筋肉削減散乱係数(μs’)、2.0mm、4.0mmまたは6.0mmという脂肪厚さ、及び6.67μg/mL、9.08μg/mL、13.31μg/mL、15.76μg/mL、17.92μg/mL、20.22μg/mL、22.58μg/mL、24.82μg/mL、または26.68μg/mLという筋肉染料濃度を有するように作成された。前記の筋肉染料濃度の1つを有する組織ファントムのセットは、セットの各要素が3つの異なるレベルの脂肪厚さの1つ、及び3つの異なる筋肉散乱係数の1つを有するように製造された。例えば、9つの異なるファントムが、同じ筋肉染料濃度で作成された。ファントムは、3日間という期間で、筋肉染料濃度が、低い、中間、あるいは高い27のファントムの3つのグループで製造された。標本は水損失を回避するためにプラスチックで密封され、写真漂白を回避するためにアルミ箔で覆われ、製造後の日に無作為な順序で測定されるために冷蔵庫で保管された。
2.5mmと30mmの光源−検出器(SD)分離でのファントムのそれぞれの反射率スペクトルは、システム100を使用して測定された。8.5Wのタングステンランプ(ニューヨーク州スカネアトレスのウェルチ−アライン社(Welch−Allyn Corp.)、から入手できる7106−003型)は、ファントムの照明に使用され、分光計(フロリダ州ダニディンのオーシャン・オプティックス社(Ocean OpticsInc.)から入手できるUSB2000)がスペクトル反射率データを収集するために使用された。システム100の2つの距離プローブは、1つの検出器ファイババンドルと、検出器バンドルから30mm(長距離)と2.5mm(短距離)離れた2つの光源ファイババンドルを有していた。検出器ファイババンドルの直径は1.0mmであり、長距離での光源ファイババンドルの直径は3.5mmで、短距離での光源ファイババンドルの直径は1.0mmであった。2つの光源ファイババンドルは軸上向きまたは軸から離れた向きを介してランプに接続されていたが、反射率スペクトルの収集中、検出器バンドルは分光計に接続されていた。コンピュータ制御式シャッターシステム110がランプの前に設置されて、2つの光源ファイバ位置を切り替えて、単一光源ファイババンドルがランプによって照明されるようにした。
短距離(2.5mm SD)で収集された反射率スペクトルは、実質的にはファントムの皮膚層と脂肪層のみから情報を取り込んだ。長距離(30mm SD)で収集されたスペクトルは、皮膚層、脂肪層及び筋肉層からのスペクトル情報を含んでいた。
ファントムは、較正標本セットと試験標本セットに分けられた。較正の間に不十分に及び/または不完全にモデル化された可能性がある標本でのPLSモデル予測を試験するために較正セットの中の特性とは異なった特性を持った較正セットの標本が選ばれた。具体的には、2.0mmという脂肪厚さ及び多様な染料濃度、及び筋肉散乱係数のファントム(合計27ファントム)が、試験標本として使用された。多様な染料濃度及び筋肉散乱係数のそれぞれについて脂肪厚さが4.0mmまたは6.0mmの残りの標本(合計54ファントム)が較正のために使用された。較正サンプルのどれも、2.0mmという厚さの脂肪層を有しておらず、試験標本のどれも4.0mmから6.0mmの厚さの脂肪層を有しなかった。
ファントム筋肉の染料濃度のためのPLSモデルは、較正サンプルデータを使用して作成され、モデルは試験サンプルスペクトルから筋肉染料濃度を予測することによって確証された。一人を除外する相互検証は、PLSモデル係数の数を決定するために使用された。多様なスペクトル相互関係方法を評価するために、PCA負荷補正及び/または短距離補正及び/またはSNVスケーリング補正で、及びそれらを使わずにPLS再帰が実行された。700nmから900nmのスペクトル波長範囲内のデータが分析で使用された。PLSモデルの予測精度は、推定染料濃度と実際の染料濃度の間のR(判定の係数)、及び以下に従って予測の二乗平均平方根誤差(RMSEP)として計算された推定測定エラーによって説明され、
この場合、Nは試験標本の数であり、^とyは推定染料濃度と実際の染料濃度である。大きなR値と低いRMSEPは、PLSモデルがファントム標本の中の染料濃度を正確に予測することを示す。
多様なスペクトル補正及びデータ分析のアルゴリズムは、(マサチューセッツ州ナティックのザマスワークス社(The Mathworks Inc.)から入手できる)Matlab(商標)プログラミング言語のバージョン7.0、及び(ワシントン州マンソンアイゲンベクトルリサーチ社(Eigenvector Research Inc.)から入手できる)PLS_Toolbox(商標)のバージョン3.5で作成されるプログラムで実現された。
短距離補正が他のスペクトル補正方法と組み合わされて反射率スペクトルに適用される以下の例では、短距離補正が最初に適用される。PCA負荷補正が他のスペクトル補正方法と組み合わされた反射率スペクトルに適用される場合、PCA負荷補正は最後に適用される。例えば、短距離SNV補正、及びPCA負荷補正がスペクトルデータに適用される場合、短距離補正は最初に適用され、後にSNV補正が続き、最後にPCA負荷補正が適用される。
染料濃度が同じ(例えば、n=6)6つの較正標本が、スペクトルデータのPCA負荷補正のためのPCA負荷を取得するために使用された。PCA負荷が取得された染料濃度は、後に「較正」染料濃度と呼ばれる。負荷は6つの較正標本のセットでPCAから取得され、6つの標本の各セットは9つの異なる選択された染料濃度の1つを有する。6つの標本のセットごとの反射率スペクトルは、スペクトル補正方法のさまざまな組み合わせを使用して補正され、方法及びそれらのパラメータの、計算された負荷ベクトルに対する影響を調べる。PCA負荷補正で使用される負荷ベクトルの数を決定するために、一人を除外する相互検証較正手順が、ファントム標本の中の染料濃度についてPLSモデルで使用された。較正は、選択された染料濃度のそれぞれで1つ、2つ、3つ、4つ及び5つのPCA負荷ベクトルを使用して実行された。負荷ベクトル数及び相互検証の最小の二乗平均平方根誤差(RMSECV)を生成した選択された染料濃度が、スペクトル補正方法の評価のために選択された。ファントムの分析は、染料濃度が20.22μg/mLの較正スペクトルでPCAから取得された第1の4つの負荷ベクトルが試験標本にとって最善の予測結果を提供したと判断した。3つのスペクトル補正方法、つまり、短距離overlayer補正、SNV補正、及びPCA負荷補正、は個別に、前記条件下で組み合わされて比較された。
図18は、水溶液の中のADS780WS染料の吸収スペクトルを示す。図19及び図20は、それぞれ短距離(例えば、2.5mm)のファントム吸光度スペクトルと、ファントムの長距離(例えば、30mm)照明とを示す。図21は、前述されたように、短距離補正方法を適用することにより補正された長距離吸光度スペクトルを示す。図19の短距離吸光度スペクトルは、ファントムの中の筋肉層を覆う皮膚層及び脂肪層のみから反射される光を含む。吸光度曲線の下方に傾く形状は、皮膚層の吸収装置メラニンの特徴を示す。さらに多様な曲線の中のベースラインシフトは、多様なファントムの間のさまざまな脂肪層厚さに起因する。
図20の長距離スペクトルは、図18に示されている染料溶液スペクトルに類似するスペクトル形状を有する。長距離スペクトルは、染料が位置するファントム筋肉層から反射される光からの影響を含む。例えば、700nmと750nmとの間等の吸光度の変動は、染料吸収に対する皮膚吸収の重ね合わせ、及び脂肪と筋肉の散乱の影響に起因する。短距離補正は、スペクトル吸光度データから皮膚吸収と脂肪散乱の影響を削減する、及び/または取り除く。図21に示されているように、結果として生じる補正済みのスペクトルはなおさらに一致し、図20の補正されていないスペクトルより、図18に示されているスペクトルにさらに密接に似ている。しかしながら、ベースライン変動は標本間の筋肉層の光学特性の変動(例えば、筋肉層散乱の変動性)に起因する。PCA負荷補正アルゴリズムは、ファントムの間の筋肉層の光学特性の不均一性から生じる変動を削減するまたは取り除くために使用できる。
図22から図27は、それぞれの染料濃度が20.22μg/mLであるが、脂肪層厚さ(4.0mmまたは6.0mm)と筋肉散乱係数(0.5mm−1、0.65mm−1、または0.8mm−1)とのさまざまな組み合わせがある、6つの較正標本の吸光度スペクトルを示す。図22では補正されていない吸光度ベクトルを示す。脂肪及び筋肉の散乱、及び皮膚の吸収に起因するスペクトル影響、多様なファントムの間で完全に補正された場合、同じ染料濃度に対応するスペクトルは重複するであろう。図22に示されるスペクトルでは、いくつかのベースラインシフト及び平坦化が、700nmと800nmとの間で観察され、これらの散乱影響及び吸収影響に起因する。
図23は、上にある皮膚層と脂肪層のための短距離補正がスペクトルに適用された後の図22からのスペクトルを示す。補正されたスペクトルは、適用された補正の結果として互いにさらに近くなり、図18の吸収バンドにさらに密接に似た形を有する。しかしながら、約780nmで、吸収ピークに近いスペクトル領域内等の補正されたスペクトルの中には依然としていくつかの差異がある。これらの変動は、短距離アルゴリズム及び方法によって補正されない筋肉層散乱から生じる。
図24は、SNVスケーリング補正が適用された後の図22からのスペクトルを示す。スペクトルは、SNV方法の適用に続いてともにより近くなるが、スペクトルの相対的に平坦な形状は、皮膚及び脂肪の吸収ならびに散乱がSNV方法単独では補正されないことを示している。一般的には、SNV方法は、標本スペクトル間の変動が、分析対象の変動よりむしろ、おもに散乱から生じるときに複数の標本の中での散乱差異を削減する、及び/または取り除くために使用できる。
図25は、PCA負荷係数がスペクトルに適用された後の図22からのスペクトルを示す。染料濃度が20.22μg/mLの較正標本のPCAから得られる4つの負荷は、図22で示された吸光度スペクトルを補正するために使用された。図25に示されている補正されたスペクトルは、元の補正されていないスペクトルよりも互いにに近い。しかしながら、補正されたスペクトルは依然として、分析対象の皮膚層でのメラニン吸収に起因するスペクトル特徴を示す。
多様な補正方法の組み合わせは、吸光度スペクトルにも適用できる。図26は、短距離補正、次にSNVスケーリング補正が連続して適用された後の図22からのスペクトルを示している。図23の短距離補正されたスペクトルと比較すると、図26のスペクトルはともに近く、ベースライン変動は削減されるが、依然として存在する。
図27は、短距離補正、SNVスケーリング補正、及びPCA負荷補正が連続して適用された後の図22からのスペクトルを示す。図27のスペクトルはきわめて重複し、それらの形状は700nmから780nmの短い波長領域内で、図18に示される染料スペクトルに相対的に密接に似ている。3つすべての補正方法をスペクトル吸光度データに適用すると、皮膚層と脂肪層の吸収及び散乱、及び筋肉層の光学特性の分析対象に無関係の変動から生じるさまざまな筋肉散乱係数からのスペクトル影響が削減された。
PLS予測モデルは較正データに基づいて構築され、試験標本における染料濃度の値を予測するために使用された。較正標本及び試験標本のためのスペクトル吸光度データは、補正されなかったか、または短距離補正だけ、SNVスケーリング補正だけ、PCA負荷補正だけ、短距離補正とSNVスケーリング補正の組み合わせ、短距離補正とPCA負荷補正の組み合わせ、SNVスケーリング補正とPCA負荷補正の組み合わせ、あるいは短距離補正、SNVスケーリング補正、及びPCA負荷補正の組み合わせを適用することによって補正されたかのどちらかであった。モデル予測結果の要約は、表4に示されている。各PLSモデルはR(0.95以上))の大きな値を有し、予測染料濃度と測定染料濃度の間に強力な相互関係が存在することを示す。スペクトル処理を行わない場合、たとえ予測染料濃度及び測定染料濃度がきわめて相互に関係していたとしても、大きな予測誤差が生じた。つまり、RMSEPは、(26.68μg/mLから6.67μg/mLの)総濃度範囲の21.54%の誤差に対応し、4.31μg/mLであった。
短距離補正だけ、SNVスケーリング補正だけ、またはPCA負荷補正だけを使用すると、PLSモデルのRMSEPは減少した。2つの異なる補正方法の組み合わせは、さらにPLSモデルのRMSEPを減少させ、3つの補正方法すべてを組み合わせると、最低のRMSEP、つまり1.08μg/mL、5.3%のパーセンテージ誤差のPLSモデル、及び補正方法が使用されなかった場合のPLSモデルに対してRMSEPにおいて3倍の減少が生じた。
特定の実施形態では、スペクトル補正方法を使用すると、PLSモデルで使用される因数の数を削減できる。例えば、PCA負荷補正が他の補正方法とともにまたは組み合わされて使用されたとき、モデル因数の数は、補正されていないスペクトル吸光度データに基づいたモデルで使用された7個の因数未満であった。一例として、3つの補正方法が組み合わされて使用されたとき、標本の筋肉層の染料濃度のためのPLSモデルは4個のモデル因数を使用した。染料モデルのための因数の数のこの削減は、スペクトルデータの補正が皮膚の色、脂肪層の厚さ、及びそれ以外の場合PLS回帰でモデル化されたであろう筋肉層光学特性の変動を取り除いたために達成された。
モデル予測結果は、スペクトル吸光度データの補正がない図28で、及び短距離補正、SNVスケーリング補正、及びPCA負荷補正の組み合わせを使用するスペクトルデータの補正がなされた図29に示されている。各図の対角線は完全な予測を表す。図28と図29を比較すると、3つの異なる補正方法を使用してスペクトルデータを補正した後、予測結果は対角単一線に沿ってさらに密接にクラスタ化され、PLSモデルの予測値はさらに大きくなる。
例5
本明細書に開示されているスペクトル補正方法は、人間の組織スペクトルにも適用されてきた。例えば、それぞれが関心のある特定の分析対象の同じ値を有する、さまざまな被験者に対応するスペクトルが使用可能である場合、PCA負荷補正は、スペクトルに基づいてPLSモデルを改善するために使用できる。一例として、pH値の範囲は運動の期間中に被験者について取得できる。一般的には、筋肉及び血液pHは、乳酸が精製されるため、運動中に減少し、その結果、pHは運動が休止されるとベースライン値に急速に戻る。吸光度スペクトルが運動期間中に連続的に記録され、筋肉及び/または血液pHが同時に監視される場合、類似する運動プロトコルを実行する異なる被験者の同じpH値に対応するさまざまな時間でのスペクトルを得ることが可能である。
人間の被験者からのスペクトルデータでPCA負荷補正方法を評価するためには、スペクトルと血液pH測定値のセットが、反復ハンドグリップ運動負荷プロトコルを実行する三人の人間被験者の前腕から収集された。各被験者は4秒間試験装置を強く握り、次に2秒間緩め、このパターンを計5分間繰り返した。各被験者は4つの異なる運動プロトコルを、各プロトコルの間に30分の休憩をはさみ、さまざまな連続して増加する力レベルで実行した。
図30は、各被験者の血液pHが7.37±0.001である場合に運動プロトコルの間の時間ポイントで三人の人間被験者から収集された吸光度スペクトルのセットを示す。短距離補正及びSNVスケーリング補正は、スペクトルデータのセットに適用された。図31は、PCA負荷補正がさらに適用された後の図30に示される吸光度スペクトルの同じセットを示す。図31の吸光度スペクトルは、図30のスペクトルのPCAから取得された最初の4個の負荷ベクトルで直交化された。スペクトルデータのPCA負荷補正の後、さまざまな被験者からのスペクトルは大幅に重複し、pHと相互に関連付けられていなかった光学特性変動であって、ある被験者から別の被験者での筋肉組織における光学特性変動に起因するスペクトル影響が大幅に削減されたことを示す。
図32は、すべての測定済みのpH値での運動期間中の三人の人間被験者のそれぞれからのスペクトルのすべてを示す。短距離補正及びSNVスケーリング補正がスペクトルデータに適用されてきた。図33は、PCA負荷補正がさらに適用された後の図32からのデータを示す。データは7.37±0.001に相当する、図30の較正スペクトルのPCAから取得された最初の4つの負荷ベクトルで直交化された。PCA負荷補正の適用により、筋肉組織光学特性の被験者対被験者の変動に起因するスペクトルの変動が大幅に削減された。図33に示されるスペクトルの中の変動は、名目上、筋肉pHレベルの運動により引き起こされる変化から生じる吸光度変動に相当する。
他の実施形態
本発明はその詳細な説明と併せて説明されてきたが、前記説明は添付特許請求の範囲により明示される、本発明の範囲を制限するのではなく、説明することを目的としている。他の態様、優位点及び変形は添付特許請求の範囲内にある。
本明細書に説明されている分光計システムの概略図である。 図1の分光計システムの光学作業台及び選択された構成要素の上部概略図である。 白熱灯の概略図である。 標本に光を送達するための2本の光ファイバケーブルと、標本から反射した光をスペクトログラフに送達するための1本の光ファイバケーブルの配列の概略図である。 標本に光を送達する光ファイバケーブルの中のファイバと、標本から反射した光をスペクトログラフに送達するための光ファイバケーブルの中のファイバの配列の概略端面図である。 標本に光を送達するため、及び標本から反射した光を受光するためのプローブヘッドの実施形態の概略側面図である。 統合された光源のあるプローブヘッドの実施形態の概略底面図である。 図5に示されているプローブヘッドを保持し、遮断するための遮光の概略平面図である。 図6Aの遮光の代替実施形態の概略平面図である。 図1の分光計システムで使用されるシャッターの概略図である。 図7に示されているシャッターを制御するための電気回路の回路図である。 人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 別の人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 別の人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 別の人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 別の人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 別の人間の被験者から測定される反射率スペクトルから、上にある層に起因するスペクトル干渉を取り除くための補正の結果を示すグラフである。 補正されていないスペクトルデータについて最大ヘム吸光度対測定済み血液ヘマトクリット値の値を示すグラフである。 上にある皮膚及び脂肪層に起因する影響について補正されたスペクトルデータの最大ヘム吸光度対測定済み血液ヘマトクリット値の値を示すグラフである。 近赤外反射分光計システムの実施形態の画像である。 さまざまな人間被験者からの補正されていないスペクトル吸光度測定値のセットを示すグラフである。 PCA負荷補正アルゴリズムの適用後のさまざまな人間の被験者からのスペクトル吸光度測定値のセットを示すグラフである。 補正されていないスペクトル吸光度データに基づいたpHのPLSモデルの予測pH対測定pHを示すグラフである。 PCA負荷補正方法を使用して補正されたスペクトル吸光度に基づいたpHのPLSモデルの予測pH対測定pHを示すグラフである。 染料ADS780WSのための水性吸光度スペクトルを示すグラフである。 組織状の実在しない標本の短距離吸光度スペクトルを示すグラフである。 組織状の実在しない標本の長距離吸光度スペクトルを示すグラフである。 短距離補正が適用された後の組織状の実在しない標本のセットの長距離吸光度スペクトルを示すグラフである。 組織状の実在しない標本のセットからの補正されていないスペクトル吸光度測定値を示すグラフである。 短距離補正が適用された後の組織状の実在しない標本のセットからのスペクトル吸光度測定値を示すグラフである。 SNVスケーリング補正が適用された後の組織状の実在しない標本のセットからのスペクトル吸光度測定値を示すグラフである。 PCA負荷補正が適用された後の組織状の実在しない標本のセットからのスペクトル吸光度測定値を示すグラフである。 短距離補正及びSNVスケーリング補正が適用された後の組織状の実在しない標本のセットからのスペクトル吸光度測定値を示すグラフである。 短距離補正、SNVスケーリング補正、及びPCA負荷補正が適用された後の組織状の実在しない標本のセットからのスペクトル吸光度測定値を示すグラフである。 補正されていないスペクトル吸光度データに基づいた染料濃度のPLSモデルの予測結果を示すグラフである。 3つの異なる補正方法を使用して補正されたスペクトル吸光度データに基づいた染料濃度のPLSモデルの予測結果を示すグラフである。 類似するpHレベルでの異なる被験者から記録され、短距離補正方法及びSNVスケーリング補正方法を使用して補正されたスペクトル吸光度データを示すグラフである。 PCA負荷補正方法を使用してさらに補正された、図30のスペクトル吸光度データを示すグラフである。 異なるpH値で異なる被験者から記録され、短距離補正方法及びSNVスケーリング補正方法を使用して補正されたスペクトル吸光度データを示すグラフである。 PCA負荷補正方法を使用してさらに補正された図32のスペクトル吸光度データを示すグラフである。

Claims (37)

  1. 測定システムであって、
    (a)光源と、
    (b)検出システムと、
    (c)該光源から標本に光を伝達し、該標本から反射される光を受光し、該検出システムに向ける少なくとも第1の、第2の、及び第3の光ポートのセットであって、該第1のポートと該第3のポートの間の距離が第1の検出距離からなり、該第2のポートと該第3のポートの間の距離が第2の検出距離からなり、該第1の検出距離が該第2の検出距離よりも大きく、(i)該第1及び第2のポートが送信側ポートであり、かつ該第3のポートが受信側ポートであるか、あるいは(ii)該第1及び第2のポートが受信側ポートであり、かつ該第3のポートが送信側ポートであるかのいずれかである、前記第1の、第2の、及び第3の光ポートのセットと、
    該検出システムが
    (i)該第1の検出距離に対応し、かつ該標本の中の内部目標と該内部目標を覆う特徴の両方に対応する情報を含む第1のセットのデータと、
    (ii)該第2の検出距離に対応し、かつ該内部目標を覆う特徴に対応する情報を含む第2のセットのデータとを生成するものであり、該内部目標を覆う特徴は、皮膚及び脂肪のうちの少なくとも一つを含み、
    (d)該第1のセットのデータ及び第2のセットのデータを使用して、該第1のセットのデータから該内部目標を覆う特徴に対応する情報を除去して、該内部目標を表す補正された情報を生成するように構成されるプロセッサと、
    を備える測定システム。
  2. 少なくとも第1の、第2の及び第3のポートの該セットが単一プローブ上に位置している、請求項1に記載のシステム。
  3. 該検出システムがスペクトル検出システムであって、該第1及び第2のセットのデータが第1及び第2のセットのスペクトルを含み、該プロセッサが、該第1及び第2のセットのスペクトルを使用して、該第1のセットのスペクトルから該内部目標を覆う特徴に対応するスペクトル情報を除去して該内部目標を表す補正されたスペクトル情報を生成する請求項1に記載のシステム。
  4. 該第2の検出距離が1mmと5mmの間である、請求項1に記載のシステム。
  5. 該第2の検出距離が1.5mmと3.5mmの間である、請求項1に記載のシステム。
  6. 該第1の検出距離が10mmを超える、請求項1に記載のシステム。
  7. 該第1の送信側ポートからの光が該標本を照明するのか、または該第2の送信側ポートからの光が該標本を照明するのかを制御するためのシャッターシステムをさらに備える、請求項1に記載のシステム。
  8. 該スペクトル検出システムが、光を受光し、該受光した光からスペクトルのセットを生成するように構成される分光計を備える、請求項3に記載のシステム。
  9. 該スペクトル検出システムが、該第1の受信側ポートから光を受光し、該第1のセットのスペクトルを生成するように構成される第1の分光計と、該第2の受信側ポートから光を受光し、該第2のセットのスペクトルを生成するように構成される第2の分光計とを備える、請求項3に記載のシステム。
  10. 該単一プローブが該標本から熱を消散するための熱伝導材料を備える、請求項2に記載のシステム。
  11. 光伝達ポートと光受光ポートの間に熱伝導ブリッジをさらに備える、請求項1に記載のシステム。
  12. 該プロセッサが、内部目標のうちの関心のある分析対象に無関係な、該内部目標の光散乱特性の変動特性であるスペクトル情報を該第1のセットのスペクトルから除去するようにさらに構成される、請求項3に記載のシステム。
  13. 該プロセッサが、内部目標のうちの関心のある分析対象に無関係な、該内部目標の光散乱特性の変動特性であるスペクトル情報を該内部目標を表す該補正されたスペクトル情報から除去するように構成される、請求項3に記載のシステム。
  14. 該光源が電磁スペクトルの近赤外領域で光を提供する、請求項1に記載のシステム。
  15. 該光源が白熱光源素子、発光ダイオード、レーザダイオード及びレーザのうちの少なくとも1つを含む、請求項1に記載のシステム。
  16. 該光源が発光ダイオードのアレイを含む、請求項1に記載のシステム。
  17. 該プロセッサが、以下の方程式に従って該第1のセットのスペクトルと第2のセットのスペクトルを使用して該第1のセットのスペクトルから該内部目標を覆う特徴に対応するスペクトル情報を除去するように構成され、
    この場合、Rsfmは該第1のセットのスペクトルにおけるスペクトルであり、~sfは該第2のセットのスペクトルにおけるスペクトルであり、wは重みであり、「T」は行列転置演算を示し、^ortは該内部目標を表す補正されたスペクトル情報からなる、請求項3に記載のシステム。
  18. 該プロセッサは、該補正されたスペクトル情報を生成する前に、互いに関して該第1のセットのスペクトルと第2のセットのスペクトルとを正規化するように構成される、請求項3に記載のシステム。
  19. 該プロセッサは、複数の標本からのスペクトルのセットから決定される主成分の負荷ベクトルのセットに関して、該第1のセットのスペクトルを直交化することによって、該第1のセットのスペクトルから、該内部目標の光散乱特性の変動特性であるスペクトル情報を除去するように構成される、請求項12に記載のシステム。
  20. 該複数の標本が選択された範囲内において該内部目標の特性を有する、請求項19に記載のシステム。
  21. 該プロセッサが、
    較正スペクトルのセットで主成分分析を実行して、該較正スペクトルの主成分に対応する負荷ベクトルのセットを決定するステップと、
    該主成分分析から1つまたは複数の直交化因子を決定するステップと、
    該直交化因子の数に等しい少なくとも1つの次元を有する負荷行列を形成するステップと、
    該負荷行列に関して該第1のセットのスペクトルを直交化するステップとを実行することによって、該第1のセットのスペクトルを直交化するように構成される、請求項19に記載のシステム。
  22. 光源と、検出システムと、少なくとも第1の、第2の及び第3の光ポートのセットとを有するシステムによって測定される標本の中の内部目標に対応する情報を補正するための方法であって、該セットが該光源から該標本へ光伝達し、該標本から反射される光を受光し、該検出システムに向け、該第1のポートと該第3のポートの間の距離が第1の検出距離からなり、該第2のポートと該第3のポートの間の距離が第2の検出距離からなり、該第1の検出距離が該第2の検出距離より大きく、(i)該第1及び第2のポートが送信側ポートであり、かつ該第3のポートが受信側ポートであるか、あるいは(ii)該第1及び第2のポートが受信側ポートであり、該第3のポートが送信側ポートであるかのいずれかであり、
    該セットの1つまたは複数の光ポートで該標本を照明すること、
    該検出システムで該反射された光を検出すること、
    該第1の検出距離に対応し、かつ、該標本の中の内部目標及び該内部目標を覆う特徴の両方に対応する情報を含む第1のセットのデータと、該第2の検出距離に対応し、かつ該内部目標を覆う特徴に対応する情報を含む第2のセットのデータとを生成することであって該内部目標を覆う特徴は、皮膚及び脂肪のうちの少なくとも一つを含む、該第1のセットのデータと第2のセットのデータとを生成すること、
    該第1のセットのデータと第2のセットのデータを使用して該第1のセットのデータから該内部目標を覆う特徴に対応する情報を除去して、該内部目標を表す補正された情報を生成すること、
    を備える該方法。
  23. 該検出システムがスペクトル検出システムであり、該第1及び第2のセットのデータが第1及び第2のセットのスペクトルを含み、該第1のセットのデータから該内部目標を覆う特徴に対応する情報を除去することが、該第1及び第2のセットのスペクトルを使用して該第1のセットのスペクトルから該内部目標を覆う特徴に対応するスペクトル情報を除去して、該内部目標を表す補正されたスペクトル情報を生成することを含む、請求項22に記載の方法。
  24. 該第1のセットのスペクトルから該内部目標を覆う特徴に対応するスペクトル情報を除去することが、以下の方程式に従って該第1及び第2のセットのスペクトルを組み合わせることを備え、
    sfmが該第1のセットのスペクトルにおけるスペクトルであり、~sfが該第2のセットのスペクトルにおけるスペクトルであり、wが重みであり、「T」が行列転置演算を示し、^ortが該内部目標を表す補正されたスペクトル情報からなる、請求項23に記載の方法。
  25. 該補正されたスペクトル情報を生成する前に、互いに関して該第1及び第2のセットのスペクトルを正規化することをさらに備える、請求項23に記載の方法。
  26. 正規化することが、該第1のセットのスペクトルと第2のセットのスペクトルとの間で多項式のフィットを適用することを備える、請求項25に記載の方法。
  27. 該多項式フィットで使用される係数が、1つまたは複数の反射率規格から記録される第1及び第2のセットのスペクトルから引き出される、請求項26に記載の方法。
  28. 該第1のセットのスペクトルを処理して、内部目標のうち関心のある分析対象に無関係な、該内部目標の光学特性の変動特性であるスペクトル情報を除去することをさらに備える、請求項23に記載の方法。
  29. 該内部目標を表す該補正されたスペクトル情報を処理して、該内部目標のうちの関心のある分析対象に無関係な、該内部目標の光散乱特性の変動特性であるスペクトル情報を除去することをさらに備える、請求項23に記載の方法。
  30. 該内部目標のうち関心のある分析対象に無関係な、該内部目標の光学特性の変動特性であるスペクトル情報を除去することが、較正スペクトルのセットから決定された主成分の負荷ベクトルのセットに関して該第1のセットのスペクトルを直交化することを含む、請求項28に記載の方法。
  31. 負荷ベクトルのセットに関して該第1のセットのスペクトルを直交化することが、
    較正スペクトルの該セットで主成分分析を実行して、該較正スペクトルのセットの主成分に対応する負荷ベクトルのセットを決定すること、
    該主成分分析から1つまたは複数の直交化因子を決定することと、
    直交化因子の数に等しい少なくとも1つの次元を有する負荷行列を形成すること、
    該負荷行列に関して該第1のセットのスペクトルを直交化することを含む、請求項30に記載の方法。
  32. 被験者における分析対象を測定する方法であって、
    請求項22に記載の該方法に従って動物からの反射率測定値に基づいて補正されたスペクトルのセットを生成すること、
    該動物における該分析対象の測定値と該動物からの補正されたスペクトルの該セットとの間の関係性に基づいて1つまたは複数の較正方程式を作成すること、
    請求項22に記載の該方法に従って該被験者からの反射率測定値に基づいて補正されたスペクトルのセットを生成すること、
    該1つまたは複数の較正方程式、及び該被験者からの補正されたスペクトルの該セットに基づいて該被験者において該分析対象の値を決定すること、
    を備える方法。
  33. 該被験者が人間である、請求項32に記載の方法。
  34. 該動物及び該被験者からの反射率測定値に基づいて生成された補正されたスペクトルの該セットが、該分析対象を含む内部目標の光学特性の変動特性であるスペクトル情報を除去するためにさらに処理される、請求項32に記載の方法。
  35. 被験者における分析対象を測定する方法であって、
    請求項22に記載の該方法に従って該被験者の第1の身体部位からの反射率測定値に基づいて補正されたスペクトルのセットを生成すること、
    該第1の身体部位での該分析対象の測定値と該第1の身体部位からの補正されたスペクトルの該セットとの間の関係性に基づいて1つまたは複数の較正方程式を作成すること、
    請求項22に記載の該方法に従って該被験者の第2の身体部位からの反射率測定値に基づいて補正されたスペクトルのセットを生成すること、
    該1つまたは複数の較正方程式、及び該第2の身体部位からの補正されたスペクトルの該セットに基づいて該第2の身体部位での該分析対象の値を決定すること、
    を備える方法。
  36. 該被験者が人間であり、該第1の身体部位が腕であり、該第2の身体部位が脚である、請求項35に記載の方法。
  37. 該第1及び第2の身体部位からの反射率測定値に基づいて生成された補正スペクトルの該セットが、該分析対象を含む内部目標の光学特性の変動特性であるスペクトル情報を除去するためにさらに処理される、請求項35に記載の方法。
JP2008509106A 2005-04-25 2006-04-25 光反射率測定値を補正するためのシステム及び方法 Expired - Fee Related JP5271700B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67437905P 2005-04-25 2005-04-25
US60/674,379 2005-04-25
PCT/US2006/015955 WO2006116569A2 (en) 2005-04-25 2006-04-25 Systems and methods for correcting optical reflectance measurements

Publications (2)

Publication Number Publication Date
JP2008539441A JP2008539441A (ja) 2008-11-13
JP5271700B2 true JP5271700B2 (ja) 2013-08-21

Family

ID=37215486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008509106A Expired - Fee Related JP5271700B2 (ja) 2005-04-25 2006-04-25 光反射率測定値を補正するためのシステム及び方法

Country Status (8)

Country Link
US (4) US7616303B2 (ja)
EP (2) EP1875128B1 (ja)
JP (1) JP5271700B2 (ja)
KR (1) KR101361697B1 (ja)
CN (1) CN101511261B (ja)
AU (1) AU2006241076B2 (ja)
CA (1) CA2605467C (ja)
WO (1) WO2006116569A2 (ja)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US7459713B2 (en) * 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
US8140140B2 (en) * 2005-02-14 2012-03-20 Optiscan Biomedical Corporation Analyte detection system for multiple analytes
WO2006116569A2 (en) 2005-04-25 2006-11-02 University Of Massachusetts Systems and methods for correcting optical reflectance measurements
JP5607358B2 (ja) 2006-05-30 2014-10-15 ユニバーシティ オブ マサチューセッツ 組織酸素化の測定
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US7468519B2 (en) * 2006-12-05 2008-12-23 The Boeing Company Near infrared light diffuser
US8072616B2 (en) * 2006-12-05 2011-12-06 The Boeing Company Application of crossed teflon diffuser to coatings on oriented surfaces
JP5565998B2 (ja) * 2007-01-24 2014-08-06 株式会社日立メディコ 光ファイバ素線計数装置
US8017407B2 (en) * 2007-03-27 2011-09-13 Ariel Navon Device and method for monitoring blood parameters
US7610157B2 (en) * 2007-05-02 2009-10-27 General Electric Company Apparatus and method for fully automated closed system pH measurement
US8597190B2 (en) 2007-05-18 2013-12-03 Optiscan Biomedical Corporation Monitoring systems and methods with fast initialization
US7783458B2 (en) * 2007-06-22 2010-08-24 Ricardo Claps Discrete principal component analysis (DPCA)
US8554518B1 (en) 2007-06-22 2013-10-08 Ricardo Claps Discrete principal component analysis (DPCA) for pattern recognition and diagnostics of tissue pathologies such as cancer
WO2009048659A1 (en) * 2007-07-13 2009-04-16 University Of Massachusetts Physical performance monitoring and monitors
GB0721564D0 (en) * 2007-11-02 2007-12-12 Ge Healthcare Uk Ltd Microscopy imaging phantoms
US9095291B2 (en) * 2008-08-07 2015-08-04 University Of Massachusetts Spectroscopic sensors
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US8521244B2 (en) * 2009-09-16 2013-08-27 Analogic Corporation Physiological parameter monitoring apparatus
WO2011068998A2 (en) * 2009-12-02 2011-06-09 Duke University Systems and methods for determining hemoglobin concentration utilizing diffuse reflectance at isosbestic wavelengths
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US9057689B2 (en) * 2010-01-22 2015-06-16 University Of Massachusetts Methods and systems for analyte measurement
US20130079607A1 (en) * 2010-01-25 2013-03-28 Oregon Health & Science University Fiberoptic probe for measuring tissue oxygenation and method for using same
WO2011156522A1 (en) 2010-06-09 2011-12-15 Optiscan Biomedical Corporation Measuring analytes in a fluid sample drawn from a patient
EP2635185A4 (en) 2010-11-03 2014-12-24 Univ Washington Through Its Ct For Com Ization DETERMINATION OF OXYGENATION OF IN VIVO TISSUE
WO2012128614A1 (en) * 2011-03-24 2012-09-27 Erasmus University Medical Center Rotterdam Method to determine the absorption coefficient in turbid media
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
JP2013103094A (ja) * 2011-11-16 2013-05-30 Sony Corp 測定装置、測定方法、プログラム及び記録媒体
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US20130237844A1 (en) * 2012-03-12 2013-09-12 Ivwatch, Llc Geometry of a Transcutaneous Sensor
TWI670738B (zh) * 2012-03-13 2019-09-01 美商盧米泰克斯公司 光導和鍵盤背光
US9907494B2 (en) 2012-04-18 2018-03-06 Hutchinson Technology Incorporated NIRS device with optical wavelength and path length correction
CN104661582B (zh) * 2012-05-14 2018-07-27 高斯外科公司 处理患者失血的系统与方法
JP5961482B2 (ja) * 2012-08-20 2016-08-02 株式会社日立ハイテクノロジーズ 分光光度計
CA2867180C (en) * 2012-09-02 2023-03-28 Ivwatch, Llc Systems and methods for mitigating the effects of tissue blood volume changes to aid in diagnosing infiltration or extravasation in animalia tissue
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
CA2867138C (en) * 2013-01-22 2021-03-02 Ivwatch, Llc Geometry of a transcutaneous sensor
US20140213909A1 (en) * 2013-01-31 2014-07-31 Xerox Corporation Control-based inversion for estimating a biological parameter vector for a biophysics model from diffused reflectance data
CN105358946B (zh) * 2013-02-14 2017-07-14 曾海山 用于光谱测量系统的校准的光学基准
AU2014231342B2 (en) * 2013-03-15 2018-03-29 Synaptive Medical Inc. Surgical imaging systems
JP2014232005A (ja) * 2013-05-28 2014-12-11 富士ゼロックス株式会社 計測装置
US20150022802A1 (en) * 2013-07-22 2015-01-22 Frederick Harold LONG Spectroscopy detection system and method for material identification
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
USD763939S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array liner with optical sensor array pad
USD763938S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array
MX367969B (es) * 2014-04-27 2019-09-11 Coloright Ltd Aparato y metodo para analizar pelo y/o predecir un resultado de un tratamiento de coloracion del pelo.
WO2016069862A1 (en) 2014-10-29 2016-05-06 Zoll Medical Corporation Measuring myocardial physiologic parameters
CN105866066B (zh) * 2015-05-29 2020-04-28 深圳市琨伦创业投资有限公司 一种农作物营养安全检测装置
US10194065B2 (en) 2015-08-05 2019-01-29 Canon U.S.A., Inc. Endoscope probes and systems, and methods for use therewith
WO2017024145A1 (en) 2015-08-05 2017-02-09 Canon U.S.A., Inc. Forward and angle view endoscope
US10383527B2 (en) 2015-08-31 2019-08-20 Masimo Corporation Wireless patient monitoring systems and methods
DE112016004783A5 (de) * 2015-10-20 2018-09-27 Courage + Khazaka Electronic Gmbh Optische Ermittlung der Schutzfaktoren von Sonnenschutz- bzw. anderen Strahlungsschutzmitteln
WO2017117203A1 (en) * 2015-12-28 2017-07-06 Canon U.S.A., Inc. Optical probe, light intensity detection, imaging method and system
JP6688104B2 (ja) * 2016-02-29 2020-04-28 日本光電工業株式会社 パルスフォトメトリ用プローブ
US10321810B2 (en) 2016-06-13 2019-06-18 Canon U.S.A., Inc. Spectrally encoded endoscopic probe having a fixed fiber
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
JP2019527576A (ja) 2016-07-15 2019-10-03 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc スペクトル符号化プローブ
US10401610B2 (en) 2016-07-15 2019-09-03 Canon Usa, Inc. Spectrally encoded probe with multiple diffraction orders
US10646111B2 (en) 2016-09-23 2020-05-12 Canon U.S.A., Inc. Spectrally encoded endoscopy apparatus and methods
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US10898068B2 (en) 2016-11-01 2021-01-26 Canon U.S.A., Inc. Multi-bandwidth spectrally encoded endoscope
JP2018094395A (ja) 2016-11-03 2018-06-21 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 診断用スペクトル符号化内視鏡検査装置およびシステム、ならびにこれらと共に使用するための方法
US10825152B2 (en) 2017-09-14 2020-11-03 Canon U.S.A., Inc. Distortion measurement and correction for spectrally encoded endoscopy
CN107631860B (zh) * 2017-09-26 2019-10-25 成都国翼电子技术有限公司 一种计算vr相机所需最少led灯数量的方法
US20200359938A1 (en) * 2017-12-20 2020-11-19 Medical Photonics Co., Ltd. Lipid measurement device and method therefor
GB2572626B (en) 2018-04-05 2021-04-07 Life Meter Srl Pulse oximetry device, system and method
EP3782165A1 (en) 2018-04-19 2021-02-24 Masimo Corporation Mobile patient alarm display
AU2019357721B2 (en) 2018-10-12 2025-05-08 Masimo Corporation System for transmission of sensor data using dual communication protocol
KR102693439B1 (ko) 2018-11-20 2024-08-07 삼성전자주식회사 스펙트럼 측정 장치, 스펙트럼의 광원 온도 변화 보정 방법, 농도 추정 장치 및 방법
KR102844441B1 (ko) * 2019-02-07 2025-08-07 삼성전자주식회사 생체정보 추정 장치 및 방법
JP2020148659A (ja) * 2019-03-14 2020-09-17 キオクシア株式会社 計測装置
US11175212B2 (en) * 2019-03-31 2021-11-16 Agilent Technologies, Inc. Mid-infrared scanning system for analyzing particulates
KR20210050967A (ko) * 2019-10-29 2021-05-10 삼성전자주식회사 분석 물질의 농도 추정 장치 및 방법과, 캘리브레이션 방법
CN115380518A (zh) * 2020-03-18 2022-11-22 特里纳米克斯股份有限公司 通信系统、监视系统及相关方法
US11730379B2 (en) 2020-03-20 2023-08-22 Masimo Corporation Remote patient management and monitoring systems and methods
WO2021231396A1 (en) * 2020-05-11 2021-11-18 Woods Hole Oceanographic Institution Optical system and method to identify plastic
EP4160204A4 (en) 2020-05-28 2024-07-03 Shimadzu Corporation Peak tracking device, peak tracking method, and peak tracking program
CN111999258B (zh) * 2020-07-03 2022-06-17 桂林理工大学 一种面向光谱基线校正的加权建模局部优化方法
BE1028508B1 (fr) 2020-07-20 2022-02-15 Pharma Flex S A Sonde pour analyse spectroscopique d'objets individuels en défilement
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
WO2022039952A1 (en) * 2020-08-17 2022-02-24 Corning Research & Development Corporation Intermittently bonded fiber optic ribbon
DE102020127424B4 (de) * 2020-10-19 2023-01-19 Erbe Elektromedizin Gmbh Testeinrichtung
USD1072837S1 (en) 2020-10-27 2025-04-29 Masimo Corporation Display screen or portion thereof with graphical user interface
CN115399758A (zh) * 2021-05-26 2022-11-29 南京微纳科技研究院有限公司 基于光波导传感器的检测系统、方法、设备及存储介质
US20240353320A1 (en) * 2021-07-01 2024-10-24 Boehringer Ingelheim Vetmedica Gmbh Optical system and methods of use
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
JP7379442B2 (ja) * 2021-11-01 2023-11-14 キヤノントッキ株式会社 反射率測定装置、成膜装置
CN114136888B (zh) * 2021-12-09 2023-07-11 四川启睿克科技有限公司 多光源便携式近红外光谱仪的光谱数据校准方法
US12259338B2 (en) 2022-07-08 2025-03-25 Onto Innovation Inc. Mitigation of undesired spectral effects in optical metrology
USD1048908S1 (en) 2022-10-04 2024-10-29 Masimo Corporation Wearable sensor
CN116912122B (zh) * 2023-07-17 2025-09-19 杭州海康慧影科技有限公司 内窥镜脂肪色彩的修复方法、装置、存储介质和电子设备
KR102681431B1 (ko) * 2023-10-05 2024-07-04 (주)메디띵스 방광 모니터링 기기의 이상 탐지 방법 및 시스템

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762650B2 (ja) * 1988-12-09 1995-07-05 鶴見曹達株式会社 果実等の糖度測定方法
JPH06103257B2 (ja) * 1988-12-19 1994-12-14 大塚電子株式会社 光散乱を用いた物質の吸光係数測定方法および装置
AU7080594A (en) * 1993-05-28 1994-12-20 Somanetics Corporation Method and apparatus for spectrophotometric cerebral oximetry
DE4337570A1 (de) * 1993-11-04 1995-05-11 Boehringer Mannheim Gmbh Verfahren zur Analyse von Glucose in einer biologischen Matrix
AU2342595A (en) * 1994-05-19 1995-12-18 Boehringer Mannheim Gmbh Process and device for determining an analyte in a biological sample
DE4417639A1 (de) * 1994-05-19 1995-11-23 Boehringer Mannheim Gmbh Verfahren zur Bestimmung eines Analyten in einer biologischen Probe
GB9410395D0 (en) * 1994-05-24 1994-07-13 Renishaw Plc Spectroscopic apparatus
US5486834A (en) * 1994-08-08 1996-01-23 Trimble Navigation Limited Global orbiting navigation satellite system receiver
US5582170A (en) 1994-12-01 1996-12-10 University Of Massachusetts Medical Center Fiber optic sensor for in vivo measurement of nitric oxide
US5537121A (en) * 1995-04-28 1996-07-16 Trimble Navigation Limited Carrier phase multipath reduction technique
JP3526652B2 (ja) * 1995-05-11 2004-05-17 倉敷紡績株式会社 光学的測定方法および光学的測定装置
US6633255B2 (en) * 1995-10-09 2003-10-14 Qualcomm Inc. Method for open loop tracking GPS signals
US5813403A (en) 1995-11-08 1998-09-29 Soller; Babs R. Optical measurement of tissue pH
US5880826A (en) * 1997-07-01 1999-03-09 L J Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of teeth
US6052194A (en) * 1996-06-04 2000-04-18 Valmet Automation (Canada) Ltd. Method and apparatus for controlling the spectral reflectance of a material
US5808582A (en) * 1996-09-13 1998-09-15 Litton Consulting Group, Inc. Global positioning system receiver with improved multipath signal rejection
US5901183A (en) * 1996-09-25 1999-05-04 Magellan Corporation Signal correlation technique for a receiver of a spread spectrum signal including a pseudo-random noise code that reduces errors when a multipath signal is present
US6006119A (en) 1998-02-04 1999-12-21 Polestar Technologies, Inc. Non-invasive optical measurement of blood hematocrit
US6615061B1 (en) * 1998-11-23 2003-09-02 Abbott Laboratories Optical sensor having a selectable sampling distance for determination of analytes
US6353226B1 (en) * 1998-11-23 2002-03-05 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US6587702B1 (en) 1999-01-22 2003-07-01 Instrumentation Metrics, Inc Classification and characterization of tissue through features related to adipose tissue
US6608589B1 (en) * 1999-04-21 2003-08-19 The Johns Hopkins University Autonomous satellite navigation system
US6704348B2 (en) * 2001-05-18 2004-03-09 Global Locate, Inc. Method and apparatus for computing signal correlation at multiple resolutions
US6564088B1 (en) 2000-01-21 2003-05-13 University Of Massachusetts Probe for localized tissue spectroscopy
IL138683A0 (en) * 2000-09-25 2001-10-31 Vital Medical Ltd Apparatus and method for monitoring tissue vitality parameters
US6640117B2 (en) * 2000-09-26 2003-10-28 Sensys Medical, Inc. Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination
US20030032064A1 (en) 2001-03-01 2003-02-13 Umass/Worcester Correction of spectra for subject diversity
US7217266B2 (en) * 2001-05-30 2007-05-15 Anderson R Rox Apparatus and method for laser treatment with spectroscopic feedback
AU2002359257A1 (en) 2001-10-15 2003-04-28 University Of Massachusetts Tissue oxygen measurement system
DE10163972B4 (de) * 2001-12-22 2005-10-27 Roche Diagnostics Gmbh Verfahren und Vorrichtung zur Bestimmung eines Lichttransportparameters und eines Analyten in einer biologischen Matrix
US7130326B2 (en) * 2002-03-13 2006-10-31 The Aerospace Corporation Gated time division multiplexed spread spectrum correlator
US20040005717A1 (en) 2002-06-11 2004-01-08 Umass/Worcester Methods for non-invasive measurement of blood electrolyte concentration
US7001413B2 (en) * 2002-07-03 2006-02-21 Life Support Technologies, Inc. Methods and apparatus for light therapy
US7133440B1 (en) * 2002-10-25 2006-11-07 L-3 Communications Corporation Acquisition of a synchronous CDMA TDD QPSK waveform using variable thresholds for PN and burst synchronization
JP2004150984A (ja) * 2002-10-31 2004-05-27 National Institute Of Advanced Industrial & Technology 近赤外分光による溶質濃度測定方法とその装置
CN100406872C (zh) * 2002-11-04 2008-07-30 天津市先石光学技术有限公司 复合光谱测量方法及其光谱检测仪器
US7186249B1 (en) * 2003-01-16 2007-03-06 Alfiero Balzano Thermally conductive surgical probe
US7315569B2 (en) * 2003-07-11 2008-01-01 Samsung Electronics Co., Ltd. Method and system for locating a GPS correlated peak signal
US7245373B2 (en) 2004-04-26 2007-07-17 University Of Massachusetts Spectrometer system for optical reflectance measurements
ATE369570T1 (de) * 2004-05-17 2007-08-15 Univ Technologies Int Verfahren und vorrichtung zur erfassung und verfolgung eines boc-signals
US7936846B2 (en) * 2004-07-05 2011-05-03 Accord Software & Systems Pvt. Ltd. Low gate count sequential multitap correlator
US7881892B2 (en) 2005-01-21 2011-02-01 University Of Massachusetts Standardization methods for correcting spectral differences across multiple spectroscopic instruments
WO2006116569A2 (en) * 2005-04-25 2006-11-02 University Of Massachusetts Systems and methods for correcting optical reflectance measurements
JP5607358B2 (ja) 2006-05-30 2014-10-15 ユニバーシティ オブ マサチューセッツ 組織酸素化の測定
WO2009048659A1 (en) 2007-07-13 2009-04-16 University Of Massachusetts Physical performance monitoring and monitors
US9095291B2 (en) 2008-08-07 2015-08-04 University Of Massachusetts Spectroscopic sensors
US9057689B2 (en) 2010-01-22 2015-06-16 University Of Massachusetts Methods and systems for analyte measurement
CN114730353A (zh) 2019-12-09 2022-07-08 美商新思科技有限公司 使用具有金属线的单元进行电路设计

Also Published As

Publication number Publication date
CA2605467A1 (en) 2006-11-02
EP1875128A2 (en) 2008-01-09
WO2006116569A3 (en) 2009-04-30
AU2006241076B2 (en) 2011-11-24
CN101511261B (zh) 2011-09-28
EP1875128A4 (en) 2012-08-22
US7616303B2 (en) 2009-11-10
CN101511261A (zh) 2009-08-19
AU2006241076A1 (en) 2006-11-02
JP2008539441A (ja) 2008-11-13
WO2006116569A2 (en) 2006-11-02
CA2605467C (en) 2013-12-24
US20070038041A1 (en) 2007-02-15
KR20070122565A (ko) 2007-12-31
EP1875128B1 (en) 2018-12-26
US20100123897A1 (en) 2010-05-20
US20110264411A1 (en) 2011-10-27
US20150131098A1 (en) 2015-05-14
EP3505052A1 (en) 2019-07-03
KR101361697B1 (ko) 2014-02-10
US8873035B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
JP5271700B2 (ja) 光反射率測定値を補正するためのシステム及び方法
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
CA2347040C (en) Method for non-invasive blood analyte measurement with improved optical interface
KR101954451B1 (ko) 진단 측정 기구
US8483789B2 (en) Continuous spectroscopic measurement of total hemoglobin
JP5982364B2 (ja) 測定媒体の成分または特性、特に生理的血液値を特定およびモニタするための装置ならびに方法
DK2034893T3 (en) Measurement of tissue oxygenation
WO2006040841A1 (ja) 血糖値の非侵襲測定装置
KR102235823B1 (ko) 전혈용 so2 센서
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
WO2019208561A1 (ja) 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム
KR19990029222A (ko) 혈중성분 농도의 무혈측정 방법 및 장치
JP2004135798A (ja) 物質計測装置
Soller et al. i, United States Patent (10) Patent No.: US 8873035 B2
WO1996013204A1 (en) Determination of analyte concentration using non-continuous radiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5271700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees