JP5387468B2 - Vacuum gauge - Google Patents
Vacuum gauge Download PDFInfo
- Publication number
- JP5387468B2 JP5387468B2 JP2010064123A JP2010064123A JP5387468B2 JP 5387468 B2 JP5387468 B2 JP 5387468B2 JP 2010064123 A JP2010064123 A JP 2010064123A JP 2010064123 A JP2010064123 A JP 2010064123A JP 5387468 B2 JP5387468 B2 JP 5387468B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- bias voltage
- vibrating body
- signal
- drive signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Description
本発明は、振動体を利用した真空計に関し、特に、広い範囲の気体の圧力を測定することができるようにした真空計に関する。 The present invention relates to a vacuum gauge using a vibrating body, and more particularly to a vacuum gauge capable of measuring a wide range of gas pressures.
従来、音叉型振動体を利用して雰囲気の圧力を測定する真空センサが知られている(特許文献1参照)。音叉型振動体を利用して雰囲気の圧力を測定する原理は、振動体を振動させ、その振動特性から雰囲気の圧力(すなわち真空度)を特定するものである。振動体の加振には振動体と加振電極との間の静電力を利用し、振動体と検出電極との電極間距離の変化に対応する静電容量の変化を検出することで振動体の振動を検出する。 Conventionally, a vacuum sensor that measures the pressure of an atmosphere using a tuning fork type vibrating body is known (see Patent Document 1). The principle of measuring the atmospheric pressure using a tuning fork type vibrating body is to vibrate the vibrating body and specify the atmospheric pressure (that is, the degree of vacuum) from the vibration characteristics. The vibrating body is excited by using an electrostatic force between the vibrating body and the vibrating electrode, and detecting the change in capacitance corresponding to the change in the distance between the vibrating body and the detection electrode. Detect vibrations.
振動体と対向する加振電極に、振動体の固有角周波数ωR(=2πfR、ここでfRは固有周波数)に対応した電圧信号を印加すると、振動体は共振状態となる。このときの振動体の振幅Aは、以下の式(1)のように表すことができる。 When a voltage signal corresponding to the natural angular frequency ω R (= 2πf R , where f R is the natural frequency) of the vibrating body is applied to the excitation electrode facing the vibrating body, the vibrating body enters a resonance state. The amplitude A of the vibrating body at this time can be expressed as the following formula (1).
ここで、F0は振動体に印加した静電駆動力、Qは振動体のQ値(振動体の振動特性の一つ)であって、共振のピークの鋭さを表す無次元数であり、mは振動体の質量である。
振動体のQ値は気体の圧力Pに反比例することが知られており、例えば、静電駆動力F0を一定に保持した条件で振動体の振幅Aを検出することにより振動体のQ値を求め、こQ値を気体の圧力P値に換算することによって間接的に気体の圧力Pを測定することが可能である。
Here, F 0 is the electrostatic driving force applied to the vibrating body, Q is the Q value of the vibrating body (one of the vibration characteristics of the vibrating body), and is a dimensionless number representing the sharpness of the resonance peak, m is the mass of the vibrating body.
It is known that the Q value of the vibrating body is inversely proportional to the gas pressure P. For example, the Q value of the vibrating body is detected by detecting the amplitude A of the vibrating body under the condition that the electrostatic driving force F 0 is kept constant. It is possible to indirectly measure the gas pressure P by converting the Q value into the gas pressure P value.
次に、静電駆動力F0は、下記の式(2)で示されるように、加振電極に駆動信号として印加した交流信号の電圧VAと、振動体の電位と加振電極の電位との間の直流の電位差ΔVOとの積の絶対値に比例する。 Next, as shown in the following formula (2), the electrostatic driving force F 0 includes the voltage VA of the AC signal applied as a drive signal to the excitation electrode, the potential of the vibrating body, and the potential of the excitation electrode. Is proportional to the absolute value of the product of the direct-current potential difference ΔV O between
静電駆動力F0がより大きいほど、同じ圧力(すなわち、同じQ値)において振幅Aがより大きくなるため、振動体の振幅の測定感度をより高くすること、すなわち、より高い圧力(より低いQ値)まで圧力を測定することが可能となる。静電駆動力F0を大きくするためには、(2)式より交流信号の電圧VAを高くするか、もしくは、振動体の電位と加振電極の電位との直流の電位差ΔVOを大きくすることである。 As the electrostatic driving force F 0 is larger, the amplitude A becomes larger at the same pressure (ie, the same Q value), so that the measurement sensitivity of the vibration body amplitude is made higher, that is, higher pressure (lower) It is possible to measure pressure up to (Q value). In order to increase the electrostatic driving force F 0 , the voltage VA of the AC signal is increased from the equation (2), or the DC potential difference ΔV O between the potential of the vibrating body and the potential of the excitation electrode is increased. It is to be.
しかし、駆動信号である交流信号の電圧VAを高くすると、交流信号が浮遊容量などを通じて振動検出回路の出力信号(振動検出信号)に混信するという問題がある。
また、振動体の電位と加振電極の電位との直流の電位差ΔVOを大きくするには、振動体に印加する直流のバイアス電圧VBを高くすればよいが、振動体に印加する直流のバイアス電圧VBを高くすると、振動体と、振動体の振動を検出する検出電極とが静電引力によって接触するという問題がある。
However, when the voltage VA of the AC signal that is the drive signal is increased, there is a problem that the AC signal interferes with the output signal (vibration detection signal) of the vibration detection circuit through a stray capacitance or the like.
In order to increase the direct-current potential difference ΔV O between the potential of the vibrating body and the potential of the excitation electrode, the DC bias voltage V B applied to the vibrating body may be increased. When the bias voltage V B is increased, there is a problem that the vibrating body and the detection electrode that detects the vibration of the vibrating body are brought into contact by electrostatic attraction.
本発明は、上記した課題を解決して、駆動信号の振動検出信号への混信を低減するとともに振動体と検出電極との静電引力による接触を防止した上で、従来より広い範囲の気体の圧力を十分な精度で測定することができるようにした真空計を提供することを目的とする。 The present invention solves the above-mentioned problems, reduces interference of the drive signal with the vibration detection signal and prevents contact between the vibrating body and the detection electrode due to electrostatic attraction. An object of the present invention is to provide a vacuum gauge capable of measuring pressure with sufficient accuracy.
上記目的を達成するために、本発明の真空計は、振動体と、該振動体と対向して静電力により振動体を駆動する加振電極と、該振動体と対向する検出電極と、振動体と検出電極との間の静電容量を検知することにより振動体の振動を検出する振動検出部と、振動体を加振する駆動信号を生成する駆動信号生成部とを有し、前記駆動信号を加振電極に印加し振動体を共振状態に保持して、振動体の振動特性から雰囲気の圧力を測定する圧力測定部を備えた真空計において、振動体が加振電極と対向する位置を,振動体が検出電極と対向する位置よりも振動体の固定部に近い位置としてなり、駆動信号生成部は、前記駆動信号として、交流信号に直流の駆動信号バイアス電圧が加算された信号を生成するとともに、振動体の電位と加振電極の電位との直流電位差を,振動体の電位と検出電極の電位との直流電位差よりも大きくしてなる構成とする(請求項1の発明)。 In order to achieve the above object, a vacuum gauge according to the present invention includes a vibrating body, an excitation electrode that faces the vibrating body and drives the vibrating body by electrostatic force, a detection electrode that faces the vibrating body, A vibration detection unit that detects a vibration of the vibrating body by detecting a capacitance between the body and the detection electrode, and a drive signal generation unit that generates a drive signal for exciting the vibrating body, In a vacuum gauge equipped with a pressure measurement unit that applies a signal to the excitation electrode to hold the vibrating body in a resonance state and measures the atmospheric pressure from the vibration characteristics of the vibrating body, the position where the vibrating body faces the excitation electrode And the position where the vibrating body is closer to the fixed portion of the vibrating body than the position where the vibrating body faces the detection electrode, and the drive signal generating section uses a signal obtained by adding a DC drive signal bias voltage to the AC signal as the drive signal. And the potential of the vibrating body and the potential of the excitation electrode Of the direct current potential difference, a configuration in which a larger than the DC potential difference between the potential of the detecting electrode of the vibrator (the invention of claim 1).
上記請求項1の発明によれば、交流信号(以下「駆動信号交流成分」とも称する)(VA)に直流の駆動信号バイアス電圧(VOB)が加算されてなる駆動信号(VO=VA+VOB)を加振電極に印加するので、駆動信号バイアス電圧(VOB)を高い電圧レベルとすることにより、振動体の電位と加振電極の電位との直流電位差(ΔVo=VB−VOB)を大きくして静電駆動力(Fo=|VA*ΔVo|)を大きくすることができる。 According to the first aspect of the present invention, a drive signal (V O = V) obtained by adding a DC drive signal bias voltage (V OB ) to an AC signal (hereinafter also referred to as “drive signal AC component”) (V A ). A + V OB ) is applied to the excitation electrode. Therefore, by setting the drive signal bias voltage (V OB ) to a high voltage level, the direct current potential difference (ΔVo = V B − V OB ) can be increased to increase the electrostatic driving force (Fo = | V A * ΔVo |).
このため、本発明では、必要な静電駆動力(Fo)の大きさが同じである場合、振動体の電位と加振電極の電位との直流電位差(ΔVo)を大きくした分だけ駆動信号交流成分(VA)の電圧の方はより低い電圧レベルに抑制することができることにより、浮遊容量などを通じた駆動信号の振動検出部の検出信号(以下「振動検出信号」とも称する)(VCA)への混信量をより低レベルに抑えることができる。 For this reason, in the present invention, when the required electrostatic driving force (Fo) is the same, the driving signal AC is increased by an amount corresponding to an increase in the DC potential difference (ΔVo) between the potential of the vibrating body and the potential of the excitation electrode. Since the voltage of the component (V A ) can be suppressed to a lower voltage level, a detection signal (hereinafter also referred to as “vibration detection signal”) (V CA ) of the vibration detection unit of the drive signal through the stray capacitance or the like The amount of interference with can be reduced to a lower level.
また、本発明では、駆動信号バイアス電圧(VOB)を高い電圧レベルとすることにより振動体の電位と加振電極の電位との直流電位差(ΔVo=VB−VOB)を大きくすることができるので、振動体バイアス電圧(VB)の方は低い電圧レベルに抑制することができ、これにより、振動体と検出電極とが静電引力によって接触することを防ぐことができる。 In the present invention, the DC potential difference (ΔVo = V B −V OB ) between the potential of the vibrating body and the potential of the excitation electrode can be increased by setting the drive signal bias voltage (V OB ) to a high voltage level. Since the vibration body bias voltage (V B ) can be suppressed to a lower voltage level, it is possible to prevent the vibration body and the detection electrode from coming into contact with each other due to electrostatic attraction.
これにより、駆動信号の振動検出信号(VCA)への混信を低減するとともに振動体と検出電極との静電引力による接触を防止した上で、より高い圧力まで気体の圧力(P)を十分な精度で測定することができるようになる。 This reduces interference with the vibration detection signal (V CA ) of the drive signal and prevents contact between the vibrating body and the detection electrode due to electrostatic attraction, and sufficiently increases the gas pressure (P) to a higher pressure. It becomes possible to measure with high accuracy.
また、振動体が加振電極と対向する位置を,振動体が検出電極と対向する位置よりも振動体の固定部に近い位置とした構成では、振動体の電位と検出電極の電位との直流電位差(ΔVr)は、振動体と検出電極とが静電引力によって接触しないような振動体・検出電極電位差条件値(|ΔVr|max)よりも小さくすることが必要であるが、振動体と加振電極とが静電引力によって接触しないような振動体・加振電極電位差条件値(|ΔVo|max)は上記振動体・検出電極電位差条件値(|ΔVr|max)よりも大きい。 In a configuration in which the position where the vibrating body faces the excitation electrode is closer to the fixed portion of the vibrating body than the position where the vibrating body faces the detection electrode, the direct current between the potential of the vibrating body and the potential of the detection electrode The potential difference (ΔVr) needs to be smaller than the vibrating body / detection electrode potential difference condition value (| ΔVr | max) that prevents the vibrating body and the detection electrode from contacting each other due to electrostatic attraction. The vibrating body / excitation electrode potential difference condition value (| ΔVo | max) that does not contact the vibrating electrode due to electrostatic attraction is larger than the vibrating body / detection electrode potential difference condition value (| ΔVr | max).
このため、上記のような電位差条件値同士の関係に対応して、振動体の電位と加振電極の電位との直流電位差(ΔVo)を、振動体・加振電極電位差条件値(|ΔVo|max)を満たす範囲で、振動体の電位と振動検出電極の電位との直流電位差(ΔVr)よりも大きな値とすることにより、静電駆動力(FO)をより大きくすることができるとともに、必要な静電駆動力(FO)の大きさが同じである場合には駆動信号交流成分(VA)の電圧をより低く抑えて浮遊容量などを通じた駆動信号の振動検出信号(VCA)への混信量をより低減することができる。 Therefore, in correspondence with the relationship between the potential difference condition values as described above, the direct current potential difference (ΔVo) between the potential of the vibrating body and the potential of the excitation electrode is changed to the vibration body / excitation electrode potential difference condition value (| ΔVo | max), the electrostatic driving force (F O ) can be further increased by setting the value larger than the DC potential difference (ΔVr) between the potential of the vibrating body and the potential of the vibration detection electrode. When the required electrostatic drive force (F O ) is the same, the drive signal vibration detection signal (V CA ) through the stray capacitance etc. while keeping the voltage of the drive signal AC component (V A ) lower. The amount of interference with can be further reduced.
また、請求項1に記載の真空計において、振動体と加振電極との対向面積を,振動体と検出電極との対向面積より小さくしてなる構成とすることができる(請求項2の発明)。
また、請求項1または2に記載の真空計において、直流の駆動信号バイアス電圧を生成する駆動信号バイアス電圧生成部と、直流の振動体バイアス電圧を生成する振動体バイアス電圧生成部とを有し、前記振動体バイアス電圧は振動体に印加されるとともに、前記駆動信号バイアス電圧は振動体バイアス電圧と逆極性の直流電圧である構成とすることができる(請求項3の発明)。
Further, in the vacuum gauge according to claim 1, the facing area between the vibrating body and the excitation electrode can be made smaller than the facing area between the vibrating body and the detection electrode (Invention of claim 2). ).
The vacuum gauge according to claim 1, further comprising: a drive signal bias voltage generation unit that generates a DC drive signal bias voltage; and a vibrator bias voltage generation unit that generates a DC vibrator bias voltage. The vibrator bias voltage is applied to the vibrator, and the drive signal bias voltage may be a DC voltage having a polarity opposite to that of the vibrator bias voltage (invention of claim 3).
上記請求項3の発明によれば、駆動信号バイアス電圧(VOB)を振動体バイアス電圧(VB)と逆極性の直流電圧としていることにより、駆動信号バイアス電圧(VOB)を振動体バイアス電圧(VB)と同極性の直流電圧としている場合に比べて、駆動信号バイアス電圧(VOB)の絶対値の大きさが同じであっても、振動体の電位と加振電極の電位との直流電位差(ΔVo=VB−VOB)をより大きくすることができるので、静電駆動力(Fo=|VA*ΔVo|)をより大きくすることができる。したがって、必要な静電駆動力(Fo)の大きさが同じである場合、駆動信号交流成分(VA)の方の電圧はより低く抑えることができるので、浮遊容量などを通じた駆動信号の振動検出信号(VCA)への混信量をより低レベルに低減することができる。 According to the third aspect of the present invention, the drive signal bias voltage (V OB ) is a DC voltage having a polarity opposite to that of the vibrator bias voltage (V B ), so that the drive signal bias voltage (V OB ) is the vibrator bias. as compared with the case that the voltage (V B) and the polarity of the DC voltage, even the magnitude of the absolute value of the drive signal bias voltage (V OB) are the same, the potential of the vibrating electrode of the vibrator Since the direct current potential difference (ΔVo = V B −V OB ) can be further increased, the electrostatic driving force (Fo = | V A * ΔVo |) can be further increased. Therefore, when the required electrostatic driving force (Fo) is the same, the voltage of the drive signal AC component (V A ) can be kept lower, so the vibration of the drive signal through stray capacitance etc. The amount of interference with the detection signal (V CA ) can be reduced to a lower level.
また、上記請求項3の発明では、駆動信号バイアス電圧(VOB)を振動体バイアス電圧(VB)と逆極性の直流電圧としていることにより、駆動信号バイアス電圧(VOB)を振動体バイアス電圧VBと同極性の直流電圧としている場合に比べて、駆動信号バイアス電圧(VOB)の絶対値がより小さくても、振動体の電位と加振電極の電位との直流電位差(ΔVo=VB−VOB)を同じ大きさとし、静電駆動力Foも同じ大きさとすることができるので、駆動信号バイアス生成部の出力電圧仕様をより低電圧レベルとすることができる。 According to the third aspect of the invention, the drive signal bias voltage (V OB ) is a DC voltage having a polarity opposite to that of the vibrator bias voltage (V B ), so that the drive signal bias voltage (V OB ) is the vibrator bias. Even if the absolute value of the drive signal bias voltage (V OB ) is smaller than when the DC voltage has the same polarity as the voltage V B , the DC potential difference (ΔVo = V B −V OB ) and the electrostatic driving force Fo can be set to the same magnitude, so that the output voltage specification of the drive signal bias generator can be set to a lower voltage level.
また、請求項1または2に記載の真空計において、直流の駆動信号バイアス電圧を生成する駆動信号バイアス電圧生成部と、駆動信号バイアス電圧を分圧する分圧回路とを有し、前記分圧回路の出力電圧は直流の振動体バイアス電圧として振動体に印加されてなる構成とすることもできる(請求項4の発明)。 3. The vacuum gauge according to claim 1, further comprising: a drive signal bias voltage generating unit that generates a DC drive signal bias voltage; and a voltage dividing circuit that divides the drive signal bias voltage. The output voltage may be applied to the vibrating body as a DC vibrating body bias voltage (invention of claim 4).
上記請求項4の発明によれば、駆動信号バイアス電圧生成部からの駆動信号バイアス電圧(VOB)を分圧回路で分圧した電圧を,振動体バイアス電圧(VB=(1/a)*VOB)として用いることにより、振動体バイアス電圧(VB)を生成するための別の電圧生成部(電圧源)が不要となるので、真空計の構成をより簡素化することができる。 According to the fourth aspect of the present invention, the voltage obtained by dividing the drive signal bias voltage (V OB ) from the drive signal bias voltage generator by the voltage dividing circuit is obtained as the vibrator bias voltage (V B = (1 / a)). * V OB ) eliminates the need for a separate voltage generator (voltage source) for generating the vibrator bias voltage (V B ), thereby further simplifying the configuration of the vacuum gauge.
また、請求項1または2に記載の真空計において、直流の振動体バイアス電圧を生成する振動体バイアス電圧生成部と、振動体バイアス電圧を昇圧する昇圧回路とを有し、前記振動体バイアス電圧は振動体に印加されるとともに、前記昇圧回路の出力電圧は直流の駆動信号バイアス電圧とされてなる構成とすることもできる(請求項5の発明)。 3. The vacuum gauge according to claim 1, further comprising: a vibrator bias voltage generator that generates a DC vibrator bias voltage; and a booster circuit that boosts the vibrator bias voltage; May be applied to the vibrating body, and the output voltage of the booster circuit may be a DC drive signal bias voltage (invention of claim 5).
上記請求項5の発明によれば、振動体バイアス電圧生成部からの振動体バイアス電圧(VB)を昇圧回路で分圧した電圧を,駆動信号バイアス電圧(VOB=b*VB)として用いることにより、駆動信号バイアス電圧(VOB)を生成するための別の電圧生成部(電圧源)が不要となるので、真空計の構成をより簡素化することができる。 According to the fifth aspect of the present invention, the voltage obtained by dividing the vibrator bias voltage (V B ) from the vibrator bias voltage generator by the booster circuit is set as the drive signal bias voltage (V OB = b * V B ). By using this, a separate voltage generation unit (voltage source) for generating the drive signal bias voltage (V OB ) is not required, and the configuration of the vacuum gauge can be further simplified.
また、請求項1または2に記載の真空計において、直流の検出バイアス電圧を生成する検出バイアス電圧生成部と、直流の駆動信号バイアス電圧を生成する駆動信号バイアス電圧生成部とを有し、前記検出バイアス電圧は振動検出部における検出電極に接続される容量電圧変換回路に印加されて、検出電極の電位が前記検出バイアス電圧の電圧レベルになるとともに、振動体の電位は接地レベルとされ、駆動信号バイアス電圧の絶対値を、検出バイアス電圧の絶対値よりも大きくしてなる構成とすることもできる(請求項6の発明)。 The vacuum gauge according to claim 1, further comprising: a detection bias voltage generation unit that generates a DC detection bias voltage; and a drive signal bias voltage generation unit that generates a DC drive signal bias voltage, The detection bias voltage is applied to a capacitance-voltage conversion circuit connected to the detection electrode in the vibration detection unit, and the potential of the detection electrode becomes the voltage level of the detection bias voltage, and the potential of the vibration body is set to the ground level. The absolute value of the signal bias voltage may be larger than the absolute value of the detection bias voltage (invention of claim 6).
また、請求項1ないし6のいずれか1項に記載の真空計において、駆動信号生成部における交流信号は、振動検出部の検出信号に基づき、この検出信号の位相を変えて増幅することにより生成される構成とすることができる(請求項7の発明)。 Further, in the vacuum gauge according to any one of claims 1 to 6, the AC signal in the drive signal generation unit is generated by changing the phase of the detection signal and amplifying it based on the detection signal of the vibration detection unit. (Invention of claim 7).
また、請求項7に記載の真空計において、駆動信号生成部は、駆動信号における交流信号の電圧が一定となるように、振動検出部の検出信号の位相を変えた信号に対する増幅のゲインを調整し、圧力測定部は、振動検出部の検出信号の大きさに基づいて圧力を測定する構成とすることができる(請求項8の発明)。 Further, in the vacuum gauge according to claim 7, the drive signal generation unit adjusts an amplification gain for a signal obtained by changing the phase of the detection signal of the vibration detection unit so that the voltage of the AC signal in the drive signal is constant. The pressure measuring unit can measure the pressure based on the magnitude of the detection signal of the vibration detecting unit (invention of claim 8).
また、請求項7に記載の真空計において、駆動信号生成部は、振動検出部の検出信号の大きさが一定となるように、振動検出部の検出信号の位相を変えた信号に対する増幅のゲインを調整し、圧力測定部は、駆動信号における交流信号の電圧に基づいて圧力を測定する構成とすることもできる(請求項9の発明)。 The vacuum gauge according to claim 7, wherein the drive signal generation unit is an amplification gain for a signal obtained by changing the phase of the detection signal of the vibration detection unit so that the magnitude of the detection signal of the vibration detection unit is constant. And the pressure measuring unit can measure the pressure based on the voltage of the AC signal in the drive signal (invention of claim 9).
また、請求項7ないし9のいずれか1項に記載の真空計において、駆動信号生成部は、振動体の固有周波数に対応した周波数の初期励振信号を出力する初期励振用信号源を備え、 振動体の初期駆動時には、前記駆動信号として、振動検出部の検出信号に基づく駆動信号の代わりに、初期励振信号に駆動信号バイアス電圧が加算された初期駆動信号を加振電極に印加する構成とすることができる(請求項10の発明)。 The vacuum gauge according to any one of claims 7 to 9, wherein the drive signal generation unit includes an initial excitation signal source that outputs an initial excitation signal having a frequency corresponding to the natural frequency of the vibrating body, When the body is initially driven, an initial drive signal obtained by adding a drive signal bias voltage to the initial excitation signal is applied to the excitation electrode as the drive signal instead of the drive signal based on the detection signal of the vibration detection unit. (Invention of claim 10).
本発明によれば、駆動信号交流成分に直流の駆動信号バイアス電圧が加算されてなる駆動信号を加振電極に印加するので、駆動信号バイアス電圧を高い電圧レベルとすることにより、振動体の電位と加振電極の電位との直流電位差を大きくして静電駆動力を大きくすることができる。 According to the present invention, since the drive signal obtained by adding the DC drive signal bias voltage to the drive signal AC component is applied to the excitation electrode, the potential of the vibrating body can be increased by setting the drive signal bias voltage to a high voltage level. The electrostatic driving force can be increased by increasing the direct current potential difference between the voltage and the potential of the excitation electrode.
このため、必要な静電駆動力の大きさが同じである場合、振動体の電位と加振電極の電位との直流電位差を大きくした分だけ駆動信号交流成分の電圧の方はより低い電圧レベルに抑制することができることにより、浮遊容量などを通じた駆動信号の振動検出信号への混信量をより低レベルに抑えることができる。 For this reason, when the required electrostatic driving force is the same, the voltage level of the drive signal AC component is lower by the amount corresponding to the increase in the DC potential difference between the potential of the vibrating body and the potential of the excitation electrode. As a result, the amount of interference of the drive signal with the vibration detection signal through the stray capacitance can be suppressed to a lower level.
また、駆動信号バイアス電圧を高い電圧レベルとすることにより振動体の電位と加振電極の電位との直流電位差を大きくすることができるので、振動体バイアス電圧の方は低い電圧レベルに抑制することができ、これにより、振動体と検出電極とが静電引力によって接触することを防ぐことができる。 In addition, since the DC potential difference between the vibrator potential and the excitation electrode potential can be increased by setting the drive signal bias voltage to a high voltage level, the vibrator bias voltage is suppressed to a lower voltage level. Thus, the vibrating body and the detection electrode can be prevented from coming into contact with each other by electrostatic attraction.
これにより、駆動信号の振動検出信号への混信を低減するとともに振動体と検出電極との静電引力による接触を防止した上で、より高い圧力まで気体の圧力を十分な精度で測定することができるようになる。 As a result, the interference of the drive signal with the vibration detection signal can be reduced and the contact between the vibrating body and the detection electrode due to electrostatic attraction can be prevented, and the gas pressure can be measured with sufficient accuracy up to a higher pressure. become able to.
また、振動体が加振電極と対向する位置を,振動体が検出電極と対向する位置よりも振動体の固定部に近い位置とした構成では、振動体の電位と検出電極の電位との直流電位差は、振動体と検出電極とが静電引力によって接触しないような振動体・検出電極電位差条件値よりも小さくすることが必要であるが、振動体と加振電極とが静電引力によって接触しないような振動体・加振電極電位差条件値は上記振動体・検出電極電位差条件値よりも大きい。このため、上記のような電位差条件値同士の関係に対応して、振動体の電位と加振電極の電位との直流電位差を、振動体・加振電極電位差条件値を満たす範囲で、振動体の電位と振動検出電極の電位との直流電位差よりも大きな値とすることにより、静電駆動力をより大きくすることができるとともに、必要な静電駆動力の大きさが同じである場合には駆動信号交流成分の電圧をより低く抑えて浮遊容量などを通じた駆動信号の振動検出信号への混信量をより低減することができる。 In a configuration in which the position where the vibrating body faces the excitation electrode is closer to the fixed portion of the vibrating body than the position where the vibrating body faces the detection electrode, the direct current between the potential of the vibrating body and the potential of the detection electrode The potential difference needs to be smaller than the vibrating body / detection electrode potential difference condition value so that the vibrating body and the detection electrode do not contact with each other due to electrostatic attraction, but the vibration body and the excitation electrode contact with each other due to electrostatic attraction. The vibration body / excitation electrode potential difference condition value is larger than the vibration body / detection electrode potential difference condition value. For this reason, in response to the relationship between the potential difference condition values as described above, the direct current potential difference between the potential of the vibrating body and the potential of the excitation electrode is set within a range that satisfies the vibration body / excitation electrode potential difference condition value. By making the value larger than the DC potential difference between the potential of the vibration detection electrode and the potential of the vibration detection electrode, the electrostatic driving force can be further increased and the required electrostatic driving force is the same. By reducing the voltage of the drive signal AC component to a lower level, it is possible to further reduce the amount of interference of the drive signal through the stray capacitance to the vibration detection signal.
以下、本発明の実施形態を図1〜図11に示す実施例に基づいて説明する。同一の構成要素については、同一の符号を付け、重複する説明は省略する。なお、本発明は、下記の実施形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができるものである。
[本発明の実施形態]
(イ)真空計の機構部分を成す構造体の構成:
まず、後述の各実施例に共通する技術事項として、本発明の実施形態に係る真空計の機構部分を成す構造体について説明する。図1は、本発明の実施形態に係る真空計の機構部分を成す構造体を模式的に示す平面図であり、図2は、図1に示す構造体の側面図である。図1および図2において、真空計の機構部分を成す構造体は、錘1、梁2および振動体固定部3よりなる振動体4と、振動体4を加振するための加振電極5と、振動体の振動を検出するための振動検出電極6とから構成されている。そして、加振電極5は振動体4と対向して配置され、加振電極5に駆動信号を印加することによって静電力により振動体4が駆動される。また、振動検出電極6も振動体4と対向して配置され、振動体4と検出電極6との間の静電容量を検知することによって振動体4の振動が検出される。なお、図1〜2に示す構造体は、振動体4が加振電極5と対向する位置を,振動体4が振動検出電極6と対向する位置よりも振動体固定部3に近い位置としてなる構成とされており、さらには、振動体4と加振電極5との間の対向面積Soを,振動体4と振動検出電極6との間の対向面積Srより小さくしてなる構成とされている。
(ハ)振動体の形状、振動体のQ値、振動体の振幅および気体の圧力との関係:
次に、後述の各実施例に共通する技術事項として、振動体4の形状、振動体4のQ値、振動体4の振幅および気体の圧力Pとの関係について説明する。振動体4は気体分子の衝突により、抵抗力を受ける。分子流領域においては、気体分子による抵抗力は気体の圧力Pに正比例する。気体の圧力Pが低くなるに従い、振動体4が気体分子から受ける抵抗力が低下するため、振動体のQ値(共振の鋭さ)は高くなる。ただし、振動体4は固有のQ値QEを持っており、固有のQ値QE以上になることはない。すなわち、振動体4が測定することが可能な気体の圧力Pの下限は、固有のQ値QEによって制限されることを意味する。
Hereinafter, embodiments of the present invention will be described based on examples shown in FIGS. About the same component, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary, it can implement suitably.
Embodiment of the present invention
(B) Structure of the structure that forms the mechanism of the vacuum gauge:
First, as a technical matter common to each example described later, a structure constituting a mechanism part of a vacuum gauge according to an embodiment of the present invention will be described. FIG. 1 is a plan view schematically showing a structure constituting a mechanical part of a vacuum gauge according to an embodiment of the present invention, and FIG. 2 is a side view of the structure shown in FIG. In FIG. 1 and FIG. 2, the structure constituting the mechanism part of the vacuum gauge includes a vibrating body 4 including a weight 1, a beam 2 and a vibrating body fixing portion 3, and an excitation electrode 5 for exciting the vibrating body 4. And a vibration detection electrode 6 for detecting the vibration of the vibrating body. The vibrating electrode 5 is disposed to face the vibrating body 4, and the vibrating body 4 is driven by an electrostatic force by applying a drive signal to the vibrating electrode 5. The vibration detection electrode 6 is also arranged to face the vibration body 4, and the vibration of the vibration body 4 is detected by detecting the electrostatic capacitance between the vibration body 4 and the detection electrode 6. 1 and 2, the position where the vibrating body 4 faces the excitation electrode 5 is closer to the vibrating body fixing portion 3 than the position where the vibrating body 4 faces the vibration detection electrode 6. Further, the facing area So between the vibrating body 4 and the excitation electrode 5 is made smaller than the facing area Sr between the vibrating body 4 and the vibration detection electrode 6. Yes.
(C) Relationship between the shape of the vibrating body, the Q value of the vibrating body, the amplitude of the vibrating body, and the gas pressure:
Next, as technical matters common to the embodiments described later, the relationship between the shape of the vibrating body 4, the Q value of the vibrating body 4, the amplitude of the vibrating body 4, and the gas pressure P will be described. The vibrating body 4 receives a resistance force due to collision of gas molecules. In the molecular flow region, the resistance force by the gas molecules is directly proportional to the gas pressure P. As the pressure P of the gas decreases, the resistance force that the vibrating body 4 receives from the gas molecules decreases, so the Q value (resonance sharpness) of the vibrating body increases. However, the vibrating body 4 has a specific Q value Q E and never exceeds the specific Q value Q E. That is, the lower limit of the pressure P of the gas that can vibrator 4 is measured, meant to be limited by the specific Q value Q E.
振動体4のQ値は、気体の圧力Pとの関係において、fRを振動体4の固有周波数、mを錘1の質量、Sを気体の抵抗力を受ける面積、Rを気体定数、Tを温度、Mを気体分子1molあたりの質量とすると、以下の式(3)のように表すことができる。 In relation to the gas pressure P, the Q value of the vibrating body 4 is f R is the natural frequency of the vibrating body 4, m is the mass of the weight 1, S is the area that receives the gas resistance, R is the gas constant, T Is the temperature, and M is the mass per mol of gas molecule, it can be expressed as the following equation (3).
図3は、本発明の実施形態に係る振動体の設計値の一例を示す図であり、図4は、図3に示した振動体の設計値におけるQ値と気体の圧力Pとの関係を示す図である。
なお、図3では、図1〜2に示す構造体の構造が斜視図として示されるとともに、振動体4の振動方向(図2の矢印で示す振動方向と同じ方向)が矢印で示されている。
FIG. 3 is a diagram showing an example of the design value of the vibrating body according to the embodiment of the present invention. FIG. 4 shows the relationship between the Q value and the gas pressure P in the design value of the vibrating body shown in FIG. FIG.
3, the structure of the structure shown in FIGS. 1 and 2 is shown as a perspective view, and the vibration direction of the vibration body 4 (the same direction as the vibration direction shown by the arrow in FIG. 2) is shown by an arrow. .
図4(a)は、図3に示される振動体4を、矢印で示す振動方向(すなわち錘1の1000μm×1000μmの幅広面に垂直な振動方向)に振動させた場合のQ値−圧力特性を示している。ここで、図1〜2に示されている加振電極5および振動検出電極6は上記振動方向での圧力測定に対応したものである。 FIG. 4A shows the Q value-pressure characteristic when the vibrating body 4 shown in FIG. 3 is vibrated in the vibration direction indicated by the arrow (that is, the vibration direction perpendicular to the wide surface of the weight 1 of 1000 μm × 1000 μm). Is shown. Here, the excitation electrode 5 and the vibration detection electrode 6 shown in FIGS. 1 and 2 correspond to the pressure measurement in the vibration direction.
図4(a)にQ値−圧力特性として示されているように、振動体4を上記振動方向に振動させた場合に測定することができる気体の圧力は約0.1Paから約100Paである。また、図3に示した振動体4の振動方向における固有周波数は、例えば、振動体の材質をシリコンとした場合、約560Hzである。 As shown in FIG. 4A as Q value-pressure characteristics, the gas pressure that can be measured when the vibrating body 4 is vibrated in the vibration direction is about 0.1 Pa to about 100 Pa. Further, the natural frequency in the vibration direction of the vibrating body 4 shown in FIG. 3 is about 560 Hz when the material of the vibrating body is silicon, for example.
そして、例えば図4(a)に示されるようなQ値と気体の圧力Pとの関係(Q値−圧力特性)は、図3に示されるような振動体の形状に関する厚さ,梁の長さ,面積などの設計値、振動体の材質によって変わるものであり、これらの仕様によって測定することができる気体の圧力範囲を任意に設計することができる。 For example, the relationship (Q value-pressure characteristics) between the Q value and the gas pressure P as shown in FIG. 4A is the thickness and the length of the beam as shown in FIG. It changes depending on the design value such as the area and the material of the vibrating body, and the pressure range of the gas that can be measured according to these specifications can be arbitrarily designed.
図4(b)は、図4(a)における上記振動方向(図2の矢印で示す振動方向)でのQ値−圧力特性のうち、0.1Paから100Paまでの圧力範囲の部分のみを模式的に線形な特性として示している。 FIG. 4B schematically illustrates only the portion in the pressure range from 0.1 Pa to 100 Pa in the Q value-pressure characteristics in the vibration direction (vibration direction indicated by the arrow in FIG. 2) in FIG. Are shown as linear characteristics.
図5は、本発明の実施形態および従来技術における振動体の振幅Aと気体の圧力Pとの関係(振幅−圧力特性)および各部電圧条件を例示するであって、図5(a)は、図4(b)に示される上記振動方向(図2の矢印で示す振動方向)でのQ値−圧力特性に対応する振幅−圧力特性を、図5(b)に記載した各電圧条件について示している。図5(b)に記載した各電圧条件の詳細は後述する。なお、図5(a)の縦軸「振幅(m)」における「1E−10」〜「1E−07」との各目盛数値の記載は、それぞれ「1×10−10」〜「1×10−7」を示すものである。
(ニ)振動体と加振電極または振動検出電極とが接触する電位差条件:
次に、後述の各実施例に共通する技術事項として、振動体4と加振電極5または振動検出電極6とが接触する電位差条件について説明する。上述の図3に示した振動体4の材質を例えばシリコンとした場合、この振動体4の振動方向(図2に示される錘1の幅広面に垂直な振動方向)でのばね定数kは約0.3 N/mとなる。そして、一般的に、振動体4と加振電極5または振動検出電極6とが接触する電圧EPは下記の式(4)で表すことができる。
FIG. 5 exemplifies the relationship between the amplitude A of the vibrating body and the pressure P of the gas (amplitude-pressure characteristics) and the voltage conditions of each part in the embodiment of the present invention and the prior art, and FIG. The amplitude-pressure characteristics corresponding to the Q value-pressure characteristics in the vibration direction (vibration direction indicated by the arrow in FIG. 2) shown in FIG. 4B are shown for each voltage condition shown in FIG. ing. Details of the voltage conditions described in FIG. 5B will be described later. In addition, the description of each scale value of “1E-10” to “1E-07” in the vertical axis “amplitude (m)” in FIG. 5A is “1 × 10 −10 ” to “1 × 10”, respectively. -7 ".
(D) Potential difference condition where the vibrating body and the excitation electrode or vibration detection electrode are in contact:
Next, as a technical matter common to each embodiment described later, a potential difference condition in which the vibrating body 4 and the excitation electrode 5 or the vibration detection electrode 6 are in contact will be described. When the material of the vibrator 4 shown in FIG. 3 is, for example, silicon, the spring constant k in the vibration direction of the vibrator 4 (vibration direction perpendicular to the wide surface of the weight 1 shown in FIG. 2) is about 0.3 N / m. Then, typically, the voltage E P of the vibrating body 4 and the vibrating electrode 5 or vibration detection electrodes 6 are in contact can be expressed by the following equation (4).
ここで、d0は振動体4と加振電極5または振動検出電極6との距離、εは誘電率、Sは電極の面積である。
図3に例示される設計値の振動体4では、振動体4と振動検出電極6とが接触する電位差EPは約3.1Vである。一方、加振電極5は、振動検出電極6と比較して面積Sが小さく、また、振動体固定部3の近くに設置されているため、EPの20倍程度の直流電圧を印加することが可能である。
(ホ)実施例1〜4:
以下で説明する実施例1〜4は、駆動信号の振動検出信号への混信を低減するとともに振動体と振動検出電極との静電引力による接触を防止した上で、従来より広い範囲の気体の圧力を十分な精度で測定できるようにする上で好適な真空計の構成例を示すものであり、いずれも特に真空計の回路構成および各部電圧条件に特徴を有するものである。
Here, d 0 is a distance between the vibrating body 4 and the excitation electrode 5 or the vibration detection electrode 6, ε is a dielectric constant, and S is an area of the electrode.
In the vibrating body 4 having the design value illustrated in FIG. 3, the potential difference E P at which the vibrating body 4 and the vibration detection electrode 6 are in contact is about 3.1V. On the other hand, vibration electrode 5 has a smaller area S as compared to the vibration detection electrode 6, also, because it is located near the vibrator fixing portion 3, by applying a 20 times the DC voltage E P Is possible.
(E) Examples 1-4:
In the first to fourth embodiments described below, the interference of the drive signal to the vibration detection signal is reduced and the contact between the vibration body and the vibration detection electrode due to electrostatic attraction is prevented. An example of the configuration of a vacuum gauge suitable for enabling the pressure to be measured with sufficient accuracy is shown, and all are particularly characterized by the circuit configuration of the vacuum gauge and the voltage conditions of each part.
(a)本発明の実施例1は、直流の駆動信号バイアス電圧VOBを生成する駆動信号バイアス電圧源11と、直流の振動体バイアス電圧VBを生成する振動体バイアス電圧源13とを有し、振動体バイアス電圧VBは振動体4に印加されるとともに、駆動信号バイアス電圧VOBは振動体バイアス電圧VBと逆極性の直流電圧であるようにしたものである。 (A) Example 1 of the present invention is used, the number a drive signal bias voltage source 11 for generating a drive signal bias voltage V OB DC, and a vibrator bias voltage source 13 for generating a vibrating body bias voltage V B of the DC and, vibrator bias voltage V B, together is applied to the vibrating body 4, drive signal bias voltage V OB is obtained by the such that the vibrating body bias voltage V B and opposite polarity of the DC voltage.
(b)真空計の機構部分を成す構造体の構成:
まず、実施例1に係る真空計の機構部分を成す構造体としては、上記(ロ)項において図1〜2を用いて説明した構成を適用することができる。
(B) Structure of the structure constituting the mechanical part of the vacuum gauge:
First, as the structure constituting the mechanical part of the vacuum gauge according to the first embodiment, the configuration described with reference to FIGS.
(c)真空計の回路構成:
次に、実施例1に係る真空計の回路構成について説明する。図6は本発明の実施例1に係る真空計の回路構成を示すブロック図であり、図1〜2と同一の符号は図1〜2と同一名称の部分を示す。図6に示されるように、実施例1に係る真空計の回路は、振動体4と振動検出電極6との間の静電容量の変化を電圧の変化に変換する容量電圧変換回路21、容量電圧変換回路21からの振動検出信号VCAを気体の圧力Pに対応した電圧信号である圧力測定信号VPに変換する圧力変換回路31、上記振動検出信号VCAの位相をシフトする位相シフト回路9、増幅のゲインの調整により位相シフト回路9の出力信号VCAPの電圧を制御する電圧制御回路10、振動体4を初期加振するための初期励振信号VAIを生成する初期加振用信号源15、加振電極5に印加する交流信号VAを選択するスイッチ回路16、直流の振動体バイアス電圧VBを生成する振動体バイアス電圧源13、直流の駆動信号バイアス電圧VOBを生成する駆動信号バイアス電圧源11、スイッチ回路16により選択された交流信号VAに駆動信号バイアス電圧VOBを加算する信号合成回路12から構成される。
(C) Vacuum gauge circuit configuration:
Next, the circuit configuration of the vacuum gauge according to the first embodiment will be described. FIG. 6 is a block diagram showing the circuit configuration of the vacuum gauge according to the first embodiment of the present invention, and the same reference numerals as those in FIGS. As shown in FIG. 6, the circuit of the vacuum gauge according to the first embodiment includes a capacitance-voltage conversion circuit 21 that converts a change in capacitance between the vibrating body 4 and the vibration detection electrode 6 into a change in voltage, a capacitance A pressure conversion circuit 31 that converts the vibration detection signal V CA from the voltage conversion circuit 21 into a pressure measurement signal V P that is a voltage signal corresponding to the gas pressure P, and a phase shift circuit that shifts the phase of the vibration detection signal V CA 9, the initial pressure mutabilis signal to generate an initial excitation signal V AI for initial excitation voltage control circuit 10 for controlling the voltage of the output signal V CAP of the phase shift circuit 9, a vibrating member 4 by adjusting the gain of the amplifier source 15, the switch circuit 16 to select the AC signal V a to be applied to the excitation electrodes 5, the vibrating body bias voltage source 13 for generating a vibrating body bias voltage V B of the DC, to generate a drive signal bias voltage V OB DC Drive signal bias voltage source 11, switch circuit 1 6 is composed of a signal synthesis circuit 12 for adding the drive signal bias voltage VOB to the AC signal VA selected by 6.
そして、実施例1において、駆動信号バイアス電圧源11は、振動体バイアス電圧VBとは逆符号の直流電圧を駆動信号バイアス電圧VOBとして生成する構成となっている。
また、容量電圧変換回路21は、真空計の振動検出部における振動検出回路として振動検出電極6に接続され、振動体4が振動することによる振動体4と振動検出電極6との間の静電容量の変化を電圧の変化に変換し、振動検出信号VCAとして出力するものであり、図6にはチャージアンプとしての回路構成例が示されている。図6において、容量電圧変換回路21は、差動増幅器22、抵抗23、キャパシタ24から構成されている。そして、容量電圧変換回路21において、抵抗23とキャパシタ24との並列回路が差動増幅器22の反転入力端子と出力端子との間に接続されるとともに、差動増幅器22の非反転入力端子は接地電位とされ、容量電圧変換回路21における検出バイアス電圧VRは0Vとなっており、これにより、振動検出電極6の電圧VDも検出バイアス電圧VRと同じ0Vとなっている。なお、本発明における容量電圧変換回路は、図6の構成に限定されるものではない。
Then, in Example 1, a drive signal bias voltage source 11 is configured to generate a DC voltage of opposite sign as the drive signal bias voltage V OB is a vibrator bias voltage V B.
The capacitance-voltage conversion circuit 21 is connected to the vibration detection electrode 6 as a vibration detection circuit in the vibration detection unit of the vacuum gauge, and electrostatic capacitance between the vibration body 4 and the vibration detection electrode 6 due to the vibration of the vibration body 4 is detected. A change in capacitance is converted into a change in voltage and output as a vibration detection signal VCA . FIG. 6 shows a circuit configuration example as a charge amplifier. In FIG. 6, the capacitance / voltage conversion circuit 21 includes a differential amplifier 22, a resistor 23, and a capacitor 24. In the capacitor voltage conversion circuit 21, a parallel circuit of the resistor 23 and the capacitor 24 is connected between the inverting input terminal and the output terminal of the differential amplifier 22, and the non-inverting input terminal of the differential amplifier 22 is grounded. to the potential, the sense bias voltage V R at the capacitance-voltage conversion circuit 21 is a 0V, thereby, the voltage V D of the vibration detection electrodes 6 also has the same 0V as sense bias voltage V R. Note that the capacitance-voltage conversion circuit in the present invention is not limited to the configuration shown in FIG.
(d)振動体の加振動作:
次に、実施例1における駆動信号生成部からの駆動信号による振動体4の加振動作について説明する。図6において、振動体4が初期加振される場合、スイッチ回路16はAとBとが接続され、加振電極5に印加する交流信号VAとして初期加振信号VAIが選択された状態となっている。この初期加振状態では、初期加振用電圧源15より振動体4の固有周波数fRに対応した周波数の正弦波電圧信号、もしくは、上記固有周波数fRに対応した繰り返し周波数のパルス電圧信号からなる初期加振信号VAIが出力され、信号合成回路12により初期加振信号VAIに駆動信号バイアス電圧VOBが加算されてなる駆動信号VO(=VAI+VOB)が加振電極5に印加されることにより振動体4が加振される。初期加振用信号源15は初期加振にのみ使用され、振動体4が振動し始めた後は、スイッチ回路16が切り替えられ、AとCとが接続される。
(D) Excitation operation of the vibrator:
Next, the vibration operation of the vibrating body 4 by the drive signal from the drive signal generation unit in the first embodiment will be described. In FIG. 6, when the vibrating body 4 is initially excited, the switch circuit 16 is connected to A and B, and the initial excitation signal V AI is selected as the AC signal V A applied to the excitation electrode 5. It has become. In this initial vibration state, the frequency of the sine wave voltage signal corresponding to the natural frequency f R of the vibrating member 4 from the voltage source 15 for initial excitation, or, from the pulse voltage signal repetition frequency corresponding to the natural frequency f R initial excitation signal V AI is outputted becomes the drive signal by a signal combining circuit 12 an initial excitation signal V AI to the drive signal bias voltage V OB is formed by adding V O (= V AI + V OB) is vibration electrode 5 The vibrating body 4 is vibrated by being applied to. The initial excitation signal source 15 is used only for initial excitation. After the vibrating body 4 starts to vibrate, the switch circuit 16 is switched and A and C are connected.
そして、スイッチ回路16でAとCとが接続され、加振電極5に印加する交流信号VAとして電圧制御回路10からの交流信号VAPが選択された状態において、振動検出部における容量電圧変換回路21からの振動検出信号VCAに基づき、この振動検出信号VCAの位相を位相シフト回路9でシフトし、位相シフト回路9の出力信号VCAPの電圧を電圧制御回路10における増幅のゲインの調整により制御することによって交流信号VAPを生成し、信号合成回路12により交流信号VAPに直流の駆動信号バイアス電圧VOBが加算されてなる駆動信号VO(=VAP+VOB)を加振電極5に印加することで振動体4の共振状態を保持する。 In the state where A and C are connected by the switch circuit 16 and the AC signal VAP from the voltage control circuit 10 is selected as the AC signal VA to be applied to the excitation electrode 5, the capacitance voltage conversion in the vibration detection unit is performed. Based on the vibration detection signal V CA from the circuit 21, the phase of the vibration detection signal V CA is shifted by the phase shift circuit 9, and the voltage of the output signal V CAP of the phase shift circuit 9 is amplified by the gain of the voltage control circuit 10. An AC signal V AP is generated by controlling by adjustment, and a drive signal V O (= V AP + V OB ) obtained by adding a DC drive signal bias voltage V OB to the AC signal V AP is added by the signal synthesis circuit 12. By applying the vibration electrode 5, the resonance state of the vibrating body 4 is maintained.
なお、スイッチ回路16は、上述のように、振動体4の振幅に応じて接続を切り替えるように動作するものであり、例えば、振動体4の振幅A、すなわち、振動体4の変位に応じて出力される容量電圧変換回路21からの振動検出信号VCAの大きさが予め設定した値に到達したことを図示されないスイッチ回路用制御部で検出し、その検出タイミングで前記スイッチ回路用制御部からスイッチ回路16にB側からC側への切替信号を与えることにより、振動体4の振幅に応じた接続切り替え動作を行うことができる。 Note that, as described above, the switch circuit 16 operates so as to switch the connection according to the amplitude of the vibrating body 4, for example, according to the amplitude A of the vibrating body 4, that is, according to the displacement of the vibrating body 4. detected by the switch circuit control unit the size of the vibration detection signal V CA is not shown that it has reached the preset value from the capacitance-voltage conversion circuit 21 to be outputted from the switching circuit control section at the detection timing By applying a switching signal from the B side to the C side to the switch circuit 16, a connection switching operation according to the amplitude of the vibrating body 4 can be performed.
(e)圧力測定動作:
次に、実施例1における圧力測定動作は、例えば加振電極5に印加される駆動信号V0(=VAP+VOB)における交流信号(駆動信号交流成分)VAPの大きさが一定となるように,容量電圧変換回路21からの振動検出信号VCAの位相を位相シフト回路9でシフトした信号VCAPに対する電圧制御回路10における増幅のゲインを調整する制御を行なっている状態で、振動体4のQ値に対応して変化する振動体4の振幅A、すなわち容量電圧変換回路21からの振動検出信号VCAの大きさを、圧力変換回路31で圧力P値に対応する圧力測定信号VPに変換することにより圧力Pを測定する方式(以下「駆動電圧一定方式」とも称する)とすることができる。
(E) Pressure measurement operation:
Then, the pressure measurement by the first embodiment, the driving signal V 0 (= V AP + V OB) AC signal at (drive signal AC component) V magnitude of AP is constant is applied to, for example, excitation electrode 5 As described above, in the state where the control for adjusting the gain of amplification in the voltage control circuit 10 with respect to the signal V CAP obtained by shifting the phase of the vibration detection signal V CA from the capacitance voltage conversion circuit 21 by the phase shift circuit 9 is performed. The amplitude A of the vibrating body 4 that changes corresponding to the Q value of 4, that is, the magnitude of the vibration detection signal V CA from the capacitance-voltage conversion circuit 21 is converted into a pressure measurement signal V corresponding to the pressure P value by the pressure conversion circuit 31. it can be a method of measuring the pressure P (hereinafter referred to as "driving voltage fixing method") by converting the P.
なお、上述の駆動電圧一定方式における振動体の振幅A(振動検出信号VCAの大きさ)から圧力P値(圧力測定信号VP)への変換方法としては、振動体の振幅A(振動検出信号VCAの大きさ)をQ値に変換し,さらに,このQ値を圧力P値(圧力測定信号VP)に変換するようにしてもよく、また、振動体の振幅A(振動検出信号VCAの大きさ)を,Q値を介さないで,直接的に圧力P値(圧力測定信号VP)に変換するようにしてもよい。 As a method of converting the vibration body amplitude A (the magnitude of the vibration detection signal V CA ) into the pressure P value (pressure measurement signal V P ) in the above-described constant drive voltage method, the vibration body amplitude A (vibration detection) The magnitude of the signal V CA may be converted into a Q value, and this Q value may be further converted into a pressure P value (pressure measurement signal V P ), and the amplitude A of the vibrating body (vibration detection signal) The magnitude of V CA may be directly converted into a pressure P value (pressure measurement signal V P ) without using a Q value.
ここで、上記(ハ)項で述べたように、例えば振動体4が図3に示される設計値であって材質がシリコンの振動体である場合、図2に示される振動方向(錘1の幅広面に垂直な振動方向)においては、Q値と圧力P値との関係(Q値−圧力特性)は、図4(a)に示されるような、(約0.1Pa程度以上の)高圧領域では振幅が圧力にほぼ反比例するとともに低圧側では振幅がその最大限界値に向かって飽和していく特性となる。そして、このようなQ値−圧力特性に対応して、上述の駆動電圧一定方式における振動体の振幅A(振動検出信号VCAの大きさ)と圧力P値との関係(振幅A−圧力特性)も、(約0.1Pa程度以上の)高圧領域では振幅Aが圧力にほぼ反比例するとともに低圧側では圧力レベルが低下するのに応じて振幅Aがその最大限界値に向かって飽和していくような飽和領域になる特性となる。 Here, as described in the section (c) above, for example, when the vibrating body 4 is the design value shown in FIG. 3 and the material is a vibrating body made of silicon, the vibration direction shown in FIG. In the vibration direction perpendicular to the wide surface), the relationship between the Q value and the pressure P value (Q value-pressure characteristics) is a high pressure region (about 0.1 Pa or more) as shown in FIG. Then, the amplitude is approximately inversely proportional to the pressure, and on the low pressure side, the amplitude is saturated toward its maximum limit value. Corresponding to such Q value-pressure characteristics, the relationship between the amplitude A (the magnitude of the vibration detection signal VCA ) and the pressure P value (amplitude A-pressure characteristics) in the above-described constant drive voltage method. ) However, in the high pressure region (about 0.1 Pa or more), the amplitude A is almost inversely proportional to the pressure, and the amplitude A saturates toward its maximum limit as the pressure level decreases on the low pressure side. It becomes a characteristic that becomes a saturated region.
このため、上述の駆動電圧一定方式の場合、特に圧力測定範囲に上記のような低圧側の飽和領域が含まれる場合、圧力変換回路31は、例えば、振動体の振幅A(振動検出信号VCAの大きさ)と圧力P値との関係(振幅A−圧力特性)の特性データを取得しておき、この特性データのデータテーブルを格納した記憶部を備えた変換手段により、実測定時における振動体の振幅A(振動検出信号VCAの大きさ)から圧力P値への変換を行う構成とするとよく、また、上記特性データの曲線から近似的に求められた関係式を格納した記憶部を備えた変換手段により、実測定時における振動体の振幅A(振動検出信号VCAの大きさ)から圧力P値への変換を行う構成としてもよい。 For this reason, in the case of the above-described constant drive voltage method, particularly when the pressure measurement range includes the low-pressure side saturation region as described above, the pressure conversion circuit 31 may, for example, detect the amplitude A (vibration detection signal V CA of the vibrating body). The characteristic data of the relationship between the pressure and the pressure P value (amplitude A-pressure characteristic) is obtained, and the vibrating body at the time of actual measurement is obtained by the conversion means having a storage unit storing the data table of this characteristic data. It is preferable to convert the amplitude A (the magnitude of the vibration detection signal VCA ) into a pressure P value, and a storage unit storing a relational expression approximately obtained from the curve of the characteristic data is provided. The conversion means may convert the amplitude A (the magnitude of the vibration detection signal VCA ) of the vibrating body during actual measurement into a pressure P value.
(f)各部電圧条件と振動体の振幅との関係:
次に、実施例1における振動体バイアス電圧VB、駆動信号バイアス電圧VOBおよび交流信号VAの各部電圧条件(電圧条件3)と振動体4の振幅Aとの関係について図5により従来技術(電圧条件1〜2)と対比して説明する。
(F) Relationship between the voltage conditions of each part and the amplitude of the vibrating body:
Next, the relationship between the voltage condition (voltage condition 3) of each part of the vibrator bias voltage V B , the drive signal bias voltage V OB and the AC signal V A in Example 1 and the amplitude A of the vibrator 4 is shown in FIG. This will be described in comparison with (Voltage conditions 1 and 2).
図5(b)において、電圧条件3(実施例1)および電圧条件1(従来技術)は、駆動信号バイアス電圧VOBをそれぞれ+18V(実施例1)および0V(従来技術)に設定するとともに交流信号VAの電圧はいずれも0.1Vに設定した場合である。交流信号VAの電圧が電圧条件3(実施例1)と電圧条件1(従来技術)とで等しいことにより、電圧条件3(実施例1)と電圧条件1(従来技術)とで交流信号VAの振動検出信号VCAへの混信量は同じとなる。一方、振動体4の電位と駆動電極5の電位との直流電位差ΔVoが、電圧条件3ではΔVo=20V、電圧条件1ではΔVo=2Vであることにより、電圧条件3(実施例1)では電圧条件1(従来技術)と比較して10倍の振幅Aを得ることができる。これにより、電圧条件3(実施例1)では振動検出信号VCAの大きさが電圧条件1(従来技術)の10倍となる。したがって、交流信号VAの振動検出信号VCAへの混信が真空計におけるノイズの主要因であるとすると、電圧条件3(実施例1)では、電圧条件1(従来技術)と比較してS/N比が10倍となり、大幅にノイズを低減することができる。 In FIG. 5B, voltage condition 3 (first embodiment) and voltage condition 1 (prior art) set the drive signal bias voltage V OB to +18 V (first embodiment) and 0 V (prior art), respectively. In this case, the voltage of the AC signal VA is set to 0.1V. Since the voltage of the AC signal V A is equal in the voltage condition 3 (Example 1) and the voltage condition 1 (Prior art), the AC signal V in the voltage condition 3 (Example 1) and the voltage condition 1 (Prior art). The amount of interference of A with the vibration detection signal V CA is the same. On the other hand, the direct current potential difference ΔVo between the potential of the vibrating body 4 and the potential of the drive electrode 5 is ΔVo = 20V in the voltage condition 3 and ΔVo = 2V in the voltage condition 1, so that the voltage in the voltage condition 3 (Example 1). Compared with condition 1 (prior art), an amplitude A that is 10 times greater can be obtained. Thereby, in the voltage condition 3 (Example 1), the magnitude of the vibration detection signal V CA is 10 times that of the voltage condition 1 (prior art). Therefore, assuming that the interference of the AC signal V A to the vibration detection signal V CA is the main cause of noise in the vacuum gauge, the voltage condition 3 (Example 1) is S compared with the voltage condition 1 (prior art). The / N ratio is 10 times, and noise can be greatly reduced.
電圧条件2(従来技術)は、駆動信号バイアス電圧VOBを電圧条件1(従来技術)と同様に0Vとし、交流信号VAの電圧を電圧条件1(従来技術)の10倍の1Vとした場合である。振動体4の電位と駆動電極5の電位との直流電位差ΔVoと交流信号VAの電圧との積が電圧条件3(実施例1)と電圧条件2(従来技術)とで等しいことにより、電圧条件3(実施例1)と電圧条件2(従来技術)とで振動体4の振幅Aは等しくなる。一方、電圧条件2(従来技術)では電圧条件3(実施例1)と比較して交流信号VAの電圧が10倍であることにより、交流信号VAの振動検出信号VCAへの混信量も10倍となる。したがって、交流信号VAの振動検出信号VCAへの混信が真空計におけるノイズの主要因であるとすると、電圧条件3(実施例1)では、電圧条件2(従来技術)と比較してS/N比が10倍となり、大幅にノイズを低減することができる。 Voltage condition 2 (prior art), and 0V to the drive signal bias voltage V OB as with the voltage condition 1 (prior art), a voltage a voltage condition of the AC signal V A 1 was 10 times 1V of (prior art) Is the case. Since the product of the DC potential difference ΔVo between the potential of the vibrating body 4 and the potential of the drive electrode 5 and the voltage of the AC signal VA is the same in the voltage condition 3 (Example 1) and the voltage condition 2 (prior art), the voltage The amplitude A of the vibrating body 4 is equal between the condition 3 (Example 1) and the voltage condition 2 (prior art). On the other hand, in the voltage condition 2 (prior art), since the voltage of the AC signal V A is 10 times that in the voltage condition 3 (Example 1), the amount of crosstalk of the AC signal V A to the vibration detection signal V CA is increased. Will also be 10 times. Therefore, assuming that the interference of the AC signal V A to the vibration detection signal V CA is the main cause of noise in the vacuum gauge, the voltage condition 3 (Example 1) is S as compared with the voltage condition 2 (prior art). The / N ratio is 10 times, and noise can be greatly reduced.
また、振動体バイアス電圧VBが電圧条件3(実施例1)と電圧条件1〜2(従来技術)とでいずれもVB=−2Vであることから、振動体4の電位と振動検出電極6の電位との直流電位差ΔVrは電圧条件3(実施例1)と電圧条件1〜2(従来技術)とでいずれもΔVr=2Vとなる。なお、上記の点において、本発明は、駆動信号バイアス電圧VOBを高い電圧レベルとすることにより振動体4の電位と加振電極5の電位との直流電位差ΔVo(=VB−VOB)を大きくすることができるので、振動体バイアス電圧VBの方は従来と同様の低い電圧レベルに抑制することができ、これにより、振動体4の電位と振動検出電極6の電位との直流電位差ΔVrも従来と同様の大きさに抑えることができるものとなっている。 In addition, since the vibration body bias voltage V B is V B = −2 V in both the voltage condition 3 (Example 1) and the voltage conditions 1 to 2 (prior art), the potential of the vibration body 4 and the vibration detection electrode The DC potential difference ΔVr with respect to the potential 6 is ΔVr = 2V in both the voltage condition 3 (Example 1) and the voltage conditions 1 to 2 (prior art). In the above point, according to the present invention, the drive signal bias voltage V OB is set to a high voltage level, whereby the DC potential difference ΔVo (= V B −V OB ) between the potential of the vibrating body 4 and the potential of the excitation electrode 5. Therefore, the vibrator bias voltage V B can be suppressed to the same low voltage level as in the prior art, whereby the DC potential difference between the potential of the vibrator 4 and the potential of the vibration detection electrode 6 can be reduced. ΔVr can also be suppressed to the same size as in the prior art.
(g)以上のように、実施例1では、交流信号VAに駆動信号バイアス電圧VOBを加算してなる駆動信号VOを加振電極5に印加するので、例えば図5の電圧条件1(従来技術)と同様に交流信号VAを低い電圧レベル(例えば0.1V)に抑制するとともに振動体バイアス電圧VBも低い電圧レベル(例えば−2V)に抑制した上で、駆動信号バイアス電圧VOBを高い電圧レベル(例えば+18V)とすることにより、振動体4の電位と加振電極5の電位との直流電位差ΔVoを大きくして静電駆動力Foを大きくすることができる。したがって、実施例1では、駆動信号交流成分VAを低い電圧レベルに抑制できることにより浮遊容量などを通じた駆動信号の振動検出信号への混信量を低レベルに抑制できるとともに、振動体バイアス電圧VBも低い電圧レベルに抑制できることにより振動体4と振動検出電極6とが静電引力によって接触することを防ぐこともできる。 (G) As described above, in the first embodiment, since the drive signal V O obtained by adding the drive signal bias voltage V OB to the AC signal V A is applied to the excitation electrode 5, for example, the voltage condition 1 in FIG. In the same manner as in the prior art, the AC signal VA is suppressed to a low voltage level (for example, 0.1 V) and the vibrator bias voltage V B is also suppressed to a low voltage level (for example, −2 V). By setting OB to a high voltage level (for example, +18 V), the direct current potential difference ΔVo between the potential of the vibrating body 4 and the potential of the excitation electrode 5 can be increased to increase the electrostatic driving force Fo. Therefore, in the first embodiment, since the drive signal AC component V A can be suppressed to a low voltage level, the amount of interference of the drive signal with the vibration detection signal through the stray capacitance can be suppressed to a low level, and the vibrator bias voltage V B In addition, since the voltage can be suppressed to a low voltage level, the vibrating body 4 and the vibration detecting electrode 6 can be prevented from contacting each other due to electrostatic attraction.
また、実施例1では、特に駆動信号バイアス電圧VOBを振動体バイアス電圧VBと逆極性としていることにより、例えば図5の電圧条件4〜5(後述の実施例2〜3)のような駆動信号バイアス電圧VOBを振動体バイアス電圧VBと同極性としている場合に比べて、駆動信号バイアス電圧VOBの絶対値がより小さくても、振動体4の電位と加振電極5の電位との直流電位差ΔVoを同じ大きさとし、静電駆動力Foも同じ大きさとすることができる。したがって、実施例1では、駆動信号バイアス電圧源11の出力電圧仕様をより低電圧レベルとすることができる。 Also, like in Example 1, by which especially in a drive signal bias voltage V OB and vibrator bias voltage V B and the opposite polarity, for example, a voltage condition 4-5 in FIG. 5 (Examples 2-3 below) a drive signal bias voltage V OB in comparison with the case that the vibrating body bias voltage V B of the same polarity, even if the absolute value is smaller drive signal bias voltage V OB, the potential of the potential and the vibrating electrode 5 of the vibrator 4 The direct current potential difference ΔVo and the electrostatic driving force Fo can be made the same. Therefore, in the first embodiment, the output voltage specification of the drive signal bias voltage source 11 can be set to a lower voltage level.
また、実施例1では、特に駆動信号バイアス電圧VOBを振動体バイアス電圧VBと逆極性としていることにより、駆動信号バイアス電圧VOBの絶対値の大きさを図5の電圧条件4〜5(後述の実施例2〜3)と同じとした場合には、振動体4の電位と加振電極5の電位との直流電位差ΔVoをより大きくすることができる。したがって、実施例1では、静電駆動力Foの大きさが同じであっても、駆動信号交流成分VAの電圧はより低く抑えることができるので、浮遊容量などを通じた駆動信号の振動検出信号への混信量をより低減することができる。 In the first embodiment, in particular, the drive signal bias voltage V OB has a polarity opposite to that of the vibrator bias voltage V B , so that the absolute value of the drive signal bias voltage V OB is set to the voltage conditions 4 to 5 in FIG. When it is the same as (Examples 2 to 3 described later), the DC potential difference ΔVo between the potential of the vibrating body 4 and the potential of the excitation electrode 5 can be further increased. Therefore, in the first embodiment, even if the electrostatic drive force Fo is the same, the voltage of the drive signal AC component VA can be kept lower. Therefore, the vibration detection signal of the drive signal through the floating capacitance or the like. The amount of interference with can be further reduced.
(h)なお、実施例1における真空計の回路構成として、上述の図6では、容量電圧変換回路21における検出バイアス電圧VRが0Vとなっている構成を示したが、本発明はこのような構成に限定されるものではなく、後述の図11におけるような検出バイアス電圧源25を備え、検出バイアス電圧源25からの検出バイアス電圧VRが差動増幅器22の非反転入力端子に印加され、振動検出電極6の電圧VDも検出バイアス電圧VRと同じ電圧レベルとなる構成であってもよく、振動体4の電位と振動検出電極6の電位との直流電位差ΔVr(=VB−VR)が、振動体4と振動検出電極6とが静電引力によって接触しないような振動体・検出電極電位差条件値|ΔVr|max(=EP)より小さくなるように設定されていればよい。この点は後述の実施例2〜3も同様である。 (H) In addition, as a circuit configuration of the vacuum gauge according to the first embodiment, in FIG. 6 described above, although the configuration in which the detection bias voltage V R at the capacitance-voltage conversion circuit 21 has a 0V, the present invention is thus is not limited to Do configuration, a detection bias voltage source 25 as in FIG. 11 to be described later, the detection bias voltage V R from the sense bias voltage source 25 is applied to the non-inverting input terminal of the differential amplifier 22 , the voltage V D of the vibration detection electrode 6 also may be configured to the same voltage level as the detection bias voltage V R, the DC potential difference ΔVr between the potential of the vibrator 4 and the potential of the vibration detection electrodes 6 (= V B - If V R ) is set to be smaller than the vibration body / detection electrode potential difference condition value | ΔVr | max (= E P ) such that the vibration body 4 and the vibration detection electrode 6 do not contact with each other due to electrostatic attraction. Good. This also applies to Examples 2-3 described later.
(a)本発明の実施例2は、上述の実施例1とは異なり、直流の駆動信号バイアス電圧VOBを生成する駆動信号バイアス電圧源11と、駆動信号バイアス電圧VOBを分圧する分圧回路17とを有し、分圧回路17の出力電圧は直流の振動体バイアス電圧VB(=(1/a)*VOB)として振動体4に印加されてなるようにしたものである。 (A) The second embodiment of the present invention differs from the first embodiment described above in that a drive signal bias voltage source 11 that generates a DC drive signal bias voltage V OB and a voltage divider that divides the drive signal bias voltage V OB. The voltage output from the voltage dividing circuit 17 is applied to the vibrating body 4 as a DC vibrating body bias voltage V B (= (1 / a) * V OB ).
(b)真空計の機構部分を成す構造体の構成:
まず、実施例2に係る真空計の機構部分を成す構造体としては、実施例1と同様に、上記(ロ)項において図1〜2を用いて説明した構成を適用することができる。
(B) Structure of the structure constituting the mechanical part of the vacuum gauge:
First, as the structure constituting the mechanical part of the vacuum gauge according to the second embodiment, the configuration described with reference to FIGS.
(c)真空計の回路構成:
次に、本発明の実施例2に係る真空計の回路構成について説明する。図7は、本発明の実施例2に係る真空計の回路構成を示すブロック図であり、図6と同一の符号は図6と同一名称の部分を示す。17は分圧回路であり、駆動信号バイアス電圧源11からの駆動信号バイアス電圧VOBを分圧した後、その出力電圧を振動体バイアス電圧VB(=(1/a)*VOB)として振動体4に印加する。
(C) Vacuum gauge circuit configuration:
Next, a circuit configuration of the vacuum gauge according to the second embodiment of the present invention will be described. FIG. 7 is a block diagram showing a circuit configuration of a vacuum gauge according to the second embodiment of the present invention, and the same reference numerals as those in FIG. 6 denote the parts having the same names as those in FIG. A voltage dividing circuit 17 divides the drive signal bias voltage V OB from the drive signal bias voltage source 11 and then outputs the output voltage as a vibrator bias voltage V B (= (1 / a) * V OB ). Apply to vibrating body 4.
なお、実施例2における分圧回路17としては、例えば抵抗の直列接続回路よりなる分圧回路などを適用できるが、このような構成に限定されるものではなく、駆動信号バイアス電圧源11からの駆動信号バイアス電圧VOBの電圧レベルを分圧できる構成であればよい。なお、2個の抵抗R1およびR2の直列接続回路よりなる分圧回路の例を図8に示す。図8の回路において、入力電圧Vinに対して分圧された出力電圧Vout=(R2/(R1+R2))×Vinが得られる。 As the voltage dividing circuit 17 in the second embodiment, for example, a voltage dividing circuit composed of a series connection circuit of resistors can be applied. However, the voltage dividing circuit 17 is not limited to such a configuration. Any configuration that can divide the voltage level of the drive signal bias voltage V OB may be used. An example of a voltage dividing circuit composed of a series connection circuit of two resistors R1 and R2 is shown in FIG. In the circuit of FIG. 8, the output voltage is divided with respect to the input voltage V in V out = (R2 / (R1 + R2)) × V in is obtained.
(d)振動体の加振動作:
実施例2における振動体の加振動作は、実施例1と同様にして行う。
(e)圧力測定動作:
実施例2における圧力測定動作は、実施例1と同様にして行う。
(D) Excitation operation of the vibrator:
The vibrating operation of the vibrator in the second embodiment is performed in the same manner as in the first embodiment.
(E) Pressure measurement operation:
The pressure measurement operation in the second embodiment is performed in the same manner as in the first embodiment.
(f)各部電圧条件と振動体の振幅との関係:
次に、実施例2における振動体バイアス電圧VB、駆動信号バイアス電圧VOBおよび交流信号VAの各部電圧条件(電圧条件4)と振動体4の振幅Aとの関係について図5により説明する。
(F) Relationship between the voltage conditions of each part and the amplitude of the vibrating body:
Next, the relationship between the voltage conditions (voltage condition 4) of the vibrator bias voltage V B , the drive signal bias voltage V OB and the AC signal V A in Example 2 and the amplitude A of the vibrator 4 will be described with reference to FIG. .
実施例2の電圧条件4は、交流信号VAの電圧は電圧条件1(従来技術)と同様に0.1Vに設定するとともに、駆動信号バイアス電圧VOBは−22Vに設定し、さらに、分圧回路17の分圧比を1/11とすることにより分圧回路17から出力される振動体バイアス電圧VBは−2Vに設定した場合である。交流信号VAの電圧が電圧条件4(実施例2)と電圧条件1(従来技術)とで等しいことにより、電圧条件4(実施例2)と電圧条件1(従来技術)とで交流信号VAの振動検出信号VCAへの混信量は同じとなる。一方、振動体4の電位と駆動電極5の電位との直流電位差ΔVoが、電圧条件4ではΔVo=20V、電圧条件1ではΔVo=2Vであることにより、電圧条件4(実施例2)では電圧条件3(実施例1)と同様に電圧条件1(従来技術)と比較して10倍の振幅Aを得ることができる。これにより、電圧条件4(実施例2)では振動検出信号VCAの大きさが電圧条件1(従来技術)の10倍となる。したがって、交流信号VAの振動検出信号VCAへの混信が真空計におけるノイズの主要因であるとすると、電圧条件4(実施例2)では、電圧条件1(従来技術)と比較してS/N比が10倍となり、大幅にノイズを低減することができる。 In the voltage condition 4 of the second embodiment, the voltage of the AC signal V A is set to 0.1 V as in the voltage condition 1 (conventional technology), the drive signal bias voltage V OB is set to −22 V, and further divided. This is a case where the vibrator bias voltage V B output from the voltage dividing circuit 17 is set to −2 V by setting the voltage dividing ratio of the circuit 17 to 1/11. Since the voltage of the AC signal V A is equal in the voltage condition 4 (Example 2) and the voltage condition 1 (Prior art), the AC signal V in the voltage condition 4 (Example 2) and the voltage condition 1 (Prior art). The amount of interference of A with the vibration detection signal V CA is the same. On the other hand, the direct-current potential difference ΔVo between the potential of the vibrating body 4 and the potential of the drive electrode 5 is ΔVo = 20V in the voltage condition 4 and ΔVo = 2V in the voltage condition 1, so that the voltage in the voltage condition 4 (Example 2). Similar to Condition 3 (Example 1), it is possible to obtain an amplitude A 10 times that of Voltage Condition 1 (Prior Art). Thereby, in the voltage condition 4 (Example 2), the magnitude of the vibration detection signal VCA is 10 times that of the voltage condition 1 (conventional technology). Therefore, assuming that the interference of the AC signal V A to the vibration detection signal V CA is the main cause of noise in the vacuum gauge, the voltage condition 4 (Example 2) is S compared with the voltage condition 1 (prior art). The / N ratio is 10 times, and noise can be greatly reduced.
(g)実施例1では、振動体バイアス電圧源13と駆動信号バイアス電圧源11との2つの電圧源が必要であるが、実施例2では、駆動信号バイアス電圧VOB生成用の駆動信号バイアス電圧源11の出力電圧を分圧回路17で分圧することにより振動体バイアス電圧VBも生成するため、1つの電圧源で回路を構成することができる。 (G) In the first embodiment, two voltage sources of the vibrator bias voltage source 13 and the drive signal bias voltage source 11 are necessary. In the second embodiment, the drive signal bias for generating the drive signal bias voltage VOB is used. to generate the vibration body bias voltage V B by dividing the output voltage of the voltage source 11 in the voltage divider circuit 17, it is possible to configure the circuit with a single voltage source.
(a)本発明の実施例3は、上述の実施例1とは異なり、直流の振動体バイアス電圧VBを生成する振動体バイアス電圧生成部13と、振動体バイアス電圧VBを昇圧する昇圧回路18とを有し、振動体バイアス電圧VBは振動体4に印加されるとともに、昇圧回路18の出力電圧は直流の駆動信号バイアス電圧VOB(=b*VB)とされてなるようにしたものである。 (A) Example 3 of the present invention differs from the first embodiment described above, the vibrating body bias voltage generator 13 for generating a vibrating body bias voltage V B of the direct current, step-up for boosting the oscillating body bias voltage V B And the oscillator bias voltage V B is applied to the oscillator 4, and the output voltage of the booster circuit 18 is set to a DC drive signal bias voltage V OB (= b * V B ). It is a thing.
(b)真空計の機構部分を成す構造体の構成:
まず、本発明の実施例3に係る真空計の機構部分を成す構造体としては、実施例1と同様に、上記(ロ)項において図1〜2を用いて説明した構成を適用することができる。
(B) Structure of the structure constituting the mechanical part of the vacuum gauge:
First, as the structure constituting the mechanical part of the vacuum gauge according to the third embodiment of the present invention, the structure described with reference to FIGS. it can.
(c)真空計の回路構成:
次に、本発明の実施例3に係る真空計の回路構成について説明する。図9は、本発明の実施例3における回路ブロック図であり、図6と同一の符号は図6と同一名称の部分を示す。18は昇圧回路であり、振動体バイアス電圧源13からの振動体バイアス電圧VBを昇圧した後、その出力電圧を振動体バイアス電圧VOB(=b*VB)として信号合成部12に供給する。
(C) Vacuum gauge circuit configuration:
Next, a circuit configuration of the vacuum gauge according to the third embodiment of the present invention will be described. FIG. 9 is a circuit block diagram according to the third embodiment of the present invention, in which the same reference numerals as those in FIG. 6 denote parts having the same names as those in FIG. A booster circuit 18 boosts the vibrator bias voltage V B from the vibrator bias voltage source 13 and then supplies the output voltage to the signal synthesizer 12 as the vibrator bias voltage V OB (= b * V B ). To do.
なお、実施例3における昇圧回路18としては、例えば、オペアンプを使用した非反転増幅回路等の増幅回路、昇圧チョッパ回路などを適用できるが、このような構成に限定されるものではなく、振動体バイアス電圧源13からの振動体バイアス電圧VBの電圧レベルを昇圧できる構成であればよい。なお、トランジスタTr、ダイオードD、コイルL、コンデンサCおよび抵抗Rよりなる昇圧チョッパ回路の例を図10に示す。図10の回路において、トランジスタTrのオン時間およびオフ時間をそれぞれTONおよびTOFFとすると、入力電圧Vinが昇圧された出力電圧Vout=((TON+TOFF)/TOFF)×Vinが得られる。 As the booster circuit 18 in the third embodiment, for example, an amplifier circuit such as a non-inverting amplifier circuit using an operational amplifier, a boost chopper circuit, or the like can be applied. However, the present invention is not limited to such a configuration. the voltage level of the vibrator bias voltage V B from the bias voltage source 13 may be any configuration capable of boosting. An example of a step-up chopper circuit including a transistor Tr, a diode D, a coil L, a capacitor C, and a resistor R is shown in FIG. In the circuit of FIG. 10, when the transistor Tr on-time and off-time, respectively, and T ON and T OFF, the output voltage input voltage V in is boosted V out = ((T ON + T OFF) / T OFF) × V in is obtained.
(d)振動体の加振動作:
実施例3における振動体の加振動作は、実施例1と同様にして行う。
(e)圧力測定動作:
実施例3における圧力測定動作は、実施例1と同様にして行う。
(D) Excitation operation of the vibrator:
The vibration operation of the vibrator in the third embodiment is performed in the same manner as in the first embodiment.
(E) Pressure measurement operation:
The pressure measurement operation in the third embodiment is performed in the same manner as in the first embodiment.
(f)各部電圧条件と振動体の振幅との関係:
次に、実施例3における振動体バイアス電圧VB、駆動信号バイアス電圧VOBおよび交流信号VAの電圧条件(電圧条件5)と振動体4の振幅Aとの関係について図5により説明する。
(F) Relationship between the voltage conditions of each part and the amplitude of the vibrating body:
Next, the relationship between the voltage condition (voltage condition 5) of the vibrator bias voltage V B , the drive signal bias voltage V OB and the AC signal V A in Example 3 and the amplitude A of the vibrator 4 will be described with reference to FIG.
実施例3の電圧条件5は、交流信号VAの電圧は電圧条件1(従来技術)と同様に0.1Vに設定するとともに、振動体バイアス電圧VBを−2Vに設定し、さらに、昇圧回路18の昇圧比を11倍とすることにより昇圧回路18から出力される駆動信号バイアス電圧VOBは−22Vに設定した場合である。交流信号VAの電圧が電圧条件5(実施例3)と電圧条件1(従来技術)とで等しいことにより、電圧条件5(実施例3)と電圧条件1(従来技術)とで交流信号VAの振動検出信号VCAへの混信量は同じとなる。一方、振動体4の電位と駆動電極5の電位との直流電位差ΔVoが、電圧条件5ではΔVo=20V、電圧条件1ではΔVo=2Vであることにより、電圧条件5(実施例3)では電圧条件3(実施例1)と同様に電圧条件1(従来技術)と比較して10倍の振幅Aを得ることができる。これにより、電圧条件5(実施例3)では振動検出信号VCAの大きさが電圧条件1(従来技術)の10倍となる。したがって、交流信号VAの振動検出信号VCAへの混信が真空計におけるノイズの主要因であるとすると、電圧条件5(実施例3)では、電圧条件1(従来技術)と比較してS/N比が10倍となり、大幅にノイズを低減することができる。 In the voltage condition 5 of the third embodiment, the voltage of the AC signal V A is set to 0.1 V as in the voltage condition 1 (conventional technology), the vibrator bias voltage V B is set to −2 V, and the booster circuit This is a case where the drive signal bias voltage V OB output from the booster circuit 18 is set to −22V by setting the boost ratio of 18 to 11 times. Since the voltage of the AC signal V A is equal in the voltage condition 5 (Example 3) and the voltage condition 1 (Prior art), the AC signal V in the voltage condition 5 (Example 3) and the voltage condition 1 (Prior art). The amount of interference of A with the vibration detection signal V CA is the same. On the other hand, the direct-current potential difference ΔVo between the potential of the vibrating body 4 and the potential of the drive electrode 5 is ΔVo = 20V in the voltage condition 5 and ΔVo = 2V in the voltage condition 1, and therefore the voltage in the voltage condition 5 (Example 3). Similar to Condition 3 (Example 1), it is possible to obtain an amplitude A 10 times that of Voltage Condition 1 (Prior Art). As a result, in the voltage condition 5 (Example 3), the magnitude of the vibration detection signal V CA is ten times that in the voltage condition 1 (prior art). Therefore, assuming that the interference of the AC signal V A to the vibration detection signal V CA is the main cause of noise in the vacuum gauge, the voltage condition 5 (Example 3) is S as compared with the voltage condition 1 (prior art). The / N ratio is 10 times, and noise can be greatly reduced.
(g)実施例1では、振動体バイアス電圧源13と駆動信号バイアス電圧源11との2つの電圧源が必要であるが、実施例3では振動体バイアス電圧VB生成用の振動体バイアス電圧源13の出力を昇圧回路で昇圧することで駆動信号バイアス電圧VOBも生成するため、1つの電圧源で回路を構成することが可能となる。 (G) In the first embodiment, two voltage sources of the vibrator bias voltage source 13 and the drive signal bias voltage source 11 are necessary. In the third embodiment, the vibrator bias voltage for generating the vibrator bias voltage V B is used. Since the drive signal bias voltage VOB is also generated by boosting the output of the source 13 with a booster circuit, the circuit can be configured with one voltage source.
(a)本発明の実施例4は、上述の実施例1とは異なり、直流の検出バイアス電圧VRを生成する検出バイアス電圧源25と、直流の駆動信号バイアス電圧VOBを生成する駆動信号バイアス電圧源11とを有し、検出バイアス電圧VRは振動検出部における振動検出電極6に接続される容量電圧変換回路21Aに印加されて、振動検出電極6の電位VDが検出バイアス電圧VRの電圧レベルになるとともに、振動体4の電位VBは接地レベルとされ、駆動信号バイアス電圧VOBの絶対値を、検出バイアス電圧VRの絶対値よりも大きくしてなるようにしたものである。 (A) Example 4 of the present invention differs from the first embodiment described above, the sense bias voltage source 25 that generates a detection bias voltage V R of the DC drive signal for generating a drive signal bias voltage V OB DC and a bias voltage source 11, detector bias voltage V R is applied to the capacitance-voltage conversion circuit 21A is connected to the vibration detecting electrode 6 in the vibration detection unit, the detection potential V D of the vibration detection electrode 6 bias voltage V together becomes the voltage level of the R, the potential V B of the vibrating member 4 is set at the ground level, which the absolute value of the drive signal bias voltage V OB, was made to be larger than the absolute value of the sense bias voltage V R It is.
(b)真空計の機構部分を成す構造体の構成:
まず、本発明の実施例4に係る真空計の機構部分を成す構造体としては、実施例1と同様に、上記(ロ)項において図1〜2を用いて説明した構成を適用することができる。
(B) Structure of the structure constituting the mechanical part of the vacuum gauge:
First, as the structure constituting the mechanical part of the vacuum gauge according to the fourth embodiment of the present invention, the configuration described with reference to FIGS. it can.
(c)真空計の回路構成:
次に、本発明の実施例3に係る真空計の回路構成について説明する。図11は、本発明の実施例4における回路ブロック図であり、図6と同一の符号は図6と同一名称の部分を示す。
(C) Vacuum gauge circuit configuration:
Next, a circuit configuration of the vacuum gauge according to the third embodiment of the present invention will be described. FIG. 11 is a circuit block diagram according to the fourth embodiment of the present invention. The same reference numerals as those in FIG. 6 denote the same names as those in FIG.
実施例4に係る真空計の回路構成は、振動体バイアス電圧源13の代わりに検出バイアス電圧源25を備えるとともに、容量圧力変換回路21の代わりに容量圧力変換回路21Aを備えている点で、実施例1とは異なっている。 The circuit configuration of the vacuum gauge according to the fourth embodiment includes a detection bias voltage source 25 instead of the vibrator bias voltage source 13 and a capacitance pressure conversion circuit 21A instead of the capacitance pressure conversion circuit 21. This is different from the first embodiment.
検出バイアス電圧源25は、直流の検出バイアス電圧VRを生成するものである。
また、容量電圧変換回路21Aは、真空計の振動検出部における振動検出回路として、振動体4と振動検出電極6との間の静電容量の変化を電圧の変化に変換し、振動検出信号VCAとして出力するものであって、その回路構成は実施例1の容量電圧変換回路21と同様であるが、差動増幅器22の非反転入力端子に検出バイアス電圧VRが印加される点が異なっており、これにより、振動検出電極6の電圧VDも検出バイアス電圧VRと同じ電圧レベルとなっている。
Sense bias voltage source 25, and generates a sense bias voltage V R of the DC.
In addition, the capacitance-voltage conversion circuit 21A is a vibration detection circuit in the vibration detection unit of the vacuum gauge, and converts a change in electrostatic capacitance between the vibrating body 4 and the vibration detection electrode 6 into a change in voltage. be one that outputs a CA, but its circuit configuration is the same as the capacitance voltage conversion circuit 21 of example 1, differs in that sense bias voltage V R to the non-inverting input terminal of the differential amplifier 22 is applied and, by this, the voltage V D of the vibration detection electrodes 6 also has the same voltage level as the detection bias voltage V R.
また、実施例4では、実施例1とは異なり、振動体4の電位VBは接地レベルとされている。このため、実施例4では、振動体4の電位と振動検出電極6の電位との直流電位差ΔVrはΔVr=−VRとなっている。そして、この直流電位差ΔVrの絶対値(|VR|)が、振動体4と振動検出電極6とが静電引力によって接触しないような振動体・検出電極電位差条件値|ΔVr|max(=EP)より小さくなるように設定されていればよい。 In the fourth embodiment, unlike the first embodiment, the potential V B of the vibrating body 4 is set to the ground level. Therefore, in the fourth embodiment, the DC voltage difference? Vr between the potential vibration detection electrode 6 and the potential of the vibrator 4 has a? Vr = -V R. Then, the absolute value (| V R |) of the direct current potential difference ΔVr is such that the vibration body / detection electrode potential difference condition value | ΔVr | max (= E) is such that the vibration body 4 and the vibration detection electrode 6 do not contact with each other due to electrostatic attraction. It suffices if it is set to be smaller than P ).
また、実施例4では、後述の(ヘ)項に記載している振動体・加振電極電位差条件値と振動体・検出電極電位差条件値との関係に対応して、駆動信号バイアス電圧VOBの絶対値を検出バイアス電圧VRの絶対値よりも大きく設定し、これにより、振動体4の電位と加振電極5の電位との直流電位差ΔVoが振動体4の電位と振動検出電極6の電位との直流電位差ΔVrよりも大きくなるようにしている。 In the fourth embodiment, the drive signal bias voltage V OB corresponds to the relationship between the vibrating body / vibrating electrode potential difference condition value and the vibrating body / detection electrode potential difference condition value described in (F) below. of set larger than the absolute value of the absolute value detection bias voltage V R, thereby, the DC potential difference ΔVo between the potential of the vibrating electrode 5 of the vibrator 4 is vibrating body 4 potential as vibration detection electrodes 6 The DC potential difference ΔVr from the potential is made larger.
実施例4に係る真空計の回路構成は、上述の点以外は実施例1と同様である。
(d)振動体の加振動作:
実施例4における振動体の加振動作は、実施例1と同様にして行う。
The circuit configuration of the vacuum gauge according to the fourth embodiment is the same as that of the first embodiment except for the points described above.
(D) Excitation operation of the vibrator:
The vibrating operation of the vibrating body in the fourth embodiment is performed in the same manner as in the first embodiment.
(e)圧力測定動作:
実施例4における圧力測定動作は、実施例1と同様にして行う。
(f)各部電圧条件と振動体の振幅との関係:
次に、実施例4における駆動信号バイアス電圧VOB、検出バイアス電圧VRおよび交流信号VAの各部電圧条件(電圧条件6)と振動体4の振幅Aとの関係について説明する。
(E) Pressure measurement operation:
The pressure measurement operation in the fourth embodiment is performed in the same manner as in the first embodiment.
(F) Relationship between the voltage conditions of each part and the amplitude of the vibrating body:
Next, the relationship between the voltage conditions (voltage condition 6) of the drive signal bias voltage V OB , the detection bias voltage V R, and the AC signal V A in Example 4 and the amplitude A of the vibrating body 4 will be described.
実施例4の電圧条件6は、交流信号VAの電圧は電圧条件1(従来技術)と同様に0.1Vに設定するとともに、駆動信号バイアス電圧VOBは−20Vに設定し、振動体バイアス電圧VBは0Vに設定し、さらに検出バイアス電圧VRは2Vに設定した場合である。交流信号VAの電圧が電圧条件6(実施例4)と電圧条件1(従来技術)とで等しいことにより、電圧条件6(実施例4)と電圧条件1(従来技術)とで交流信号VAの振動検出信号VCAへの混信量は同じとなる。一方、振動体4の電位と駆動電極5の電位との直流電位差ΔVoが、電圧条件6ではΔVo=20V、電圧条件1ではΔVo=2Vであることにより、電圧条件6(実施例4)では電圧条件3(実施例1)と同様に電圧条件1(従来技術)と比較して10倍の振幅Aを得ることができる。これにより、電圧条件6(実施例4)では振動検出信号VCAの大きさが電圧条件1(従来技術)の10倍となる。したがって、交流信号VAの振動検出信号VCAへの混信が真空計におけるノイズの主要因であるとすると、電圧条件6(実施例4)では、電圧条件1(従来技術)と比較してS/N比が10倍となり、大幅にノイズを低減することができる。
(ヘ)振動体・加振電極間の直流電位差と振動体・検出電極間の直流電位差との関係:
本発明における真空計の機構部分を成す構造体は、図1〜2に示されるような、振動体4が加振電極5と対向する位置を,振動体4が振動検出電極6と対向する位置よりも振動体固定部3に近い位置とした構成とされており、さらには、振動体4と加振電極5との対向面積Soを,振動体4と振動検出電極6との対向面積Srより小さくした構成とされている。本発明は、このような構造体に適合した構成として、振動体4の電位(直流電位VB)と加振電極5の電位(直流電位VOB)との直流電位差ΔVo(=VB−VOB)を,振動体4の電位(直流電位VB)と振動検出電極6の電位(直流電位VR)との直流電位差ΔVr(=VB−VR)よりも大きくした構成としている。
In the voltage condition 6 of the fourth embodiment, the voltage of the AC signal VA is set to 0.1 V as in the voltage condition 1 (conventional technology), the drive signal bias voltage V OB is set to −20 V, and the vibrator bias voltage is set. V B is set to 0V, and the further sense bias voltage V R is when set to 2V. Since the voltage of the AC signal V A is equal in the voltage condition 6 (Example 4) and the voltage condition 1 (Prior art), the AC signal V in the voltage condition 6 (Example 4) and the voltage condition 1 (Prior art). The amount of interference of A with the vibration detection signal V CA is the same. On the other hand, the direct-current potential difference ΔVo between the potential of the vibrating body 4 and the potential of the drive electrode 5 is ΔVo = 20V in the voltage condition 6 and ΔVo = 2V in the voltage condition 1, so that the voltage in the voltage condition 6 (Example 4). Similar to Condition 3 (Example 1), it is possible to obtain an amplitude A 10 times that of Voltage Condition 1 (Prior Art). As a result, in the voltage condition 6 (Example 4), the magnitude of the vibration detection signal V CA is 10 times that in the voltage condition 1 (conventional technology). Accordingly, assuming that the interference of the AC signal V A to the vibration detection signal V CA is the main cause of noise in the vacuum gauge, the voltage condition 6 (Example 4) is S compared with the voltage condition 1 (prior art). The / N ratio is 10 times, and noise can be greatly reduced.
(F) Relationship between the DC potential difference between the vibrating body and the excitation electrode and the DC potential difference between the vibration body and the detection electrode:
The structure constituting the mechanical part of the vacuum gauge according to the present invention includes a position where the vibrating body 4 faces the excitation electrode 5 and a position where the vibrating body 4 faces the vibration detection electrode 6 as shown in FIGS. Further, the opposed area So between the vibrating body 4 and the excitation electrode 5 is more than the opposed area Sr between the vibrating body 4 and the vibration detection electrode 6. The structure is reduced. In the present invention, as a configuration suitable for such a structure, a DC potential difference ΔVo (= V B −V) between the potential of the vibrating body 4 (DC potential V B ) and the potential of the excitation electrode 5 (DC potential V OB ). OB ) is made larger than the DC potential difference ΔVr (= V B −V R ) between the potential of the vibrating body 4 (DC potential V B ) and the potential of the vibration detection electrode 6 (DC potential V R ).
すなわち、図1〜2に示される上記のような構造体では、上記(ニ)項で述べたように、振動体4の電位と振動検出電極6の電位との直流電位差ΔVrは、振動体4と振動検出電極6とが静電引力によって接触しないような振動体・検出電極電位差条件値|ΔVr|max(=EP)(図3に例示される設計値の振動体4では約3.1V)より小さくすることが必要である。一方、振動体4と加振電極5とが静電引力によって接触しないような振動体・加振電極電位差条件値|ΔVo|maxは上記の振動体・検出電極電位差条件値|ΔVr|maxよりも大きい(図3に例示される設計値の振動体4では上記EPの20倍程度)。 That is, in the structure as shown in FIGS. 1 and 2, as described in the above section (d), the direct-current potential difference ΔVr between the potential of the vibration body 4 and the potential of the vibration detection electrode 6 is the vibration body 4. Vibration / detection electrode potential difference condition value | ΔVr | max (= E P ) (about 3.1 V in the case of the vibration body 4 with the design value illustrated in FIG. 3). It is necessary to make it smaller. On the other hand, the vibrating body / vibrating electrode potential difference condition value | ΔVo | max that the vibrating body 4 and the vibrating electrode 5 do not come into contact with each other due to electrostatic attraction is larger than the above-described vibrating body / detection electrode potential difference condition value | ΔVr | max. large (20 times of the vibrating member 4 in the E P design values illustrated in FIG. 3).
このため、上記のような電位差条件値同士の関係に対応して、振動体4の電位と加振電極5の電位との直流電位差ΔVoを、振動体・加振電極電位差条件値|ΔVo|maxを満たす範囲で、振動体4の電位と振動検出電極6の電位との直流電位差ΔVrよりも大きな値とすることにより、静電駆動力FOをより大きくすることができるとともに、必要な静電駆動力FOの大きさが同じである場合には駆動信号交流成分VAの電圧をより低く抑えることができ、これにより浮遊容量など通じた駆動信号の振動検出信号VCAへの混信量をより低減することができる。
(ト)本発明の実施形態における他の構成例:
上述の実施例1ないし実施例4では、圧力測定動作として、加振電極5に印加される駆動信号V0(=VAP+VOB)における交流信号(駆動信号交流成分)VAPの大きさが一定となるように,容量電圧変換回路21,21Aからの振動検出信号VCAの位相を位相シフト回路9でシフトした信号VCAPに対する電圧制御回路10における増幅のゲインを調整する制御を行なっている状態で、振動体4のQ値に対応して変化する振動体4の振幅A(振動検出信号VCAの大きさ)を圧力変換回路31で圧力P値に対応する圧力測定信号VPに変換する方式(駆動電圧一定方式)を例示している。
Therefore, corresponding to the relationship between the potential difference condition values as described above, the direct current potential difference ΔVo between the potential of the vibrating body 4 and the potential of the excitation electrode 5 is changed to the vibration body / excitation electrode potential difference condition value | ΔVo | max. in a range satisfying, by a value larger than the DC potential difference ΔVr between the potential of the vibration detecting electrodes 6 of vibrator 4, it is possible to increase the electrostatic driving force F O, electrostatic required If the magnitude of the driving force F O is the same can be suppressed lower the voltage of the drive signal AC component V a, thereby the interference amount to the vibration detection signal V CA of the drive signals through stray capacitance It can be further reduced.
(G) Other configuration examples in the embodiment of the present invention:
In the first to fourth embodiments described above, as the pressure measurement operation, the magnitude of the AC signal (drive signal AC component) V AP in the drive signal V 0 (= V AP + V OB ) applied to the excitation electrode 5 is determined. to be constant, and performing control for adjusting the gain of the amplifier in the voltage control circuit 10 for shifting the signal V CAP of the phase of the vibration detection signal V CA in phase shift circuit 9 from the capacitance-voltage conversion circuit 21,21A state, converted into a pressure measurement signal V P corresponding to the pressure P values the amplitude a of the vibration member 4 which changes in correspondence to the Q value of the vibrator 4 (the magnitude of the vibration detection signal V CA) with a pressure converter 31 This is an example of a method (a constant drive voltage method).
しかしながら、本発明における圧力測定動作は上述の駆動電圧一定方式に限定されるものではなく、振動体4の振幅A、すなわち、容量電圧変換回路21,21Aからの振動検出信号VCAの大きさが一定となるように,振動検出信号VCAの位相を位相シフト回路9でシフトした信号VCAPに対する電圧制御回路10における増幅のゲインを調整する制御を行なっている状態で、加振電極5に印加される駆動信号V0(=VAP+VOB)における交流信号(駆動信号交流成分)VAPの大きさに基づいて圧力Pを測定する方式(以下「振幅一定方式」とも称する)を適用することも可能である。 However, the pressure measurement operation in the present invention is not limited to the above-described constant driving voltage method, and the amplitude A of the vibrating body 4, that is, the magnitude of the vibration detection signal V CA from the capacitive voltage conversion circuits 21 and 21A is not limited. Applied to the excitation electrode 5 in a state in which the gain of the voltage control circuit 10 is controlled to be adjusted with respect to the signal V CAP obtained by shifting the phase of the vibration detection signal V CA by the phase shift circuit 9 so as to be constant. Applying a method (hereinafter also referred to as “constant amplitude method”) for measuring the pressure P based on the magnitude of the AC signal (drive signal AC component) VAP in the drive signal V 0 (= V AP + V OB ) Is also possible.
なお、上述の振幅一定方式における駆動信号交流成分VAPの大きさから圧力P値(圧力測定信号VP)への変換方法としては、駆動信号交流成分VAPの大きさをQ値に変換し,さらに,このQ値を圧力P値(圧力測定信号VP)に変換するようにしてもよく、また、駆動信号交流成分VAPの大きさを,Q値を介さないで,直接的に圧力P値(圧力測定信号VP)に変換するようにしてもよい。 As the method of converting the magnitude of the drive signal AC component V AP at a constant amplitude method described above pressure P value to the (pressure measurement signal V P), the magnitude of the drive signal AC component V AP is converted into the Q value Further, this Q value may be converted into a pressure P value (pressure measurement signal V P ), and the magnitude of the drive signal AC component V AP is directly measured without passing through the Q value. You may make it convert into P value (pressure measurement signal VP ).
ここで、上記(ハ)項で述べたように、例えば振動体4が図3に示される設計値であって材質がシリコンの振動体である場合、図2に示される振動方向(錘1の幅広面に垂直な振動方向)においては、Q値と圧力P値との関係(Q値−圧力特性)は、図4(a)に示されるような、(約0.1Pa程度以上の)高圧領域では振幅が圧力にほぼ反比例するとともに低圧側では振幅がその最大限界値に向かって飽和していく特性となる。そして、このようなQ値−圧力特性に対応して、上述の振幅一定方式における駆動信号交流成分VAPの大きさと圧力P値との関係(駆動電圧−圧力特性)は、(約0.1Pa程度以上の)高圧領域では駆動信号交流成分VAPの大きさが圧力にほぼ比例するとともに低圧側では圧力レベルが低下するのに応じて駆動信号交流成分VAPの大きさがその最小限界値に向かって飽和していくような飽和領域になる特性となる。 Here, as described in the section (c) above, for example, when the vibrating body 4 is the design value shown in FIG. 3 and the material is a vibrating body made of silicon, the vibration direction shown in FIG. In the vibration direction perpendicular to the wide surface), the relationship between the Q value and the pressure P value (Q value-pressure characteristics) is a high pressure region (about 0.1 Pa or more) as shown in FIG. Then, the amplitude is approximately inversely proportional to the pressure, and on the low pressure side, the amplitude is saturated toward its maximum limit value. Corresponding to such Q value-pressure characteristics, the relationship (drive voltage-pressure characteristics) between the magnitude of the drive signal AC component VAP and the pressure P value in the constant amplitude method is about 0.1 Pa. the magnitude of the drive signal AC component V AP in response to the pressure level decreases at low pressure side toward its minimum limit value with the above) the high pressure region is substantially proportional to the pressure magnitude of the drive signal AC component V AP The saturation region becomes saturated.
このため、上述の振幅一定方式において、特に圧力測定範囲に上記のような低圧側の飽和領域が含まれる場合、圧力変換回路は、例えば駆動信号交流成分VAPの大きさと圧力P値との関係(駆動電圧−圧力特性)の特性データを取得しておき、この特性データのデータテーブルを格納した記憶部を備えた変換手段により、実測定時における駆動信号交流成分VAPの大きさから圧力P値への変換を行う構成とするとよく、また、上記特性データの曲線から近似的に求められた関係式を格納した記憶部を備えた変換手段により、実測定時における駆動信号交流成分VAPの大きさから圧力P値への変換を行う構成としてもよい。 For this reason, in the above-described constant amplitude method, particularly when the pressure measurement range includes the low-pressure side saturation region as described above, the pressure conversion circuit, for example, relates the relationship between the magnitude of the drive signal AC component VAP and the pressure P value. Characteristic data of (driving voltage-pressure characteristic) is acquired, and the pressure P value is calculated from the magnitude of the driving signal AC component VAP at the time of actual measurement by the conversion means having a storage unit storing the data table of this characteristic data. In addition, the size of the drive signal AC component VAP at the time of actual measurement is preferably obtained by the conversion means including a storage unit storing a relational expression approximately obtained from the curve of the characteristic data. It is good also as a structure which performs conversion from a pressure P value.
また、上述の振幅一定方式では、真空計は、圧力測定範囲の全体にわたって振動子4の振幅A、すなわち、振動検出信号VCAの大きさが一定に制御されるとともに、圧力の上昇に応じて加振電極4に印加される駆動電圧が大きくなるように動作する。このため、圧力測定範囲のうち高圧側では、駆動電圧の大きさが振動検出信号VCAの大きさ(振幅A)に比べて相対的により大きくなるので、浮遊容量などを通じた駆動信号の振動検出信号への混信の影響がより大きくなり、真空計におけるS/N比がより低下し、ノイズがより増大する傾向にある。 Further, in the above-described constant amplitude method, the vacuum gauge controls the amplitude A of the vibrator 4 over the entire pressure measurement range, that is, the magnitude of the vibration detection signal V CA is constant and responds to an increase in pressure. It operates so that the drive voltage applied to the excitation electrode 4 is increased. For this reason, since the magnitude of the drive voltage is relatively larger than the magnitude (amplitude A) of the vibration detection signal V CA on the high pressure side in the pressure measurement range, the vibration of the drive signal is detected through the stray capacitance. There is a tendency that the influence of interference on the signal becomes larger, the S / N ratio in the vacuum gauge is further lowered, and the noise is further increased.
ここで、本発明は、上述のように交流信号VAに駆動信号バイアス電圧VOBを加算してなる駆動信号VO(=VA+VOB)を加振電極5に印加するようにしているので、上述の振幅一定方式の場合、真空計は、振動検出信号VCAの大きさが一定に制御されるとともに、圧力の上昇に応じて加振電極4に印加される駆動信号VOにおける交流信号(駆動信号交流成分)VAの電圧が大きくなるように動作する。 Here, in the present invention, the drive signal V O (= V A + V OB ) obtained by adding the drive signal bias voltage V OB to the AC signal V A as described above is applied to the excitation electrode 5. Therefore, in the case of the above-described constant amplitude method, the vacuum gauge is controlled so that the magnitude of the vibration detection signal V CA is constant, and the alternating current in the drive signal V O applied to the excitation electrode 4 according to the increase in pressure. It operates so that the voltage of the signal (drive signal AC component) V A becomes larger.
そして、本発明では、駆動信号バイアス電圧VOBを高い電圧レベルとすることにより、振動体4の電位と加振電極5の電位との直流電位差ΔVo(=VB−VOB)を大きくして静電駆動力Fo(=|VA*ΔVo|)を大きくすることができる。このため、本発明では、必要な静電駆動力Foが同じである場合には、振動体4の電位と加振電極5の電位との直流電位差ΔVoを大きくした分だけ駆動信号交流成分VAの電圧の方はより低い電圧レベルに抑制することができるので、圧力測定範囲の高圧側での駆動信号交流信号VAの電圧もより低い電圧レベルに抑制することができる。したがって、本発明では、振幅一定方式において、圧力測定範囲の高圧側でも、駆動電圧の大きさ、すなわち、駆動信号交流成分VAの電圧の大きさの、振動検出信号VCAの大きさ(振幅A)に対する相対的な大きさを従来より小さくすることができるので、浮遊容量などを通じた駆動信号の振動検出信号への混信の影響をより小さくして、真空計におけるS/N比をより高くし、ノイズをより低減することができる。 In the present invention, the drive signal bias voltage V OB is set to a high voltage level to increase the DC potential difference ΔVo (= V B −V OB ) between the potential of the vibrating body 4 and the potential of the excitation electrode 5. The electrostatic driving force Fo (= | V A * ΔVo |) can be increased. For this reason, in the present invention, when the required electrostatic driving force Fo is the same, the driving signal AC component V A is increased by the amount of the DC potential difference ΔVo between the potential of the vibrating body 4 and the potential of the excitation electrode 5. Therefore, the voltage of the drive signal AC signal VA on the high voltage side of the pressure measurement range can also be suppressed to a lower voltage level. Therefore, according to the present invention, in the constant amplitude method, the magnitude (amplitude) of the vibration detection signal V CA having the magnitude of the drive voltage, that is, the magnitude of the voltage of the drive signal AC component V A is also measured on the high pressure side of the pressure measurement range. Since the relative size with respect to A) can be made smaller than before, the influence of interference on the vibration detection signal of the drive signal through stray capacitance etc. can be made smaller, and the S / N ratio in the vacuum gauge can be made higher. In addition, noise can be further reduced.
また、本発明では、駆動信号バイアス電圧VOBを高い電圧レベルとすることにより振動体4の電位と加振電極5の電位との直流電位差ΔVo(=VB−VOB)を大きくすることができるので、振動体バイアス電圧VBの方は低い電圧レベルに抑制でき、これにより、振動体4と振動検出電極6とが静電引力によって接触することを防ぐことができる。 Further, in the present invention, the DC potential difference ΔVo (= V B −V OB ) between the potential of the vibrating body 4 and the potential of the excitation electrode 5 can be increased by setting the drive signal bias voltage V OB to a high voltage level. since it is possible to suppress to a low voltage level direction of the vibrating body bias voltage V B, which makes it possible to prevent contact by the vibration detection electrode 6 transgressions electrostatic attraction and the vibration member 4.
これにより、本発明による真空計は、上述の振幅一定方式においても、駆動信号の振動検出信号への混信を低減するとともに振動体4と検出電極6との静電引力による接触を防止した上で、高い圧力まで雰囲気の圧力Pを十分な精度で測定することができるものとなっている。 Thereby, the vacuum gauge according to the present invention reduces interference with the vibration detection signal of the drive signal and prevents contact between the vibrating body 4 and the detection electrode 6 due to electrostatic attraction even in the above-described constant amplitude method. The atmospheric pressure P can be measured with sufficient accuracy up to a high pressure.
1・・・錘
2・・・梁
3・・・振動体固定部
4・・・振動体
5・・・加振電極
6・・・振動検出電極
7,7A・・・容量圧力変換回路
9・・・位相シフト回路
10・・・電圧制御回路
11・・・駆動信号バイアス電圧源
12・・・信号合成部
13・・・振動体バイアス電圧源
15・・・初期加振用信号源
16・・・スイッチ回路
17・・・分圧回路
18・・・昇圧回路
21,21A・・・容量電圧変換回路
22・・・差動増幅器
23・・・抵抗
24・・・キャパシタ
25・・・検出バイアス電圧源
31・・・圧力変換回路
1 ... Weight
2 ... Beam
3 ... Vibrating body fixing part
4 ... Vibrating body
5 ... Excitation electrode
6 ... Vibration detection electrode
7,7A ・ ・ ・ Capacity pressure conversion circuit
9 ... Phase shift circuit
10 ... Voltage control circuit
11 ... Drive signal bias voltage source
12 ... Signal synthesis unit
13 ... Vibrator bias voltage source
15 ... Signal source for initial excitation
16 ... Switch circuit
17 ... Voltage divider circuit
18 ... Boost circuit
21,21A ・ ・ ・ Capacitance voltage conversion circuit
22 ... Differential amplifier
23 ... resistance
24 ・ ・ ・ Capacitor
25 ... Detection bias voltage source
31 ... Pressure conversion circuit
Claims (10)
振動体が加振電極と対向する位置を,振動体が検出電極と対向する位置よりも振動体の固定部に近い位置としてなり、
駆動信号生成部は、前記駆動信号として、交流信号に直流の駆動信号バイアス電圧が加算された信号を生成するとともに、
振動体の電位と加振電極の電位との直流電位差を,振動体の電位と検出電極の電位との直流電位差よりも大きくしてなる
ことを特徴とする真空計。 Detecting the capacitance between the vibrating body, the vibrating electrode facing the vibrating body and driving the vibrating body by electrostatic force, the detection electrode facing the vibrating body, and the vibrating body and the detection electrode Has a vibration detection unit that detects vibration of the vibrating body and a drive signal generation unit that generates a driving signal for exciting the vibrating body, and applies the driving signal to the excitation electrode to hold the vibrating body in a resonance state. In a vacuum gauge equipped with a pressure measuring unit that measures the pressure of the atmosphere from the vibration characteristics of the vibrating body,
The position where the vibrating body faces the excitation electrode is closer to the fixed portion of the vibrating body than the position where the vibrating body faces the detection electrode,
The drive signal generation unit generates a signal obtained by adding a DC drive signal bias voltage to the AC signal as the drive signal,
A vacuum gauge characterized in that the DC potential difference between the potential of the vibrating body and the potential of the excitation electrode is larger than the DC potential difference between the potential of the vibrating body and the potential of the detection electrode.
振動体と加振電極との対向面積を,振動体と検出電極との対向面積より小さくしてなる ことを特徴とする真空計。 The vacuum gauge according to claim 1,
A vacuum gauge characterized in that the facing area between the vibrating body and the excitation electrode is smaller than the facing area between the vibrating body and the detection electrode.
直流の駆動信号バイアス電圧を生成する駆動信号バイアス電圧生成部と、直流の振動体バイアス電圧を生成する振動体バイアス電圧生成部とを有し、
前記振動体バイアス電圧は振動体に印加されるとともに、前記駆動信号バイアス電圧は振動体バイアス電圧と逆極性の直流電圧であることを特徴とする真空計。 The vacuum gauge according to claim 1 or 2,
A drive signal bias voltage generator for generating a DC drive signal bias voltage; and a vibrator bias voltage generator for generating a DC vibrator bias voltage;
The vacuum gauge according to claim 1, wherein the vibrator bias voltage is applied to the vibrator, and the drive signal bias voltage is a DC voltage having a polarity opposite to that of the vibrator bias voltage.
直流の駆動信号バイアス電圧を生成する駆動信号バイアス電圧生成部と、駆動信号バイアス電圧を分圧する分圧回路とを有し、
前記分圧回路の出力電圧は直流の振動体バイアス電圧として振動体に印加されてなる ことを特徴とする真空計。 The vacuum gauge according to claim 1 or 2,
A drive signal bias voltage generation unit that generates a DC drive signal bias voltage; and a voltage dividing circuit that divides the drive signal bias voltage;
An output voltage of the voltage dividing circuit is applied to the vibrating body as a DC vibrating body bias voltage.
直流の振動体バイアス電圧を生成する振動体バイアス電圧生成部と、振動体バイアス電圧を昇圧する昇圧回路とを有し、
前記振動体バイアス電圧は振動体に印加されるとともに、前記昇圧回路の出力電圧は直流の駆動信号バイアス電圧とされてなることを特徴とする真空計。 The vacuum gauge according to claim 1 or 2,
A vibrator bias voltage generator for generating a DC vibrator bias voltage; and a booster circuit for boosting the vibrator bias voltage;
The vacuum gauge, wherein the vibrator bias voltage is applied to the vibrator, and the output voltage of the booster circuit is a direct current drive signal bias voltage.
直流の検出バイアス電圧を生成する検出バイアス電圧生成部と、直流の駆動信号バイアス電圧を生成する駆動信号バイアス電圧生成部とを有し、
前記検出バイアス電圧は振動検出部における検出電極に接続される容量電圧変換回路に印加されて、検出電極の電位が前記検出バイアス電圧の電圧レベルになるとともに、振動体の電位は接地レベルとされ、駆動信号バイアス電圧の絶対値を、検出バイアス電圧の絶対値よりも大きくしてなることを特徴とする真空計。 The vacuum gauge according to claim 1 or 2,
A detection bias voltage generation unit that generates a DC detection bias voltage; and a drive signal bias voltage generation unit that generates a DC drive signal bias voltage;
The detection bias voltage is applied to a capacitance voltage conversion circuit connected to the detection electrode in the vibration detection unit, the potential of the detection electrode becomes the voltage level of the detection bias voltage, and the potential of the vibration body is set to the ground level, A vacuum gauge characterized in that the absolute value of the drive signal bias voltage is larger than the absolute value of the detection bias voltage.
駆動信号生成部における交流信号は、振動検出部の検出信号に基づき、この検出信号の位相を変えて増幅することにより生成されることを特徴とする真空計。 The vacuum gauge according to any one of claims 1 to 6,
An AC signal in the drive signal generation unit is generated by changing the phase of the detection signal based on the detection signal of the vibration detection unit and amplifying the vacuum signal.
駆動信号生成部は、駆動信号における交流信号の電圧が一定となるように、振動検出部の検出信号の位相を変えた信号に対する増幅のゲインを調整し、
圧力測定部は、振動検出部の検出信号の大きさに基づいて圧力を測定することを特徴とする真空計。 The vacuum gauge according to claim 7,
The drive signal generation unit adjusts the amplification gain for the signal obtained by changing the phase of the detection signal of the vibration detection unit so that the voltage of the AC signal in the drive signal is constant,
The pressure gauge is a vacuum gauge that measures pressure based on the magnitude of the detection signal of the vibration detector.
駆動信号生成部は、振動検出部の検出信号の大きさが一定となるように、振動検出部の検出信号の位相を変えた信号に対する増幅のゲインを調整し、
圧力測定部は、駆動信号における交流信号の電圧に基づいて圧力を測定することを特徴とする真空計。 The vacuum gauge according to claim 7,
The drive signal generation unit adjusts the amplification gain for the signal obtained by changing the phase of the detection signal of the vibration detection unit so that the magnitude of the detection signal of the vibration detection unit is constant,
A pressure gauge is a vacuum gauge which measures pressure based on the voltage of an alternating current signal in a drive signal.
駆動信号生成部は、振動体の固有周波数に対応した周波数の初期励振信号を出力する初期励振用信号源を備え、
振動体の初期駆動時には、前記駆動信号として、振動検出部の検出信号に基づく駆動信号の代わりに、初期励振信号に駆動信号バイアス電圧が加算された初期駆動信号を加振電極に印加することを特徴とする真空計。 The vacuum gauge according to any one of claims 7 to 9,
The drive signal generation unit includes an initial excitation signal source that outputs an initial excitation signal having a frequency corresponding to the natural frequency of the vibrator,
When the vibrator is initially driven, an initial drive signal obtained by adding the drive signal bias voltage to the initial excitation signal is applied to the excitation electrode instead of the drive signal based on the detection signal of the vibration detection unit as the drive signal. A characteristic vacuum gauge.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010064123A JP5387468B2 (en) | 2010-03-19 | 2010-03-19 | Vacuum gauge |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010064123A JP5387468B2 (en) | 2010-03-19 | 2010-03-19 | Vacuum gauge |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2011196833A JP2011196833A (en) | 2011-10-06 |
| JP5387468B2 true JP5387468B2 (en) | 2014-01-15 |
Family
ID=44875249
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2010064123A Expired - Fee Related JP5387468B2 (en) | 2010-03-19 | 2010-03-19 | Vacuum gauge |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5387468B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113008453A (en) * | 2021-03-09 | 2021-06-22 | 中国科学院空天信息创新研究院 | Vacuum degree detection method, system and device based on resonator |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5210391B2 (en) * | 1972-03-01 | 1977-03-23 | ||
| JPS59141026A (en) * | 1983-01-31 | 1984-08-13 | Shimadzu Corp | Vacuum gauge |
| JP2518814B2 (en) * | 1985-04-08 | 1996-07-31 | 株式会社日立製作所 | Vacuum gauge |
| JPS62137533A (en) * | 1985-12-11 | 1987-06-20 | Hitachi Ltd | vacuum sensor |
| US5528939A (en) * | 1995-03-21 | 1996-06-25 | Martin; Jacob H. | Micromechanical pressure gauge having extended sensor range |
| JPH11258092A (en) * | 1998-03-13 | 1999-09-24 | Omron Corp | Physical quantity measuring device |
| JP5596275B2 (en) * | 2008-04-14 | 2014-09-24 | 横河電機株式会社 | Physical quantity measuring device |
-
2010
- 2010-03-19 JP JP2010064123A patent/JP5387468B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011196833A (en) | 2011-10-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5160248B2 (en) | Voltage detector | |
| US8042393B2 (en) | Arrangement for measuring a rate of rotation using a vibration sensor | |
| JP5367925B1 (en) | Pressure sensor using MEMS resonator | |
| JP4830757B2 (en) | Angular velocity sensor and manufacturing method thereof | |
| JP5360362B2 (en) | Angular velocity detector circuit, angular velocity detector, and failure determination system | |
| TW201506355A (en) | Electronic drive circuit for a MEMS type resonator device and method for actuating the same | |
| JP6357090B2 (en) | Capacitive sensor | |
| JP5387468B2 (en) | Vacuum gauge | |
| JP2008216074A (en) | Stretching amount sensing method and stretching amount sensing device for polymer actuator | |
| JP2006322935A (en) | Pressure sensor | |
| JP5387467B2 (en) | Vacuum gauge | |
| US6765305B2 (en) | Sensor-independent oscillation amplitude control | |
| JP3383240B2 (en) | Capacitive displacement sensor | |
| JP3294662B2 (en) | Surface electrometer | |
| EP2359149B1 (en) | Scanning probe microscope with current controlled actuator | |
| JP3451620B2 (en) | Signal processing method and scanning probe microscope | |
| JP5151935B2 (en) | Vacuum gauge | |
| JP2011125017A (en) | Compensated micro/nano-resonator with improved capacitive detection and method for producing the same | |
| JP5353358B2 (en) | Vacuum gauge | |
| JP5151934B2 (en) | Vacuum gauge | |
| JP5622000B2 (en) | Angular velocity detector circuit, angular velocity detector, and failure determination system | |
| JP2007327919A (en) | Surface potential measuring device | |
| JP3452314B2 (en) | Shape measuring instrument | |
| JP5375252B2 (en) | Vacuum gauge | |
| JP2009055744A (en) | Ultrasonic motor drive circuit and driving signal generating method of ultrasonic motor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130313 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130904 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130923 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5387468 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |