以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[車両の全体構成]
図1は、本発明の実施の形態に係る車両1の主たる構成を示す図である。
図1を参照して、車両1は、蓄電装置である主バッテリBAと、昇圧コンバータ12Aと、平滑用コンデンサC1と、電圧センサ21Aとを含む。
車両1は、さらに、平滑用コンデンサCHと、電圧センサ10A,10B1,13と、インバータ14,22と、エンジン4と、モータジェネレータMG1,MG2と、動力分割機構3と、車輪2と、制御装置30とを含む。
車両1は、さらに、コネクタ52と、コネクタ52によって車両1に対して着脱可能に接続されているバッテリパック39とを含む。バッテリパック39を車両1に搭載したり外したりすることにより、車両1に搭載するバッテリ容量の合計を調整することができる。
バッテリパック39は、副バッテリBB1と、昇圧コンバータ12Bと、平滑用コンデンサC2と、電圧センサ10B1,21Bとを含む。
この車両に搭載される蓄電装置は外部から充電が可能である。このために、車両1は、さらに、電力入力ラインACL1,ACL2と、リレー回路51と、入力端子50と、電圧センサ74とを含む。
リレー回路51は、リレーRY1,RY2を含む。リレーRY1,RY2としては、たとえば、機械的な接点リレーを用いることができるが、半導体リレーを用いてもよい。そして、リレーRY1の一端に電力入力ラインACL1の一方端が接続され、電力入力ラインACL1の他方端は、モータジェネレータMG1の三相コイルの中性点N1に接続される。また、リレーRY2の一端に電力入力ラインACL2の一方端が接続され、電力入力ラインACL2の他方端は、モータジェネレータMG2の三相コイルの中性点N2に接続される。さらに、リレーRY1,RY2の他端に入力端子50が接続される。
リレー回路51は、制御装置30からの入力許可信号ENが活性化されると、入力端子50を電力入力ラインACL1,ACL2と電気的に接続する。具体的には、リレー回路51は、入力許可信号ENが活性化されると、リレーRY1,RY2をオンし、入力許可信号ENが非活性化されると、リレーRY1,RY2をオフする。
入力端子50は、商用の外部電源90をこのハイブリッド車両1に接続するための端子である。そして、このハイブリッド車両1においては、入力端子50に接続される外部電源90からバッテリBAまたはBB1を充電することができる。
なお、以上の構成は、2つの回転電機のステータコイルの中性点を利用するものであるが、そのような構成に代えて、たとえば、AC100Vの商用電源に接続するために車載型または車外に設置されるバッテリ充電装置を使用しても良いし、またオプションバッテリパック39を搭載している場合は昇圧コンバータ12A,12Bを合わせて交流直流変換装置として機能させる方式を用いても良い。
平滑用コンデンサC1は、電源ラインPL1Aと接地ラインSL2間に接続される。電圧センサ21Aは、平滑用コンデンサC1の両端間の電圧VLAを検出して制御装置30に対して出力する。昇圧コンバータ12Aは、平滑用コンデンサC1の端子間電圧を昇圧する。
平滑用コンデンサC2は、電源ラインPL1Bと接地ラインSL2間に接続される。電圧センサ21Bは、平滑用コンデンサC2の両端間の電圧VLBを検出して制御装置30に対して出力する。昇圧コンバータ12Bは、平滑用コンデンサC2の端子間電圧を昇圧する。
平滑用コンデンサCHは、昇圧コンバータ12A,12Bによって昇圧された電圧を平滑化する。電圧センサ13は、平滑用コンデンサCHの端子間電圧VHを検知して制御装置30に出力する。
インバータ14は、昇圧コンバータ12Bまたは12Aから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG1に出力する。インバータ22は、昇圧コンバータ12Bまたは12Aから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG2に出力する。
動力分割機構3は、エンジン4とモータジェネレータMG1,MG2に結合されてこれらの間で動力を分配する機構である。たとえば動力分割機構としてはサンギヤ、プラネタリキャリヤ、リングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。遊星歯車機構は、3つの回転軸のうち2つの回転軸の回転が定まれば、他の1つの回転軸の回転は強制的に定まる。この3つの回転軸がエンジン4、モータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。なおモータジェネレータMG2の回転軸は、図示しない減速ギヤや差動ギヤによって車輪2に結合されている。また動力分割機構3の内部にモータジェネレータMG2の回転軸に対する減速機をさらに組み込んだり、自動変速機を組み込んだりしてもよい。
主バッテリBAに関連して、車両1は、正極側に設けられる接続部40Aと、負極側に設けられる接続部であるシステムメインリレーSMRGとをさらに含む。接続部40Aは、主バッテリBAの正極と電源ラインPL1Aとの間に接続されるシステムメインリレーSMRBと、システムメインリレーSMRBと並列接続される直列に接続されたシステムメインリレーSMRPおよび制限抵抗R0とを含む。システムメインリレーSMRGは、主バッテリBAの負極(接地ラインSL1)と接地ラインSL2との間に接続される。
システムメインリレーSMRP,SMRB,SMRGは、制御装置30から与えられる制御信号CONT1〜CONT3にそれぞれ応じて導通/非導通状態が制御される。
電圧センサ10Aは、主バッテリBAの端子間の電圧VAを測定する。図示しないが、電圧センサ10Aとともに主バッテリBAの充電状態を監視するために、主バッテリBAに流れる電流を検知する電流センサが設けられている。主バッテリBAとしては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。
バッテリパック39は、正極側に設けられる接続部40Bと、負極側に設けられる接続部であるシステムメインリレーSR1Gとを含む。接続部40Bは、副バッテリBB1の正極と電源ラインPL1Bとの間に接続されるシステムメインリレーSR1Bと、システムメインリレーSR1Bと並列接続される直列に接続されたシステムメインリレーSR1Pおよび制限抵抗R1とを含む。システムメインリレーSR1Gは、副バッテリBB1の負極と接地ラインSL2との間に接続される。
システムメインリレーSR1P,SR1B,SR1Gは、制御装置30から与えられる制御信号CONT4〜CONT6にそれぞれ応じて導通/非導通状態が制御される。
接地ラインSL2は、後に説明するように昇圧コンバータ12A,12Bの中を通ってインバータ14および22側に延びている。
電圧センサ10B1は、副バッテリBB1の端子間の電圧VBB1を測定する。図示しないが、電圧センサ10B1とともに副バッテリBB1の充電状態を監視するために、各バッテリに流れる電流を検知する電流センサが設けられている副バッテリBB1としては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。
なお、副バッテリBB1は、ユーザの使用状況に応じて増減されるオプションバッテリであり、これに対し主バッテリBAは、車両に必要最低限搭載されているベースバッテリである。
インバータ14は、電源ラインPL2と接地ラインSL2に接続されている。インバータ14は、昇圧コンバータ12Aおよび12Bから昇圧された電圧を受けて、たとえばエンジン4を始動させるために、モータジェネレータMG1を駆動する。また、インバータ14は、エンジン4から伝達される動力によってモータジェネレータMG1で発電された電力を昇圧コンバータ12Aおよび12Bに戻す。このとき昇圧コンバータ12Aおよび12Bは、降圧回路として動作するように制御装置30によって制御される。
電流センサ24は、モータジェネレータMG1に流れる電流をモータ電流値MCRT1として検出し、モータ電流値MCRT1を制御装置30へ出力する。
インバータ22は、インバータ14と並列的に、電源ラインPL2と接地ラインSL2に接続されている。インバータ22は車輪2を駆動するモータジェネレータMG2に対して昇圧コンバータ12Aおよび12Bの出力する直流電圧を三相交流電圧に変換して出力する。またインバータ22は、回生制動に伴い、モータジェネレータMG2において発電された電力を昇圧コンバータ12Aおよび12Bに戻す。このとき昇圧コンバータ12Aおよび12Bは、降圧回路として動作するように制御装置30によって制御される。
電流センサ25は、モータジェネレータMG2に流れる電流をモータ電流値MCRT2として検出し、モータ電流値MCRT2を制御装置30へ出力する。
制御装置30は、モータジェネレータMG1,MG2の各トルク指令値および回転速度、電圧VBA,VBB1,VBB2,VLA,VLB,VHの各値、モータ電流値MCRT1,MCRT2および起動信号IGONを受ける。そして制御装置30は、昇圧コンバータ12Bに対して昇圧指示を行なう制御信号PWUB,降圧指示を行なう制御信号PWDBおよび動作禁止を指示するシャットダウン信号を出力する。
さらに、制御装置30は、インバータ14に対して昇圧コンバータ12A,12Bの出力である直流電圧を、モータジェネレータMG1を駆動するための交流電圧に変換する駆動指示を行なう制御信号PWMI1と、モータジェネレータMG1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12A,12B側に戻す回生指示を行なう制御信号PWMC1とを出力する。
同様に制御装置30は、インバータ22に対してモータジェネレータMG2を駆動するための交流電圧に直流電圧を変換する駆動指示を行なう制御信号PWMI2と、モータジェネレータMG2で発電された交流電圧を直流電圧に変換して昇圧コンバータ12A,12B側に戻す回生指示を行なう制御信号PWMC2とを出力する。
制御装置30は、インバータ14,22および昇圧コンバータ12A,12Bを制御するための各種マップ等を保持するメモリ32を含んでいる。
図2は、図1のインバータ14および22の詳細な構成を示す回路図である。
図1、図2を参照して、インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とを含む。U相アーム15,V相アーム16,およびW相アーム17は、電源ラインPL2と接地ラインSL2との間に並列に接続される。
U相アーム15は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q3,Q4と、IGBT素子Q3,Q4とそれぞれ並列に接続されるダイオードD3,D4とを含む。ダイオードD3のカソードはIGBT素子Q3のコレクタと接続され、ダイオードD3のアノードはIGBT素子Q3のエミッタと接続される。ダイオードD4のカソードはIGBT素子Q4のコレクタと接続され、ダイオードD4のアノードはIGBT素子Q4のエミッタと接続される。
V相アーム16は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q5,Q6と、IGBT素子Q5,Q6とそれぞれ並列に接続されるダイオードD5,D6とを含む。ダイオードD5のカソードはIGBT素子Q5のコレクタと接続され、ダイオードD5のアノードはIGBT素子Q5のエミッタと接続される。ダイオードD6のカソードはIGBT素子Q6のコレクタと接続され、ダイオードD6のアノードはIGBT素子Q6のエミッタと接続される。
W相アーム17は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q7,Q8と、IGBT素子Q7,Q8とそれぞれ並列に接続されるダイオードD7,D8とを含む。ダイオードD7のカソードはIGBT素子Q7のコレクタと接続され、ダイオードD7のアノードはIGBT素子Q7のエミッタと接続される。ダイオードD8のカソードはIGBT素子Q8のコレクタと接続され、ダイオードD8のアノードはIGBT素子Q8のエミッタと接続される。
各相アームの中間点は、モータジェネレータMG1の各相コイルの各相端に接続されている。すなわち、モータジェネレータMG1は、三相の永久磁石同期モータであり、U,V,W相の3つのコイルは各々一方端が中点に共に接続されている。そして、U相コイルの他方端がIGBT素子Q3,Q4の接続ノードから引出されたラインULに接続される。またV相コイルの他方端がIGBT素子Q5,Q6の接続ノードから引出されたラインVLに接続される。またW相コイルの他方端がIGBT素子Q7,Q8の接続ノードから引出されたラインWLに接続される。
なお、図1のインバータ22についても、モータジェネレータMG2に接続される点が異なるが、内部の回路構成についてはインバータ14と同様であるので詳細な説明は繰返さない。また、図2には、インバータに制御信号PWMI,PWMCが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWMI1,PWMC1と制御信号PWMI2,PWMC2がそれぞれインバータ14,22に入力される。
図3は、図1の昇圧コンバータ12Aおよび12Bの詳細な構成を示す回路図である。
図1、図3を参照して、昇圧コンバータ12Aは、一方端が電源ラインPL1Aに接続されるリアクトルL1と、電源ラインPL2と接地ラインSL2との間に直列に接続されるIGBT素子Q1,Q2と、IGBT素子Q1,Q2にそれぞれ並列に接続されるダイオードD1,D2とを含む。
リアクトルL1の他方端はIGBT素子Q1のエミッタおよびIGBT素子Q2のコレクタに接続される。ダイオードD1のカソードはIGBT素子Q1のコレクタと接続され、ダイオードD1のアノードはIGBT素子Q1のエミッタと接続される。ダイオードD2のカソードはIGBT素子Q2のコレクタと接続され、ダイオードD2のアノードはIGBT素子Q2のエミッタと接続される。
なお、図1の昇圧コンバータ12Bについては、電源ラインPL1Aに代えて電源ラインPL1Bに接続される点が昇圧コンバータ12Aと異なるが、内部の回路構成については昇圧コンバータ12Aと同様であるので詳細な説明は繰返さない。また、図3には、昇圧コンバータに制御信号PWU,PWDが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWUA,PWDAと制御信号PWUB,PWDBがそれぞれインバータ14,22に入力される。
[サブバッテリ搭載可能な電源装置]
再び図1を参照して、本願実施の形態の車両の電源装置は、車両1の外部に設けられる外部電源90から充電が可能な車両の電源装置であって、主バッテリBAと、車両から着脱可能なバッテリパック39とを備える。バッテリパック39は、主バッテリBAと共通の電気負荷(インバータ14および22)を駆動するための副バッテリBB1と、副バッテリBB1に関する情報に対応する形状である突起(ピン)が設けられたコネクタ52とを含む。車両の電源装置は、主バッテリBAに関する制御を行なうとともに、コネクタの形状から情報を検出して副バッテリBB1に関する制御を行なう制御装置30をさらに備える。
コネクタの形状から検出される情報には、たとえば、副バッテリBB1の容量が含まれており、副バッテリの容量が変更されたときに制御装置30はそれに合わせた適切な制御を行なうことができる。なお主バッテリ、副バッテリについては、蓄電容量はかならずしも主バッテリが大きいとは限らない。主バッテリよりも大きい容量の副バッテリが接続される場合があり得る。また、副バッテリを主バッテリよりも優先使用する場合もあり得る。
好ましくは、車両の電源装置は、バッテリパック39を接続するためのコネクタ52をさらに備える。バッテリパック39は、コネクタを介して制御装置30から与えられる制御信号に基づいて、副バッテリBB1の電源電圧を変換する電圧変換回路である昇圧コンバータ12Bをさらに含む。
このようにバッテリパック39に昇圧コンバータ12Bを内蔵することで主バッテリBAの電圧と副バッテリBB1の電圧とが異なる場合であっても各々のバッテリに独立的に充放電制御を行なうことが可能となる。
なお、電圧を合わせる方法としては、副バッテリBB1の電圧を昇圧コンバータ12Bで主バッテリBAに合わせても良いし、逆に主バッテリBAの電圧を昇圧コンバータ12Aで副バッテリBB1に合わせても良い。
また、昇圧コンバータ12Aを無くして、副バッテリBB1の電圧を昇圧コンバータ12Bで主バッテリBAに合わせても良い。この場合は、副バッテリBB1の電源電圧を主バッテリBAの電源電圧よりも低くなるようにセル数の設定および充放電管理を行なうとよい。なお、逆に昇圧コンバータ12Bを無くして、主バッテリBAの電圧を昇圧コンバータ12Aで副バッテリBB1に合わせても良い。この場合は、主バッテリBAの電源電圧を副バッテリBB1の電源電圧よりも低くなるようにセル数の設定および充放電管理を行なうとよい。
また好ましくは、車両の電源装置は、外部電源90により主バッテリBAおよび副バッテリBB1を充電するための充電装置をさらに含む。この充電装置は、インバータ14,22と、モータジェネレータMG1,MG2のステータコイルによって構成される。
[実施の形態1]
図4は、実施の形態1で用いられる車両とバッテリパックとの間に設けられるコネクタの構造を示す図である。
図4を参照して、コネクタ52は、車両側(インバータ側)に接続されているコネクタ部材102と、バッテリパック側に接続されているコネクタ部材112とが組み合わされるものである。
コネクタ部材112は、バッテリに接続されるパワーケーブル116,120と、パワーケーブル116,120にそれぞれ接続されるプラグ片114,118と、絶縁性のカバーとを含む。プラグ片114はプラス端子であり、プラグ片118はマイナス端子である。
コネクタ部材102は、車両のインバータに接続されるパワーケーブル106,110と、パワーケーブル106,110にそれぞれ接続される挿入金具104,108と、絶縁性のカバーとを含む。挿入金具104には、プラグ片114が挿入され、挿入金具108にはプラグ片118が挿入される。絶縁性のカバーで覆われているので、プラグ片が作業者に触れにくい構造となっている。
図5は、バッテリ種類を判別するスイッチが設けられているコネクタ部材102Aを示す図である。
図6は、図5に示したコネクタ部材102Aをプラグ差込面方向から見た図である。
図5、図6を参照して、コネクタ部材102の一例としてバッテリ種類判別スイッチ122が設けられたコネクタ部材102Aが示されている。スイッチ122は、たとえば3つのピン挿入口122A,122B,122Cのそれぞれ内部に設けられている。そしてバッテリ側に接続されているコネクタ部材には、バッテリ種類に対応する位置にピンが設けられている。ピンが存在する場合には、スイッチ122がピンで押されてON状態に設定される。ピンが無い場合にはスイッチ122はOFF状態に設定される。
図7は、スイッチ122のOFF状態を示した図である。
図8は、スイッチ122のON状態を示した図である。
図7、図8を参照して、スイッチ122は、ECU等の制御装置に信号を送る配線を5Vないし14Vの正電圧に結合するための抵抗126と可動切片128とを含む。ピンがピン挿入口122A,122B,122Cに未挿入の場合には切片128が離れるので、ECU等の制御装置にはH(論理ハイ)レベルの電圧が与えられる。そしてピンがピン挿入口122A,122B,122Cのいずれかに挿入されると、挿入された挿入口内部のスイッチ122の切片128が閉じてL(論理ロウ)レベルの信号が制御装置に伝達される。
3つの挿入口がある場合には、2の3乗、すなわち8通りの状態を示すことができる。したがって、現在接続されているバッテリパックの容量をこのピンの位置で表わすことにより、車両側の制御装置でこれを判別することができる。
図9は、バッテリパック種類について説明するための図である。
図9を参照して、バッテリパックには容量が大きなものと小さなものがオプションとして用意されている。コネクタ52には、容量大のバッテリパック130、容量小のバッテリパック132のいずれか一方を選択して接続する必要がある。または、全くバッテリパックを接続しないという選択を行なっても良い。そして、バッテリパック130とバッテリパック132とでピンを設ける位置を違えておく。予めその位置と容量の関係を取り決めておけば、スイッチ122のON、OFFを観測することにより車両側の制御装置でピン位置を認知し、バッテリパックの容量を知ることができる。
実施の形態1では、バッテリパックを接続するためのコネクタのバッテリパック側部材に設けられた形状がバッテリパック容量等の情報を表している。コネクタの車両側部材102Aにはその形状を検出するための検出部である検出スイッチ122が設けられる。
図10は、バッテリパックが一種類である場合の容量増減の例を示した図である。
図10を参照して、車両側には、インバータに接続される複数のコネクタ52−1〜52−nが設けられている。そして、販売店やサービス工場では、必要な個数だけ増設単位のバッテリパック142−1,142−2…をコネクタに接続する。
車両側の制御装置は、各コネクタに設けられた接続検出スイッチ122によって、接続されているバッテリパックの個数を検出することができ、これによって合計のバッテリ容量を知ることができる。
図11は、制御装置30が実行する追加バッテリパックの接続に伴う制御を説明するためのフローチャートである。このフローチャートの処理は、たとえば、車両のシステム起動時にメインルーチンから呼び出されて実行される。
図11を参照して、まず処理が開始されると、ステップS1において、制御装置30は、追加バッテリパックが接続されているか否かを判断する。コネクタ52の検出スイッチ122がON状態になっているときに接続有りと判断される。スイッチ122がいずれもOFF状態であれば接続なしと判断される。
ステップS1において、追加バッテリなしと判断されると処理がステップS4に進み、特に制御の変更は行なわれずにメインルーチンに制御が移される。この場合には、図1のメモリ32に保持されている複数のマップのうちの標準マップがそのまま適用される。一方、追加バッテリ有りと判断されると処理がステップS2に進む。
ステップS2では、バッテリ容量が検出される。図9で説明したようなバッテリパックの容量を変更する方式では、図6のピン挿入口122A〜122Cのいずれにピンが挿入されるかを確認することによって容量を検出することができる。また図10で説明したようなバッテリパックの個数を変更する方式では、コネクタ52−1〜52−nの各々に設けられたスイッチ122のON状態になっている個数でバッテリパックの接続個数が分かるので、個数に増設単位のバッテリ容量を掛ければバッテリ容量を検出することができる。
ステップS2の処理が終了すると次にステップS3の処理が実行される。ステップS3では、制御装置30でハイブリッドシステムの制御に使用されている制御定数の変更が行なわれる。制御定数の変更は、例えば、バッテリ容量に応じて図1のメモリ32中の複数のマップの切換えることなどで行なわれる。マップとしては、出力パワー要求値に対して、エンジンを始動させるしきい値を規定したエンジン始動マップであるとか、バッテリから出力可能な最大電力Woutやバッテリに充電可能な最大電力Winを規定したマップであるとか、昇圧コンバータの昇圧制御マップであるとか、バッテリ冷却装置の制御マップなどが対象となる。
図12は、制御定数の一例としてエンジン始動しきい値のマップの切換について説明するための図である。
図12を参照して、マップAは、バッテリ容量を増加させた場合のマップであり、マップBはバッテリ容量を増加させていないときに用いられる標準のマップである。バッテリ容量が大きいと、バッテリからモータに供給可能な電力も大きくなる。したがって、アクセルペダルが踏込まれ出力パワー要求値が大きくなっても、増設されたバッテリがあればエンジンを始動させずに要求されたパワーをモータのみで車軸に出力させることができる。
より具体的に言えば、バッテリの充電状態SOC(State Of Charge)が0〜40%の間は、バッテリ増設されていなければマップBに示すように、5kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、10kWの出力パワー要求があるとエンジンが始動する。
また、バッテリの充電状態SOCが60%の間は、バッテリ増設されていなければマップBに示すように、10kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、20kWの出力パワー要求があるとエンジンが始動する。
また、バッテリの充電状態SOCが80%の間は、バッテリ増設されていなければマップBに示すように、15kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、30kWの出力パワー要求があるとエンジンが始動する。
また、バッテリの充電状態SOCが100%の間は、バッテリ増設されていなければマップBに示すように、20kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、40kWの出力パワー要求があるとエンジンが始動する。言い換えれば、バッテリ増設されており充電状態SOCが100%であれば、出力パワー要求値が40kWに至るまではエンジンを停止させたままモータのみで走行することが可能となる。
このように、バッテリ容量が大きくなれば出力可能なパワーも大きくなるので、エンジンを始動させなくても良い領域が広がる。
また、エンジン始動するSOCも変更されるので、エンジン停止のまま走行可能な距離をバッテリパックの増加に従って適切に伸ばすことができる。また、ハイブリッド車両は、バッテリの電力でモータジェネレータMG1を回転させてエンジンを始動するが、バッテリパックの数を減らした場合にも、エンジン始動して充電を開始するSOCも変更されるので、バッテリから放電しすぎてエンジン始動が不能となることが防止される。
なお、図12に示したマップは、モデル化して単純に示したものであり実際には車両走行実験によって適合化される。また、Win,Woutについても温度やSOCについて規定されたマップがバッテリ容量に応じて切換えられる。
すなわち好ましくは、制御装置30は、所定の制御定数に基づいて主バッテリBAおよび副バッテリBB1に関する処理を行なう。そして制御装置30は、情報を記憶する記憶部に相当するコネクタのピン位置から読み出した情報に基づいて所定の制御定数を変更する。
なお、実施の形態1では、車両側の制御装置30がバッテリパックの情報を自動的に読み出して、その情報に応じて制御定数を変更する例を示したが、必ずしも自動的に実行しない場合も考えられる。たとえば、制御装置30に制御定数を書換え可能なように、書き込み端子を設けておき、バッテリパックを追加、取り外しまたは交換した際に、書き込み端子から制御装置30のメモリ32上の制御定数を書き換えるようにしても良い。
以上説明したように、実施の形態1においては、装着されたバッテリパックに適した制御条件で車載機器の制御が実行される。たとえば、車載機器であるインバータ、昇圧コンバータを適切に制御することによって、ベースバッテリとオプションバッテリの合計のバッテリの充放電が良好に行なわれる。
[実施の形態2]
図13は、実施の形態2における車両とバッテリパックとの接続を示した図である。
図13を参照して、車両150Aとバッテリパック39Aとはコネクタ52によって接続される。コネクタ52には、図4に示したようなパワーケーブル106,110の接続部の他に、CAN(Controller Area Network)通信のような制御用の通信を行なうための通信線の接続部が設けられる。なお、必ずしも通信線用のコネクタはパワーケーブル用と一体化させる必要はなく、別々のコネクタにしてもよい。
バッテリパック39Aは、副バッテリBB1と、副バッテリBB1の電圧を昇圧する昇圧コンバータ12Bと、昇圧コンバータ12Bの制御を行なうバッテリパック制御部156と、バッテリパック制御部156に接続されているメモリ158および通信インタフェース154とを含む。昇圧コンバータ12Bは、コネクタ52を介して車両側の電源ラインPL2および接地ラインSL2に接続されている。
車両150Aは、図1に示したような車両1の構成に加えてバッテリパック39Aと通信を行なうための通信インタフェース152をさらに含む。
メモリ158には、バッテリパック39Aに関する情報が記憶されている。この情報は、たとえば副バッテリBB1の容量を含む。メモリ158には、バッテリの種類(リチウムイオンバッテリ、ニッケル水素バッテリ等)、製造年月日、製造メーカなどを記憶しておいても良い。
バッテリパック制御部156は、メモリ158からバッテリパック39Aの容量についての情報を読み出して通信インタフェース154、152を介して制御装置30にその情報を伝える。そして、制御装置30は、バッテリパック39Aの容量を考慮して、車両の駆動についての制御定数、各種マップなどを切換える。マップの切換えは、制御装置30で複数のマップを持っておいてその中から適するものを選択するようにしても良いし、メモリ158中にマップのデータを持っておいてそのデータを制御装置30で記憶しているマップに反映させる書換え処理を行なっても良い。
図14は、図13に示した構成の変形例を示した図である。
図13では、パワーケーブルと通信線とが別々に設けられていたが、図14ではパワーケーブルに通信の情報を重畳させるPLC(Power Line Communications)インタフェースを採用するので、別途の通信線は不要となる。
バッテリパック39Bは、副バッテリBB1と、副バッテリBB1の電圧を昇圧する昇圧コンバータ12Bと、昇圧コンバータ12Bの制御を行なうバッテリパック制御部166と、バッテリパック制御部166に接続されているメモリ168およびPLC通信インタフェース164とを含む。昇圧コンバータ12Bは、コネクタ52を介して車両側の電源ラインPL2および接地ラインSL2に接続されている。
車両150Bは、図1に示したような車両1の構成に加えてバッテリパック39Bと通信を行なうためのPLC通信インタフェース162をさらに含む。
メモリ168には、バッテリパック39Bに関する情報が記憶されている。この情報は、たとえば副バッテリBB1の容量を含む。
バッテリパック制御部166は、メモリ168からバッテリパック39Bの容量についての情報を読み出してPLC通信インタフェース164、162とパワーケーブルとを介して制御装置30にその情報を伝える。そして、制御装置30は、バッテリパック39Bの容量を考慮して、車両の駆動についての制御定数、各種マップなどを切換える。
図15は、実施の形態2において制御装置30が実行する追加バッテリパックの接続に伴う制御を説明するためのフローチャートである。このフローチャートの処理は、たとえば、車両のシステム起動時にメインルーチンから呼び出されて実行される。
図15を参照して、まず処理が開始されると、ステップS11において、制御装置30は、追加バッテリパックが接続されているか否かを判断する。コネクタ52の検出スイッチ122がON状態になっているときに接続有りと判断される。スイッチ122がOFF状態であれば接続なしと判断される。
ステップS11において、追加バッテリなしと判断されると処理がステップS15に進み、特に制御の変更は行なわれずにメインルーチンに制御が移される。追加バッテリ有りと判断されるとステップS12に処理が進む。
ステップS12では、追加バッテリパックとの間で通信可能か否かが判断される。この通信が可能であれば、通信によってバッテリパック内のメモリからサブバッテリの容量などの情報が読み出される。
ステップS12において、通信可能であった場合には、ステップS13に処理が進む。ステップS13では、制御装置30でハイブリッドシステムの制御に使用されている制御定数の変更が行なわれる。制御定数の変更は、例えば、出力パワー要求値に対して、エンジンを始動させるしきい値を規定したエンジン始動マップであるとか、バッテリから出力可能な最大電力Woutやバッテリに充電可能な最大電力Winを規定したマップなどをバッテリ容量に応じて切換えることで行なうことができる。
一方、ステップS12において、通信が成立しなかった場合には、ステップS14に処理が進む。通信が成立しない場合として、たとえば接続が予定されていない規格外のバッテリパック(たとえば純正品でないものや規格を満たしているか不明なもの)が接続された場合が考えられる。その場合には、制御定数をどのように変更するのが適切であるか不明であるので、異常放電等を防止するためフェイル判定とし、車両の動作を禁止する。
すなわち、好ましくは、制御装置30は、記憶部であるメモリ158または168から読み出した情報に基づいてバッテリパック39Aまたは39Bが正規品か否かを判断する。
そして、正規品でないバッテリパックが搭載された場合には、たとえば車両の動作を禁止する。これにより、異常充放電等の誤作動を回避することができる。もしくは、正規品でないバッテリパックを電気的に切り離して正規品のバッテリパックのみを使用して車両を動作させても良い。こうすることでユーザがバッテリパックを正規品でないことを認識せずに購入した車両に接続してしまった場合での車両の動作を確保できる。
コネクタ形状のみで判別していた場合と比べると、不正改造が困難となる。つまり、コネクタは簡単に複製できるが、メモリの内容まで含めて複製するのは難しいので、正規品でないバッテリパックが搭載され誤作動することが防止される。
ステップS13またはS14の処理が終了すると、ステップS15において制御はメインルーチンに移される。
以上説明したように、実施の形態2においても、実施の形態1と同様に、装着されたバッテリパックに適した制御条件で車載機器の制御が実行される。
[実施の形態3]
バッテリは、電流を充放電すると発熱する。また、夏季などでは、炎天下に長時間報知するとバッテリが高温になっている場合も考えられる。バッテリの寿命を縮めないためにも、バッテリを冷却して使用するほうが望ましい。
しかし、バッテリの搭載量を変更したときには、バッテリからの発熱量も変化する。そこでバッテリ搭載量に応じて冷却能力を変化させることが必要になる。
図16は、実施の形態3における冷却装置の説明をするためのブロック図である。
図16に示した構成は、図13に示した構成において、冷却装置200が追記されたものである。冷却装置200の他の構成については、図13で説明しているので説明は繰返さない。
冷却装置200は、バッテリパック39Aを冷却するために車両側に設けられる。冷却装置200は、バッテリパック39Aの他にもベースバッテリであるバッテリBAを共通して冷却するものであっても良い。
冷却装置200がバッテリパック39A専用に設けられているものであれば、車両の制御装置30はバッテリパック39Aが装着されたことをバッテリパック制御部156との通信によって検出すると、冷却装置200を動作可能に設定する。制御装置30は図示しない温度センサ等によってバッテリBB1の温度上昇を検出すると、冷却装置200に対してファンを回転させたり冷却水を循環させたりしてバッテリパック39Aの冷却を開始する。
冷却装置200がベースバッテリとバッテリパック39Aとで共通に設けられているものであれば、車両の制御装置30はバッテリパック39Aが装着されたことをバッテリパック制御部156との通信によって検出すると、冷却装置200の冷却能力を増加させる。制御装置30は、バッテリパック39Aの装着時は非装着時よりもファンを回転速度を増加させたり冷却水の循環量を増量させたりする。
ここで、図16に示したようにバッテリ冷却装置やそれを制御するECUがバッテリパックと別体であると、バッテリの冷却性能が変化しバッテリのみで走行可能な距離などの車両性能が低下することも考えられる。
図17は、実施の形態3で用いられるバッテリパックの構成の変形例を示す図である。
図17を参照して、複数のバッテリパック202−1〜202−nがシステムメインリレーSMRを介して電源ラインPL2および接地ラインSL2に接続される。システムメインリレーSMRは車両側の制御装置によって導通/非導通が制御される。
バッテリパック202−1は、コネクタ52と、昇圧コンバータ12Bと副バッテリBB1と、温度センサ204と、ファン制御部206と、送風ファン208とを含む。
温度センサ204は副バッテリBB1の温度を測定する。ファン制御部206は、温度センサ204で検出されたバッテリ温度が所定値よりも高いときはファン208を回転させてバッテリ温度が上昇し過ぎないように温度調節を行なう。すなわち、温度センサ204、ファン制御部206、ファン208は、バッテリパック202−1に含まれる温度調節装置に相当する。
他のバッテリパック202−nもバッテリパック202−1と同様な構成を有するのでその説明は繰返さない。
実施の形態3においては、バッテリパックごとにファン等を含む温度調節装置を設けたので、バッテリパックの個数や形状が変更されても、特別な考慮を払う必要なくバッテリパックに内蔵されるサブバッテリを適切な温度に保持することができる。言い換えれば、冷却装置とその制御部分をバッテリパック一体構造とし、冷却制御(測温からファン制御まで)をバッテリパック内で完結させることにより、バッテリパック追加時にバッテリの冷却性能が低下しこれに起因して走行性能が低下するのを防止することができる。
最後に、本実施の形態に開示された車載機器制御システムについて、総括して説明する。図1および図13,図14を参照して、車載機器制御システムは、車両に着脱可能に構成され、情報を記憶する記憶部(メモリ158,168)を含むバッテリパック39A,39Bと、車両にバッテリパックが接続されている場合には、記憶部に記憶された情報に基づいて車載機器を制御するとともに、車両にバッテリパックが接続されていない場合には、記憶部に記憶された情報以外の情報に基づいて車載機器を制御する制御装置30とを備える。
図16に示すように、好ましくは、車載機器制御システムは、バッテリパック39Aを冷却する冷却装置200をさらに備える。制御装置30は、記憶部(メモリ158)に記憶された情報に基づいて冷却装置200を制御する。
図1および図13に示すように、好ましくは、車載機器制御システムは、車載機器に電力を供給する第1のバッテリBAをさらに備える。バッテリパック39は、車載機器に電力を供給する第2のバッテリBB1をさらに含む。制御装置30は、第1のバッテリBAに関する制御と第2のバッテリBB1に関する制御とを、記憶部(メモリ158)に記憶された情報に基づいて車載機器であるインバータ14,22,昇圧コンバータ12A,12B等に行なわせる。
好ましくは、第1、第2のバッテリに関する制御は、充放電制御を含み、制御装置30は、記憶部に記憶された情報に基づいて、バッテリパックの充放電を制御する。
図1および図5に示されるように、この発明の他の局面に従う車載機器制御システムは、車両に着脱可能に接続するための接続部(コネクタ52)を有するバッテリパック39と、車両に設けられ、接続部の形状を検出する形状検出部(スイッチ122)と、形状検出部の検出結果に基づいて車載機器を制御する制御装置30とを備える。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。