JP5201630B2 - Method for neutralizing developer wastewater containing tetraalkylammonium hydroxide - Google Patents
Method for neutralizing developer wastewater containing tetraalkylammonium hydroxide Download PDFInfo
- Publication number
- JP5201630B2 JP5201630B2 JP2008543090A JP2008543090A JP5201630B2 JP 5201630 B2 JP5201630 B2 JP 5201630B2 JP 2008543090 A JP2008543090 A JP 2008543090A JP 2008543090 A JP2008543090 A JP 2008543090A JP 5201630 B2 JP5201630 B2 JP 5201630B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- gas
- neutralization
- tower
- taah
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/3092—Recovery of material; Waste processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0005—Degasification of liquids with one or more auxiliary substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0073—Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/02—Foam dispersion or prevention
- B01D19/04—Foam dispersion or prevention by addition of chemical substances
- B01D19/0404—Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Gas Separation By Absorption (AREA)
Description
本発明は水酸化テトラアルキルアンモニウム(以下、TAAHと略記する。)をフォトレジストの現像液として使用した後の、フォトレジスト由来の有機物(以下レジスト由来有機物と略記する。)が溶解したTAAH含有現像廃液を、炭酸ガス又は炭酸ガス含有ガスによって中和するための新規な中和方法に関する。詳しくは、中和塔内においてTAAH含有現像廃液を塔頂部から、炭酸ガス又は炭酸ガス含有ガスを塔底部から供給して、TAAHと炭酸ガス又は炭酸ガス含有ガスとを向流で接触せしめて中和反応を行う際に、中和塔内部で発生する泡を中和塔内へ蓄積させることなく、効果的に除去することが可能な上記現像廃液の中和方法を提供する。 In the present invention, a tetraalkylammonium hydroxide (hereinafter abbreviated as TAAH) is used as a developing solution for a photoresist, and then a TAAH-containing development in which an organic substance derived from the photoresist (hereinafter abbreviated as a resist-derived organic substance) is dissolved. The present invention relates to a novel neutralization method for neutralizing waste liquid with carbon dioxide or carbon dioxide-containing gas. Specifically, in the neutralization tower, the TAAH-containing developer waste solution is supplied from the top of the tower, and carbon dioxide or carbon dioxide-containing gas is supplied from the bottom of the tower, so that the TAAH and carbon dioxide or carbon dioxide-containing gas are brought into contact with each other in countercurrent. Provided is a method for neutralizing a developing waste solution, which can be effectively removed without accumulating bubbles generated in the neutralization tower in the neutralization tower during the sum reaction.
半導体・液晶製造工程において、ウエハー、ガラス等の基板上にパターンを形成する場合、基板表面に形成した金属層にネガ型或いはポジ型のレジストを塗布し、これに、該パターン形成用のフォトマスクを介して露光し、未硬化部分或いは硬化部分に対して現像液を使用して現像後、エッチングを行って上記金属層にパターンを形成する作業が行われている。半導体等の高集積度化に伴い、製造工程で使用する薬剤等に対して不純物、特に金属イオン等が半導体製造工程において混入することが厳しく制限されている。このため、金属イオンを含まないアルカリ液であるTAAHを主成分とする現像液がフォトリソグラフィーの工程において現像液として広く用いられている。特に近年、半導体・液晶の生産量が増大するにつれて、現像液の消費量が増加しており、現像液として使用済みのTAAH含有現像廃液の排出量も増加している。 In the semiconductor / liquid crystal manufacturing process, when a pattern is formed on a substrate such as a wafer or glass, a negative or positive resist is applied to a metal layer formed on the surface of the substrate, and a photomask for forming the pattern is applied thereto. The pattern is formed on the metal layer by performing etching using a developing solution on the uncured portion or the cured portion, and then etching the uncured portion or the cured portion. As the degree of integration of semiconductors and the like increases, it is severely restricted that impurities, particularly metal ions, are mixed in the semiconductor manufacturing process with respect to chemicals used in the manufacturing process. For this reason, a developer mainly composed of TAAH, which is an alkaline solution not containing metal ions, is widely used as a developer in the photolithography process. In particular, as the production amount of semiconductors and liquid crystals increases in recent years, the consumption of developer increases, and the discharge amount of TAAH-containing developer waste liquid used as the developer also increases.
これまで、上記TAAH含有現像廃液は、公知の排水処理により無害化して廃棄することが行われていたが、資源の有効活用を目的として、上記廃液を回収し、精製して再利用するTAAH含有現像廃液の再生方法として、従来から種々の再生方法が提案されている。例えば、TAAH含有現像廃液を、TAAH濃度が10質量%以上になるように濃縮し、その後、炭酸ガス等の酸により、該水溶液のpHが10以下となるまで中和し、レジストを析出せしめる中和工程、該中和工程で析出したレジストを分離する分離工程、該分離工程より得られる液を電気分解してTAAHを生成せしめる電解工程を含む方法が知られている(特許文献1参照)。 Until now, the TAAH-containing developing waste liquid has been detoxified and discarded by known wastewater treatment, but for the purpose of effective utilization of resources, the waste liquid is collected, purified, and reused. Conventionally, various regeneration methods have been proposed as a method for regenerating developing waste liquid. For example, the TAAH-containing developer waste solution is concentrated so that the TAAH concentration becomes 10% by mass or more, and then neutralized with an acid such as carbon dioxide gas until the pH of the aqueous solution becomes 10 or less to precipitate a resist. There is known a method including a summing step, a separation step for separating the resist deposited in the neutralization step, and an electrolysis step for electrolyzing a liquid obtained from the separation step to produce TAAH (see Patent Document 1).
ところが、上記再生方法において、TAAHの中和を、中和塔にて炭酸ガスを供給して実施しようとした場合、塔内で泡が連続的に発生するため、そのままTAAHの中和を続けると、泡の占める領域が塔頂部より塔底部に拡大し、中和反応の反応効率が低下すると共に、安定した中和操作を実施することが困難になるという問題がある。 However, in the above regeneration method, when the neutralization of TAAH is performed by supplying carbon dioxide gas in the neutralization tower, bubbles are continuously generated in the tower. There is a problem that the region occupied by bubbles expands from the top of the column to the bottom of the column, the reaction efficiency of the neutralization reaction decreases, and it becomes difficult to carry out a stable neutralization operation.
従来、蒸留塔などで発生する泡の防止手段として、界面活性剤等の消泡剤を使用する方法が一般的に知られているが、再生処理したTAAH溶液を半導体製造工程において用いる観点から、不純物を混入することが厳しく制限されており、消泡剤の添加による消泡技術は好ましくなく、消泡剤を使用しない泡の防止手段が求められている。 Conventionally, as a means for preventing foam generated in a distillation column or the like, a method of using a defoaming agent such as a surfactant is generally known, but from the viewpoint of using a regenerated TAAH solution in a semiconductor manufacturing process, The mixing of impurities is severely restricted, and the defoaming technique by adding an antifoaming agent is not preferable, and a means for preventing foam without using the antifoaming agent is required.
また、その他の泡の防止手段として、泡が発生する塔頂の内部空間に加熱面を形成し、該加熱面に泡を通過させて消泡する方法が提案されている(特許文献2参照)。 As another bubble prevention means, a method has been proposed in which a heating surface is formed in the internal space at the top of the tower where bubbles are generated, and the bubbles are passed through the heating surface to eliminate bubbles (see Patent Document 2). .
しかしながら、上記の加熱面に泡を通過せしめて消泡させる消泡技術を、TAAH含有現像液の炭酸ガスによる中和に適用した場合、塔頂部での泡の発生はある程度防げる。しかし、中和操作を中和塔にて連続的に行った場合には、中和塔内で連続的に泡が発生するため、加熱面から離れた泡が加熱面と接触せずに滞留し、泡の移動が制限され、泡と加熱面との接触を阻害することがあった。このため、泡および消泡により生成した溶液が加熱面近傍に一部滞留することがある。滞留した泡および溶液が継続的に加熱されるため、局所的に高温の部分が生じ、TAAHが分解されてアミン臭が発生するという問題が生ずることが確認された。
従って、本発明の目的は、TAAH含有現像廃液と炭酸ガス又は炭酸ガス含有ガスとを向流で接触せしめて中和する方法において、中和塔で発生する泡の塔内への蓄積を、TAAHの劣化を伴うことなく、効果的に防止することが可能な現像廃液の中和方法を提供する。 Accordingly, an object of the present invention is to reduce the accumulation of bubbles generated in the neutralization tower in the TAAH in the method of neutralizing the waste solution containing TAAH and carbon dioxide or carbon dioxide-containing gas in countercurrent. The present invention provides a method for neutralizing developing waste liquid that can be effectively prevented without deterioration.
本発明者らは、上記課題を解決すべく鋭意研究を重ねた。その結果、中和塔内で発生した泡を、中和塔より塔外に泡流として取り出し、塔外にて加熱体と通過せしめて消泡させ、消泡された溶液を中和塔に戻して中和操作を継続することで、塔内での泡の滞留を効果的に防止できると共に、前記泡流を短時間で加熱面と接触させて確実に処理することができ、TAAHの分解を招くことなく、中和塔に循環使用することができることを見出し、本発明を完成させるに至った。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, bubbles generated in the neutralization tower are taken out from the neutralization tower as a foam flow, passed through a heating body outside the tower, defoamed, and the defoamed solution is returned to the neutralization tower. By continuing the neutralization operation, it is possible to effectively prevent the bubbles from staying in the tower, and to make sure that the bubble flow is brought into contact with the heating surface in a short time, and the TAAH is decomposed. The present inventors have found that it can be circulated and used in the neutralization tower without inviting, and have completed the present invention.
即ち、本発明は、中和塔において、TAAH含有現像廃液と炭酸ガス又は炭酸ガス含有ガスとを向流接触させ、該現像廃液を中和するに際し、中和塔塔頂の気相部で発生する泡を塔外に取り出して消泡することを特徴とするTAAH含有現像廃液の中和方法である。 That is, in the neutralization tower, the TAAH-containing developer waste liquid and carbon dioxide gas or carbon dioxide-containing gas are brought into countercurrent contact to neutralize the developer waste liquid, and are generated in the gas phase portion at the top of the neutralizer tower. This is a method for neutralizing a TAAH-containing developer waste solution, wherein the foam is removed from the tower and defoamed.
本発明によれば、TAAH含有現像廃液を、中和塔にて、炭酸ガス又は炭酸ガス含有ガスにより中和する際に発生する泡の影響を防止しながら、安定して該現像廃液の中和操作を行うことが可能である。また、消泡後に得られる液は、再度中和塔に循環することにより、液の損失も効果的に防止することができる。 According to the present invention, the TAAH-containing developer waste solution is stably neutralized while preventing the influence of bubbles generated when neutralizing with a carbon dioxide gas or a carbon dioxide-containing gas in a neutralization tower. It is possible to perform operations. Moreover, the liquid obtained after defoaming can be effectively prevented from being lost by circulating again to the neutralization tower.
更に、本発明の方法によれば、前記中和後の炭酸塩を電解して、TAAHを再生する一連のプロセスを構成する場合、該電解工程で得られた炭酸ガス含有ガスをTAAH含有現像廃液の中和用の炭酸ガスとして使用した場合においても、発生する泡を効率良く除去することが可能であるため、TAAH含有現像廃液の再生方法における炭酸ガスの発生を抑制することが可能であり、地球環境の保全に寄与するものである。 Further, according to the method of the present invention, when constituting a series of processes for regenerating TAAH by electrolyzing the neutralized carbonate, the carbon dioxide-containing gas obtained in the electrolysis step is used as a TAAH-containing developing waste liquid. Even when used as a carbon dioxide gas for neutralization, it is possible to efficiently remove the generated foam, it is possible to suppress the generation of carbon dioxide gas in the regeneration method of the TAAH-containing developer waste, It contributes to the preservation of the global environment.
(TAAH含有現像廃液)
本発明において用いる、レジスト由来有機物が溶解したTAAH含有現像廃液(以下、単にTAAH含有現像廃液と称する。)について詳細に説明する。TAAHの具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム等を挙げることができる。上記TAAHの中でも、半導体製造工程における現像液として広く用いられている点で水酸化テトラメチルアンモニウムが好適に使用できる。(TAAH-containing developer waste)
A TAAH-containing developer waste solution in which resist-derived organic substances are dissolved (hereinafter simply referred to as a TAAH-containing developer waste solution) used in the present invention will be described in detail. Specific examples of TAAH include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. Among the above TAAH, tetramethylammonium hydroxide can be suitably used because it is widely used as a developer in the semiconductor manufacturing process.
本発明の中和方法に用いるTAAH含有現像廃液中のTAAHの濃度については、特に制限なく、種々のTAAH濃度の現像廃液を使用することが可能である。半導体製造工程にて排出される現像廃液中のTAAH濃度は通常1%以下程度であるが、TAAH含有現像廃液の再生処理として工業的に効率良く行うという観点から、また、該現像廃液の輸送コストを削減できるという観点から、濃縮を行い、TAAHの含有率を高めたTAAH含有現像廃液であることが好ましい。該TAAH含有現像廃液中のTAAH濃度は、上記のとおり低すぎれば輸送コスト等を含めた処理コストが高くなり、高すぎれば濃縮にかかる処理コストが高くなるため、該TAAH含有現像廃液中のTAAH濃度は、10〜30質量%であることが好ましい。 The concentration of TAAH in the TAAH-containing developer waste solution used in the neutralization method of the present invention is not particularly limited, and developer waste solutions having various TAAH concentrations can be used. The TAAH concentration in the developing waste liquid discharged in the semiconductor manufacturing process is usually about 1% or less. However, from the viewpoint of industrially efficient as a regeneration treatment of the TAAH-containing developing waste liquid, and the transport cost of the developing waste liquid. From the viewpoint of reducing the amount of TAAH, it is preferable to use a TAAH-containing developing waste liquid that is concentrated to increase the TAAH content. If the TAAH concentration in the TAAH-containing developer waste liquid is too low as described above, the processing cost including transportation costs and the like will increase. If it is too high, the processing cost for concentration will increase. Therefore, the TAAH concentration in the TAAH-containing developer waste liquid will increase. The concentration is preferably 10 to 30% by mass.
上記の濃縮等により、TAAHの含有率を高めたTAAH含有現像廃液のpHは13〜15、一般的には14〜14.7の範囲である。 The pH of the TAAH-containing developing waste liquid in which the TAAH content is increased by the above-described concentration or the like is in the range of 13 to 15, generally 14 to 14.7.
また、上記TAAH含有現像廃液には、レジスト由来有機物が溶解している。上記レジスト由来有機物の濃度については、現像後のレジスト由来有機物の溶解量、及び前記濃縮後のTAAH濃度におけるレジスト由来有機物の溶解度によって異なるが、例えば、半導体製造工程にて排出されるTAAH含有現像廃液中に溶解しているレジスト由来有機物はCOD換算で、数十〜数百ppm程度である。上記のとおり、濃縮等によりTAAHの含有率を高めると、レジスト由来有機物も濃縮されるため、上記TAAHの濃度が10〜30質量%であるTAAH含有現像廃液に溶解するレジスト由来有機物の濃度は通常COD換算で数千〜10000ppm程度である。 In addition, a resist-derived organic substance is dissolved in the TAAH-containing developing waste liquid. The concentration of the resist-derived organic substance varies depending on the amount of the resist-derived organic substance dissolved after development and the solubility of the resist-derived organic substance at the TAAH concentration after the concentration. For example, a TAAH-containing developing waste liquid discharged in the semiconductor manufacturing process The resist-derived organic matter dissolved therein is about several tens to several hundred ppm in terms of COD. As described above, when the content of TAAH is increased by concentration or the like, the resist-derived organic matter is also concentrated. Therefore, the concentration of the resist-derived organic matter dissolved in the TAAH-containing developing waste solution having a TAAH concentration of 10 to 30% by mass is usually It is about several thousand to 10,000 ppm in terms of COD.
TAAH含有現像廃液を炭酸ガス又は炭酸ガス含有ガスにて中和させた際の発泡の生成原因について検討した結果、中和反応により析出したレジスト由来有機物が発泡の一要因であるため、レジスト由来有機物が増加すると発生する発泡量も増加する傾向にあるが、かかる泡も本発明における消泡方法にて効果的に消泡が可能である。 As a result of examining the cause of foaming when the TAAH-containing developer wastewater is neutralized with carbon dioxide or carbon dioxide-containing gas, the resist-derived organic matter deposited by the neutralization reaction is one factor of foaming. As the amount of foam increases, the amount of foaming generated also tends to increase, but such foam can be effectively defoamed by the defoaming method of the present invention.
(炭酸ガス又は炭酸ガス含有ガス)
本発明の中和方法では、TAAH含有現像廃液を、炭酸ガス又は炭酸ガス含有ガスにより中和する。本発明において使用する、炭酸ガス又は炭酸ガス含有ガスとしては、工業的に入手可能な炭酸ガス又は炭酸ガス含有ガスであれば何ら制限なく使用することが可能である。さらには、中和反応に寄与しないガス(以下不活性ガスと称す。)等で希釈された炭酸ガス含有ガスを使用することも可能である。不活性ガス等で希釈された炭酸ガス含有ガスを使用した場合には、発泡量が増加する傾向にあるが、本発明の中和方法は、泡を外部に取り出して消泡させるため、泡の発生量の増大に関わらず消泡操作を行うことが可能である。また、本発明における中和反応後の電気分解工程において、炭酸塩及び/又は重炭酸塩を電気分解すると、電気分解ガスが副生する。該電気分解ガスは、電気分解の条件によっても異なるが、酸素をおよそ20%程度含有した炭酸ガス含有ガスであり、上記の理由により、本発明においても好適に使用することが可能である。上記電気分解ガスを炭酸ガス含有ガスとして中和反応に用いることは、炭酸ガスのリサイクルという観点からも好適である。(Carbon dioxide gas or gas containing carbon dioxide)
In the neutralization method of the present invention, the TAAH-containing developing waste liquid is neutralized with carbon dioxide or carbon dioxide-containing gas. The carbon dioxide gas or carbon dioxide-containing gas used in the present invention can be used without any limitation as long as it is an industrially available carbon dioxide gas or carbon dioxide-containing gas. Furthermore, it is also possible to use a carbon dioxide-containing gas diluted with a gas that does not contribute to the neutralization reaction (hereinafter referred to as an inert gas). When a carbon dioxide-containing gas diluted with an inert gas or the like is used, the amount of foaming tends to increase, but the neutralization method of the present invention takes out the foam to the outside and defoams it. It is possible to perform a defoaming operation regardless of an increase in the amount of generation. Further, in the electrolysis step after the neutralization reaction in the present invention, when the carbonate and / or bicarbonate is electrolyzed, an electrolysis gas is by-produced. The electrolysis gas is a carbon dioxide-containing gas containing about 20% oxygen, although it varies depending on electrolysis conditions, and can be suitably used in the present invention for the above reasons. Using the electrolysis gas as a carbon dioxide-containing gas for the neutralization reaction is also preferable from the viewpoint of recycling carbon dioxide.
(中和塔による中和方法)
本発明において、上記TAAH含有現像廃液の炭酸ガス又は炭酸ガス含有ガスによる中和装置としては、該TAAH含有現像廃液を塔頂部から塔底部に流通させ、炭酸ガス又は炭酸ガス含有ガスを塔底部から供給し、向流操作にてTAAHと炭酸ガス又は炭酸ガス含有ガスを接触させて反応せしめる中和塔を使用する。該中和装置として中和塔を用いた際には、連続的にTAAH含有現像廃液、及び炭酸ガス又は炭酸ガス含有ガスを供給して中和反応を行うことが可能であるため、好適な中和装置である。図1は本発明の最も好適な中和方法の概略図である。(Neutralization method using neutralization tower)
In the present invention, the TAAH-containing developer waste liquid is neutralized with carbon dioxide or carbon dioxide-containing gas. The TAAH-containing developer waste liquid is circulated from the tower top to the tower bottom, and carbon dioxide or carbon dioxide-containing gas is introduced from the tower bottom. A neutralization tower is used in which TAAH and carbon dioxide or carbon dioxide-containing gas are brought into contact with each other and reacted by countercurrent operation. When a neutralization tower is used as the neutralization device, it is possible to carry out a neutralization reaction by continuously supplying a TAAH-containing developer waste solution and carbon dioxide or carbon dioxide-containing gas. Japanese equipment. FIG. 1 is a schematic view of the most preferred neutralization method of the present invention.
前記TAAH含有現像廃液は、TAAH含有現像廃液供給配管2にて反応槽1へ供給される。TAAH含有現像廃液を気液界面より上部にて供給すると、上部で発泡した泡に乗って系外に排出されるため、中和塔内の反応液中に直接供給するのが好適である。炭酸ガス又は炭酸ガス含有ガスは、炭酸ガス又は炭酸ガス含有ガス供給配管8にて供給され、塔頂部へと移動しながら、TAAH含有現像廃液と接触して向流操作にて中和反応が進行する。中和反応終了後の処理液は、ポンプ9にて中和反応処理液の排出配管10にて排出され、次工程へと供給される。
The TAAH-containing developer waste liquid is supplied to the
中和反応時に発生した泡は、中和塔内を上昇し、気液界面付近にて集まり、泡供給配管3から中和塔外に排出され、消泡装置4にて消泡される。消泡装置で消泡された後は、溶液となっているため、消泡処理液循環配管7にて中和塔へ再供給してもよい。消泡後の溶液を中和塔に再循環することで、TAAH含有現像廃液の有効利用が図られる。また、未反応炭酸ガス、或いは、炭酸ガス含有ガス中の不活性ガス等は、炭酸ガス又は炭酸ガス含有ガス供給配管6にて系外に排出される。
Foam generated during the neutralization reaction rises in the neutralization tower, gathers in the vicinity of the gas-liquid interface, is discharged from the foam supply pipe 3 to the outside of the neutralization tower, and is defoamed by the defoaming device 4. After defoaming by the defoaming device, since it is in solution, it may be resupplied to the neutralization tower by the defoaming treatment
上記中和塔を用いて中和反応を行った際には、塔頂部から塔底部を流通するTAAH含有現像廃液は、塔底部より供給される炭酸ガスによって撹拌される。この時、炭酸ガスの偏流によるチャンネリングやバックミキシングが生じるため、中和塔内で炭酸ガスが均一に拡散せず、炭酸ガスの濃度が高くなる部分が生じることがある。中和塔内部の炭酸ガスの濃度が高い箇所は、現像廃液のpHが低くなるため、レジスト由来の有機物が粘着性の高い状態で一部析出し、中和塔及び配管に粘着して、閉塞させる可能性がある。このため、炭酸ガスの均等な拡散の促進させることを目的に、トレイ11にて仕切られた多段式の中和塔を使用し、ダウンカマー12にてTAAH含有現像廃液を流通させることが好ましく、さらには、中和塔内に充填剤を充填することが好ましい。該充填剤としては気液反応に用いる公知の充填剤が何ら制限なく使用することができる。
When the neutralization reaction is performed using the neutralization tower, the TAAH-containing developing waste liquid flowing from the tower top to the tower bottom is stirred by the carbon dioxide gas supplied from the tower bottom. At this time, channeling or backmixing due to the drift of carbon dioxide gas occurs, so that the carbon dioxide gas does not diffuse uniformly in the neutralization tower, and a portion where the concentration of carbon dioxide gas becomes high may occur. Where the carbon dioxide gas concentration inside the neutralization tower is high, the pH of the development waste liquid is low, so that the organic matter derived from the resist partially precipitates in a highly sticky state, adheres to the neutralization tower and piping, and is blocked. There is a possibility to make it. For this reason, for the purpose of promoting the uniform diffusion of carbon dioxide gas, it is preferable to use a multistage neutralization tower partitioned by the tray 11 and distribute the TAAH-containing developer waste solution in the
(中和反応)
上記中和反応における反応温度については、TAAH含有現像廃液は水溶液である点、及び、あまり温度が高すぎるとTAAH含有現像廃液中のレジストが析出したり固形化したりして炭酸ガスとの反応効率を低下させる点を考慮して、0℃〜80℃、特に20〜70℃の間で中和反応を行うことが好ましい。この際、中和塔頭頂部の気液界面付近の液温は40℃程度であり、泡の温度も同程度と考えられる。また、中和反応が最も活発な中和塔中央部から下部にかけての温度は60〜80℃程度になる。(Neutralization reaction)
Regarding the reaction temperature in the neutralization reaction, the TAAH-containing developer waste solution is an aqueous solution, and if the temperature is too high, the resist in the TAAH-containing developer waste solution precipitates or solidifies to react with carbon dioxide. Considering the point of lowering, it is preferable to carry out the neutralization reaction between 0 ° C. and 80 ° C., in particular between 20 and 70 ° C. At this time, the liquid temperature in the vicinity of the gas-liquid interface at the top of the neutralization tower is about 40 ° C., and the bubble temperature is considered to be about the same. Moreover, the temperature from the center part of the neutralization tower where the neutralization reaction is most active to the lower part is about 60 to 80 ° C.
さらに、上記中和反応の終点については、特に制限はなく、該現像廃液の再生方法における、以降のレジスト由来の有機物の分離工程に使用するろ過膜の耐久性や電解工程における該現像廃液のpHの影響等を勘案して適宜選択することができる。上記中和反応の終点は、通常pH8〜13.5の範囲から選択するのが好ましい。 Furthermore, the end point of the neutralization reaction is not particularly limited, and the durability of the filtration membrane used in the subsequent separation process of organic substances derived from the resist in the method for regenerating the development waste liquid and the pH of the development waste liquid in the electrolysis process Can be selected as appropriate in consideration of the effects of The end point of the neutralization reaction is usually preferably selected from the range of pH 8 to 13.5.
(炭酸ガス供給方法)
本発明において、炭酸ガス又は炭酸ガス含有ガスは塔底部から供給される。該炭酸ガス又は炭酸ガス含有ガスの供給方法については、特に制限なく、公知の供給方法を何ら制限なく用いることが可能である。公知の供給方法としては、例えば、ガス供給口を開けた配管による供給方法、ラインミキサーによる供給方法、エジェクターによる供給方法等が挙げられる。一般的に、ラインミキサー、エジェクターにより炭酸ガスを供給した際には、供給される炭酸ガスは泡径の小さい泡となり、炭酸ガスとTAAH含有現像廃液との接触面積が大きくなるため、TAAH含有現像廃液との反応効率が向上するため好適である。(CO2 supply method)
In the present invention, carbon dioxide or carbon dioxide-containing gas is supplied from the bottom of the tower. About the supply method of this carbon dioxide gas or a carbon dioxide containing gas, there is no restriction | limiting in particular, It is possible to use a well-known supply method without a restriction | limiting at all. As a known supply method, for example, a supply method using a pipe with an open gas supply port, a supply method using a line mixer, a supply method using an ejector, and the like can be given. In general, when carbon dioxide gas is supplied by a line mixer or ejector, the supplied carbon dioxide gas is a bubble having a small bubble diameter, and the contact area between the carbon dioxide gas and the TAAH-containing developer waste solution is increased. This is preferable because the reaction efficiency with the waste liquid is improved.
また、炭酸ガス含有ガスを用いた際には、炭酸ガス以外に上記不活性ガスを含有し、不活性ガスは気液界面にて発泡し排出される。この時、上記炭酸ガス含有ガスの供給方法として、ラインミキサー、エジェクター等を用いた際には、泡径が小さく、液率の高い泡が塔頂部の気液界面に発生するため、消泡速度が低下する傾向にある。このため、上記電気分解ガスを含む炭酸ガス含有ガスを使用する際には、ガス供給口を備えた配管による供給方法が、泡径の大きな消えやすい泡を発生させることができるため最も好適である。 Further, when the carbon dioxide containing gas is used, the inert gas is contained in addition to the carbon dioxide, and the inert gas is foamed and discharged at the gas-liquid interface. At this time, when a line mixer, an ejector or the like is used as a method for supplying the carbon dioxide-containing gas, a bubble diameter is small and bubbles with a high liquid ratio are generated at the gas-liquid interface at the top of the tower. Tend to decrease. For this reason, when using the carbon dioxide-containing gas containing the electrolysis gas, a supply method using a pipe provided with a gas supply port is most preferable because it can generate bubbles having a large bubble diameter and easily disappear. .
上記ガス供給口を備えた配管による供給方法における、ガス供給口の直径については、中和塔のサイズ、上記中和反応の反応効率、消泡装置の消泡能力等を勘案して適宜決定すればよい。泡径が小さすぎると、液率の高い泡が発生して効果が少なく、あまり大きくすぎると、炭酸ガス含有ガスとTAAH含有現像廃液の接触面積が低下するため中和反応の反応効率が低下し、中和反応を終結させるために過剰の炭酸ガス含有ガスを必要とする。したがって、中和塔内に供給される炭酸ガス含有ガスの泡径は、ガス供給口直近の泡径で好ましくは2mm〜6mmである。上記ガス供給口の形状は、上記の泡径の炭酸ガス含有ガスが供給できれば特に制限無いが、泡が球状であること、配管の洗浄等の処理が簡便であることから、円形が好適である。供給されるガスの泡径は、ガス供給口の面積により制御でき、ガス供給口の面積は、0.07〜80mm2、さらに好ましくは3〜30mm2の範囲にあるのが好適である。上記の面積は直径0.3〜10mm、好ましくは直径2〜6mmの円に相当する。The diameter of the gas supply port in the supply method using the pipe having the gas supply port should be appropriately determined in consideration of the size of the neutralization tower, the reaction efficiency of the neutralization reaction, the defoaming ability of the defoaming device, and the like. That's fine. If the bubble diameter is too small, bubbles with a high liquid ratio are generated and the effect is small. If it is too large, the contact area between the carbon dioxide-containing gas and the TAAH-containing developing waste liquid decreases, so the reaction efficiency of the neutralization reaction decreases. In order to terminate the neutralization reaction, an excess carbon dioxide-containing gas is required. Therefore, the bubble diameter of the carbon dioxide-containing gas supplied into the neutralization tower is preferably 2 mm to 6 mm in terms of the bubble diameter closest to the gas supply port. The shape of the gas supply port is not particularly limited as long as the carbon dioxide-containing gas having the above-mentioned bubble diameter can be supplied. However, since the bubbles are spherical and treatment such as pipe cleaning is simple, a circle is preferable. . The bubble diameter of the supplied gas can be controlled by the area of the gas supply port, and the area of the gas supply port is preferably in the range of 0.07 to 80 mm 2 , more preferably 3 to 30 mm 2 . The above area corresponds to a circle having a diameter of 0.3 to 10 mm, preferably 2 to 6 mm.
さらに、上記ガス供給口は、中和反応を効率良く行うという観点から、配管に1つ以上有することが好ましく、さらに好ましくは1〜15個有することが好ましい。上記個数のガス供給口を有する配管における該ガス供給口の総面積は、通常、反応槽の容積100L当たり20〜300mm2程度である。Furthermore, from the viewpoint of efficiently performing a neutralization reaction, the gas supply port preferably has one or more, more preferably 1 to 15 in the pipe. The total area of the gas supply ports in the pipe having the number of gas supply ports is usually about 20 to 300 mm 2 per 100 L of the reaction tank volume.
(消泡)
本発明におけるTAAH含有現像廃液と炭酸ガス又は炭酸ガス含有ガスとの中和反応にて発生した泡は、中和塔内を上昇し、気液界面付近にて集まり、泡流として、泡流供給配管3から中和塔外に排出され、消泡装置4にて消泡される。消泡された後の溶液は、消泡処理液循環配管7にて中和塔へ再供給される。(Defoaming)
Bubbles generated by the neutralization reaction between the TAAH-containing developing waste liquid and carbon dioxide gas or carbon dioxide-containing gas in the present invention rise in the neutralization tower, gather near the gas-liquid interface, and supply as a bubble flow. It is discharged out of the neutralization tower from the pipe 3 and defoamed by the defoaming device 4. The solution after defoaming is supplied again to the neutralization tower through the defoaming treatment
上記泡流の排出方法については、公知の排出方法が何ら制限なく使用することができる。公知の排出方法としては、吸引ポンプによる泡流の吸出しによる排出方法、さらに未反応炭酸ガス、或いは、炭酸ガス含有ガス中の不活性ガスによる、中和塔外への排出方法等が挙げられる。この中でも、未反応炭酸ガス、或いは、炭酸ガス含有ガス中の不活性ガスによる、中和塔外への排出方法は、装置が簡便で経済的であり好適である。 About the discharge method of the said bubble flow, a well-known discharge method can be used without a restriction | limiting at all. Examples of the known discharge method include a discharge method by sucking out a bubble flow with a suction pump, and a discharge method to the outside of the neutralization tower using an unreacted carbon dioxide gas or an inert gas in a carbon dioxide-containing gas. Among these, the method of discharging to the outside of the neutralization tower with an unreacted carbon dioxide gas or an inert gas in a carbon dioxide-containing gas is preferable because the apparatus is simple and economical.
上記、泡流として中和塔外へ排出した泡の消泡方法としては、消泡剤を使用しない消泡方法であれば公知の消泡方法が何ら制限なく使用することができる。公知の消泡方法としては、インペラー等の打撃による消泡方法、液滴を噴射する消泡方法、液面に超音波を照射する消泡方法、加熱体5と接触せしめる消泡方法等が挙げられる。上記の消泡方法の中でも、消泡の効率性という観点から、加熱体と接触せしめる消泡方法が最も好適である。
As the defoaming method for the foam discharged to the outside of the neutralization tower as a foam flow, any known defoaming method can be used without any limitation as long as the defoaming method does not use an antifoaming agent. Known defoaming methods include a defoaming method by striking an impeller, a defoaming method for ejecting liquid droplets, a defoaming method for irradiating the liquid surface with ultrasonic waves, a defoaming method for contacting the
上記、中和塔より排出した泡と加熱体との接触方法としては、二重管型等の多管式熱交換器を使用し、管の内部に中和塔より取り出した泡を含んだ液を流通させ、管外部に加熱体を流通せしめることで、中和塔より取り出した泡を加熱体と接触せしめることができる。中和塔より取り出した泡は、管壁を通じて加熱体と接触することで消泡される。消泡した後はTAAH含有現像廃液として、再度中和塔に供給して、中和反応に供してもよい。 As a method of contacting the foam discharged from the neutralization tower and the heating body, a multi-tube heat exchanger such as a double pipe type is used, and the liquid containing the foam taken out from the neutralization tower inside the pipe And the bubble taken out from the neutralization tower can be brought into contact with the heating body. The foam taken out from the neutralization tower is defoamed by contacting the heating body through the tube wall. After defoaming, it may be supplied again to the neutralization tower as a TAAH-containing developer waste solution for the neutralization reaction.
上記、泡を含んだ泡流中の泡を消泡させるために用いる加熱体の温度は、排出された泡の温度以上であり、好ましくは70℃以上、さらに好ましくは80℃以上である。70℃未満では長時間接触させれば消泡されるが、長時間接触させるためには、消泡装置が大型に且つ煩雑となるため、工業的に効率的ではない。したがって、消泡の効率性の観点から加熱体の温度は、好ましくは70℃以上、特に80℃以上であることが好ましい。また、加熱体の温度を上げるほど消泡速度は向上するが、高温の加熱体と接触させると、接触時間によっては、TAAHが分解しアミン臭が発生する傾向にある。従って、加熱体の温度は80℃以上、TAAHの分解温度未満が好適であり、消泡速度とTAAHの分解抑制の観点から80℃〜110℃が好ましく、80℃〜97℃が最も好適である。80〜97℃の加熱体の媒体としては、工業用の温水を使用することにより可能である。なお、加熱体の温度が低い場合であっても、長時間の加熱を行えば消泡効果は得られる。また、加熱体の温度が高い場合には、加熱体との接触時間を短時間とすることで、TAAHの分解を抑制でき、消泡効果も得られる。 The temperature of the heating element used for defoaming the bubbles in the bubble stream containing bubbles is equal to or higher than the temperature of the discharged bubbles, preferably 70 ° C or higher, more preferably 80 ° C or higher. When the temperature is lower than 70 ° C., the foam is removed if the contact is made for a long time. However, in order to make the contact for a long time, the defoaming apparatus becomes large and complicated, which is not industrially efficient. Therefore, from the viewpoint of defoaming efficiency, the temperature of the heating body is preferably 70 ° C. or higher, particularly preferably 80 ° C. or higher. Further, the defoaming speed is improved as the temperature of the heating body is raised. However, when contacting with a high-temperature heating body, depending on the contact time, TAAH tends to decompose and an amine odor tends to be generated. Accordingly, the temperature of the heating body is preferably 80 ° C. or higher and lower than the decomposition temperature of TAAH, preferably 80 ° C. to 110 ° C., and most preferably 80 ° C. to 97 ° C. from the viewpoint of defoaming speed and suppression of TAAH decomposition. . The medium for the heating body at 80 to 97 ° C. can be obtained by using industrial warm water. Even if the temperature of the heating body is low, the defoaming effect can be obtained by heating for a long time. Moreover, when the temperature of a heating body is high, decomposition | disassembly of TAAH can be suppressed by shortening the contact time with a heating body, and the defoaming effect is also acquired.
本発明における泡流と加熱体との接触時間については、泡流中に含有する泡の形状、泡の液率によっても異なるため、一概には言えず、上記泡の形状、泡の液率と、加熱体の媒体及び温度に応じて適宜決定すればよい。接触時間が長いほど確実に消泡させることが可能であるが、接触時間が長いほど、消泡にかかる時間が増大するため、工業的に効率良いとは言えないこと、さらには接触時間が長いほどTAAHが分解してアミン臭が発生する傾向にあるため、上記80〜97℃の加熱体を用いた際の泡流と加熱体の接触時間としては1〜30秒、特に3〜15秒が好適である。 About the contact time between the bubble flow and the heating element in the present invention, since it varies depending on the shape of the foam contained in the bubble flow and the liquid ratio of the foam, it cannot be said unconditionally. What is necessary is just to determine suitably according to the medium and temperature of a heating body. The longer the contact time, the more defoaming is possible. However, the longer the contact time, the longer the time required for defoaming. Therefore, it cannot be said that it is industrially efficient, and the contact time is long. Since TAAH tends to decompose and an amine odor is generated, the contact time between the bubble flow and the heating body when using the heating body at 80 to 97 ° C. is 1 to 30 seconds, particularly 3 to 15 seconds. Is preferred.
上記、加熱体として80〜97℃の加熱体を使用し、接触時間を1〜30秒とした際の消泡装置における消泡処理能力は、加熱体と接触する接触面の単位面積当たりに換算すると1〜6m3/h・m2である。The above-mentioned defoaming ability in the defoaming apparatus when using a heating body of 80 to 97 ° C. as the heating body and setting the contact time to 1 to 30 seconds is converted per unit area of the contact surface in contact with the heating body. Then, it is 1 to 6 m 3 / h · m 2 .
(中和工程以後の工程)
本発明における中和方法により、TAAH含有現像廃液中のTAAHは、炭酸塩、及び重炭酸塩となることで、レジスト由来有機物を溶解させるTAAHの割合が低下する。そして、該現像廃液中におけるレジスト由来有機物の溶解度が低下し、レジスト由来有機物が析出するため、これをろ過等公知の操作で除去が可能である。さらに、上記TAAHの炭酸塩、及び重炭酸塩含有のろ液を電気分解することにより、TAAHを得ることができる。この時に前記した電気分解ガスが副生するが、前記のとおり、該電気分解ガスを本発明の中和方法における、炭酸ガス含有ガスとして循環利用することが可能である。尚、レジスト由来有機物のろ過後に、溶解している金属イオン等を、イオン交換樹脂やキレート樹脂等により除去することも可能である。(Process after neutralization process)
By the neutralization method in the present invention, TAAH in the TAAH-containing developing waste liquid becomes carbonate and bicarbonate, so that the ratio of TAAH that dissolves the resist-derived organic matter is reduced. And since the solubility of the resist origin organic substance in this developing waste liquid falls and resist origin organic substance precipitates, this can be removed by well-known operation, such as filtration. Furthermore, TAAH can be obtained by electrolyzing the TAAH carbonate and bicarbonate-containing filtrate. At this time, the electrolysis gas described above is by-produced, and as described above, the electrolysis gas can be circulated and used as the carbon dioxide-containing gas in the neutralization method of the present invention. In addition, it is also possible to remove the dissolved metal ions and the like with an ion exchange resin or a chelate resin after the resist-derived organic substance is filtered.
以下、本発明を更に具体的に説明するため、実施例を示すが、本発明は、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.
実施例1
透明塩化ビニールで製作した中和塔を用いて行なった。中和塔のサイズは直径210mm、高さ2500mmであり、内部にはダウンカマーを有したトレイを3箇所設置した。Example 1
This was carried out using a neutralization tower made of transparent vinyl chloride. The size of the neutralization tower was 210 mm in diameter and 2500 mm in height, and three trays with downcomers were installed inside.
さらに、空洞部にポリプロピレン製充填剤(ハイレックス(東洋ゴム工業社製)、3/4インチ)を充填した。また、塔底からの高さ1850mmの側面にノズルを設置し泡の抜き出し口とした。炭酸ガス含有ガスは、直径2mm(断面積3mm2)で5個のガス供給口を開けた供給管から供給した。Further, a polypropylene filler (Hilex (manufactured by Toyo Tire & Rubber Co., Ltd.), 3/4 inch) was filled in the cavity. In addition, a nozzle was installed on a side surface having a height of 1850 mm from the tower bottom to serve as a bubble outlet. The carbon dioxide-containing gas was supplied from a supply pipe having a diameter of 2 mm (cross-sectional area of 3 mm 2 ) and five gas supply ports opened.
TAAH含有現像廃液として、濃度20質量%、pH14.7の水酸化テトラメチルアンモニウム(以下TMAHと称す)含有現像廃液を使用した。 As the TAAH-containing developer waste solution, a developer waste solution containing tetramethylammonium hydroxide (hereinafter referred to as TMAH) having a concentration of 20% by mass and pH 14.7 was used.
まず、上記TMAH含有現像廃液56Lを中和塔に張り込み、下部より炭酸ガス含有ガス(炭酸ガス濃度75vol%)を標準状態で520L/hの速度で供給し中和反応を開始した。その後、上記TMAH含有現像廃液を10L/hの速度でTAAH含有現像廃液供給配管から供給し、向流操作で中和反応を行った。 First, 56 L of the above TMAH-containing developer waste liquid was put into a neutralization tower, and a carbon dioxide-containing gas (carbon dioxide concentration 75 vol%) was supplied from the lower part at a rate of 520 L / h in a standard state to initiate a neutralization reaction. Thereafter, the TMAH-containing developer waste liquid was supplied from the TAAH-containing developer waste liquid supply pipe at a rate of 10 L / h, and a neutralization reaction was performed by countercurrent operation.
中和反応によって発生した泡を上記ノズルから抜き出し、加熱体の温度が90℃の二重管型熱交換器(SUS製、直径20mm、750L 、伝熱面積0.04m2)に接触時間7秒で通したところ、泡の90%以上が消泡し、残存する10%以下の泡は空隙を持った断続相となり、消泡効果が認められた。この時の消泡処理能力は3.3m3/h・m2であった。また、この時、TMAHの分解物と考えられるアミン臭は確認されなかった。Bubbles generated by the neutralization reaction are extracted from the nozzle, and contacted with a double tube heat exchanger (made of SUS, diameter 20 mm, 750 L, heat transfer area 0.04 m 2 ) having a heating temperature of 90 ° C. for 7 seconds. As a result, 90% or more of the foam was defoamed, and the remaining 10% or less of the foam became an intermittent phase with voids, and the defoaming effect was recognized. The defoaming treatment capability at this time was 3.3 m 3 / h · m 2 . At this time, the amine odor considered to be a decomposition product of TMAH was not confirmed.
実施例2〜10
熱交換器に使用した加熱体の温度、及び加熱体との接触時間を表1に示す条件に変化させた以外は実施例1と同様に中和反応を行った。結果を表1に示す。なお、消泡の効果は、熱交換器を流通した後に残存する泡の、熱交換器に供給した泡に対する割合、すなわち熱交換器を通過した後の泡の残存率で評価した。また、実施例1〜9においても、TMAHの分解物と考えられるアミン臭は確認されなかった。実施例10では、若干のアミン臭が確認されたが、消泡効果の点では良好であった。
A neutralization reaction was performed in the same manner as in Example 1 except that the temperature of the heating element used in the heat exchanger and the contact time with the heating element were changed to the conditions shown in Table 1. The results are shown in Table 1. In addition, the effect of defoaming was evaluated by the ratio of the foam remaining after flowing through the heat exchanger to the foam supplied to the heat exchanger, that is, the residual ratio of the foam after passing through the heat exchanger. Moreover, also in Examples 1-9, the amine odor considered to be a decomposition product of TMAH was not confirmed. In Example 10, a slight amine odor was confirmed, but the defoaming effect was good.
実施例11〜12
炭酸ガス含有ガス供給管のガス供給口の直径及びガス供給口の個数を表2に示す数値とした以外は実施例1と同様に中和反応を行った。結果を表2に示す。なお、消泡効果は上記表1と同様に評価した。また、いずれの実施例においても、TMAHの分解物と考えられるアミン臭は確認されなかった。
A neutralization reaction was performed in the same manner as in Example 1 except that the diameter of the gas supply port of the carbon dioxide-containing gas supply pipe and the number of gas supply ports were changed to the values shown in Table 2. The results are shown in Table 2. The defoaming effect was evaluated in the same manner as in Table 1 above. Further, in any of the examples, an amine odor considered to be a decomposed product of TMAH was not confirmed.
実施例13〜16
中和塔の直径、炭酸ガス含有ガス供給管のガス供給口の直径及びガス供給口の個数、及び炭酸ガス含有ガスの供給速度を表3に示す数値とした以外は実施例1と同様に中和反応を行った。結果を表3に示す。なお、消泡効果は上記表1と同様に評価した。また、いずれの実施例においても、TMAHの分解物と考えられるアミン臭は確認されなかった。
The same as in Example 1 except that the diameter of the neutralization tower, the diameter of the gas supply port of the carbon dioxide containing gas supply pipe, the number of gas supply ports, and the supply rate of the carbon dioxide containing gas were changed to the numerical values shown in Table 3. A sum reaction was performed. The results are shown in Table 3. The defoaming effect was evaluated in the same manner as in Table 1 above. Further, in any of the examples, an amine odor considered to be a decomposed product of TMAH was not confirmed.
実施例17
透明塩化ビニールで製作した中和塔を用いて行なった。中和塔のサイズは直径210mm、高さ2500mmであり、内部にはダウンカマーを有したトレイを3箇所設置した。Example 17
This was carried out using a neutralization tower made of transparent vinyl chloride. The size of the neutralization tower was 210 mm in diameter and 2500 mm in height, and three trays with downcomers were installed inside.
さらに、空洞部にポリプロピレン製充填剤(ハイレックス(東洋ゴム工業社製)、3/4インチ)を充填した。また、塔底からの高さ1850mmの側面にノズルを設置し泡の抜き出し口とし、加熱体の温度が90℃の二重管型熱交換器(SUS製、直径20mm、750L 、伝熱面積0.04m2)を設置した。さらに、熱交換器を経由した液を中和塔に循環する消泡処理液循環配管を設置し、中和塔の塔底からの高さ1750mmの側面に接続した。炭酸ガス含有ガスは、直径2mmで5個の穴を開けた供給管から供給した。Further, a polypropylene filler (Hilex (manufactured by Toyo Tire & Rubber Co., Ltd.), 3/4 inch) was filled in the cavity. In addition, a double-pipe heat exchanger (made by SUS, diameter 20 mm, 750 L, heat transfer area 0) with a nozzle installed on the side of 1850 mm height from the bottom of the tower to serve as a bubble outlet and the temperature of the heating element is 90 ° C. 0.04 m 2 ). Furthermore, a defoaming treatment liquid circulation pipe for circulating the liquid via the heat exchanger to the neutralization tower was installed and connected to a side surface having a height of 1750 mm from the bottom of the neutralization tower. The carbon dioxide-containing gas was supplied from a supply pipe having a diameter of 2 mm and five holes.
TAAH含有現像廃液として、濃度20質量%、pH14.7の水酸化テトラメチルアンモニウム(以下TMAHと称す)含有現像廃液を使用した。 As the TAAH-containing developer waste solution, a developer waste solution containing tetramethylammonium hydroxide (hereinafter referred to as TMAH) having a concentration of 20% by mass and pH 14.7 was used.
まず、上記TMAH含有現像廃液56L(この時の液の高さは1800mmであった。)を中和塔に張り込み、下部より炭酸ガス含有ガス(炭酸ガス濃度75vol%)を標準状態で520L/hの速度で供給し中和反応を開始した。その後、上記TMAH含有現像廃液を10L/hの速度でTAAH含有現像廃液供給配管から供給し、向流操作で中和反応を行った。 First, the above-mentioned TMAH-containing developer waste liquid 56L (the height of the liquid at this time was 1800 mm) was put into a neutralization tower, and a carbon dioxide-containing gas (carbon dioxide concentration 75 vol%) was 520 L / h in a standard state from the bottom. The neutralization reaction was started by feeding at a rate of. Thereafter, the TMAH-containing developer waste liquid was supplied from the TAAH-containing developer waste liquid supply pipe at a rate of 10 L / h, and a neutralization reaction was performed by countercurrent operation.
中和反応開始時に、気液界面上部の気相部にて高さ50〜100mmの発泡層が発生したが、発生した泡は、炭酸ガス含有ガス中の未反応炭酸ガス及び不活性ガスによって泡流として熱交換器に導入され、泡の90%以上が消失して、処理液は中和塔に循環した。この時の泡と熱交換器との接触時間は7秒であった。 At the start of the neutralization reaction, a foamed layer having a height of 50 to 100 mm was generated in the gas phase part above the gas-liquid interface. The generated bubbles were caused by unreacted carbon dioxide and inert gas in the carbon dioxide-containing gas. As a stream, it was introduced into the heat exchanger, 90% or more of the bubbles disappeared, and the treatment liquid was circulated to the neutralization tower. At this time, the contact time between the foam and the heat exchanger was 7 seconds.
上記条件下で中和反応を連続して行ったところ、1ヶ月後においても、発泡層は増加せず、連続して中和反応を行うことができた。また、この時、TMAHの分解物と考えられるアミン臭は確認されなかった。 When the neutralization reaction was continuously carried out under the above conditions, the foamed layer did not increase even after one month, and the neutralization reaction could be carried out continuously. At this time, the amine odor considered to be a decomposition product of TMAH was not confirmed.
比較例1
透明塩化ビニールで製作した中和塔を用いて行なった。中和塔のサイズは直径210mm、高さ2500mmであり、内部にはダウンカマーを有したトレイを3箇所設置した。Comparative Example 1
This was carried out using a neutralization tower made of transparent vinyl chloride. The size of the neutralization tower was 210 mm in diameter and 2500 mm in height, and three trays with downcomers were installed inside.
さらに、空洞部にポリプロピレン製充填剤(ハイレックス(東洋ゴム工業社製)、3/4インチ)を充填した。炭酸ガス含有ガスは、直径2mmで5個の穴を開けた供給管から供給した。 Further, a polypropylene filler (Hilex (manufactured by Toyo Tire & Rubber Co., Ltd.), 3/4 inch) was filled in the cavity. The carbon dioxide-containing gas was supplied from a supply pipe having a diameter of 2 mm and five holes.
TAAH含有現像廃液として、濃度20質量%、pH14.7の水酸化テトラメチルアンモニウム(以下TMAHと称す)含有現像廃液を使用した。 As the TAAH-containing developer waste solution, a developer waste solution containing tetramethylammonium hydroxide (hereinafter referred to as TMAH) having a concentration of 20% by mass and pH 14.7 was used.
まず、上記TMAH含有現像廃液56Lを中和塔に張り込み、下部より炭酸ガス含有ガス(炭酸ガス濃度75vol%)を標準状態で520L/hの速度で供給し中和反応を開始した。その後、上記TMAH含有現像廃液を10L/hの速度でTAAH含有現像廃液供給配管から供給し、向流操作で中和反応を行った。 First, 56 L of the above TMAH-containing developer waste liquid was put into a neutralization tower, and a carbon dioxide-containing gas (carbon dioxide concentration 75 vol%) was supplied from the lower part at a rate of 520 L / h in a standard state to initiate a neutralization reaction. Thereafter, the TMAH-containing developer waste liquid was supplied from the TAAH-containing developer waste liquid supply pipe at a rate of 10 L / h, and a neutralization reaction was performed by countercurrent operation.
中和反応開始と同時に気液界面付近に発泡が認められたため、TMAH含有現像廃液及び炭酸ガス含有ガスの供給を一時停止し、界面上部を90℃に加熱したところ、発泡は消失した。そこで、中和塔上部を90℃に加熱しつつ、TMAH現像廃液及び炭酸ガス含有ガスの供給を再開し、中和反応を継続したところ、中和反応が継続するにつれて、気液界面で残存する発泡量が増加し、最終的には、中和塔塔頂部まで泡層が増大したため、中和反応を中断した。この時中和塔内にて、TMAHの分解物とみられるアミン臭が確認された。 Since foaming was observed in the vicinity of the gas-liquid interface simultaneously with the start of the neutralization reaction, the supply of TMAH-containing developing waste liquid and carbon dioxide-containing gas was temporarily stopped and the upper part of the interface was heated to 90 ° C., and the foaming disappeared. Therefore, while the upper part of the neutralization tower was heated to 90 ° C., the supply of the TMAH developing waste liquid and the carbon dioxide-containing gas was resumed and the neutralization reaction was continued. As the neutralization reaction continued, it remained at the gas-liquid interface. The amount of foaming increased, and finally the foam layer increased to the top of the neutralization tower, so the neutralization reaction was interrupted. At this time, in the neutralization tower, an amine odor considered to be a decomposition product of TMAH was confirmed.
比較例2
加熱体の温度を80℃、炭酸ガス含有ガスを標準状態で315L/hで供給した以外は、比較例1と同様の条件で中和反応を行った。中和反応を継続するにつれて、気液界面で残存する発泡量が増加し、最終的には、中和塔塔頂部まで泡層が増大したため、中和反応を中断した。この時中和塔内にて、TMAHの分解物とみられるアミン臭が微かに確認された。Comparative Example 2
The neutralization reaction was performed under the same conditions as in Comparative Example 1 except that the temperature of the heating element was 80 ° C. and the carbon dioxide-containing gas was supplied at a standard state of 315 L / h. As the neutralization reaction continued, the amount of foam remaining at the gas-liquid interface increased, and eventually the bubble layer increased to the top of the neutralization tower, so the neutralization reaction was interrupted. At this time, in the neutralization tower, the amine odor considered to be a decomposition product of TMAH was slightly confirmed.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008543090A JP5201630B2 (en) | 2006-11-09 | 2007-11-06 | Method for neutralizing developer wastewater containing tetraalkylammonium hydroxide |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006304223 | 2006-11-09 | ||
| JP2006304223 | 2006-11-09 | ||
| PCT/JP2007/071568 WO2008056672A1 (en) | 2006-11-09 | 2007-11-06 | Method of neutralizing waste developing solution containing tetraalkylammonium hydroxide |
| JP2008543090A JP5201630B2 (en) | 2006-11-09 | 2007-11-06 | Method for neutralizing developer wastewater containing tetraalkylammonium hydroxide |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPWO2008056672A1 JPWO2008056672A1 (en) | 2010-02-25 |
| JP5201630B2 true JP5201630B2 (en) | 2013-06-05 |
Family
ID=39364487
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008543090A Expired - Fee Related JP5201630B2 (en) | 2006-11-09 | 2007-11-06 | Method for neutralizing developer wastewater containing tetraalkylammonium hydroxide |
Country Status (5)
| Country | Link |
|---|---|
| JP (1) | JP5201630B2 (en) |
| KR (1) | KR101193925B1 (en) |
| CN (1) | CN101558013A (en) |
| TW (1) | TWI396949B (en) |
| WO (1) | WO2008056672A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8646581B2 (en) | 2008-09-19 | 2014-02-11 | Mitsubishi Electric Corporation | Elevator group management system having fellow passenger group assignment |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5166337B2 (en) * | 2009-03-30 | 2013-03-21 | メタウォーター株式会社 | Methane fermentation treatment method and methane fermentation treatment apparatus |
| JP6063806B2 (en) * | 2012-08-16 | 2017-01-18 | 株式会社Ihi | Neutralizer |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5190065A (en) * | 1975-02-06 | 1976-08-06 | ||
| JPS52142860A (en) * | 1976-05-25 | 1977-11-29 | Shimizu Construction Co Ltd | Treating method for neutralizing alkalline drainage |
| JPH02160007A (en) * | 1988-12-13 | 1990-06-20 | Nkk Corp | Defoaming method and defoaming device |
| JPH0517889A (en) * | 1991-07-12 | 1993-01-26 | Chlorine Eng Corp Ltd | Method for regenerating tetra-alkyl ammonium hydroxide |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5354434A (en) * | 1991-07-12 | 1994-10-11 | Chlorine Engineers Corp. Ltd. | Method for regenerating tetraalkylammonium hydroxide |
-
2007
- 2007-11-06 CN CNA2007800401005A patent/CN101558013A/en active Pending
- 2007-11-06 WO PCT/JP2007/071568 patent/WO2008056672A1/en active Application Filing
- 2007-11-06 JP JP2008543090A patent/JP5201630B2/en not_active Expired - Fee Related
- 2007-11-06 KR KR1020097008688A patent/KR101193925B1/en not_active Expired - Fee Related
- 2007-11-08 TW TW96142219A patent/TWI396949B/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5190065A (en) * | 1975-02-06 | 1976-08-06 | ||
| JPS52142860A (en) * | 1976-05-25 | 1977-11-29 | Shimizu Construction Co Ltd | Treating method for neutralizing alkalline drainage |
| JPH02160007A (en) * | 1988-12-13 | 1990-06-20 | Nkk Corp | Defoaming method and defoaming device |
| JPH0517889A (en) * | 1991-07-12 | 1993-01-26 | Chlorine Eng Corp Ltd | Method for regenerating tetra-alkyl ammonium hydroxide |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8646581B2 (en) | 2008-09-19 | 2014-02-11 | Mitsubishi Electric Corporation | Elevator group management system having fellow passenger group assignment |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101558013A (en) | 2009-10-14 |
| KR101193925B1 (en) | 2012-10-24 |
| KR20090077932A (en) | 2009-07-16 |
| TWI396949B (en) | 2013-05-21 |
| WO2008056672A1 (en) | 2008-05-15 |
| JPWO2008056672A1 (en) | 2010-02-25 |
| TW200832085A (en) | 2008-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5950790B2 (en) | Wastewater treatment method and system | |
| JP5072062B2 (en) | Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water | |
| US8057676B2 (en) | Drainage water-treating method | |
| TWI500445B (en) | A sulfur-containing gas-containing desulfurization method, and a desulfurization apparatus | |
| US20090250396A1 (en) | Drainage water-treating method and drainage water-treating apparatus | |
| TWI416278B (en) | Neutralization method of developing waste liquid containing tetraalkylammonium hydroxide | |
| CN107635633B (en) | Degassing apparatus and method for stripping gas from liquid | |
| JP5201630B2 (en) | Method for neutralizing developer wastewater containing tetraalkylammonium hydroxide | |
| KR20200031649A (en) | Water treatment membrane cleaning device and cleaning method | |
| KR20150079580A (en) | Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials | |
| JP5260422B2 (en) | Anaerobic biological treatment method and anaerobic biological treatment apparatus | |
| TW201222173A (en) | Method for removal of photoresist | |
| JP6278796B2 (en) | Deodorization device | |
| TWI509682B (en) | Substrate processing apparatus and processing method | |
| JP6534245B2 (en) | Breeding water circulation system for closed circulation type breeding | |
| JP2865452B2 (en) | Removal device for dissolved gas in raw water | |
| JP6887574B1 (en) | Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method | |
| JP4369804B2 (en) | Floating separation method for organic wastewater | |
| JPH1177087A (en) | Anaerobic biological treatment method and apparatus for organic wastewater | |
| JP2000334465A (en) | Device for removing nitrogen and phosphorus in waste water | |
| JP2005211825A (en) | Biological waste liquid treatment apparatus | |
| JP2011103355A (en) | Method for cleaning wafer | |
| JP2010131536A (en) | Deoxygenation/decarbonation apparatus | |
| JP2007292457A (en) | Steam boiler device | |
| JP3773640B2 (en) | Removal method of hydrogen sulfide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100809 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130116 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130206 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5201630 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |
|
| LAPS | Cancellation because of no payment of annual fees |