JP5352057B2 - Method for producing fuel oil base material - Google Patents
Method for producing fuel oil base material Download PDFInfo
- Publication number
- JP5352057B2 JP5352057B2 JP2007063164A JP2007063164A JP5352057B2 JP 5352057 B2 JP5352057 B2 JP 5352057B2 JP 2007063164 A JP2007063164 A JP 2007063164A JP 2007063164 A JP2007063164 A JP 2007063164A JP 5352057 B2 JP5352057 B2 JP 5352057B2
- Authority
- JP
- Japan
- Prior art keywords
- content
- fuel oil
- base material
- oil base
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は、燃料油基材の製造方法に関し、特には極めて低い硫黄含有量でありながら優れた酸化安定性を有する軽油基材を製造する方法に関する。 The present invention relates to a method for producing a fuel oil base, and more particularly to a method for producing a light oil base having excellent oxidation stability while having a very low sulfur content.
ディーゼルエンジン用燃料等に使用される軽油は、貯蔵中に酸化すると変色、沈澱性の重合物(スラッジ)の生成、粘度上昇等が認められ、また、酸化によって生じた過酸化物(ペルオキシド)は燃料系統の部材(ゴムや金属等)を劣化させることが知られている。そのため、酸化安定性は軽油の品質安定性を評価する上で重要な指標の一つとなっており、高い酸化安定性を有する軽油が望まれる。近年では、ディーゼルエンジンの排気ガス規制強化により、コモンレール方式による燃料噴射の高圧化が一段と進むことで軽油への熱負荷が増大し、従来以上に軽油の酸化安定性を高めることが求められている。 Light oil used for diesel engine fuel, etc. is discolored during storage, formation of precipitated polymer (sludge), increased viscosity, etc. Peroxide produced by oxidation is It is known to deteriorate fuel system members (rubber, metal, etc.). Therefore, oxidation stability is one of the important indices for evaluating the quality stability of light oil, and a light oil having high oxidation stability is desired. In recent years, due to stricter exhaust gas regulations for diesel engines, the pressure increase of fuel injection by the common rail system has further increased, increasing the thermal load on light oil and increasing the oxidation stability of light oil more than before. .
また、排気ガス浄化触媒の被毒防止から、硫黄分が殆どないいわゆるサルファーフリーの燃料油が2005年1月から市場に投入されている。また、燃費規制や二酸化炭素排出量低減、排ガス中の有毒物低減を背景に、軽油の硫黄分は10質量ppmよりもさらに低くすることが要求されている。硫黄分を除去するためには、高温高圧下に軽油に水素を吹き込んで固体触媒に接触させ、硫黄分を硫化水素として除去する水素化脱硫法が一般に行われる。しかしながら、硫黄分を高度に除去する過程において高温で熱負荷を受けることにより、軽油中に不安定な物質が生成され、酸化安定性が損なわれる場合が多い。そこで、軽油の硫黄分を除去する水素化脱硫反応において、温度を下げて酸素に対して不安定な炭化水素構造をもつ物質の生成を抑えることが考えられる。 Further, so-called sulfur-free fuel oil having almost no sulfur content has been put on the market since January 2005 to prevent poisoning of the exhaust gas purification catalyst. Further, against the background of fuel consumption regulations, carbon dioxide emission reduction, and toxic substance reduction in exhaust gas, the sulfur content of light oil is required to be lower than 10 ppm by mass. In order to remove the sulfur content, a hydrodesulfurization method is generally performed in which hydrogen is blown into light oil under high temperature and high pressure to be brought into contact with a solid catalyst to remove the sulfur content as hydrogen sulfide. However, when subjected to a heat load at a high temperature in the process of highly removing sulfur, unstable substances are often generated in light oil, and oxidation stability is often impaired. Therefore, in the hydrodesulfurization reaction that removes the sulfur content of light oil, it is conceivable to reduce the temperature to suppress the production of a substance having a hydrocarbon structure unstable to oxygen.
また、水素化脱硫の触媒活性が低下してくると硫黄分除去が困難になるとともに、一般に原料油に用いられる接触分解軽油や熱分解軽油等に多く含まれるインドール類のような窒素化合物が水素化脱硫後も製品に残留しやすくなり、やはり酸化安定性を悪化させる。 In addition, when the catalytic activity of hydrodesulfurization decreases, it becomes difficult to remove the sulfur content, and nitrogen compounds such as indoles, which are generally contained in catalytic cracking gas oil and pyrolysis gas oil, which are generally used in feedstock oil, are hydrogenated. It tends to remain in the product even after hydrodesulfurization, which also deteriorates oxidation stability.
そこで、軽油の酸化安定性を向上させるために、古くからアミン系及びフェノール系の種々の酸化防止剤等を軽油に添加することが行われている。硫黄分を10質量ppm以下に低減した軽油に酸化防止剤を添加した例として、アミン系酸化防止剤としてN,N’−ジイソプロピル−p−フェニレンジアミン等を、フェノール系酸化防止剤として2,6−ジ−tert−ブチル−4−メチルフェノール等を使用することが提案されている(特許文献1)。 Therefore, in order to improve the oxidation stability of light oil, various amine-based and phenol-based antioxidants have been added to light oil for a long time. As an example of adding an antioxidant to light oil whose sulfur content is reduced to 10 mass ppm or less, N, N′-diisopropyl-p-phenylenediamine or the like is used as an amine-based antioxidant, and 2,6 as a phenol-based antioxidant. It has been proposed to use -di-tert-butyl-4-methylphenol or the like (Patent Document 1).
しかし、酸化防止用添加剤を添加する方法は、製造時の温度履歴などによって軽油の組成が変化するため、添加剤の添加効果が安定しない。また、添加された添加剤は、貯蔵中、酸化を防止するために消費されてゆく。したがって、添加剤の添加量が少なく、添加剤の酸化防止効果が消耗された後は、顕著に軽油の酸化安定性が悪化してエンジン清浄性や金属材料を腐食させる等の悪影響を及ぼす。また、ディーゼルエンジンの高圧噴射化に伴う軽油への熱負荷増大により、軽油に対する酸化安定性要求レベルが上がり、これにより添加剤量を増やす必要がある。しかし、添加剤を多く添加すると、軽油の温度が低下した場合に添加剤が析出し易くなり、配管などを詰まらせてしまう。 However, in the method of adding an antioxidant additive, the additive effect of the additive is not stable because the composition of the light oil changes depending on the temperature history during production. In addition, the added additive is consumed to prevent oxidation during storage. Therefore, after the additive amount is small and the antioxidant effect of the additive is exhausted, the oxidation stability of the light oil is remarkably deteriorated, resulting in adverse effects such as engine cleanliness and corrosion of the metal material. In addition, due to an increase in thermal load on light oil accompanying the high pressure injection of diesel engines, the level of required oxidative stability for light oil increases, and this requires an increase in the amount of additive. However, when a large amount of additive is added, the additive is likely to precipitate when the temperature of the light oil is lowered, and the pipes and the like are clogged.
そのため、酸化防止用添加剤を添加しないで軽油の酸化安定性を維持することが提案されている(特許文献2)。具体的には、酸化安定性の悪い物質としてフルオレン類とナフテンベンゼン類に着目し、これらの含有量と酸化安定性が良好な物質であるナフタレン類含有量とのバランスをとって特定の範囲とし、酸化安定性を得ている。しかしながら、本発明者等の研究によれば、特許文献2に記載のとおりにフルオレン類、ナフテンベンゼン類及びナフタレン類の含有量を特定範囲にした場合でも、充分な酸化安定性を示さない場合があることが判明し、上記成分以外にも顕著に酸化安定性に影響を与える成分の存在が予想された。
本出願人は、既に芳香族分を著しく減少させることなく硫黄分を減少する方法を提案している(特許文献3)が、硫黄分の低減による酸化安定性の悪化を考慮したものではなかった。
The present applicant has already proposed a method for reducing the sulfur content without significantly reducing the aromatic content (Patent Document 3), but did not consider the deterioration of oxidation stability due to the reduction of the sulfur content. .
本発明は、燃料油の酸化安定性に顕著に影響を及ぼす物質の含有量を特定範囲に制御して極めて低い硫黄含有量でありながら優れた酸化安定性を有する燃料油基材の製造方法を提供することを課題とする。 The present invention provides a method for producing a fuel oil base material having excellent oxidation stability while controlling the content of a substance that significantly affects the oxidation stability of the fuel oil to a specific range while having a very low sulfur content. The issue is to provide.
本発明者は上記課題を解決すべく鋭意研究したところ、軽油中の不飽和化合物に着目するに至り、その結果、酸化安定性の悪化が原料油(又は基材)中に微量含まれるスチレン類及びジエン類の残留、或いは軽油の精製工程で起こる微量のスチレン類及びジエン類の生成、微量のナフタレン類の減少や3環以上の多環芳香族が水素化されることによるナフテンベンゼン類の生成に起因することを見出した。そして、炭素数10以下のスチレン類、炭素数17以上のジエン類が顕著に酸化安定性に悪影響を及ぼすこと、及び縮合多環芳香族炭化水素の中でも2環及び3環の縮合多環芳香族炭化水素が軽油の酸化過程で発生する活性種を安定化させる効果があることを見出した。これらの量を特定範囲内に制限することにより、酸化安定性の悪化を抑制できることを見出し、その製造方法おいて、特定の多孔質脱硫剤と接触させることが有用であることを見出し本発明に想到した。 The present inventor has intensively studied to solve the above problems, and has come to focus on unsaturated compounds in light oil. As a result, styrenes whose deterioration in oxidation stability is contained in a trace amount in raw material oil (or base material). And diene residues, or the production of trace amounts of styrenes and dienes that occur in the gas oil refining process, the reduction of trace amounts of naphthalenes, and the formation of naphthenebenzenes by hydrogenation of polycyclic aromatics with 3 or more rings It was found to be due to. Further, styrenes having 10 or less carbon atoms and dienes having 17 or more carbon atoms have a significant adverse effect on oxidation stability, and among condensed polycyclic aromatic hydrocarbons, bicyclic and tricyclic condensed polycyclic aromatics. It has been found that hydrocarbons have the effect of stabilizing the active species generated during the oxidation process of light oil. By restricting these amounts to a specific range, it was found that deterioration of oxidation stability can be suppressed, and in the production method, it was found useful to contact with a specific porous desulfurizing agent. I came up with it.
すなわち、本発明は、下記のとおりの燃料油基材の製造方法である。
(1)硫黄分が5〜10質量ppm、芳香族分が10〜21容量%である原料油を、水素の共存下で硫黄収着機能を持った多孔質脱硫剤と接触させることにより、硫黄分が3質量ppm以下、芳香族分が5〜20容量%、芳香族分のうち飽和環を有さない2環以上の縮合多環芳香族炭化水素含有量が0.05容量%以上である燃料油基材を得ることを特徴とする燃料油基材の製造方法。
(2)多孔質脱硫剤との接触前後における飽和環を有さない2環以上の縮合多環芳香族炭化水素含有量の減少率が20%以下、及びスチレン類及びジエン類の合計含有量の増加率が20%以下である(1)記載の燃料油基材の製造方法。
(3)硫黄収着機能を持った多孔質脱硫剤がニッケル及び亜鉛を含有する多孔質脱硫剤である(1)又は(2)記載の燃料油基材の製造方法。
(4)燃料油基材の芳香族分のうち飽和環を有する3環以上の縮合多環芳香族炭化水素含有量が0.10容量%以下である(1)〜(3)のいずれかに記載の燃料油基材の製造方法。
(5)燃料油基材の真発熱量が42,500kJ/kgである(1)〜(4)のいずれかに記載の燃料油基材の製造方法。
That is, this invention is a manufacturing method of the fuel oil base material as follows.
(1) By bringing a raw material oil having a sulfur content of 5 to 10 ppm by mass and an aromatic content of 10 to 21% by volume into contact with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen, sulfur The content is 3 ppm by mass or less, the aromatic content is 5 to 20% by volume, and the content of condensed polycyclic aromatic hydrocarbons of 2 or more rings having no saturated ring in the aromatic content is 0.05% by volume or more. A method for producing a fuel oil base material, comprising obtaining a fuel oil base material.
(2) The reduction rate of the condensed polycyclic aromatic hydrocarbon content of two or more rings having no saturated ring before and after contact with the porous desulfurization agent is 20% or less, and the total content of styrenes and dienes The method for producing a fuel oil base material according to (1), wherein the increase rate is 20% or less.
(3) The method for producing a fuel oil base material according to (1) or (2), wherein the porous desulfurization agent having a sulfur sorption function is a porous desulfurization agent containing nickel and zinc.
(4) The condensed polycyclic aromatic hydrocarbon content of 3 or more rings having a saturated ring in the aromatic content of the fuel oil base material is 0.10% by volume or less in any one of (1) to (3) The manufacturing method of the fuel oil base material of description.
(5) The manufacturing method of the fuel oil base material in any one of (1)-(4) whose true calorific value of a fuel oil base material is 42,500 kJ / kg.
本発明は、特定の原料油を水素の共存下で硫黄収着機能を持った多孔質脱硫剤と接触させて、特に、飽和環を有さない2環以上の縮合多環芳香族炭化水素の減少率を特定量以下に制限してその含有量が0.05容量%以上、及び、スチレン類及びジエン類の増加率を特定量以下に制限してその含有量が2.00容量%以下である燃料油基材の製造方法であることから、得られた燃料油基材は硫黄分が3質量ppm以下と極めて低いにもかかわらず、優れた酸化安定性を有する。この燃料油基材を、例えば、ディーゼルエンジンの燃料油として用いると、燃焼によって生ずる亜硫酸ガス等に基づく悪臭や環境負荷が低減されるとともに、貯蔵中に自動酸化で生ずる酸化重合物やディーゼルエンジンで高圧噴射される際に受ける熱負荷によって生成する酸化重合物を低減する効果を奏し、さらにこの結果、酸化防止剤などの添加剤の添加量を少なくでき、あるいは添加剤が不要になるので、製造コストの低減という格別の効果を奏する。 In the present invention, a specific feedstock is brought into contact with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen, and in particular, a condensed polycyclic aromatic hydrocarbon having two or more rings having no saturated ring. The reduction rate is limited to a specific amount or less and the content is 0.05% by volume or more, and the increase rate of styrenes and dienes is limited to a specific amount or less and the content is 2.00% by volume or less. Since it is a manufacturing method of a certain fuel oil base material, the obtained fuel oil base material has excellent oxidation stability even though the sulfur content is as extremely low as 3 ppm by mass or less. When this fuel oil base material is used, for example, as a fuel oil for a diesel engine, the bad odor and environmental load caused by sulfurous acid gas generated by combustion is reduced, and an oxidation polymer produced by auto-oxidation during storage or a diesel engine. It has the effect of reducing the amount of oxidized polymer that is generated by the thermal load received during high-pressure injection, and as a result, the amount of additives such as antioxidants can be reduced or no additives are required. There is an extraordinary effect of cost reduction.
本発明者は、軽油組成物の酸化安定性に不飽和化合物が大きく影響を及ぼし、酸化安定性の悪化が原料油(又は基材)中に微量含まれるスチレン類及びジエン類の残留、或いは軽油中の硫黄分を低減する過程で起こる微量のスチレン類及びジエン類の生成や、微量の縮合多環芳香族炭化水素の減少に起因することを見出した。 The present inventor has found that unsaturated compounds greatly affect the oxidative stability of a light oil composition, and the deterioration of oxidative stability is caused by residual styrenes and dienes contained in a trace amount in a raw material oil (or base material), or light oil. It has been found that this is caused by the generation of trace amounts of styrenes and dienes that occur during the process of reducing the sulfur content in the process, and by the reduction of trace amounts of condensed polycyclic aromatic hydrocarbons.
軽油組成物中に含まれるスチレン類は、炭素数10以下のものがほとんど又はすべてであり、炭素数10以下のスチレン類を制御することによって軽油組成物の酸化安定性を向上させることができる。炭素数11以上のスチレン類であっても酸化安定性に対して悪影響を与える可能性はあるが、軽油組成物中には通常は検出されず、検出されたとしても無視できる量である。
これら軽油組成物中に見出される炭素数10以下のスチレン類の具体例としては、スチレン、メチルスチレン、ジメチルスチレン等が挙げられるが、軽油に主に含有されるスチレン類としてはジメチルスチレンである。
Most or all of the styrenes contained in the light oil composition have 10 or less carbon atoms, and the oxidative stability of the light oil composition can be improved by controlling styrenes having 10 or less carbon atoms. Even styrenes having 11 or more carbon atoms may have an adverse effect on oxidation stability, but are usually not detected in light oil compositions, and even if detected, they are negligible amounts.
Specific examples of styrenes having 10 or less carbon atoms found in these light oil compositions include styrene, methylstyrene, dimethylstyrene, and the like, and styrene mainly contained in light oil is dimethylstyrene.
また、軽油中に含まれるジエン類は、炭素数15以上のものがほとんどであり、また、軽油の酸化処理前後の各含有量変化から、炭素数17以上のジエン類が酸化反応性に富んでおり、特に酸化安定性に悪影響が大きいと考えられるのは炭素数17以上のものである。炭素数14以下のジエン類であっても酸化安定性に対して悪影響を与える可能性はあるが、軽油組成物中には通常は検出されず、検出されたとしても無視できる量である。 Further, most of the dienes contained in light oil are those having 15 or more carbon atoms, and dienes having 17 or more carbon atoms are rich in oxidation reactivity due to changes in content before and after oxidation treatment of light oil. In particular, those having 17 or more carbon atoms are considered to have a great adverse effect on oxidation stability. Even dienes having 14 or less carbon atoms may adversely affect oxidation stability, but they are not usually detected in light oil compositions, and even if detected, they are negligible amounts.
炭素数17以上のジエン類の具体的化合物として軽油組成物中に見出されるのは主として、オクタデカジエン(例えば、ビシクロ[10.6.0]オクタデカ−1(12),15−ジエン(C18H30))及びテトラメチルフェニルビシクロヘプタジエン(例えば、1,5,6,7−テトラメチル−3−フェニルビシクロ[3.2.0]ヘプタ−2,6−ジエン(C17H20))等であり、特にビシクロ構造を有する炭素数17以上、典型的には炭素数17〜20、より典型的には炭素数17及び18のジエン類が見出されることが多い。 It is mainly octadecadiene (for example, bicyclo [10.6.0] octadeca-1 (12), 15-diene (C18H30) that is found in the gas oil composition as a specific compound of dienes having 17 or more carbon atoms. ) And tetramethylphenylbicycloheptadiene (for example, 1,5,6,7-tetramethyl-3-phenylbicyclo [3.2.0] hepta-2,6-diene (C17H20)), and the like. Often, dienes having a structure of 17 or more carbon atoms, typically 17 to 20 carbon atoms, more typically 17 and 18 carbon atoms are found.
縮合多環芳香族炭化水素は軽油の酸化過程で発生する活性種を安定化させる効果があるため、ジエン類やスチレン類が酸化安定性に及ぼす悪影響を緩和することができる。特に2環及び3環の縮合多環芳香族炭化水素はその効果が大きいため、縮合多環芳香族炭化水素に関しては、2環及び3環の縮合多環芳香族炭化水素を多く含む燃料組成物を添加するか、脱硫の運転条件の水素分圧を低くし、反応温度を高めに設定して増やすことにより、軽油組成物の酸化安定性を向上させることができる。なお、本発明において、2環以上の縮合多環芳香族炭化水素とは分子中にナフタレン環、アントラセン環及びフェナントレン環、フェナレン環の何れかを1個有する炭化水素のことを指す。但し、分子中に縮合又は非縮合の飽和環(例:テトラリン環、シクロアルカン環)を有するもの(例:9,10−ジヒドロアントラセン)は、酸化安定性の向上に寄与しないことからナフタレン環、アントラセン環又はフェナントレン環を有していたとしても2環以上の縮合多環芳香族炭化水素から除外するものとする。 The condensed polycyclic aromatic hydrocarbon has the effect of stabilizing the active species generated in the oxidation process of the light oil, so that the adverse effect of dienes and styrenes on the oxidation stability can be mitigated. In particular, since the effect of two- and three-ring condensed polycyclic aromatic hydrocarbons is great, the fuel composition containing a large amount of two- and three-ring condensed polycyclic aromatic hydrocarbons with respect to the condensed polycyclic aromatic hydrocarbons Or by reducing the hydrogen partial pressure of the desulfurization operating conditions and increasing the reaction temperature to increase the oxidation stability of the light oil composition. In the present invention, a condensed polycyclic aromatic hydrocarbon having two or more rings refers to a hydrocarbon having any one of a naphthalene ring, an anthracene ring, a phenanthrene ring, and a phenalene ring in the molecule. However, a compound having a condensed or non-condensed saturated ring (eg, tetralin ring, cycloalkane ring) in the molecule (eg, 9,10-dihydroanthracene) does not contribute to improvement in oxidation stability, Even if it has an anthracene ring or a phenanthrene ring, it is excluded from two or more condensed polycyclic aromatic hydrocarbons.
縮合多環芳香族炭化水素の中で2環の化合物の代表例は、ナフタレン及びアルキル置換基を側鎖に有するナフタレンであり、軽油に主に含有される化合物として、側鎖のアルキル置換基の数が0であるナフタレン、側鎖のアルキル置換基の数が1である1−メチルナフタレン、2−(1−メチルエチル)ナフタレン、側鎖のアルキル置換基の数が2である2,6−ジメチルナフタレン、1,7−ジメチルナフタレン、2−メチル−1−プロピルナフタレン、側鎖のアルキル置換基の数が3である2,3,5−トリメチルナフタレン、1,4,6−トリメチルナフタレン、2,3,6−トリメチルナフタレン、側鎖のアルキル置換基の数が4である1,2,3,4−テトラメチルナフタレン等が挙げられる。 Among condensed polycyclic aromatic hydrocarbons, typical examples of bicyclic compounds are naphthalene and naphthalene having an alkyl substituent in the side chain. As a compound mainly contained in light oil, Naphthalene having a number of 0, 1-methylnaphthalene, 2- (1-methylethyl) naphthalene having a number of side chain alkyl substituents of 1, 2,6- Dimethylnaphthalene, 1,7-dimethylnaphthalene, 2-methyl-1-propylnaphthalene, 2,3,5-trimethylnaphthalene, 1,4,6-trimethylnaphthalene having 2, 3 side chain alkyl substituents, , 3,6-trimethylnaphthalene, 1,2,3,4-tetramethylnaphthalene having 4 side chain alkyl substituents, and the like.
また、縮合多環芳香族炭化水素の中で3環の化合物の代表例として、アントラセン、フェナントレン、アルキル置換基を側鎖に有するアントラセン、アルキル置換フェナントレンが挙げられるが、軽油に主に含有されるアントラセン化合物は殆どが水素化されており、軽油に主に含有される縮合多環芳香族炭化水素の中で3環の化合物は側鎖のアルキル置換基の数が0であるフェナントレンの他、アルキル置換基を側鎖に有するフェナントレンであり、例えば側鎖のアルキル置換基の数が2である2,5−ジメチルフェナントレン、側鎖のアルキル置換基の数が3である2,3,5−トリメチルフェナントレンがガスクロマトグラフにより検出される。 In addition, typical examples of tricyclic compounds among condensed polycyclic aromatic hydrocarbons include anthracene, phenanthrene, anthracene having an alkyl substituent in the side chain, and alkyl-substituted phenanthrene, which are mainly contained in light oil. Most of the anthracene compounds are hydrogenated, and among the condensed polycyclic aromatic hydrocarbons mainly contained in light oil, tricyclic compounds are phenanthrenes with 0 side chain alkyl substituents as well as alkyls. Phenanthrene having a substituent in the side chain, for example, 2,5-dimethylphenanthrene having 2 side chain alkyl substituents, 2,3,5-trimethyl having 3 side chain alkyl substituents Phenanthrene is detected by a gas chromatograph.
本発明者等は、上記知見の下、硫黄分が3質量ppm以下であっても、芳香族分が5〜20容量%、飽和環を有さない2環以上の縮合多環芳香族炭化水素含有量が0.05容量%以上、及びスチレン類及びジエン類の合計含有量が2.00容量%以下である脱硫処理油(燃料油基材)は優れた酸化安定性を有することを見出した。そこでこのような脱硫処理油を得るための方法を種々検討した結果、特定性状を有する炭化水素油を多孔質脱硫剤と接触させることにより得られることを見出した。その方法について以下に記す。 Based on the above knowledge, the present inventors have found that a condensed polycyclic aromatic hydrocarbon having an aromatic content of 5 to 20% by volume and having no saturated ring, even if the sulfur content is 3 mass ppm or less. It has been found that a desulfurized oil (fuel oil base material) having a content of 0.05% by volume or more and a total content of styrenes and dienes of 2.00% by volume or less has excellent oxidation stability. . Thus, as a result of various studies on methods for obtaining such desulfurized oil, it has been found that a hydrocarbon oil having specific properties can be obtained by contacting with a porous desulfurizing agent. The method is described below.
(原料油)
本発明で用いる原料油は、硫黄分が5〜10質量ppm、芳香族分が10〜21容量%である。原料油の硫黄分が高すぎると脱硫温度や圧力が高くなり、脱硫後のスチレン類及びジエン類含有量が多くなること、また原料油の硫黄分が低すぎると、既に経ている硫黄分を除去する水素化精製工程で、一般に相当過酷な条件下に行われたことが予測されることから当該原料油にスチレン類及びジエン類含有量が多く存在することが見込まれる。このため、原料油の硫黄分は好ましくは5.2〜9.6質量ppm、さらに好ましくは5.4〜9.2質量ppm、特に好ましくは5.6〜8.8質量ppmである。
(Raw oil)
The raw material oil used in the present invention has a sulfur content of 5 to 10 mass ppm and an aromatic content of 10 to 21% by volume. If the sulfur content of the feedstock is too high, the desulfurization temperature and pressure will increase, and the content of styrenes and dienes after desulfurization will increase. If the sulfur content of the feedstock is too low, the sulfur content already passed will be removed. In this hydrorefining step, it is generally predicted that the process was performed under considerably severe conditions, so that the feedstock oil is expected to contain a large amount of styrenes and dienes. For this reason, the sulfur content of the raw material oil is preferably 5.2 to 9.6 mass ppm, more preferably 5.4 to 9.2 mass ppm, and particularly preferably 5.6 to 8.8 mass ppm.
また、原料油の芳香族分は、少ないと脱硫後の芳香族分が減少して酸化安定性改善効果が減少するが、逆に多すぎると、脱硫処理を行うことにより、一般に酸化安定性を悪化させる芳香族分のうち飽和環を有さない2環以上の縮合多環芳香族炭化水素、例えば9,10−ジヒドロアントラセンが増加する。このため、原料油の芳香族分は好ましくは11〜20容量%、さらに好ましくは12〜19容量%、特には13〜18容量%である。
また、芳香族分のうち飽和環を有さない2環以上の縮合多環芳香族炭化水素含有量は0.05〜1.00容量%が好ましい。
In addition, if the aromatic content of the raw material oil is small, the aromatic content after desulfurization decreases and the effect of improving oxidation stability decreases, but conversely, if it is too large, the oxidation stability is generally improved by performing desulfurization treatment. Among the aromatic components to be deteriorated, the number of condensed polycyclic aromatic hydrocarbons having no saturated ring, for example, 9,10-dihydroanthracene increases. For this reason, the aromatic content of the feed oil is preferably 11 to 20% by volume, more preferably 12 to 19% by volume, and particularly 13 to 18% by volume.
Moreover, the condensed polycyclic aromatic hydrocarbon content of two or more rings having no saturated ring in the aromatic component is preferably 0.05 to 1.00% by volume.
原料油のスチレン類及びジエン類の合計含有量は0.10〜2.00容量%であることが好ましい。脱硫後のスチレン類及びジエン類の含有量を抑え酸化安定性改善効果を得るためには、より好ましくはこれらの合計含有量が0.11〜1.90容量%、さらに好ましくは0.12〜1.70容量%、特には0.13〜1.60容量%である。原料油のスチレン類及びジエン類の合計含有量が0.10容量%未満であると、原料油の硫黄分を除去する脱硫処理が緩やかな条件で行われたことが推定され、このため原料油の硫黄分が高すぎるために本発明の硫黄分が3質量ppm以下の燃料油基材の製造が難しくなる。 The total content of styrenes and dienes in the feedstock oil is preferably 0.10 to 2.00% by volume. In order to suppress the content of styrenes and dienes after desulfurization and obtain an effect of improving oxidation stability, the total content of these is preferably 0.11 to 1.90% by volume, more preferably 0.12 to 1.70% by volume, in particular 0.13-1.60% by volume. If the total content of styrenes and dienes in the feedstock is less than 0.10% by volume, it is presumed that the desulfurization treatment for removing the sulfur content of the feedstock was performed under mild conditions. Therefore, it is difficult to produce a fuel oil base material having a sulfur content of 3 ppm by mass or less.
原料油として用いることができる炭化水素油としては、例えば、常圧蒸留装置、接触分解装置、熱分解装置等から得られる軽油留分、すなわち沸点が140〜400℃の範囲で留出する留分が挙げられるが、酸化安定性に悪影響を及ぼすスチレン類や、ジエン類の含有量を抑えるため、これらの化合物を多く含まない原料油、例えばアスファルトを熱分解した油の混合比率を抑える等、原料油を前記条件に調整することが好ましい。 Examples of the hydrocarbon oil that can be used as the raw material oil include a light oil fraction obtained from an atmospheric distillation device, a catalytic cracking device, a thermal cracking device, or the like, that is, a fraction distilled at a boiling point of 140 to 400 ° C. However, in order to reduce the content of styrenes and dienes that adversely affect oxidation stability, the raw materials that contain a large amount of these compounds, such as oils that are pyrolyzed asphalt, are reduced. It is preferable to adjust the oil to the above conditions.
(多孔質脱硫剤)
原料油は、硫黄収着機能を持った多孔質脱硫剤と水素の存在下で接触して硫黄分が3質量ppm以下、芳香族分が5〜20容量%、飽和環を有さない2環以上の縮合多環芳香族炭化水素含有量が0.05容量%以上、及びスチレン類及びジエン類の合計含有量が2.00容量%以下である燃料油基材に転換する。すなわち、本発明において、収着脱硫は、水素の共存下で硫黄収着機能を持った多孔質脱硫剤と原料油とを接触させる方法で行われる。
本発明において用いられる上記硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物を吸着して有機硫黄化合物中の炭素−硫黄結合を開裂して有機硫黄化合物中の硫黄原子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残基は、開裂によって脱硫剤から脱離させる機能をもった多孔質脱硫剤をいう。この炭化水素残基が脱離する際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したがって、有機硫黄化合物から硫黄原子が除かれた炭化水素化合物が生成物として得られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、異性化、分解等の反応を受けた生成物を与えることがあっても構わない。一方、硫黄は脱硫剤に固定化されるため、水素化精製とは異なり、生成物として硫化水素などの硫黄化合物を発生させずに脱硫することができる。
(Porous desulfurization agent)
The feedstock is a bicyclic ring that does not have a saturated ring when it comes into contact with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen, with a sulfur content of 3 mass ppm or less, an aromatic content of 5 to 20% by volume. The above-mentioned condensed polycyclic aromatic hydrocarbon content is converted into a fuel oil base material having a content of 0.05% by volume or more and a total content of styrenes and dienes of 2.00% by volume or less. That is, in the present invention, the sorption / removal sulfur is performed by a method in which a porous desulfurization agent having a sulfur sorption function is brought into contact with a raw material oil in the presence of hydrogen.
The porous desulfurization agent having a sulfur sorption function used in the present invention is a desulfurization agent that adsorbs an organic sulfur compound and cleaves a carbon-sulfur bond in the organic sulfur compound to remove a sulfur atom in the organic sulfur compound. The hydrocarbon residue other than the sulfur atom in the organic sulfur compound is a porous desulfurizing agent having a function of desorbing from the desulfurizing agent by cleavage. When this hydrocarbon residue is eliminated, hydrogen present in the system is added to carbon whose bond with sulfur has been cleaved. Therefore, a hydrocarbon compound obtained by removing sulfur atoms from the organic sulfur compound is obtained as a product. However, the hydrocarbon compound from which the sulfur atom is removed may give a product that has undergone a reaction such as hydrogenation, isomerization, or decomposition. On the other hand, since sulfur is fixed to a desulfurizing agent, it can be desulfurized without generating a sulfur compound such as hydrogen sulfide as a product, unlike hydrorefining.
この多孔質脱硫剤は、有機硫黄化合物に対する収着機能を有するものであれば特に限定するものではないが、多孔質脱硫剤に含まれる金属が亜鉛等のみでは硫化水素しか除去できず、銅、ニッケル等の他の金属でも1種だけでは有機硫黄化合物を十分に脱硫することはできない。脱硫剤への硫黄取込容量を大きくするためには第一の金属として亜鉛、第二の金属として銅、ニッケル、コバルト及び鉄から選ばれる金属を用いることが好ましい。特に好ましくは、第1の金属が亜鉛で、第2の金属がニッケルの組み合わせである。
本発明の多孔質脱硫剤の製造方法は特に限定するものではなく、共沈法や含浸法などによって得ることができるが、共沈法によって亜鉛やニッケルなどの金属成分を沈殿させてろ過洗浄し、成形、焼成等の工程を経ることによって多孔質脱硫剤を得ることが特に好ましい。
This porous desulfurization agent is not particularly limited as long as it has a sorption function for organic sulfur compounds, but only hydrogen sulfide can be removed if the metal contained in the porous desulfurization agent is only zinc, copper, Even with other metals such as nickel, organic sulfur compounds cannot be sufficiently desulfurized with only one kind. In order to increase the capacity of sulfur incorporation into the desulfurizing agent, it is preferable to use a metal selected from zinc as the first metal and copper, nickel, cobalt and iron as the second metal. Particularly preferably, the first metal is zinc and the second metal is a combination of nickel.
The method for producing the porous desulfurization agent of the present invention is not particularly limited and can be obtained by a coprecipitation method or an impregnation method. However, the coprecipitation method is used to precipitate metal components such as zinc and nickel, and to perform filtration and washing. It is particularly preferable to obtain a porous desulfurization agent through steps such as molding and firing.
多孔質脱硫剤は、ニッケル、亜鉛などの金属成分を金属成分の合計で50〜85質量%、特には60〜80質量%含有することが好ましい。これらの金属成分は通常酸化物または硫化物の形態で脱硫剤に含まれる。他の成分としては特に限定するものではないが、例えば周期律表第2、第4、第13、及び第14族の元素を用いることができる。このうちでも、ケイ素、アルミニウム、ジルコニウム、カルシウム等が好適であり、これらは単独で用いることができるし、2種類以上を組み合わせて使用することもできる。これら他の成分の添加方法については特に限定しないが、第一の金属と第二の金属を共沈法にて沈殿させるときに、他の成分の酸化物や塩を共存させて添加することが特に好ましい。あるいは、第一の金属と第二の金属を共沈法にて沈殿させた後、乾燥、焼成して得られた複合酸化物に、他の成分の酸化物や酸化物前駆体を混練法によって添加することも好ましい方法としてあげられる。脱硫性能を向上させるためや工業的に使用するためには、さらに他の成分を添加して成形することが好ましいもできる。脱硫性能を向上させるためや工業的に使用するためには、さらに他の成分を添加して成形することもできる。このようにして得られた多孔質脱硫剤は、水素雰囲気下で還元処理して用いることが好ましい。脱硫剤の比表面積は、好ましくは30〜200m2/g、特には50〜150m2/g、さらには50〜100m2/gである。 The porous desulfurizing agent preferably contains 50 to 85% by mass, particularly 60 to 80% by mass of the total amount of metal components such as nickel and zinc. These metal components are usually contained in the desulfurizing agent in the form of oxides or sulfides. Although it does not specifically limit as another component, For example, the element of the 2nd, 4th, 13th, and 14th group of a periodic table can be used. Among these, silicon, aluminum, zirconium, calcium and the like are preferable, and these can be used alone or in combination of two or more. The method for adding these other components is not particularly limited, but when the first metal and the second metal are precipitated by the coprecipitation method, they may be added in the presence of oxides and salts of other components. Particularly preferred. Alternatively, after the first metal and the second metal are precipitated by a coprecipitation method, the oxides and oxide precursors of other components are mixed into the composite oxide obtained by drying and firing by a kneading method. The addition is also a preferred method. In order to improve the desulfurization performance or to use it industrially, it may be preferable to mold by adding other components. In order to improve the desulfurization performance or to use it industrially, it can be molded by further adding other components. The porous desulfurizing agent thus obtained is preferably used after reduction treatment in a hydrogen atmosphere. The specific surface area of the desulfurizing agent is preferably 30 to 200 m <2> / g, particularly 50 to 150 m <2> / g, more preferably 50 to 100 m <2> / g.
(脱硫処理条件)
上記の多孔質脱硫剤を用いる収着脱硫処理は、バッチ式で行っても流通式で行っても特に支障はないが、固定床流通式反応器に充填された硫黄収着機能をもった多孔質脱硫剤に水素と原料油とを連続的に供給して接触させる形式が好ましい。脱硫処理する温度は0〜500℃の範囲から選ぶことができ、好ましくは100〜380℃、さらに好ましくは200〜350℃である。反応温度が100℃未満では、脱硫がほとんど進行しない。逆に反応温度が500℃を超えると、多孔質脱硫剤中の金属成分がシンタリングして、脱硫活性が大きく低下してしまうことがある。
(Desulfurization treatment conditions)
The sorption / removal sulfur treatment using the porous desulfurizing agent described above is not particularly hindered whether it is performed in a batch mode or a flow mode, but is a porous material having a sulfur sorption function packed in a fixed bed flow mode reactor. A mode in which hydrogen and raw material oil are continuously supplied to and contacted with the desulfurizing agent is preferable. The temperature for the desulfurization treatment can be selected from the range of 0 to 500 ° C, preferably 100 to 380 ° C, more preferably 200 to 350 ° C. When the reaction temperature is less than 100 ° C., desulfurization hardly proceeds. On the other hand, when the reaction temperature exceeds 500 ° C., the metal component in the porous desulfurization agent may be sintered and the desulfurization activity may be greatly reduced.
脱硫処理する水素圧力は0.5〜4MPaが好ましく、1〜3MPaがより好ましい。圧力が0.5MPa未満では、脱水素反応によって多環芳香族が増加して脱硫が進行しにくくなってしまうことがある。また、水素圧力が4MPaを超えると、大量の多環芳香族が水素化され酸化安定性が低下することがある。さらには1環芳香族も相当量水素化され、水素消費量が非常に大きくなってしまう。 The hydrogen pressure for the desulfurization treatment is preferably 0.5 to 4 MPa, and more preferably 1 to 3 MPa. When the pressure is less than 0.5 MPa, polycyclic aromatics may increase due to the dehydrogenation reaction, and desulfurization may not proceed easily. On the other hand, when the hydrogen pressure exceeds 4 MPa, a large amount of polycyclic aromatics may be hydrogenated to lower the oxidation stability. Furthermore, a considerable amount of monocyclic aromatics are hydrogenated, resulting in a very large hydrogen consumption.
固定床流通式で多孔質脱硫剤と軽油留分を接触させて脱硫処理を行う場合、LHSVは好ましくは1〜100h−1、さらには2〜30h−1、特には3〜10h−1の範囲から選ぶとよい。LHSVが1h−1未満では、収着脱硫の反応器が大きくなりすぎてしまう。LHSVが50h−1を超えると、収着脱硫するのに十分な時間が得られない。水素/油供給比は好ましくは10〜1,000NL/Lの範囲、さらには10〜500NL/Lの範囲、特には100〜500NL/Lの範囲から選ぶとよい。水素/油供給比が10NL/L未満では、多環芳香族がほとんど減少せず、脱硫が進行しにくくなってしまう。水素/油供給比が1,000NL/Lを超えると、水素を供給するコンプレッサーの容量が大きくなりすぎてしまう。 When the desulfurization treatment is performed by contacting the porous desulfurization agent and the gas oil fraction in a fixed bed flow type, LHSV is preferably in the range of 1 to 100 h-1, more preferably 2 to 30 h-1, particularly 3 to 10 h-1. Choose from. If LHSV is less than 1 h-1, the reactor for collecting and removing sulfur becomes too large. If the LHSV exceeds 50 h-1, sufficient time cannot be obtained for collecting and removing. The hydrogen / oil supply ratio is preferably selected in the range of 10 to 1,000 NL / L, more preferably in the range of 10 to 500 NL / L, and particularly in the range of 100 to 500 NL / L. When the hydrogen / oil supply ratio is less than 10 NL / L, polycyclic aromatics are hardly reduced, and desulfurization is difficult to proceed. When the hydrogen / oil supply ratio exceeds 1,000 NL / L, the capacity of the compressor that supplies hydrogen becomes too large.
(脱硫処理油)
本発明において、原料油を収着脱硫処理して硫黄分3質量ppm以下の脱硫処理油(燃料油基材)を得る。燃料油基材の硫黄分は、ディーゼルエンジン用の燃料油を調製した場合に懸念される排気ガスの浄化触媒活性低下への悪影響や排気ガス循環時の亜硫酸ガスによる材料腐食等を考慮して、2.0質量ppm以下が好ましく、さらに好ましくは1.0質量ppm以下、特に好ましくは0.7質量ppm以下である。
(Desulfurized oil)
In the present invention, the raw material oil is collected and removed, and a desulfurized oil (fuel oil base material) having a sulfur content of 3 mass ppm or less is obtained. The sulfur content of the fuel oil base material, taking into account the adverse effects on exhaust gas purification catalyst activity decline, which is a concern when preparing fuel oil for diesel engines, and material corrosion due to sulfurous acid gas during exhaust gas circulation, 2.0 mass ppm or less is preferable, more preferably 1.0 mass ppm or less, and particularly preferably 0.7 mass ppm or less.
本発明において、芳香族分が5〜20容量%である脱硫処理油(燃料油基材)を得る。酸化安定性改善効果から芳香族分は5.2容量%以上が好ましく、さらに好ましくは5.4容量%以上であり、特には5.6容量%以上である。芳香族分が多いと、ディーゼルエンジン用燃料油に使用した場合に排気ガスの性状悪化が発生し易くなるため、19.6容量%以下が好ましく、さらに好ましくは19.0容量%以下、特には18.0容量%以下である。 In the present invention, a desulfurized oil (fuel oil base material) having an aromatic content of 5 to 20% by volume is obtained. The aromatic content is preferably 5.2% by volume or more, more preferably 5.4% by volume or more, and particularly 5.6% by volume or more from the viewpoint of improving the oxidation stability. When the aromatic content is large, deterioration in exhaust gas properties is likely to occur when used in fuel oil for diesel engines. Therefore, it is preferably 19.6% by volume or less, more preferably 19.0% by volume or less, especially 18.0% by volume or less.
また、本発明において、燃料油基材に含まれる芳香族分のうち飽和環を有さない2環以上の縮合多環芳香族炭化水素の含有量は0.05容量%以上とし、良好な酸化安定性を確保する。好ましくは0.08容量%以上であり、さらに好ましくは0.11容量%以上、特には0.30容量%以上である。 Further, in the present invention, the content of the condensed polycyclic aromatic hydrocarbon of 2 or more rings having no saturated ring in the aromatic component contained in the fuel oil base material is 0.05% by volume or more, and good oxidation Ensure stability. The amount is preferably 0.08% by volume or more, more preferably 0.11% by volume or more, and particularly preferably 0.30% by volume or more.
また、本発明において、スチレン類及びジエン類の含有量の増加を抑え、酸化安定性向上効果を持つ飽和環を有さない2環以上の縮合多環芳香族炭化水素の含有量の減少による酸化安定性悪化を抑えるために、収着脱硫前後における飽和環を有さない2環以上の縮合多環芳香族炭化水素の含有量の減少率は20%以下とし、好ましくは15%以下、特に好ましくは10%以下である。ただし、上記多環芳香族炭化水素化合物含有量は、多すぎると今度は燃焼性が悪化してディーゼル車両排気ガスの窒素酸化物や粒子状物質量が増加するため、好ましくは1.00容量%以下であり、さらに好ましくは0.98容量%以下、特に好ましくは0.96容量%以下である。特に、9,10−ジヒドロアントラセンのような3環以上の多環芳香族のうち1環が水素化された化合物は、酸化反応性に富むことから酸化安定性を悪化させるため、その含有量は好ましくは0.10容量%以下、さらに好ましくは0.08容量%以下、特には0.05容量%以下である。 Further, in the present invention, the increase in the content of styrenes and dienes is suppressed, and the oxidation by the decrease in the content of condensed polycyclic aromatic hydrocarbons having two or more rings that do not have a saturated ring, which has an effect of improving oxidation stability. In order to suppress the deterioration of stability, the rate of decrease in the content of condensed polycyclic aromatic hydrocarbons having two or more rings without saturated rings before and after detachable sulfur is 20% or less, preferably 15% or less, particularly preferably Is 10% or less. However, if the content of the polycyclic aromatic hydrocarbon compound is too large, the combustibility deteriorates and the amount of nitrogen oxides and particulate matter in the exhaust gas of the diesel vehicle increases. Or less, more preferably 0.98% by volume or less, and particularly preferably 0.96% by volume or less. In particular, a compound in which one ring is hydrogenated among three or more polycyclic aromatics such as 9,10-dihydroanthracene deteriorates oxidation stability because it is rich in oxidation reactivity. Preferably it is 0.10 volume% or less, More preferably, it is 0.08 volume% or less, Especially 0.05 volume% or less.
本発明において、脱硫処理油(燃料油基材)のスチレン類及びジエン類化合物の合計含有量は2.00容量%以下、1.90容量%以下、さらに好ましくは1.80容量%以下である。特に酸化安定性に悪影響を及ぼさないように、スチレン類及びジエン類化合物の含有量は1.60容量%以下であることが好ましい。 In the present invention, the total content of styrenes and diene compounds in the desulfurized oil (fuel oil base material) is 2.00% by volume or less, 1.90% by volume or less, more preferably 1.80% by volume or less. . In particular, the content of styrenes and diene compounds is preferably 1.60% by volume or less so as not to adversely affect oxidation stability.
また、スチレン類及びジエン類は酸化安定性を悪化させることから、その合計含有量の脱硫処理前後における増加率は20%以下とし、好ましくは15%以下、さらに好ましくは12%以下、特には10%以下であることが好ましい。
前記スチレン類、ジエン類及び各種の縮合多環芳香族炭化水素の各成分については後述するガスクロマトグラフィーによりその含有量を測定することができる。
Also, since styrenes and dienes deteriorate the oxidation stability, the increase rate of the total content before and after the desulfurization treatment is set to 20% or less, preferably 15% or less, more preferably 12% or less, particularly 10%. % Or less is preferable.
About each component of the said styrenes, dienes, and various condensed polycyclic aromatic hydrocarbons, the content can be measured by the gas chromatography mentioned later.
脱硫処理油(燃料油基材)は、ディーゼルエンジン用燃料油に使用した場合に良好な燃費性能を得るために、その真発熱量が42,500kJ/kg以上であることが好ましく、より好ましくは42,800kJ/kg以上、さらに好ましくは43,000kJ/kg以上、特には43,100kJ/kg以上である。 The desulfurized oil (fuel oil base material) preferably has a true calorific value of 42,500 kJ / kg or more, more preferably, in order to obtain good fuel efficiency when used in a diesel engine fuel oil. It is 42,800 kJ / kg or more, more preferably 43,000 kJ / kg or more, particularly 43,100 kJ / kg or more.
(軽油組成物の製造方法)
前述の方法により得た脱硫処理油(燃料油基材)を使用して軽油組成物(ディーゼルエンジン用燃料油)を製造することができる。品質が満足するものであれば脱硫処理油(燃料油基材)のみで軽油組成物としてもよいし、他の基材、例えば、酸化安定性が良好な灯油留分や、低温流動性を改善する2環及び3環の縮合多環芳香族炭化水素を多く含有する接触改質装置から得られる炭素数11以上の留出油などと適切な割合で混合して製造しても構わない。少なくとも前記脱硫処理油を50容量%以上含有することが好ましく、80容量%以上含有することがより望ましい。
(Method for producing light oil composition)
A light oil composition (diesel engine fuel oil) can be produced using the desulfurized oil (fuel oil base material) obtained by the above-described method. If the quality is satisfactory, it may be a light oil composition only with desulfurized oil (fuel oil base material), and other base materials such as kerosene fraction with good oxidation stability and low-temperature fluidity are improved. Alternatively, it may be produced by mixing at an appropriate ratio with a distillate having 11 or more carbon atoms obtained from a catalytic reformer containing a large amount of 2- and 3-ring condensed polycyclic aromatic hydrocarbons. It is preferable to contain at least 50% by volume of the desulfurized oil, and more desirably 80% by volume or more.
この方法により、硫黄分が3質量ppm以下、芳香族分が5〜20容量%、スチレン類及びジエン類の合計含有量が2.00容量%以下といった性状を有する、燃費規制や二酸化炭素排出量低減、排ガス中の有毒物低減に有効な軽油組成物、特には極めて低い硫黄含有量でありながら優れた酸化安定性を有する軽油組成物を得ることができる。 By this method, fuel consumption regulations and carbon dioxide emissions have properties such that sulfur content is 3 mass ppm or less, aromatic content is 5 to 20% by volume, and total content of styrenes and dienes is 2.00% by volume or less. It is possible to obtain a light oil composition effective for reduction and reduction of toxic substances in exhaust gas, particularly a light oil composition having excellent oxidation stability while having a very low sulfur content.
本発明で得られた燃料油基材からなる軽油組成物は、酸化防止剤を添加しなくても酸化安定性に優れるが、さらに性能を向上させるために、通常燃料油に用いられている酸化防止剤を添加しても構わない。酸化防止剤としては、特に制限なく使用できるが、例えば2,6−ジターシャリーブチルフェノール、2,6−ジターシャリーブチル−4−メチルフェノール、2,4−ジメチル−6−ターシャリーブチルフェノール及びこれらの混合物が挙げられる。 The light oil composition comprising the fuel oil base material obtained in the present invention is excellent in oxidation stability without the addition of an antioxidant, but in order to further improve the performance, the oxidation usually used in fuel oils An inhibitor may be added. Antioxidants can be used without any particular limitation. For example, 2,6-ditertiary butylphenol, 2,6-ditertiarybutyl-4-methylphenol, 2,4-dimethyl-6-tertiarybutylphenol and mixtures thereof Is mentioned.
また、その他低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤等の公知の燃料添加剤を添加することもできる。低温流動性向上剤としてはエチレン共重合体などを用いることができるが、特には酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐磨耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられる。10〜500ppm、好ましくは50〜100ppmの添加量で十分に耐摩耗性が向上する。 In addition, other known fuel additives such as a low-temperature fluidity improver, an abrasion resistance improver, and a cetane number improver can be added. As the low-temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, vinyl esters of saturated fatty acids such as vinyl acetate, vinyl propionate and vinyl butyrate are preferably used. As the wear resistance improver, for example, long chain fatty acids (carbon number 12 to 24) or fatty acid esters thereof are preferably used. The wear resistance is sufficiently improved by the addition amount of 10 to 500 ppm, preferably 50 to 100 ppm.
本発明を実施例及び比較例に基づいてより詳しく説明する。なお、本発明は、以下の実施例に限定されるものではない。 The present invention will be described in more detail based on examples and comparative examples. The present invention is not limited to the following examples.
(原料油の調製)
担持法にて調製したCoMo/アルミナ(コバルト含有量3重量%、モリブデン含有量13重量%)とNiMo/アルミナ(ニッケル含有量3重量%、モリブデン含有量12重量%)とを容積比で1:2となるように充填した反応管に、前処理としてジメチルジスルフィド1重量%を含む軽油を300℃、5MPaの水素共存下で通油して硫化処理を行った後、常圧蒸留装置から留出した沸点範囲140〜370℃の直留軽油留分を、反応温度340℃、反応圧力6MPa、水素/オイル比200Nm3/kL、LHSVが0.7h−1の条件下で水素化精製して原料油としての水素化脱硫軽油を調製した。
(Preparation of raw oil)
CoMo / alumina (cobalt content 3% by weight, molybdenum content 13% by weight) and NiMo / alumina (nickel content 3% by weight, molybdenum content 12% by weight) prepared by the loading method in a volume ratio of 1: After passing through a reaction tube filled to 2 with 1% by weight of light oil containing dimethyl disulfide as a pretreatment in the presence of hydrogen at 300 ° C in the presence of 5 MPa, sulfidation was performed and then distilled from the atmospheric distillation unit. The raw gas oil was obtained by hydrorefining a straight-run gas oil fraction having a boiling range of 140 to 370 ° C. under conditions of a reaction temperature of 340 ° C., a reaction pressure of 6 MPa, a hydrogen / oil ratio of 200 Nm 3 / kL, and an LHSV of 0.7 h−1. As a hydrodesulfurized gas oil was prepared.
硫黄収着機能を持った多孔質脱硫剤としてニッケル亜鉛複合酸化物(ニッケル含有量7質量%、亜鉛含有量68質量%)を共沈法にて調製した。上記のようにして得た水素化脱硫軽油(原料油)を、多孔質脱硫剤としての還元処理したニッケル亜鉛複合酸化物と下記の条件下に接触して燃料油基材1(実施例1)、燃料油基材2(実施例2)、及び燃料油基材3(比較例1)を得た。 As a porous desulfurization agent having a sulfur sorption function, a nickel zinc composite oxide (nickel content: 7 mass%, zinc content: 68 mass%) was prepared by a coprecipitation method. The hydrodesulfurized gas oil (raw oil) obtained as described above is brought into contact with a nickel-zinc composite oxide subjected to reduction treatment as a porous desulfurizing agent under the following conditions to form a fuel oil base material 1 (Example 1). The fuel oil base material 2 (Example 2) and the fuel oil base material 3 (Comparative Example 1) were obtained.
実施例1(燃料油基材1の製造)
多孔質脱硫剤としてのニッケル亜鉛複合酸化物を反応管に充填し、これに水素ガスを温度300℃にて6時間流通させ、還元処理を行った。その後、この反応管に上記のようにして調製した原料油(水素化脱硫軽油)と水素を、反応温度300℃、反応圧力1.0MPa、LHSV5.0h−1、水素/油供給比200Nm3/Lの条件下で20時間通油し、収着脱硫して燃料油基材1を得た。
Example 1 (Manufacture of fuel oil base material 1)
A nickel-zinc composite oxide as a porous desulfurizing agent was filled in a reaction tube, and hydrogen gas was passed through the reaction tube at a temperature of 300 ° C. for 6 hours for reduction treatment. Thereafter, the raw material oil (hydrodesulfurized gas oil) and hydrogen prepared as described above were added to the reaction tube at a reaction temperature of 300 ° C., a reaction pressure of 1.0 MPa, LHSV 5.0 h-1, and a hydrogen / oil supply ratio of 200 Nm 3 / L. The fuel oil base material 1 was obtained by passing through the oil for 20 hours under the conditions of
実施例2(燃料油基材2の製造)
原料油を反応管に、反応温度300℃、反応圧力2.0MPa、LHSV5.0h−1、水素/油供給比200Nm3/Lの条件下で20時間通油した以外は、実施例1と全く同じ方法で収着脱硫して燃料油基材2を得た。
Example 2 (Production of fuel oil base material 2)
Exactly the same as Example 1 except that the feedstock oil was passed through the reaction tube for 20 hours under the conditions of a reaction temperature of 300 ° C., a reaction pressure of 2.0 MPa, LHSV 5.0 h-1, and a hydrogen / oil supply ratio of 200 Nm 3 / L. The fuel oil base material 2 was obtained by collecting and detaching sulfur by the method.
比較例1(燃料油基材3の製造)
原料油を反応管に、反応温度300℃、反応圧力5.0MPa、LHSV5.0h−1、水素/油供給比200Nm3/Lの条件下で20時間通油した以外は、実施例1と全く同じ方法で収着脱硫して燃料油基材3を得た。
Comparative Example 1 (Manufacture of fuel oil base material 3)
Exactly the same as Example 1, except that the feedstock oil was passed through the reaction tube at a reaction temperature of 300 ° C., a reaction pressure of 5.0 MPa, LHSV 5.0 h-1, and a hydrogen / oil supply ratio of 200 Nm 3 / L for 20 hours. The fuel oil base material 3 was obtained by collecting and removing sulfur by the method.
原料油及び各燃料油基材1〜3の性状と酸化安定性の評価結果を表1に示す。 Table 1 shows the evaluation results of the properties and oxidation stability of the raw material oil and the fuel oil base materials 1 to 3.
なお、物性測定方法及び酸化安定性評価方法は、以下に示す通りである。
1)密度:JIS K2249「原油及び石油製品密度試験方法」に規定された方法。
2)動粘度(30℃):JIS K2283「原油及び石油製品動粘度試験方法」に規定された方法。
3)色(セーボルト):JIS K2580「原油及び石油製品色試験方法」に規定された方法。
4)硫黄分:JIS K2541−6「硫黄分試験方法(紫外蛍光法)」に規定された方法。
5)セタン指数:JIS K2280「オクタン価及びセタン価試験方法並びにセタン指数算出方法」に規定された方法。
6)真発熱量:JIS K2279「発熱量試験方法及び計算による推定方法」に規定された方法。
7)蒸留性状:JIS K2254「蒸留試験方法」に規定された方法。
The physical property measurement method and the oxidation stability evaluation method are as follows.
1) Density: The method specified in JIS K2249 “Crude oil and petroleum product density test method”.
2) Kinematic viscosity (30 ° C.): A method defined in JIS K2283 “Crude oil and petroleum product kinematic viscosity test method”.
3) Color (Saebold): A method defined in JIS K2580 “Crude oil and petroleum product color test method”.
4) Sulfur content: A method defined in JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”.
5) Cetane index: The method specified in JIS K2280 “Testing method for octane number and cetane number and cetane index calculation method”.
6) True calorific value: A method defined in JIS K2279 “A calorific value test method and calculation estimation method”.
7) Distillation property: A method defined in JIS K2254 “Distillation Test Method”.
8)芳香族分:JPI−5S−49−97「石油製品―炭化水素タイプ試験方法―高速液体クロマトグラフ法」に規定された方法。
9)成分(ジエン類、水素化された環を有する、もしくは有さない縮合多環芳香族):2つの極性が異なるガスクロカラムをモジュレータを介して直列に接続したガスクロマトグラフィーを用いて測定した。詳細条件は次の通りである。
GCシステム:一次カラムへの通油後にモジュレータにより物質移動制御を行い、続けて二次カラムへ通油させて極性の違い等により分離を行う。本分析装置システム構成としては、Agilent Technologies社製HP−6890N型FID検出器付きGC、日本電子社製AccuTOF JMS-T100GC飛行時間型質量分析計からなる。
1次カラム: 無極性または微極性カラム(例えば,Supelco社製PTE−5、長さ30m、内径0.25mm、フィルム厚0.25μm)
モジュレータ中空カラム:長さ2m、内径0.1mm
2次カラム: 高極性カラム(例えば,Supelco社製SpelcoWAX10、長さ2m、内径0.25mm、フィルム厚0.25μm)
昇温条件:50℃(5分保持)→280℃(27分保持)昇温速度10℃/分
注入口温度:280°C
注入量:1.0μL
スプリット比:100:1
キャリアガス: He、1.0mL/分
モジュレータ温度:下記のコールド温度、ホット温度を繰り返す。
ホットジェットガス温度:150℃(5分保持)→320℃(33分保持)昇温速度10℃/分
コールドジェットガス温度:約−140℃
モジュレータ頻度:6秒間で0.3秒間ホット温度、その後5.7秒間コールド温度
インターフェイス中空カラム:長さ0.5m、内径0.25mm
FIDガス条件:水素(45mL/分)、空気(450mL/分)、メークアップヘリウム(25mL/分、一定)
8) Aromatic content: The method specified in JPI-5S-49-97 "Petroleum products-Hydrocarbon type test method-High performance liquid chromatograph method".
9) Component (dienes, condensed polycyclic aromatics with or without hydrogenated rings): Measured using gas chromatography in which two gas chromatography columns with different polarities are connected in series via a modulator . Detailed conditions are as follows.
GC system: After passing through the primary column, the mass transfer is controlled by the modulator, and then the oil is passed through the secondary column and separated by the difference in polarity. The analyzer system configuration is composed of GC with HP-6890N FID detector manufactured by Agilent Technologies, and AccuTOF JMS-T100GC time-of-flight mass spectrometer manufactured by JEOL.
Primary column: Nonpolar or slightly polar column (for example, PTE-5 manufactured by Supelco, length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Modulator hollow column: length 2m, inner diameter 0.1mm
Secondary column: High polarity column (for example, SpelcoWAX10 manufactured by Supelco, length 2 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Temperature rise conditions: 50 ° C. (5 minutes hold) → 280 ° C. (27 minutes hold) Temperature rise rate 10 ° C./min Inlet temperature: 280 ° C.
Injection volume: 1.0 μL
Split ratio: 100: 1
Carrier gas: He, 1.0 mL / min Modulator temperature: The following cold temperature and hot temperature are repeated.
Hot jet gas temperature: 150 ° C. (5 min hold) → 320 ° C. (33 min hold) Temperature rising rate 10 ° C./min Cold jet gas temperature: about −140 ° C.
Modulator frequency: 0.3 seconds hot temperature for 6 seconds, then 5.7 seconds cold temperature Interface hollow column: 0.5m length, 0.25mm ID
FID gas conditions: hydrogen (45 mL / min), air (450 mL / min), make-up helium (25 mL / min, constant)
10)酸化安定性の評価試験:
BDF混合軽油(バイオディーゼル燃料混合軽油)に適用される品質確保法の酸化安定性試験方法に準じ、各燃料油基材300mLをそれぞれ耐圧容器に入れ、酸素を3L/hで吹き込みながら、115℃の恒温槽で16時間保持して強制的に軽油を劣化させる酸化処理の加速試験を行った後、劣化した燃料油基材の入った各耐圧容器を恒温槽から取り出し、室温にまで降温した後、全酸価を下記の方法によって測定した。劣化した各燃料油基材の全酸価を、原料油の酸化劣化処理品の全酸価を基準にした酸化処理後の全酸価増加率として表1に示す。
11)全酸価:JIS K2276「航空燃料油試験方法」に規定された方法で、試料1g中に含まれる全酸性成分を中和するのに要する水酸化カリウムのミリグラム数。
10) Oxidation stability evaluation test:
In accordance with the oxidative stability test method of the quality assurance method applied to BDF blended light oil (biodiesel fuel blended light oil), each fuel oil base material 300mL was put in a pressure vessel, and oxygen was blown at 3 L / h, while 115 ° C After accelerating the oxidation test to forcibly degrade the diesel oil by holding it for 16 hours in a constant temperature bath, after taking out each pressure vessel containing the degraded fuel oil base material from the constant temperature bath and lowering the temperature to room temperature The total acid value was measured by the following method. Table 1 shows the total acid value of each deteriorated fuel oil base material as an increase rate of the total acid value after the oxidation treatment based on the total acid value of the oxidized and deteriorated product of the raw material oil.
11) Total acid value: The number of milligrams of potassium hydroxide required to neutralize all acidic components contained in 1 g of a sample according to the method defined in JIS K2276 “Testing method for aviation fuel oil”.
表1から、実施例1が微量のスチレン類が生成しているものの、飽和環を有さない2環以上の縮合多環芳香
族が増加し、飽和環を有する3環以上の縮合多環芳香族の残存もしくは生成を抑えていることから、酸化処理後の全酸価増加率が原料油を基準として−33%と非常に小さく、酸化安定性が良好となっていることが分かる。また、実施例2は飽和環を有さない2環以上の縮合多環芳香族は原料油と同量であり、飽和環を有する3環以上の縮合多環芳香族の残存もしくは生成を抑えていることがわかる。比較例1はジエン類を減少し、スチレン類の生成を抑えているが、飽和環を有さない2環以上の縮合多環芳香族が減少し、飽和環を有する3環以上の縮合多環芳香族が残存もしくは生成しており、酸化処理後の全酸価増加率が190%と非常に大きく、酸化安定性が顕著に悪化している。
From Table 1, although Example 1 produces a small amount of styrenes, the number of condensed polycyclic aromatics having 2 or more rings not having a saturated ring is increased, and condensed polycyclic aromatics having 3 or more rings having a saturated ring. Since the remaining or generation of the group is suppressed, it can be seen that the increase rate of the total acid value after the oxidation treatment is very small at −33% based on the raw material oil, and the oxidation stability is good. Further, in Example 2, the condensed polycyclic aromatic having 2 or more rings having no saturated ring is the same amount as the raw material oil, and the remaining or generation of the condensed polycyclic aromatic having 3 or more rings having a saturated ring is suppressed. I understand that. Comparative Example 1 reduces the number of dienes and suppresses the formation of styrenes, but the number of condensed polycyclic aromatics having two or more rings that do not have a saturated ring decreases, and three or more condensed polycyclics having a saturated ring. Aromatics remain or are produced, the rate of increase in the total acid value after the oxidation treatment is as large as 190%, and the oxidation stability is remarkably deteriorated.
Claims (4)
The method for producing a fuel oil base material according to any one of claims 1 to 3 , wherein the true heat generation amount of the fuel oil base material is 42,500 kJ / kg or more.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007063164A JP5352057B2 (en) | 2007-03-13 | 2007-03-13 | Method for producing fuel oil base material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007063164A JP5352057B2 (en) | 2007-03-13 | 2007-03-13 | Method for producing fuel oil base material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2008222861A JP2008222861A (en) | 2008-09-25 |
| JP5352057B2 true JP5352057B2 (en) | 2013-11-27 |
Family
ID=39841852
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007063164A Expired - Fee Related JP5352057B2 (en) | 2007-03-13 | 2007-03-13 | Method for producing fuel oil base material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5352057B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5394272B2 (en) * | 2010-02-01 | 2014-01-22 | Jx日鉱日石エネルギー株式会社 | Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3744672B2 (en) * | 1997-01-29 | 2006-02-15 | 株式会社豊田中央研究所 | Gas oil composition for reducing particulates |
| JP4197073B2 (en) * | 1999-08-27 | 2008-12-17 | 株式会社コスモ総合研究所 | Deep desulfurization catalyst, method for producing the same, and desulfurization method using the same |
| JP4223656B2 (en) * | 2000-04-20 | 2009-02-12 | 新日本石油株式会社 | Light oil composition |
| JP4268373B2 (en) * | 2002-05-31 | 2009-05-27 | 新日本石油株式会社 | Light oil composition (2) |
| JP4482470B2 (en) * | 2004-10-12 | 2010-06-16 | コスモ石油株式会社 | Method for producing light oil composition |
| KR101355722B1 (en) * | 2004-12-28 | 2014-01-24 | 제이엑스 닛코닛세키에너지주식회사 | Method for Producing Super-Low Sulfur Gas Oil Base Material or Super-Low Sulfur Gas Oil Composition, and Super-Low Sulfur Gas Oil Compositon |
| JP2006199783A (en) * | 2005-01-19 | 2006-08-03 | Japan Energy Corp | Fuel composition |
| JP2006312663A (en) * | 2005-05-06 | 2006-11-16 | Japan Energy Corp | Hydrocarbon oil desulfurization method |
| JP5054487B2 (en) * | 2006-11-13 | 2012-10-24 | Jx日鉱日石エネルギー株式会社 | Light oil composition |
-
2007
- 2007-03-13 JP JP2007063164A patent/JP5352057B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008222861A (en) | 2008-09-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5054487B2 (en) | Light oil composition | |
| JP5219247B2 (en) | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition | |
| JP5520101B2 (en) | Light oil composition | |
| JP2009167257A (en) | Light oil composition | |
| JP5520115B2 (en) | Light oil composition | |
| JP5520114B2 (en) | Light oil composition | |
| JP5024884B2 (en) | Unleaded gasoline composition and method for producing the same | |
| JP5352057B2 (en) | Method for producing fuel oil base material | |
| JP4845494B2 (en) | Gasoline composition | |
| JP4632738B2 (en) | Unleaded gasoline composition and method for producing the same | |
| JP5105853B2 (en) | Low sulfur fuel composition | |
| JP5684181B2 (en) | Light oil composition | |
| JP5684184B2 (en) | Light oil composition | |
| JP2008007675A (en) | Light oil composition | |
| JP4371937B2 (en) | Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same | |
| JP5379062B2 (en) | Process for producing light oil base or light oil composition | |
| JP5036074B2 (en) | Environmentally friendly gasoline | |
| JP5684183B2 (en) | Light oil composition | |
| JP5436078B2 (en) | Light oil composition | |
| JP2010265434A (en) | Light oil composition | |
| JP2008106198A (en) | Fuel additive and fuel composition containing the additive | |
| JP2009046587A (en) | Fuel oil for fuel cell | |
| JP2008303273A (en) | Method for producing desulfurized heavy cracked gasoline and gasoline composition containing the desulfurized heavy cracked gasoline | |
| JP2008239914A (en) | Fuel oil for fuel cell | |
| JP2009046585A (en) | Fuel oil for fuel cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091116 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100916 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120919 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120926 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121121 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130826 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5352057 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |