[go: up one dir, main page]

JP5442121B2 - Magnetic memory cell and magnetic random access memory - Google Patents

Magnetic memory cell and magnetic random access memory Download PDF

Info

Publication number
JP5442121B2
JP5442121B2 JP2012523480A JP2012523480A JP5442121B2 JP 5442121 B2 JP5442121 B2 JP 5442121B2 JP 2012523480 A JP2012523480 A JP 2012523480A JP 2012523480 A JP2012523480 A JP 2012523480A JP 5442121 B2 JP5442121 B2 JP 5442121B2
Authority
JP
Japan
Prior art keywords
layer
magnetization
recording layer
permanent magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012523480A
Other languages
Japanese (ja)
Other versions
JPWO2012004882A1 (en
Inventor
英男 大野
正二 池田
顕知 伊藤
浩之 山本
勝哉 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hitachi Ltd
Original Assignee
Tohoku University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Hitachi Ltd filed Critical Tohoku University NUC
Publication of JPWO2012004882A1 publication Critical patent/JPWO2012004882A1/en
Application granted granted Critical
Publication of JP5442121B2 publication Critical patent/JP5442121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、スピントルク磁化反転を応用した磁気メモリセル及び磁気ランダムアクセスメモリに関するものである。   The present invention relates to a magnetic memory cell and a magnetic random access memory to which spin torque magnetization reversal is applied.

近年、従来の揮発型のダイナミック・ランダム・アクセスメモリ(DRAM)を置きかえる可能性を有する不揮発の磁気ランダム・アクセスメモリ(MRAM)が注目されている。DRAMでは、回路の電源をオフにすると情報が消えてしまうという問題があったが、MRAMでは回路の電源をオフにしても情報が消えてしまわないため、メモリの電源を必要なときのみONにすることができ、大幅な低消費電力化が可能となるためである。最初のMRAMでは、例えば米国特許第5734605号明細書に記載されているように、磁性膜/非磁性絶縁膜/磁性膜の多層構造を有するトンネル磁気抵抗効果(TMR)素子の一方の磁性膜の磁化を、TMR素子の上下に互いに直交する方向に設けられた2つの金属配線に流れる電流が作る合成磁界を用いて反転させることにより記録を行う方式が採用されている。しかしながら、MRAMにおいても、大容量化のためTMR素子のサイズを小さくすると磁化反転に要する磁界の大きさが大きくなり、たくさんの電流を金属配線に流すことが必要となり、消費電力の増加、ひいては配線の破壊を招いてしまうという課題が指摘されている。   In recent years, attention has been focused on a nonvolatile magnetic random access memory (MRAM) having a possibility of replacing a conventional volatile dynamic random access memory (DRAM). In DRAM, there was a problem that information disappears when the circuit power is turned off. However, in MRAM, information is not erased even if the circuit power is turned off, so the memory power is turned on only when necessary. This is because power consumption can be significantly reduced. In the first MRAM, for example, as described in US Pat. No. 5,734,605, one magnetic film of a tunnel magnetoresistive effect (TMR) element having a multilayer structure of magnetic film / nonmagnetic insulating film / magnetic film is used. A system is employed in which recording is performed by reversing the magnetization using a synthetic magnetic field generated by currents flowing in two metal wirings provided in directions perpendicular to each other above and below the TMR element. However, even in the MRAM, if the size of the TMR element is reduced to increase the capacity, the magnitude of the magnetic field required for magnetization reversal increases, and it is necessary to pass a large amount of current through the metal wiring. It has been pointed out that it will lead to the destruction.

磁界を用いずに磁化反転する方法として、例えば、Journal of Magnetism and Magnetic Materials, 159, L1-6 (1996)に記載されているように、磁気再生ヘッドで用いられる巨大磁気抵抗効果(GMR)膜やトンネル磁気抵抗効果(TMR)膜に、一定以上の電流を流すだけで磁化反転が可能であることが理論的に示された。その後、例えばPhysical Review Letters, Vol.84, No.14, pp.2149-2152 (2000)には、二つのCuの電極の間にCo/Cu/Coの多層膜(GMR膜)を含む直径130nmのピラーを形成し、そのピラーに電流を流し、流れる電流のスピンからCo層の磁化に与えられるスピントルクを用いて、Co層の磁化を反転する記録方式の実験例が報告されている。さらに、近年では、例えば、Applied Physics Letters, Vol.84, pp.2118-2120 (2004)に記載されているように、TMR膜を用いたナノピラーを用いて、スピントルク磁化反転が実証された。スピントルク磁化反転を応用したMRAM(STT−MRAM)では、書込みに必要な電流がTMRピラーの面積とともに減少するため、微細化とともに書込みパワーを低減できるというスケーラビリティが保証されているため、次世代の不揮発RAMとして、おおいに注目を集めている。   As a method of reversing magnetization without using a magnetic field, for example, as described in Journal of Magnetism and Magnetic Materials, 159, L1-6 (1996), a giant magnetoresistive effect (GMR) film used in a magnetic reproducing head It has been theoretically shown that magnetization reversal is possible only by passing a certain current or more through the tunnel magnetoresistive (TMR) film. Thereafter, for example, Physical Review Letters, Vol.84, No.14, pp.2149-2152 (2000) describes a diameter of 130 nm including a Co / Cu / Co multilayer film (GMR film) between two Cu electrodes. An example of a recording method has been reported in which a pillar is formed, a current is passed through the pillar, and the spin torque applied to the magnetization of the Co layer from the spin of the flowing current is used to reverse the magnetization of the Co layer. Furthermore, in recent years, spin torque magnetization reversal has been demonstrated using nanopillars using TMR films, as described in, for example, Applied Physics Letters, Vol. 84, pp. 2118-2120 (2004). In the MRAM (STT-MRAM) using spin torque magnetization reversal, the current required for writing decreases with the area of the TMR pillar, so the scalability that the write power can be reduced along with miniaturization is guaranteed. As a nonvolatile RAM, much attention has been paid.

以上言及したスピントルク磁化反転の模式図を図1に示す。図1に示したメモリセルは、ビット線1に、磁化方向が変化する第1の強磁性層(記録層)2、中間層3、磁化方向が固定された第2の強磁性層(固定層)4からなる磁気抵抗効果素子と、ゲート電極5で伝導を制御されたトランジスタ6が接続され、トランジスタのもう一方の端子はソース線7に接続されている。図1(a)のように、固定層4と記録層2の磁化を反平行(高抵抗)状態から平行(低抵抗)状態に変化させる場合には、電流8はビット線1からソース線7に流す。このとき、電子9はソース線7からビット線1に流れる。一方、図1(b)のように、固定層4と記録層2の磁化を平行(低抵抗)状態から反平行(高抵抗)状態に変化させる場合には、電流8はソース線7からビット線1の方向に流せばよい。このとき、電子9はビット線1からソース線7の方向に流れる。   A schematic diagram of the spin torque magnetization reversal mentioned above is shown in FIG. In the memory cell shown in FIG. 1, a bit line 1 includes a first ferromagnetic layer (recording layer) 2 whose magnetization direction changes, an intermediate layer 3, and a second ferromagnetic layer (fixed layer) whose magnetization direction is fixed. ) 4 and the transistor 6 whose conduction is controlled by the gate electrode 5 are connected, and the other terminal of the transistor is connected to the source line 7. As shown in FIG. 1A, when the magnetization of the fixed layer 4 and the recording layer 2 is changed from the antiparallel (high resistance) state to the parallel (low resistance) state, the current 8 is changed from the bit line 1 to the source line 7. Shed. At this time, the electrons 9 flow from the source line 7 to the bit line 1. On the other hand, when the magnetizations of the fixed layer 4 and the recording layer 2 are changed from the parallel (low resistance) state to the antiparallel (high resistance) state as shown in FIG. What is necessary is just to flow in the direction of line 1. At this time, the electrons 9 flow from the bit line 1 to the source line 7.

その後、例えば、特開2008−252018号公報に記載されているように、固定層4及び記録層2の磁化の方向を、各磁性層の膜面と垂直方向に向ける垂直TMRピラーを用いたスピントルク磁化反転応用MRAM(STT−MRAM)が提案されている(図2)。この垂直TMR型STT−MRAMでは、強磁性層に材料固有の磁気異方性が大きな材料(硬磁性材料)を用いることができるので、TMRピラーの面積が減少しても熱安定性を保持できるという特徴がある。   Thereafter, as described in, for example, Japanese Patent Application Laid-Open No. 2008-252018, spin using a vertical TMR pillar that directs the magnetization directions of the fixed layer 4 and the recording layer 2 in the direction perpendicular to the film surface of each magnetic layer. A torque magnetization reversal application MRAM (STT-MRAM) has been proposed (FIG. 2). In this perpendicular TMR type STT-MRAM, a material (hard magnetic material) having a large magnetic anisotropy inherent to the material can be used for the ferromagnetic layer, so that thermal stability can be maintained even if the area of the TMR pillar is reduced. There is a feature.

米国特許第5734605号明細書US Pat. No. 5,734,605 特開2008−252018号公報JP 2008-252018 A

Journal of Magnetism and Magnetic Materials, 159, L1-6 (1996)Journal of Magnetism and Magnetic Materials, 159, L1-6 (1996) Physical Review Letters, Vol.84, No.14, pp.2149-2152 (2000)Physical Review Letters, Vol.84, No.14, pp.2149-2152 (2000) Applied Physics Letters, Vol.84, pp.2118-2120 (2004)Applied Physics Letters, Vol.84, pp.2118-2120 (2004)

しかし、従来のSTT−MRAMには、以下のような問題がある。   However, the conventional STT-MRAM has the following problems.

スピントルク磁化反転を応用した磁気メモリでは、書換え電流の低減と不揮発性を保証する熱安定性の確保が極めて重要である。スピントルク磁化反転の書換え電流は電流密度で決まることが知られており、例えばPhysical Review B, Vol.62, No.1, pp.570-578によれば、図1のように面内に磁化が向いたTMRピラーに対しては、しきい電流密度Jc0は式(1)で与えられることが知られている。In a magnetic memory using spin torque magnetization reversal, it is extremely important to reduce the rewrite current and ensure the thermal stability to ensure the non-volatility. It is known that the rewrite current for spin torque magnetization reversal is determined by the current density. For example, according to Physical Review B, Vol.62, No.1, pp.570-578, the in-plane magnetization as shown in FIG. It is known that the threshold current density J c0 is given by the equation (1) for the TMR pillars facing.

c0∝(αMst/g)(Hk+Meff) (1)
ここで、αはギルバートのダンピング定数、Msは記録層の飽和磁化、tは記録層の膜厚、gはスピントルクの効率、Hkは記録層の異方性磁界、Meffは膜面に垂直方向に働く反磁界の効果を差し引いた記録層の有効磁化である。
J c0 α (αM s t / g) (H k + M eff) (1)
Where α is the Gilbert damping constant, M s is the saturation magnetization of the recording layer, t is the thickness of the recording layer, g is the efficiency of the spin torque, H k is the anisotropic magnetic field of the recording layer, and M eff is the film surface. The effective magnetization of the recording layer minus the effect of the demagnetizing field acting in the perpendicular direction.

一方、熱安定性を特徴づけるエネルギー障壁、すなわち二つの安定な磁化方向の間で磁化反転をするために必要なエネルギーは、式(2)で与えられる。   On the other hand, the energy barrier that characterizes the thermal stability, that is, the energy required for the magnetization reversal between two stable magnetization directions is given by equation (2).

E〜(MskSt)/2 (2)
ここで、SはTMRピラーの断面積である。
E to (M s H k St) / 2 (2)
Here, S is a cross-sectional area of the TMR pillar.

式(1)(2)からわかるように、Jc0,EともにMstに比例する量である。したがって熱安定性を確保するためにMstを増加させるとJc0も大きくなり、書き込みに要する消費電力が増える。他方、しきい電流を減らすためにMstを減少させるとEも減少し、熱安定性が損なわれる。すなわち、Jc0とEはトレードオフの関係にある。As can be seen from equation (1) (2) is an amount which is proportional to J c0, E both M s t. Therefore, when M s t is increased in order to ensure thermal stability, J c0 increases and power consumption required for writing increases. On the other hand, reducing the M s t in order to reduce the threshold current also decreases E, thermal stability is impaired. That is, J c0 and E are in a trade-off relationship.

一方、特開2008−252018号公報に記載されている垂直TMR型STT−MRAMでは、しきい電流密度Jc0は、
c0∝(αMst/g)(Hk−4πMs) (3)
となり、一方、障壁エネルギーEは
E〜[Ms(Hk−4πMs)St]/2 (4)
と書ける。この場合も、Jc0,EともにMstに比例するが、前述のように垂直型MTJでは異方性磁界を大きくすることができるので、Eの大きさに関しては問題ない。しかしながら、Hkを大きくした場合Jc0も増大するので、αを減少させる等の手段を講じてJc0の増大を防ぐことが課題である。
On the other hand, in the vertical TMR type STT-MRAM described in Japanese Patent Application Laid-Open No. 2008-252018, the threshold current density J c0 is
J c0 ∝ (αM s t / g) (H k −4πM s ) (3)
On the other hand, the barrier energy E is
E to [M s (H k −4πM s ) St] / 2 (4)
Can be written. Again, is proportional to J c0, E both M s t, it is possible to increase the vertical MTJ in anisotropy field as described above, no problem with respect to the size of the E. However, since J c0 increases when H k is increased, it is a problem to prevent J c0 from increasing by taking measures such as reducing α.

上記のように垂直TMR型のSTT−MRAMは、面内磁化TMR型のSTT−MRAMに比べて熱安定性を向上できるという利点があるが、以下のような別の課題がある。   As described above, the perpendicular TMR-type STT-MRAM has an advantage that the thermal stability can be improved as compared with the in-plane magnetization TMR-type STT-MRAM, but has another problem as follows.

図3(a)及び図3(b)は、垂直TMRの二つの代表的な磁化配置を示した図である。第一の配置は、図3(a)に示すように、記録層2の磁化と固定層4の磁化が平行な場合(平行配置)であり、このときTMR素子の抵抗が低い。第二の配置は、図3(b)に示すように、記録層2の磁化と固定層4の磁化が反平行な場合(反平行配置)であり、このときTMR素子の抵抗が高い。平行配置の場合は、ちょうど磁性膜2,4の磁石のN極とS極が交互に配置された状態で、磁束の流れが閉じた安定なエネルギー配置となる。例えば図3(a)の場合、固定層4のN極から記録層2のS極に向かって磁束31が流れ、それに伴って磁界Hsが発生する。その大きさはMsの値にもよるが、通常、1000〜数1000Oeという大きな値である。一方、図3(b)に示すような反平行配置の場合には、N極とN極(又はS極とS極)が角を突き合わせた状態になり、磁束32が発生し、エネルギー的に不安定となる。その結果、スピントルク磁化反転の電流−抵抗ヒステリシス曲線は、図3(a)のような平行配置が安定なため、平行⇒反平行配置への書換えの場合に、より大きな電流が必要となる。加えて、式(3)におけるgの値は、平行⇒反平行配置の書換えの場合の方が、反平行⇒平行配置への書換えの場合に比べて小さい(通常、1/2程度)ので、平行⇒反平行配置への書換えに要する電流は、反平行⇒平行配置への書換えの場合よりさらに増大するという課題がある。FIG. 3A and FIG. 3B are diagrams showing two typical magnetization arrangements of the vertical TMR. As shown in FIG. 3A, the first arrangement is a case where the magnetization of the recording layer 2 and the magnetization of the fixed layer 4 are parallel (parallel arrangement). At this time, the resistance of the TMR element is low. As shown in FIG. 3B, the second arrangement is a case where the magnetization of the recording layer 2 and the magnetization of the fixed layer 4 are antiparallel (antiparallel arrangement). At this time, the resistance of the TMR element is high. In the case of the parallel arrangement, a stable energy arrangement in which the magnetic flux flow is closed in a state where the N poles and S poles of the magnets of the magnetic films 2 and 4 are alternately arranged. For example, in the case of FIG. 3A, the magnetic flux 31 flows from the N pole of the fixed layer 4 toward the S pole of the recording layer 2, and a magnetic field H s is generated accordingly. Although the magnitude depends on the value of M s , it is usually a large value of 1000 to several thousand Oe. On the other hand, in the case of the antiparallel arrangement as shown in FIG. 3B, the N pole and the N pole (or the S pole and the S pole) are in a state where the corners are in contact with each other, and the magnetic flux 32 is generated. It becomes unstable. As a result, the current-resistance hysteresis curve of the spin torque magnetization reversal requires a larger current when rewriting from parallel to antiparallel because the parallel arrangement as shown in FIG. 3A is stable. In addition, the value of g in the expression (3) is smaller in the case of rewriting from parallel to anti-parallel arrangement than the case of rewriting from anti-parallel to parallel arrangement (usually about 1/2). There is a problem that the current required for rewriting from parallel to antiparallel arrangement is further increased than in the case of rewriting from antiparallel to parallel arrangement.

これに対し、面内磁化TMRにおいては、固定層を互いに磁化の向きが反平行になるように配置した積層フェリ固定層とし、固定層の内部に磁束の流れを閉じ込めることで、上記のような問題を回避できる。   On the other hand, in the in-plane magnetization TMR, the fixed layer is a laminated ferrimagnetic fixed layer in which the magnetization directions are antiparallel to each other, and the flow of magnetic flux is confined inside the fixed layer, so that The problem can be avoided.

したがって、垂直TMR型STT−MRAMを実用に供するためには、上記の平行⇒反平行書換えと反平行⇒平行書換えに要する電流値の非対称性を改善することが肝要である。   Therefore, in order to put the vertical TMR type STT-MRAM into practical use, it is important to improve the current value asymmetry required for the above-described parallel-> antiparallel rewrite and antiparallel-> parallel rewrite.

本発明の磁気メモリセルは、膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、固定層と記録層の間に形成された非磁性障壁層とを含む磁気抵抗効果素子と、磁気抵抗効果素子に直列に接続された選択トランジスタと、磁気抵抗効果素子と選択トランジスタに所望の方向の電流を流す機構と、固定層と記録層に、固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、選択トランジスタを通して記録層の膜面に垂直な方向に流されるスピン偏極した電流によって、記録層の磁化の方向をスイッチングし、記録層の磁化方向と固定層の磁化方向が略平行か、略反平行かによって情報の記録を行う。   The magnetic memory cell of the present invention is formed between a fixed layer having a magnetization perpendicular to the film surface, a fixed layer having magnetization fixed in one direction perpendicular to the film surface, and the fixed layer and the recording layer. A magnetoresistive effect element including a nonmagnetic barrier layer, a selection transistor connected in series to the magnetoresistive effect element, a mechanism for passing a current in a desired direction through the magnetoresistive effect element and the selection transistor, a fixed layer, and a recording layer The layer is provided with a magnetic field application mechanism that applies a magnetic field opposite to the magnetization direction of the fixed layer, and the magnetization of the recording layer is generated by a spin-polarized current that flows in a direction perpendicular to the film surface of the recording layer through the selection transistor. Information is recorded depending on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or anti-parallel.

磁界印加機構は、磁気抵抗効果素子の上下それぞれに設けられた膜面に垂直方向の磁化を有する永久磁石層で構成することができる。そして、磁気抵抗効果素子の上下に設けられた永久磁石層の異方性磁界をそれぞれHk1,Hk2とし、記録層と固定層の異方性磁界をそれぞれHk3,Hk4とするとき、Hk1,Hk2はHk3,Hk4より大きい。また、記録層の飽和磁化の値をMs3とし、固定層の飽和磁化の値をMs4とするとき、Hk3−4π・Ms3<Hk4−4π・Ms4である。The magnetic field application mechanism can be composed of permanent magnet layers having magnetization perpendicular to the film surfaces provided on the upper and lower sides of the magnetoresistive element. The anisotropic magnetic fields of the permanent magnet layers provided above and below the magnetoresistive effect element are denoted as H k 1 and H k 2, respectively, and the anisotropic magnetic fields of the recording layer and the fixed layer are denoted as H k 3 and H k 4, respectively. , H k 1 and H k 2 are larger than H k 3 and H k 4. Further, when the saturation magnetization value of the recording layer is M s 3 and the saturation magnetization value of the fixed layer is M s 4, H k 3-4π · M s 3 <H k 4-4π · M s 4 is there.

本発明の磁気ランダムアクセスメモリは、相互に平行に並べられた複数のビット線と、ビット線と平行に並べられた複数のソース線と、ビット線と交差し且つ互いに平行に並べられた複数のワード線と、ビット線とワード線とが交差する部分に配置された複数の磁気メモリセルとによって構成されたサブアレイを有する。磁気メモリセルとしては、上記本発明の磁気メモリセルを用いる。   A magnetic random access memory according to the present invention includes a plurality of bit lines arranged in parallel to each other, a plurality of source lines arranged in parallel to the bit lines, and a plurality of lines intersecting the bit lines and arranged in parallel to each other. It has a subarray composed of a word line and a plurality of magnetic memory cells arranged at a portion where the bit line and the word line intersect. The magnetic memory cell of the present invention is used as the magnetic memory cell.

より具体的には、磁気メモリセルは、膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、固定層と記録層の間に形成された非磁性障壁層とを含み、固定層側がビット線に電気的に接続された磁気抵抗効果素子と、ソース電極とドレイン電極とゲート電極を有し、ソース電極がソース線に電気的に接続され、ドレイン電極が磁気抵抗効果素子の記録層側に電気的に接続され、ゲート電極がワード線に電気的に接続された選択トランジスタと、磁気抵抗効果素子と選択トランジスタに所望の方向の電流を流す機構と、固定層と記録層に、固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、選択トランジスタを通して記録層の膜面に垂直にビット線からソース線の方向に、あるいはソース線からビット線の方向に流されるスピン偏極した電流によって、記録層の磁化の方向をスイッチングし、記録層の磁化方向と固定層の磁化方向が略平行か、略反平行かによって情報の記録を行う。   More specifically, the magnetic memory cell includes a recording layer having magnetization in a direction perpendicular to the film surface, a fixed layer having magnetization fixed in one direction perpendicular to the film surface, and a space between the fixed layer and the recording layer. A magnetoresistive effect element having a fixed layer side electrically connected to a bit line, a source electrode, a drain electrode, and a gate electrode, and the source electrode electrically connected to the source line A selection transistor in which the drain electrode is electrically connected to the recording layer side of the magnetoresistive effect element, the gate electrode is electrically connected to the word line, and the magnetoresistive effect element and the select transistor are arranged in a desired direction. A mechanism for supplying current, and a magnetic field applying mechanism for applying a magnetic field opposite to the magnetization direction of the fixed layer to the fixed layer and the recording layer, and through the selection transistor perpendicular to the film surface of the recording layer from the bit line to the source line In the direction of Switches the magnetization direction of the recording layer by a spin-polarized current flowing from the source line to the bit line, and the information depends on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or antiparallel. Record.

磁界印加機構は、個々の磁気メモリセル毎に、選択トランジスタのドレイン電極と記録層の間に形成された第1の永久磁石層と、固定層と前記ビット線の間に形成された第2の永久磁石層とで構成することができる。このとき、第1の永久磁石層及び第2の永久磁石層の磁化方向は固定層の磁化方向と逆方向に設定する。   The magnetic field application mechanism includes a first permanent magnet layer formed between the drain electrode of the selection transistor and the recording layer, and a second layer formed between the fixed layer and the bit line for each magnetic memory cell. It can be composed of a permanent magnet layer. At this time, the magnetization directions of the first permanent magnet layer and the second permanent magnet layer are set to be opposite to the magnetization direction of the fixed layer.

また、磁界印加機構は、各磁気メモリセルの前記選択トランジスタのドレイン電極と記録層の間に形成された第1の永久磁石層と、ビット線に対して磁気抵抗効果素子と反対側の位置にサブアレイ全体を覆うように設けられた第2の永久磁石層とで構成することができる。このとき、第1の永久磁石層及び第2の永久磁石層の磁化方向は固定層の磁化方向と逆方向に設定する。   In addition, the magnetic field application mechanism includes a first permanent magnet layer formed between the drain electrode of the selection transistor and the recording layer of each magnetic memory cell, and a position opposite to the magnetoresistive effect element with respect to the bit line. A second permanent magnet layer provided so as to cover the entire subarray. At this time, the magnetization directions of the first permanent magnet layer and the second permanent magnet layer are set to be opposite to the magnetization direction of the fixed layer.

また、磁界印加機構は、磁気抵抗効果素子の記録層に対して固定層と反対側の位置に電気的に絶縁して設けられた第1の永久磁石層と、固定層とビット線の間に形成された第2の永久磁石層とで構成してもよい。このとき、第1の永久磁石層及び第2の永久磁石層の磁化方向は固定層の磁化方向と逆方向に設定する。   In addition, the magnetic field application mechanism includes a first permanent magnet layer electrically insulated at a position opposite to the fixed layer with respect to the recording layer of the magnetoresistive element, and between the fixed layer and the bit line. You may comprise with the formed 2nd permanent magnet layer. At this time, the magnetization directions of the first permanent magnet layer and the second permanent magnet layer are set to be opposite to the magnetization direction of the fixed layer.

また、磁界印加機構は、磁気抵抗効果素子の記録層に対して固定層と反対側の位置に電気的に絶縁して設けられた第1の永久磁石層と、ビット線に対して磁気抵抗効果素子と反対側の位置にサブアレイ全体を覆うように設けられた第2の永久磁石層とで構成してもよい。このとき、第1の永久磁石層及び第2の永久磁石層の磁化方向は固定層の磁化方向と逆方向に設定する。   Further, the magnetic field application mechanism includes a first permanent magnet layer electrically insulated at a position opposite to the fixed layer with respect to the recording layer of the magnetoresistive effect element, and a magnetoresistive effect with respect to the bit line. You may comprise with the 2nd permanent magnet layer provided so that the whole subarray might be covered in the position on the opposite side to an element. At this time, the magnetization directions of the first permanent magnet layer and the second permanent magnet layer are set to be opposite to the magnetization direction of the fixed layer.

本発明によれば、読出し時に熱的に安定で、かつ書き込み時の電流を低減した、垂直磁化型トンネル磁気抵抗効果素子を用いたスピントルク磁化反転応用の磁気ランダムアクセスメモリを提供することができる。   According to the present invention, it is possible to provide a magnetic random access memory for spin torque magnetization reversal application using a perpendicular magnetization type tunnel magnetoresistive effect element that is thermally stable at the time of reading and has a reduced current at the time of writing. .

スピントルク磁化反転の原理を示す図であり、(a)は反平行状態から平行状態への磁化反転を示す図、(b)は平行状態から反平行状態への磁化反転を示す図。It is a figure which shows the principle of a spin torque magnetization reversal, (a) is a figure which shows the magnetization reversal from an antiparallel state to a parallel state, (b) is a figure which shows the magnetization reversal from a parallel state to an antiparallel state. 従来の垂直TMR型STT−MRAMの模式図。Schematic diagram of a conventional vertical TMR-type STT-MRAM. 垂直型STT−MRAMの課題を示す図。The figure which shows the subject of vertical type STT-MRAM. 本発明におけるメモリアレイ回路の一例を表す図。FIG. 3 is a diagram illustrating an example of a memory array circuit in the present invention. 本発明のメモリアレイ回路のレイアウトを示す図。FIG. 3 is a diagram showing a layout of a memory array circuit of the present invention. 本発明による磁気メモリセルの実施例を示す断面模式図。1 is a schematic cross-sectional view showing an embodiment of a magnetic memory cell according to the present invention. 垂直TMR素子の書換え動作を説明する図。The figure explaining the rewriting operation | movement of a vertical TMR element. TMR比を向上するための界面層挿入を示す図。The figure which shows the interface layer insertion for improving TMR ratio. 本発明による磁気メモリセルの実施例を示す断面模式図。1 is a schematic cross-sectional view showing an embodiment of a magnetic memory cell according to the present invention. 本発明による磁気メモリセルの実施例を示す断面模式図。1 is a schematic cross-sectional view showing an embodiment of a magnetic memory cell according to the present invention. 本発明による磁気メモリセルの実施例を示す断面模式図。1 is a schematic cross-sectional view showing an embodiment of a magnetic memory cell according to the present invention.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[メモリアレイ構造]
図4は、本発明のメモリアレイ回路の一例を示す図であり、サブアレイの一部を示す模式図である。図4において、41はビット線、42は磁気抵抗効果素子であり、43はソース線、44はセル選択トランジスタ、45はワード線、46は一つのメモリセルを表す。47と48はビット線に流す電流の大きさを制御する抵抗変化素子(例えばトランジスタ)、49は抵抗変化素子47と48の伝導状態を制御する抵抗制御用のワード線である。
[Memory array structure]
FIG. 4 is a diagram showing an example of the memory array circuit of the present invention, and is a schematic diagram showing a part of the subarray. In FIG. 4, 41 is a bit line, 42 is a magnetoresistive element, 43 is a source line, 44 is a cell selection transistor, 45 is a word line, and 46 is one memory cell. Reference numerals 47 and 48 denote resistance change elements (for example, transistors) for controlling the magnitude of a current flowing through the bit line, and reference numeral 49 denotes a resistance control word line for controlling the conduction state of the resistance change elements 47 and 48.

図4に示すように、セル選択トランジスタ44のソース電極Sはソース線43に、ドレイン電極Dは磁気抵抗効果素子42に接続されている。また、ゲート電極Gはワード線45に接続されている。ビット線41は互いに平行に並んでおり、ソース線43はビット線と平行な方向に並んでいる。ワード線45は互いに平行に、かつビット線41及びソース線43と交差する向きに配列されている。   As shown in FIG. 4, the source electrode S of the cell selection transistor 44 is connected to the source line 43, and the drain electrode D is connected to the magnetoresistive effect element 42. The gate electrode G is connected to the word line 45. The bit lines 41 are arranged in parallel to each other, and the source lines 43 are arranged in a direction parallel to the bit lines. The word lines 45 are arranged in parallel to each other and in a direction intersecting with the bit lines 41 and the source lines 43.

これらのサブアレイは、図5のように配置されている。本構成の場合の書込みは、例えばセル46への書き込みを行う場合、まず、CPUからアドレスコントローラに書込むべきセル46のアドレスを指定する信号が送られる。次にアドレスコントローラから、電流を流したいビット線41に接続された書き込みドライバーにライトイネーブル信号を送って昇圧し、次に抵抗制御ドライバーの電圧を制御して、ビット線41に所定の電流を流す。電流の向きに応じ、抵抗変化素子47に接続されている書き込みドライバーないし、抵抗変化素子48に接続されている書き込みドライバーのいずれかをグラウンドに落として、電位差を調節して電流方向を制御する。次に所定時間経過後、ワード線45に接続された書き込みドライバーにライトイネーブル信号を送り、書き込みドライバーを昇圧して、トランジスタ44をオンにする。これにより磁気抵抗効果素子42に電流が流れ、スピントルク磁化反転が行われる。所定の時間、トランジスタ44をオンにしたのち、書込みドライバーへの信号を切断し、トランジスタ44をオフにする。   These subarrays are arranged as shown in FIG. For the writing in this configuration, for example, when writing to the cell 46, first, a signal for designating the address of the cell 46 to be written to the address controller is sent from the CPU. Next, the address controller sends a write enable signal to the write driver connected to the bit line 41 to which a current is desired to be sent to boost the voltage, and then controls the voltage of the resistance control driver to pass a predetermined current through the bit line 41. . Depending on the direction of the current, either the write driver connected to the resistance change element 47 or the write driver connected to the resistance change element 48 is dropped to the ground, and the potential difference is adjusted to control the current direction. Next, after a predetermined time elapses, a write enable signal is sent to the write driver connected to the word line 45 to boost the write driver and turn on the transistor 44. As a result, a current flows through the magnetoresistive effect element 42 and spin torque magnetization reversal is performed. After the transistor 44 is turned on for a predetermined time, the signal to the write driver is disconnected and the transistor 44 is turned off.

読出しの際は、CPUからアドレスコントローラに、読み出すべきセル46のアドレスを指定する信号が送られる。次にアドレスコントローラからの信号で、読出したいメモリセルにつながったビット線41のみを読出し電圧Vに昇圧し、選択トランジスタ44につながっているソース線43のみを他方の書込みドライバーで選択し、ワード線45にイネーブル信号を送ってトランジスタ44をオンにして電流を流す。そして、所望のメモリセル46の磁気抵抗効果素子42の抵抗の両端にかかる電圧差をセンスアンプで増幅することで、読出しを行う。この場合、読出し時の電流方向は、常にソース線43からビット線41の方向になるようにする。これによって読出し電流による誤書込みを減らし、より大きな読出し電流を流すことが可能となって、高速の読み出しが可能となる。この構造は最も単純な1トランジスタ+1メモリセルの配置なので、単位セルの占める面積は2F×4F=8F2と高集積なものにすることができる。At the time of reading, a signal for designating the address of the cell 46 to be read is sent from the CPU to the address controller. Next, with the signal from the address controller, only the bit line 41 connected to the memory cell to be read is boosted to the read voltage V, only the source line 43 connected to the selection transistor 44 is selected by the other write driver, and the word line An enable signal is sent to 45 to turn on the transistor 44 and allow current to flow. Then, reading is performed by amplifying a voltage difference applied to both ends of the resistance of the magnetoresistive effect element 42 of the desired memory cell 46 with a sense amplifier. In this case, the current direction during reading is always in the direction from the source line 43 to the bit line 41. As a result, erroneous writing due to the read current can be reduced, a larger read current can be passed, and high-speed reading can be performed. Since this structure is the simplest arrangement of 1 transistor + 1 memory cell, the area occupied by the unit cell can be made highly integrated with 2F × 4F = 8F 2 .

以下、具体的な磁気抵抗効果素子やセルの構造を、TMR素子を例にとっていくつか詳述する。   Hereinafter, some specific magnetoresistive elements and cell structures will be described in detail by taking TMR elements as an example.

[実施例1]
図6は、本発明の第1の実施例におけるTMRピラーを備える磁気メモリセルの断面模式図である。図6において、43はソース線、44はTMRピラーへ供給する電流を制御するトランジスタ、503は下地膜、504は永久磁石層、505は非磁性の中間層、506は記録層、507は非磁性障壁層、508は固定層、509は非磁性の中間層、510は永久磁石層、41はビット線である。永久磁石層504と510は、ともに下向きに磁化されており、その間に大きな下向きの磁界Hexを発生させる。固定層508は上向きに磁化されている。記録層506の磁化の向きは、電流を記録層506から固定層508の方向に流したときに下向きから上向きに変えられる。すなわち反平行⇒平行書換えが行われる。また、電流を固定層508から記録層506の方向に流した場合には、上向きから下向きに向きが変えられ、平行⇒反平行書換えが行われる。
[Example 1]
FIG. 6 is a schematic cross-sectional view of a magnetic memory cell including a TMR pillar in the first embodiment of the present invention. In FIG. 6, 43 is a source line, 44 is a transistor for controlling the current supplied to the TMR pillar, 503 is a base film, 504 is a permanent magnet layer, 505 is a nonmagnetic intermediate layer, 506 is a recording layer, and 507 is nonmagnetic. A barrier layer, 508 is a fixed layer, 509 is a nonmagnetic intermediate layer, 510 is a permanent magnet layer, and 41 is a bit line. The permanent magnet layers 504 and 510 are both magnetized downward, and generate a large downward magnetic field Hex therebetween. The fixed layer 508 is magnetized upward. The direction of magnetization of the recording layer 506 can be changed from downward to upward when a current is passed from the recording layer 506 to the fixed layer 508. That is, anti-parallel ⇒ parallel rewriting is performed. Further, when a current is passed from the fixed layer 508 to the recording layer 506, the direction is changed from upward to downward, and parallel → antiparallel rewriting is performed.

図7は、垂直TMR素子の書換え動作を説明する図である。図7(a)は、本発明におけるTMR素子の書換え動作における電流−抵抗ヒステリシスを表している。この図では、図6のメモリセルにおいて電流が固定層から記録層へ流れる場合、すなわち電流がビット線41からソース線43へ流れる場合を正と定義している。図中の四角の囲みは、トランジスタ44によって供給可能な電流の値の範囲を表す。   FIG. 7 is a diagram for explaining the rewriting operation of the vertical TMR element. FIG. 7A shows the current-resistance hysteresis in the rewriting operation of the TMR element in the present invention. In this figure, when the current flows from the fixed layer to the recording layer in the memory cell of FIG. 6, that is, when the current flows from the bit line 41 to the source line 43 is defined as positive. A square box in the drawing represents a range of current values that can be supplied by the transistor 44.

一般にCMOSトランジスタとTMR素子のような抵抗型の素子を図6のように直列に接続すると、ソース線43を接地して電流をビット線41からソース線方向(図7(a)の正の電流方向)に流す方が、逆方向(図7(a)の負の電流方向)に流す場合より大きな電流を流すことができる。これは、ソース線43からビット線41に向かって電流を流すと、抵抗であるTMR素子の部分で大きな電圧降下が起こるので、トランジスタ44のソースSとワード線45との間にかかる電圧が下がってしまうためである。   In general, when a CMOS transistor and a resistance type element such as a TMR element are connected in series as shown in FIG. 6, the source line 43 is grounded, and the current flows from the bit line 41 to the source line (positive current in FIG. 7A). Direction can be larger than when flowing in the opposite direction (negative current direction in FIG. 7A). This is because when a current is passed from the source line 43 toward the bit line 41, a large voltage drop occurs in the portion of the TMR element that is a resistor, so that the voltage applied between the source S of the transistor 44 and the word line 45 decreases. It is because it ends up.

本発明では、永久磁石層504,510の間に働く磁界Hexの向きと平行配置における記録層506、固定層508の磁化の向きが反対のため、平行配置における記録層506のエネルギー状態が不安定化されている。このため、平行⇒反平行書換え時の書換え電流の絶対値が低減される。他方、反平行⇒平行書換えの書換え電流の絶対値は増加するが、もともと平行⇒反平行書換えに要する電流の方が、反平行⇒平行書換えの電流値より大きいので、問題にはならない。In the present invention, since the magnetization directions of the recording layer 506 and the fixed layer 508 in the parallel arrangement are opposite to the direction of the magnetic field Hex acting between the permanent magnet layers 504 and 510, the energy state of the recording layer 506 in the parallel arrangement is not good. It is stabilized. For this reason, the absolute value of the rewriting current at the time of parallel-> antiparallel rewriting is reduced. On the other hand, the absolute value of the rewrite current from antiparallel to parallel rewriting increases, but the current required for parallel to antiparallel rewrite is originally larger than the current value from antiparallel to parallel rewrite, so this is not a problem.

さらに、図2に示した典型的な垂直TMR膜と比較して、記録層と固定層の積層順が反対となっているため、書換え電流がたくさんとれるソース接地(すなわち図7(a)の正方向の電流の向き)で平行⇒反平行書換え動作が行えるため、電流のマージンが大きく、歩留まりの高いSTT−MRAMが提供できる。   Further, since the stacking order of the recording layer and the fixed layer is opposite to that of the typical vertical TMR film shown in FIG. 2, the source grounding (that is, the positive polarity of FIG. Since the parallel-to-antiparallel rewrite operation can be performed in the direction of the current in the direction, an STT-MRAM with a large current margin and a high yield can be provided.

図7(b)は比較のため、永久磁石層からの磁界がない場合の電流−抵抗ヒステリシスを表している。この場合には、平行⇒反平行書換えに必要な電流が、十分に提供できないことが分かる。   FIG. 7B shows current-resistance hysteresis when there is no magnetic field from the permanent magnet layer for comparison. In this case, it can be seen that the current necessary for parallel-to-antiparallel rewriting cannot be provided sufficiently.

以下、それぞれの磁性層の材料選択について述べる。永久磁石層504,510、及び記録層506、固定層508の異方性磁界エネルギー密度をKu1,Ku2,Ku3,Ku4、飽和磁化をMs1,Ms2,Ms3,Ms4、異方性磁界をHk1,Hk2,Hk3,Hk4とする。ここで異方性磁界エネルギーKui(i=1〜4)は、各層の飽和磁化Msi(i=1〜4)、異方性磁界Hki(i=1〜4)と、Kui=(Msi・Hki)/2の関係がある。異方性磁界エネルギーの値には、Hk1,Hk2>Hk3,Hk4という関係が必要である。これはTMRピラーを製膜したのち各層の磁化方向を固定するための磁界中熱処理と関係する。すなわち図6において、まず、Hk1,Hk2より大きな下向きの磁界をかけてすべての層を下向きに磁化する。次に、Hk1,Hk2より小さくHk3,Hk4より大きな上向き磁界をかけると、記録層506、固定層508のみの磁界が上向きになり、図6のような磁化配置となる。さらに、式(3)(4)からわかるように、Hk3−4π・Ms3<Hk4−4π・Ms4となることが望ましい。これは、記録層506、固定層508の書換え電流密度を、
記録層の書換え電流密度<固定層の書換え電流密度
とするために必要であり、また記録層506、固定層508の保磁力Hc3,Hc4は異方性磁界Hk3,Hk4に比例するため、固定層の磁化を記録層の磁化より外部磁界に対して安定化するためにも必要である。また、大きな磁界Hexを記録層506に印加するためには、飽和磁化Ms1,Ms2の大きな永久磁石材料を用いることが望ましい。
Hereinafter, selection of materials for each magnetic layer will be described. Permanent magnet layers 504,510, and the recording layer 506, K u 1 anisotropic magnetic field energy density of the fixed layer 508, K u 2, K u 3, K u 4, the saturation magnetization M s 1, M s 2, Assume that M s 3 and M s 4 and the anisotropic magnetic field are H k 1, H k 2, H k 3 and H k 4. Here the anisotropy field energy K u i (i = 1~4) are each of the saturation magnetization M s i (i = 1~4) , and the anisotropy field H k i (i = 1~4) , K u i = (M s i · H k i) / 2. The value of the anisotropic magnetic field energy needs to have a relationship of H k 1, H k 2> H k 3, H k 4. This is related to the heat treatment in a magnetic field for fixing the magnetization direction of each layer after forming the TMR pillar. That is, in FIG. 6, first, a downward magnetic field larger than H k 1 and H k 2 is applied to magnetize all layers downward. Next, when an upward magnetic field smaller than H k 1 and H k 2 and larger than H k 3 and H k 4 is applied, the magnetic fields of only the recording layer 506 and the fixed layer 508 are directed upward, and the magnetization arrangement as shown in FIG. Become. Further, as can be seen from the equations (3) and (4), it is desirable that H k 3-4π · M s 3 <H k 4-4π · M s 4. This is the rewrite current density of the recording layer 506 and the fixed layer 508,
It is necessary to make the rewriting current density of the recording layer <the rewriting current density of the fixed layer, and the coercive forces H c 3 and H c 4 of the recording layer 506 and the fixed layer 508 are anisotropic magnetic fields H k 3 and H k. Therefore, it is necessary to stabilize the magnetization of the fixed layer against the external magnetic field rather than the magnetization of the recording layer. In order to apply a large magnetic field H ex to the recording layer 506, it is desirable to use a permanent magnet material having a large saturation magnetization M s 1, M s 2.

以上の方針に基いた具体的な材料の選択に関して、以下詳述する。まず、下地層503、非磁性中間層505,509は、導電率が高く、かつ永久磁石層の結晶の配向を良好にする非磁性材料が好ましい。具体的にはRu,Taあるいはその積層膜などが用いられる。永久磁石層504,510としては、L10規則化合金であるFePt、及びCoPtを用いるのがよい。特にFePtは、異方性磁界Hk1(又はHk2)が40kOe以上と極めて大きく、かつ飽和磁化Ms1(又はMs2)も1100emu/cm3以上であり十分大きいので、永久磁石層として好適な材料である。The selection of specific materials based on the above policy will be described in detail below. First, the base layer 503 and the nonmagnetic intermediate layers 505 and 509 are preferably nonmagnetic materials having high conductivity and good crystal orientation of the permanent magnet layer. Specifically, Ru, Ta or a laminated film thereof is used. As the permanent magnet layers 504 and 510, it is preferable to use FePt and CoPt which are L10 ordered alloys. In particular, FePt has a sufficiently large anisotropic magnetic field H k 1 (or H k 2) of 40 kOe or more and a saturation magnetization M s 1 (or M s 2) of 1100 emu / cm 3 or more. It is a suitable material for the layer.

また、固定層508の材料としては、FePtやCoPtほど異方性磁界Hkが大きくないが、十分大きな異方性磁界Hkを示す物質として、L10の規則化合金であるFePd,CoとPt、ないしPdの多層膜等が好適である。例えばFePdの場合、異方性磁界Hk4は約20kOeとFePt合金に比べて小さく、飽和磁化Ms4は800emu/cm3程度と比較的大きいので、スピントルク磁化反転を行うための電流通電に関して安定である。次に、記録層506の材料としては、しきい電流密度Jc0を低減するためにダンピング定数αを低減する必要があるため、FePdにCr,V,Mn,Cu,Sn,Pb,Sb,Bi等の元素を添加した材料、又はCoをベースとし、Cr,Pt,B等を添加した合金が好適である。例えば、FePd合金にCrないしMnを10%程度添加した場合は、異方性磁界Hk3は15kOeに減少したが、飽和磁化Ms3は約700emu/cm3と大きく減少はしなかった。Hk4>Hk3の条件が満足されているので、記録層として好適であることが分かる。また、この層の膜厚を3nm、TMRピラーを直径40nmの円形に加工した場合、式(4)のエネルギーEを、ボルツマン定数×絶対温度(300K)で割って算出される熱安定性指数は190となるので、微細なTMRピラーを有する垂直TMR型STT−MRAMに十分適用できることがわかった。As the material of the fixed layer 508, the anisotropic magnetic field H k is not as large as FePt and CoPt, but as a substance exhibiting a sufficiently large anisotropic magnetic field H k , FePd, Co and Pt, which are ordered alloys of L10, are used. A multilayer film of Pd or the like is preferable. For example, in the case of FePd, the anisotropic magnetic field H k 4 is about 20 kOe, which is smaller than that of the FePt alloy, and the saturation magnetization M s 4 is relatively large, about 800 emu / cm 3. Stable with respect to. Next, as the material of the recording layer 506, since it is necessary to reduce the damping constant α in order to reduce the threshold current density J c0 , Cr, V, Mn, Cu, Sn, Pb, Sb, Bi are added to FePd. A material to which elements such as these are added, or an alloy based on Co to which Cr, Pt, B or the like is added is preferable. For example, when about 10% of Cr or Mn was added to the FePd alloy, the anisotropic magnetic field H k 3 was reduced to 15 kOe, but the saturation magnetization M s 3 was not significantly reduced to about 700 emu / cm 3 . Since the condition of H k 4> H k 3 is satisfied, it can be seen that the recording layer is suitable. When the thickness of this layer is 3 nm and the TMR pillar is processed into a circle having a diameter of 40 nm, the thermal stability index calculated by dividing the energy E of Equation (4) by Boltzmann constant × absolute temperature (300 K) is Therefore, it was found that the present invention is sufficiently applicable to a vertical TMR type STT-MRAM having a fine TMR pillar.

さらにTMR比を向上するためには、非磁性障壁層507としてMgOをベースとした材料を用いることが望ましいが、高いTMR比を得るためには、MgOの結晶構造を体心立方格子の(001)配向とする必要があり、そのためには図8に示すように、記録層506と非磁性障壁層507、及び非磁性障壁層507と固定層508の間に、体心立方格子構造を有する金属層、例えばFeやCoFeB等の界面層701,702を挿入するのがよい。   In order to further improve the TMR ratio, it is desirable to use a material based on MgO as the nonmagnetic barrier layer 507. However, in order to obtain a high TMR ratio, the MgO crystal structure has a body-centered cubic lattice (001). ) For this purpose, as shown in FIG. 8, a metal having a body-centered cubic lattice structure between the recording layer 506 and the nonmagnetic barrier layer 507 and between the nonmagnetic barrier layer 507 and the fixed layer 508 It is preferable to insert layers, for example, interface layers 701 and 702 such as Fe and CoFeB.

[実施例2]
図9は、本発明の第2の実施例におけるTMRピラーを備える磁気メモリセルの断面模式図である。図9において、43はソース線、44はTMRピラーへ供給する電流を制御するトランジスタ、503は下地膜、504は永久磁石層、505は非磁性の中間層、506は記録層、507は非磁性障壁層、508は固定層、509は非磁性の中間層、41はビット線、801はパターニングされていない永久磁石層である。二つの永久磁石層504,801の磁化の向きは、固定層508の磁化の向きに対して逆方向を向いている。パターニングされていない永久磁石層801は、ビット線41が配列された平面に対して磁気メモリセル群と反対側の位置に電気的に絶縁された状態で配置されており、図5に示した1つのサブアレイ全体を覆う大きさに形成されている。
[Example 2]
FIG. 9 is a schematic cross-sectional view of a magnetic memory cell including a TMR pillar in the second embodiment of the present invention. In FIG. 9, 43 is a source line, 44 is a transistor for controlling the current supplied to the TMR pillar, 503 is a base film, 504 is a permanent magnet layer, 505 is a nonmagnetic intermediate layer, 506 is a recording layer, and 507 is nonmagnetic. A barrier layer, 508 is a fixed layer, 509 is a nonmagnetic intermediate layer, 41 is a bit line, and 801 is an unpatterned permanent magnet layer. The magnetization directions of the two permanent magnet layers 504 and 801 are opposite to the magnetization direction of the fixed layer 508. The non-patterned permanent magnet layer 801 is disposed in a state of being electrically insulated at a position opposite to the magnetic memory cell group with respect to the plane in which the bit lines 41 are arranged. It is sized to cover the entire subarray.

本実施例では、一見、二つの永久磁石層504,801の間隔が離れているので、永久磁石層間に働く磁界の大きさは小さくなると考えられるが、一方で上部の永久磁石層801の面積が大きくなり、磁束を集める効果が大きくなるので、実際には、二つの永久磁石層間に働く磁界の大きさは実施例1の構造に比較してほとんど減少しない。一方で、本実施例ではTMRピラー自体の高さを減少させることができるので、TMRピラー作製誤差を小さく抑えられるという効果がある。   In the present embodiment, since the distance between the two permanent magnet layers 504 and 801 is seemingly separated, the magnitude of the magnetic field acting between the permanent magnet layers is considered to be small, but on the other hand, the area of the upper permanent magnet layer 801 is small. Since the effect of collecting the magnetic flux is increased, the magnitude of the magnetic field acting between the two permanent magnet layers is practically hardly reduced as compared with the structure of the first embodiment. On the other hand, since the height of the TMR pillar itself can be reduced in the present embodiment, there is an effect that a TMR pillar manufacturing error can be suppressed small.

[実施例3]
図10(a)は、本発明の第3の実施例におけるTMRピラーを備えるメモリセルの断面模式図、図10(b)は図10(a)のAB断面図である。図10(a)(b)には、図6に記号で表示していたCMOSトランジスタの断面を詳細に描いてある。
[Example 3]
FIG. 10A is a schematic cross-sectional view of a memory cell including a TMR pillar according to the third embodiment of the present invention, and FIG. 10B is a cross-sectional view taken along the line AB in FIG. 10A and 10B, the cross section of the CMOS transistor indicated by the symbol in FIG. 6 is drawn in detail.

図10(a)において、901はトランジスタのソース部、902はワード線、903はトランジスタのドレイン部、904はトランジスタとTMRピラーを接続するメタルビア、905が下部永久磁石層、906はTMRピラーの下部電極、503は下地膜、506は記録層、507は非磁性障壁層、508は固定層、509は非磁性の中間層、510は永久磁石層、41はビット線、43はソース線である。下部永久磁石層905は、TMRピラーやCMOSトランジスタから電気的に絶縁して設けられている。永久磁石層905,510の磁化の方向は、固定層508の磁化の方向と逆方向を向いている。   In FIG. 10A, 901 is a source portion of a transistor, 902 is a word line, 903 is a drain portion of the transistor, 904 is a metal via connecting the transistor and the TMR pillar, 905 is a lower permanent magnet layer, and 906 is a lower portion of the TMR pillar. An electrode, 503 is a base film, 506 is a recording layer, 507 is a nonmagnetic barrier layer, 508 is a fixed layer, 509 is a nonmagnetic intermediate layer, 510 is a permanent magnet layer, 41 is a bit line, and 43 is a source line. The lower permanent magnet layer 905 is provided to be electrically insulated from the TMR pillar and the CMOS transistor. The direction of magnetization of the permanent magnet layers 905 and 510 is opposite to the direction of magnetization of the fixed layer 508.

図10(b)に示すように、下部永久磁石層905とソース線43は、ともにビット線41と垂直な方向に伸びている。本実施例では、下部永久磁石層905が、TMRピラーの下部電極層906の下側に形成されており、二つの永久磁石層間の距離が多少大きくなるが、TMRピラー自体の高さを減少させることができるので、TMRピラー作製誤差を小さく抑えられるという効果がある。   As shown in FIG. 10B, the lower permanent magnet layer 905 and the source line 43 both extend in a direction perpendicular to the bit line 41. In this embodiment, the lower permanent magnet layer 905 is formed below the lower electrode layer 906 of the TMR pillar, and the distance between the two permanent magnet layers is slightly increased, but the height of the TMR pillar itself is reduced. Therefore, the TMR pillar manufacturing error can be suppressed to a small value.

なお、図10に示した下部永久磁石層905は、隣接する複数のTMRピラーの下部電極層906の下側に連続して延びる細長い層として設けているが、個々のTMRピラーの下部電極層906の下側だけにそれぞれ離散的に設けてもよい。   Although the lower permanent magnet layer 905 shown in FIG. 10 is provided as an elongated layer continuously extending below the lower electrode layer 906 of a plurality of adjacent TMR pillars, the lower electrode layer 906 of each TMR pillar is provided. Each of them may be discretely provided only on the lower side.

[実施例4]
図11は、本発明の第4の実施例におけるTMRピラーを備えるメモリセルの断面模式図である。図11において、901はトランジスタのソース部、902はワード線、903はトランジスタのドレイン部、904はトランジスタとTMRピラーを接続するメタルビア、905が下部永久磁石層、906はTMRピラーの下部電極、503は下地膜、506は記録層、507は非磁性障壁層、508は固定層、509は非磁性の中間層、801はパターニングされていない永久磁石層、41はビット線、43はソース線である。
[Example 4]
FIG. 11 is a schematic cross-sectional view of a memory cell including a TMR pillar in the fourth embodiment of the present invention. In FIG. 11, reference numeral 901 denotes a source portion of a transistor, 902 denotes a word line, 903 denotes a drain portion of the transistor, 904 denotes a metal via connecting the transistor and the TMR pillar, 905 denotes a lower permanent magnet layer, 906 denotes a lower electrode of the TMR pillar, 503 Is a base film, 506 is a recording layer, 507 is a nonmagnetic barrier layer, 508 is a fixed layer, 509 is a nonmagnetic intermediate layer, 801 is an unpatterned permanent magnet layer, 41 is a bit line, and 43 is a source line. .

下部永久磁石層905は、TMRピラーの記録層に対して固定層と反対側の位置に電気的に絶縁して設けられている。また、パターニングされていない永久磁石層801は、ビット線が配列された平面に対してTMRピラーと反対側の位置に、サブアレイ全体を覆う大きさに他の要素から電気的に絶縁されて形成されている。永久磁石層801,905の磁化の方向は、固定層508の磁化の方向と逆方向を向いている。   The lower permanent magnet layer 905 is provided with electrical insulation at a position opposite to the fixed layer with respect to the recording layer of the TMR pillar. Further, the non-patterned permanent magnet layer 801 is formed at a position opposite to the TMR pillar with respect to the plane in which the bit lines are arranged, and is electrically insulated from other elements so as to cover the entire subarray. ing. The direction of magnetization of the permanent magnet layers 801 and 905 is opposite to the direction of magnetization of the fixed layer 508.

本実施例では、二つの永久磁石層間の距離が多少大きくなるが、TMRピラー自体の高さを最も小さくすることができるので、TMRピラー作製誤差を最も小さく抑えられるという効果がある。   In the present embodiment, the distance between the two permanent magnet layers is somewhat increased, but the height of the TMR pillar itself can be minimized, so that the TMR pillar manufacturing error can be minimized.

なお、本実施例の下部永久磁石層905は、個々のTMRピラーの下部電極層906の下側だけにそれぞれ独立して設けてもよいし、図10(b)に示すように、ソース線43に平行に延びる細長い層として設けてもよい。   Note that the lower permanent magnet layer 905 of this embodiment may be provided independently only on the lower side of the lower electrode layer 906 of each TMR pillar, or as shown in FIG. It may be provided as an elongate layer extending in parallel.

1…ビット線、2…記録層、3…障壁層、4…固定層、5…ゲート電極、6…トランジスタ、7…ソース線、8…電流方向、9…電子が移動する方向、31,32…障壁層内の磁束、41…ビット線、42…磁気抵抗効果素子、43…ソース線、44…セル選択トランジスタ、45…ワード線、46…メモリセル、47,48…ビット線に流す電流の大きさを制御する抵抗変化素子、49…抵抗変化素子の伝導状態を制御する抵抗制御用のワード線、503…下地膜、504…永久磁石層、505…非磁性の中間層、506…記録層、507…非磁性障壁層、508…固定層、509…非磁性の中間層、510…永久磁石層、701,702…界面層、801…パターニングされていない永久磁石層、901…トランジスタのソース部、902…ワード線、903…トランジスタのドレイン部、904…トランジスタとTMRピラーを接続するメタルビア、905…下部永久磁石層、906…TMRピラーの下部電極。 DESCRIPTION OF SYMBOLS 1 ... Bit line, 2 ... Recording layer, 3 ... Barrier layer, 4 ... Fixed layer, 5 ... Gate electrode, 6 ... Transistor, 7 ... Source line, 8 ... Current direction, 9 ... Direction where electron moves, 31, 32 ... Magnetic flux in the barrier layer, 41 ... Bit line, 42 ... Magnetoresistive element, 43 ... Source line, 44 ... Cell selection transistor, 45 ... Word line, 46 ... Memory cell, 47, 48 ... Current flowing through the bit line Resistance change element for controlling the size, 49 ... Word line for resistance control for controlling the conduction state of the resistance change element, 503 ... Base film, 504 ... Permanent magnet layer, 505 ... Nonmagnetic intermediate layer, 506 ... Recording layer 507: Nonmagnetic barrier layer, 508: Fixed layer, 509 ... Nonmagnetic intermediate layer, 510 ... Permanent magnet layer, 701, 702 ... Interface layer, 801 ... Unpatterned permanent magnet layer, 901 ... Source part of transistor , 90 ... word line, the drain of 903 ... transistors, 904 ... Metarubia connecting the transistor and TMR pillar, 905 ... lower permanent magnet layer, 906 ... TMR pillar lower electrode.

Claims (11)

膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、前記固定層と前記記録層の間に形成された非磁性障壁層とを含む磁気抵抗効果素子と、
前記磁気抵抗効果素子に直列に接続された選択トランジスタと、
前記磁気抵抗効果素子と前記選択トランジスタに所望の方向の電流を流す機構と、
前記固定層と前記記録層に、前記固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、
前記磁界印加機構は、前記磁気抵抗効果素子の上下それぞれに設けられた膜面に垂直方向の磁化を有する永久磁石層からなり、
前記選択トランジスタを通して前記記録層の膜面に垂直な方向に流されるスピン偏極した電流によって、前記記録層の磁化の方向をスイッチングし、
前記記録層の磁化方向と前記固定層の磁化方向が略平行か、略反平行かによって情報の記録を行うことを特徴とする磁気メモリセル。
A recording layer having magnetization in a direction perpendicular to the film surface; a fixed layer having magnetization fixed in one direction perpendicular to the film surface; and a nonmagnetic barrier layer formed between the fixed layer and the recording layer; A magnetoresistive effect element including:
A select transistor connected in series to the magnetoresistive element;
A mechanism for flowing a current in a desired direction through the magnetoresistive element and the selection transistor;
A magnetic field application mechanism that applies a magnetic field in a direction opposite to the magnetization direction of the fixed layer to the fixed layer and the recording layer;
The magnetic field application mechanism comprises a permanent magnet layer having magnetization in a direction perpendicular to the film surfaces provided on the upper and lower sides of the magnetoresistive element,
The direction of magnetization of the recording layer is switched by a spin-polarized current that flows in a direction perpendicular to the film surface of the recording layer through the selection transistor,
2. A magnetic memory cell according to claim 1, wherein information is recorded depending on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or substantially antiparallel.
請求項記載の磁気メモリセルにおいて、前記磁気抵抗効果素子の上下に設けられた永久磁石層の異方性磁界をそれぞれHk1,Hk2とし、前記記録層と前記固定層の異方性磁界をそれぞれHk3,Hk4とするとき、Hk1,Hk2がHk3,Hk4より大きいことを特徴とする磁気メモリセル。 2. The magnetic memory cell according to claim 1 , wherein the anisotropic magnetic fields of the permanent magnet layers provided above and below the magnetoresistive effect element are H k 1 and H k 2, respectively, and the recording layer and the fixed layer are anisotropic. A magnetic memory cell characterized in that H k 1 and H k 2 are larger than H k 3 and H k 4 when the magnetic fields are H k 3 and H k 4, respectively. 請求項記載の磁気メモリセルにおいて、前記記録層の飽和磁化の値をMs3とし、前記固定層の飽和磁化の値をMs4とするとき、Hk3−4π・Ms3<Hk4−4π・Ms4であることを特徴とする磁気メモリセル。 2. The magnetic memory cell according to claim 1 , wherein when the value of saturation magnetization of the recording layer is M s 3 and the value of saturation magnetization of the fixed layer is M s 4, H k 3-4π · M s 3 < A magnetic memory cell characterized by being H k 4-4π · M s 4. 相互に平行に並べられた複数のビット線と、前記ビット線と平行に並べられた複数のソース線と、前記ビット線と交差し且つ互いに平行に並べられた複数のワード線と、前記ビット線と前記ワード線とが交差する部分に配置された複数の磁気メモリセルとによって構成されたサブアレイを有する磁気ランダムアクセスメモリにおいて、
前記磁気メモリセルは、
膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、前記固定層と前記記録層の間に形成された非磁性障壁層とを含み、前記固定層側が前記ビット線に電気的に接続された磁気抵抗効果素子と、
ソース電極とドレイン電極とゲート電極を有し、前記ソース電極が前記ソース線に電気的に接続され、前記ドレイン電極が前記磁気抵抗効果素子の前記記録層側に電気的に接続され、前記ゲート電極が前記ワード線に電気的に接続された選択トランジスタと、
前記磁気抵抗効果素子と前記選択トランジスタに所望の方向の電流を流す機構と、
前記固定層と前記記録層に、前記固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、
前記磁界印加機構は、個々の磁気メモリセル毎に、前記選択トランジスタのドレイン電極と前記記録層の間に形成された第1の永久磁石層と、前記固定層と前記ビット線の間に形成された第2の永久磁石層とを含み、
前記第1の永久磁石層及び前記第2の永久磁石層の磁化方向は前記固定層の磁化方向と逆方向を向いており、
前記選択トランジスタを通して前記記録層の膜面に垂直に前記ビット線から前記ソース線の方向に、あるいは前記ソース線から前記ビット線の方向に流されるスピン偏極した電流によって、前記記録層の磁化の方向をスイッチングし、
前記記録層の磁化方向と前記固定層の磁化方向が略平行か、略反平行かによって情報の記録を行うことを特徴とする磁気ランダムアクセスメモリ。
A plurality of bit lines arranged in parallel to each other, a plurality of source lines arranged in parallel to the bit lines, a plurality of word lines intersecting the bit lines and arranged in parallel to each other, and the bit lines And a magnetic random access memory having a subarray composed of a plurality of magnetic memory cells arranged at a portion where the word lines intersect with each other,
The magnetic memory cell is
A recording layer having magnetization in a direction perpendicular to the film surface; a fixed layer having magnetization fixed in one direction perpendicular to the film surface; and a nonmagnetic barrier layer formed between the fixed layer and the recording layer; A magnetoresistive element whose fixed layer side is electrically connected to the bit line; and
A source electrode, a drain electrode, and a gate electrode, the source electrode is electrically connected to the source line, the drain electrode is electrically connected to the recording layer side of the magnetoresistive element, and the gate electrode A select transistor electrically connected to the word line;
A mechanism for flowing a current in a desired direction through the magnetoresistive element and the selection transistor;
A magnetic field application mechanism that applies a magnetic field in a direction opposite to the magnetization direction of the fixed layer to the fixed layer and the recording layer;
The magnetic field applying mechanism is formed for each magnetic memory cell between a first permanent magnet layer formed between the drain electrode of the selection transistor and the recording layer, and between the fixed layer and the bit line. And a second permanent magnet layer,
The magnetization directions of the first permanent magnet layer and the second permanent magnet layer are opposite to the magnetization direction of the fixed layer,
The magnetization of the recording layer is caused by a spin-polarized current that flows in the direction from the bit line to the source line, or from the source line to the bit line, perpendicularly to the film surface of the recording layer through the selection transistor. Switching direction,
A magnetic random access memory, wherein information is recorded depending on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or substantially antiparallel.
相互に平行に並べられた複数のビット線と、前記ビット線と平行に並べられた複数のソース線と、前記ビット線と交差し且つ互いに平行に並べられた複数のワード線と、前記ビット線と前記ワード線とが交差する部分に配置された複数の磁気メモリセルとによって構成されたサブアレイを有する磁気ランダムアクセスメモリにおいて、
前記磁気メモリセルは、
膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、前記固定層と前記記録層の間に形成された非磁性障壁層とを含み、前記固定層側が前記ビット線に電気的に接続された磁気抵抗効果素子と、
ソース電極とドレイン電極とゲート電極を有し、前記ソース電極が前記ソース線に電気的に接続され、前記ドレイン電極が前記磁気抵抗効果素子の前記記録層側に電気的に接続され、前記ゲート電極が前記ワード線に電気的に接続された選択トランジスタと、
前記磁気抵抗効果素子と前記選択トランジスタに所望の方向の電流を流す機構と、
前記固定層と前記記録層に、前記固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、
前記磁界印加機構は、各磁気メモリセルの前記選択トランジスタのドレイン電極と前記記録層の間に形成された第1の永久磁石層と、前記ビット線に対して前記磁気抵抗効果素子と反対側の位置に前記サブアレイ全体を覆うように設けられた第2の永久磁石層とを含み、
前記第1の永久磁石層及び前記第2の永久磁石層の磁化方向は前記固定層の磁化方向と逆方向を向いており、
前記選択トランジスタを通して前記記録層の膜面に垂直に前記ビット線から前記ソース線の方向に、あるいは前記ソース線から前記ビット線の方向に流されるスピン偏極した電流によって、前記記録層の磁化の方向をスイッチングし、
前記記録層の磁化方向と前記固定層の磁化方向が略平行か、略反平行かによって情報の記録を行うことを特徴とする磁気ランダムアクセスメモリ。
A plurality of bit lines arranged in parallel to each other, a plurality of source lines arranged in parallel to the bit lines, a plurality of word lines intersecting the bit lines and arranged in parallel to each other, and the bit lines And a magnetic random access memory having a subarray composed of a plurality of magnetic memory cells arranged at a portion where the word lines intersect with each other,
The magnetic memory cell is
A recording layer having magnetization in a direction perpendicular to the film surface; a fixed layer having magnetization fixed in one direction perpendicular to the film surface; and a nonmagnetic barrier layer formed between the fixed layer and the recording layer; A magnetoresistive element whose fixed layer side is electrically connected to the bit line; and
A source electrode, a drain electrode, and a gate electrode, the source electrode is electrically connected to the source line, the drain electrode is electrically connected to the recording layer side of the magnetoresistive element, and the gate electrode A select transistor electrically connected to the word line;
A mechanism for flowing a current in a desired direction through the magnetoresistive element and the selection transistor;
A magnetic field application mechanism that applies a magnetic field in a direction opposite to the magnetization direction of the fixed layer to the fixed layer and the recording layer;
The magnetic field application mechanism includes: a first permanent magnet layer formed between a drain electrode of the selection transistor of each magnetic memory cell and the recording layer; and the bit line opposite to the magnetoresistive element. A second permanent magnet layer provided at a position so as to cover the entire sub-array,
The magnetization directions of the first permanent magnet layer and the second permanent magnet layer are opposite to the magnetization direction of the fixed layer ,
The magnetization of the recording layer is caused by a spin-polarized current that flows in the direction from the bit line to the source line, or from the source line to the bit line, perpendicularly to the film surface of the recording layer through the selection transistor. Switching direction,
A magnetic random access memory, wherein information is recorded depending on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or substantially antiparallel.
相互に平行に並べられた複数のビット線と、前記ビット線と平行に並べられた複数のソース線と、前記ビット線と交差し且つ互いに平行に並べられた複数のワード線と、前記ビット線と前記ワード線とが交差する部分に配置された複数の磁気メモリセルとによって構成されたサブアレイを有する磁気ランダムアクセスメモリにおいて、
前記磁気メモリセルは、
膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、前記固定層と前記記録層の間に形成された非磁性障壁層とを含み、前記固定層側が前記ビット線に電気的に接続された磁気抵抗効果素子と、
ソース電極とドレイン電極とゲート電極を有し、前記ソース電極が前記ソース線に電気的に接続され、前記ドレイン電極が前記磁気抵抗効果素子の前記記録層側に電気的に接続され、前記ゲート電極が前記ワード線に電気的に接続された選択トランジスタと、
前記磁気抵抗効果素子と前記選択トランジスタに所望の方向の電流を流す機構と、
前記固定層と前記記録層に、前記固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、
前記磁界印加機構は、前記磁気抵抗効果素子の前記記録層に対して前記固定層と反対側の位置に電気的に絶縁して設けられた第1の永久磁石層と、前記固定層と前記ビット線の間に形成された第2の永久磁石層とを含み、
前記第1の永久磁石層及び前記第2の永久磁石層の磁化方向は前記固定層の磁化方向と逆方向を向いており、
前記選択トランジスタを通して前記記録層の膜面に垂直に前記ビット線から前記ソース線の方向に、あるいは前記ソース線から前記ビット線の方向に流されるスピン偏極した電流によって、前記記録層の磁化の方向をスイッチングし、
前記記録層の磁化方向と前記固定層の磁化方向が略平行か、略反平行かによって情報の記録を行うことを特徴とする磁気ランダムアクセスメモリ。
A plurality of bit lines arranged in parallel to each other, a plurality of source lines arranged in parallel to the bit lines, a plurality of word lines intersecting the bit lines and arranged in parallel to each other, and the bit lines And a magnetic random access memory having a subarray composed of a plurality of magnetic memory cells arranged at a portion where the word lines intersect with each other,
The magnetic memory cell is
A recording layer having magnetization in a direction perpendicular to the film surface; a fixed layer having magnetization fixed in one direction perpendicular to the film surface; and a nonmagnetic barrier layer formed between the fixed layer and the recording layer; A magnetoresistive element whose fixed layer side is electrically connected to the bit line; and
A source electrode, a drain electrode, and a gate electrode, the source electrode is electrically connected to the source line, the drain electrode is electrically connected to the recording layer side of the magnetoresistive element, and the gate electrode A select transistor electrically connected to the word line;
A mechanism for flowing a current in a desired direction through the magnetoresistive element and the selection transistor;
A magnetic field application mechanism that applies a magnetic field in a direction opposite to the magnetization direction of the fixed layer to the fixed layer and the recording layer;
The magnetic field application mechanism includes a first permanent magnet layer provided in a position electrically opposite to the fixed layer with respect to the recording layer of the magnetoresistive element, the fixed layer, and the bit. A second permanent magnet layer formed between the wires,
The magnetization directions of the first permanent magnet layer and the second permanent magnet layer are opposite to the magnetization direction of the fixed layer ,
The magnetization of the recording layer is caused by a spin-polarized current that flows in the direction from the bit line to the source line, or from the source line to the bit line, perpendicularly to the film surface of the recording layer through the selection transistor. Switching direction,
A magnetic random access memory, wherein information is recorded depending on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or substantially antiparallel.
請求項記載の磁気ランダムアクセスメモリにおいて、前記第1の永久磁石層は細長い形状を有し、前記ソース線と平行に配置されていることを特徴とする磁気ランダムアクセスメモリ。 7. The magnetic random access memory according to claim 6 , wherein the first permanent magnet layer has an elongated shape and is arranged in parallel with the source line. 相互に平行に並べられた複数のビット線と、前記ビット線と平行に並べられた複数のソース線と、前記ビット線と交差し且つ互いに平行に並べられた複数のワード線と、前記ビット線と前記ワード線とが交差する部分に配置された複数の磁気メモリセルとによって構成されたサブアレイを有する磁気ランダムアクセスメモリにおいて、
前記磁気メモリセルは、
膜面に垂直な方向の磁化を有する記録層と、膜面に垂直な一方向に固定された磁化を有する固定層と、前記固定層と前記記録層の間に形成された非磁性障壁層とを含み、前記固定層側が前記ビット線に電気的に接続された磁気抵抗効果素子と、
ソース電極とドレイン電極とゲート電極を有し、前記ソース電極が前記ソース線に電気的に接続され、前記ドレイン電極が前記磁気抵抗効果素子の前記記録層側に電気的に接続され、前記ゲート電極が前記ワード線に電気的に接続された選択トランジスタと、
前記磁気抵抗効果素子と前記選択トランジスタに所望の方向の電流を流す機構と、
前記固定層と前記記録層に、前記固定層の磁化の向きと逆向きの磁界を印加する磁界印加機構とを備え、
前記磁界印加機構は、前記磁気抵抗効果素子の前記記録層に対して前記固定層と反対側の位置に電気的に絶縁して設けられた第1の永久磁石層と、前記ビット線に対して前記磁気抵抗効果素子と反対側の位置に前記サブアレイ全体を覆うように設けられた第2の永久磁石層とを含み、
前記第1の永久磁石層及び前記第2の永久磁石層の磁化方向は前記固定層の磁化方向と逆方向を向いており、
前記選択トランジスタを通して前記記録層の膜面に垂直に前記ビット線から前記ソース線の方向に、あるいは前記ソース線から前記ビット線の方向に流されるスピン偏極した電流によって、前記記録層の磁化の方向をスイッチングし、
前記記録層の磁化方向と前記固定層の磁化方向が略平行か、略反平行かによって情報の記録を行うことを特徴とする磁気ランダムアクセスメモリ。
A plurality of bit lines arranged in parallel to each other, a plurality of source lines arranged in parallel to the bit lines, a plurality of word lines intersecting the bit lines and arranged in parallel to each other, and the bit lines And a magnetic random access memory having a subarray composed of a plurality of magnetic memory cells arranged at a portion where the word lines intersect with each other,
The magnetic memory cell is
A recording layer having magnetization in a direction perpendicular to the film surface; a fixed layer having magnetization fixed in one direction perpendicular to the film surface; and a nonmagnetic barrier layer formed between the fixed layer and the recording layer; A magnetoresistive element whose fixed layer side is electrically connected to the bit line; and
A source electrode, a drain electrode, and a gate electrode, the source electrode is electrically connected to the source line, the drain electrode is electrically connected to the recording layer side of the magnetoresistive element, and the gate electrode A select transistor electrically connected to the word line;
A mechanism for flowing a current in a desired direction through the magnetoresistive element and the selection transistor;
A magnetic field application mechanism that applies a magnetic field in a direction opposite to the magnetization direction of the fixed layer to the fixed layer and the recording layer;
The magnetic field application mechanism includes a first permanent magnet layer that is electrically insulated from the recording layer of the magnetoresistive element at a position opposite to the fixed layer, and the bit line. A second permanent magnet layer provided so as to cover the entire subarray at a position opposite to the magnetoresistive element,
The magnetization directions of the first permanent magnet layer and the second permanent magnet layer are opposite to the magnetization direction of the fixed layer ,
The magnetization of the recording layer is caused by a spin-polarized current that flows in the direction from the bit line to the source line, or from the source line to the bit line, perpendicularly to the film surface of the recording layer through the selection transistor. Switching direction,
A magnetic random access memory, wherein information is recorded depending on whether the magnetization direction of the recording layer and the magnetization direction of the fixed layer are substantially parallel or substantially antiparallel.
請求項記載の磁気ランダムアクセスメモリにおいて、前記第1の永久磁石層は細長い形状を有し、前記ソース線と平行に配置されていることを特徴とする磁気ランダムアクセスメモリ。 9. The magnetic random access memory according to claim 8 , wherein the first permanent magnet layer has an elongated shape and is arranged in parallel with the source line. 請求項のいずれか1項記載の磁気ランダムアクセスメモリにおいて、前記第1の永久磁石層と前記第2の永久磁石層の異方性磁界をそれぞれHk1,Hk2とし、前記記録層と前記固定層の異方性磁界をそれぞれHk3,Hk4とするとき、Hk1,Hk2がHk3,Hk4より大きいことを特徴とする磁気ランダムアクセスメモリ。 The magnetic random access memory according to any one of claims 4 to 9, and the anisotropic magnetic field of the first permanent magnet layer and the second permanent magnet layer and H k 1, H k 2, respectively, wherein Magnetic random access memory characterized in that H k 1 and H k 2 are larger than H k 3 and H k 4 when the anisotropic magnetic fields of the recording layer and the fixed layer are H k 3 and H k 4, respectively. . 請求項10記載の磁気ランダムアクセスメモリにおいて、前記記録層の飽和磁化の値をMs3とし、前記固定層の飽和磁化の値をMs4とするとき、Hk3−4π・Ms3<Hk4−4π・Ms4であることを特徴とする磁気ランダムアクセスメモリ。 11. The magnetic random access memory according to claim 10 , wherein when the saturation magnetization value of the recording layer is M s 3 and the saturation magnetization value of the fixed layer is M s 4, H k 3-4π · M s 3 <Magnetic random access memory, wherein H k 4-4π · M s 4
JP2012523480A 2010-07-09 2010-07-09 Magnetic memory cell and magnetic random access memory Active JP5442121B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061667 WO2012004882A1 (en) 2010-07-09 2010-07-09 Magnetic memory cell and magnetic random access memory

Publications (2)

Publication Number Publication Date
JPWO2012004882A1 JPWO2012004882A1 (en) 2013-09-02
JP5442121B2 true JP5442121B2 (en) 2014-03-12

Family

ID=45440881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012523480A Active JP5442121B2 (en) 2010-07-09 2010-07-09 Magnetic memory cell and magnetic random access memory

Country Status (2)

Country Link
JP (1) JP5442121B2 (en)
WO (1) WO2012004882A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302372B2 (en) * 2020-02-07 2022-04-12 International Business Machines Corporation MTJ stack containing a top magnetic pinned layer having strong perpendicular magnetic anisotropy
WO2025074742A1 (en) * 2023-10-04 2025-04-10 ソニーセミコンダクタソリューションズ株式会社 Storage device and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076479A (en) * 1999-09-02 2001-03-23 Sanyo Electric Co Ltd Magnetic memory element
WO2003025945A2 (en) * 2001-08-31 2003-03-27 Infineon Technologies Ag Compensation of a bias magnetic field in a storage surface of a magnetoresistive storage cell
JP2004087870A (en) * 2002-08-28 2004-03-18 Sony Corp Magnetoresistive effect element and magnetic memory device
JP2009200216A (en) * 2008-02-21 2009-09-03 Toshiba Corp Magnetic storage element and magnetic storage device
JP2009239120A (en) * 2008-03-27 2009-10-15 Toshiba Corp Magnetoresistive element, and magnetic memory
JP2010080733A (en) * 2008-09-26 2010-04-08 Toshiba Corp Magnetoresistive element, and magnetic memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076479A (en) * 1999-09-02 2001-03-23 Sanyo Electric Co Ltd Magnetic memory element
WO2003025945A2 (en) * 2001-08-31 2003-03-27 Infineon Technologies Ag Compensation of a bias magnetic field in a storage surface of a magnetoresistive storage cell
JP2004087870A (en) * 2002-08-28 2004-03-18 Sony Corp Magnetoresistive effect element and magnetic memory device
JP2009200216A (en) * 2008-02-21 2009-09-03 Toshiba Corp Magnetic storage element and magnetic storage device
JP2009239120A (en) * 2008-03-27 2009-10-15 Toshiba Corp Magnetoresistive element, and magnetic memory
JP2010080733A (en) * 2008-09-26 2010-04-08 Toshiba Corp Magnetoresistive element, and magnetic memory

Also Published As

Publication number Publication date
JPWO2012004882A1 (en) 2013-09-02
WO2012004882A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US11776726B2 (en) Dipole-coupled spin-orbit torque structure
JP4682585B2 (en) Memory element and memory
JP6861996B2 (en) Magnetoresistive element and magnetic memory device
WO2011111473A1 (en) Magnetoresistive element and magnetic memory
US9129692B1 (en) High density magnetic random access memory
US9196336B2 (en) Storage cell, storage device, and magnetic head
JP5461683B2 (en) Magnetic memory cell and magnetic random access memory
JP5987613B2 (en) Storage element, storage device, magnetic head
WO2018037777A1 (en) Magnetoresistive element and electronic device
JPWO2012004883A1 (en) Magnetoresistive element and random access memory using the same
JPWO2010100728A1 (en) Magnetic memory
JP5383744B2 (en) Magnetic memory
US20100054033A1 (en) Magnetic thin line and memory device
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
JP2002289807A (en) Magnetic memory device and magnetoresistive element
US10290338B2 (en) Tilted synthetic antiferromagnet polarizer/reference layer for STT-MRAM bits
JP2004179521A (en) Magnetic random access memory
JP5442121B2 (en) Magnetic memory cell and magnetic random access memory
US10375698B2 (en) Memory system
JP2006080241A (en) Solid state memory device
JP4136028B2 (en) Magnetic thin film memory element, magnetic thin film memory using the same, and recording / reproducing method thereof
JP4065486B2 (en) Method for manufacturing magnetoresistive film
JP2007073638A (en) Memory element and memory

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5442121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250