[go: up one dir, main page]

JP5461114B2 - Moisture detection device in oil and moisture detection method in oil - Google Patents

Moisture detection device in oil and moisture detection method in oil Download PDF

Info

Publication number
JP5461114B2
JP5461114B2 JP2009198850A JP2009198850A JP5461114B2 JP 5461114 B2 JP5461114 B2 JP 5461114B2 JP 2009198850 A JP2009198850 A JP 2009198850A JP 2009198850 A JP2009198850 A JP 2009198850A JP 5461114 B2 JP5461114 B2 JP 5461114B2
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
additive
moisture
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198850A
Other languages
Japanese (ja)
Other versions
JP2011047904A (en
Inventor
繁信 真庭
千幸人 塚原
一弘 竹田
晋作 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009198850A priority Critical patent/JP5461114B2/en
Publication of JP2011047904A publication Critical patent/JP2011047904A/en
Application granted granted Critical
Publication of JP5461114B2 publication Critical patent/JP5461114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、潤滑油中の水分を分離し、検知する油中水分検知装置および油中水分検知方法に関する。   The present invention relates to a water-in-oil detector and a method for detecting water in oil that separate and detect water in a lubricating oil.

従来より、油圧制御装置、ポンプ、エンジン、ピストン、軸受、弁などには潤滑油が使用されている。これらの製品に含まれる潤滑油は循環して再利用されているが、潤滑油を長期間に亘り循環使用することで、使用する際に潤滑油中に混入する金属粉等の固形物や、冷却用に用いた水等が混入し蓄積される。機器の磨耗の進行、潤滑油の循環障害、潤滑油の潤滑性能の低下、潤滑油の酸化劣化、装置の腐食などを防止し、これらの製品に含まれる潤滑油の品質および純度が維持することは、機器の耐久性を維持していく上で重要である。   Conventionally, lubricating oil has been used in hydraulic control devices, pumps, engines, pistons, bearings, valves and the like. The lubricating oil contained in these products is circulated and reused, but by circulating the lubricating oil over a long period of time, solids such as metal powder mixed in the lubricating oil when used, Water used for cooling is mixed and accumulated. Prevent the progress of equipment wear, lubrication circulation failure, lubrication performance degradation, lubrication oxidative degradation, equipment corrosion, etc., and maintain the quality and purity of these products. Is important in maintaining the durability of the equipment.

潤滑油の品質および純度を維持するため、従来、上記潤滑油に混入した上記固形物の除去方法としては、例えば静置法及び濾過法等がある。また、潤滑油に混入した水分の除去方法としては、例えば油分と水分との比重差を利用した静置法、遠心分離法、過熱法、電圧印加法、吸水材料に吸収させる方法及び吸着材料による濾過法等がある。   In order to maintain the quality and purity of the lubricating oil, conventional methods for removing the solid matter mixed in the lubricating oil include, for example, a stationary method and a filtration method. In addition, as a method of removing moisture mixed in the lubricating oil, for example, a stationary method using a specific gravity difference between oil and moisture, a centrifugal separation method, a superheating method, a voltage application method, a method of absorbing in a water absorbing material, and an adsorbing material There are filtration methods.

更に、潤滑油中の固形物を除去すると共に油中の水分を除去する方法として、例えば、固形物及び水分を含む潤滑油を、遠心分離処理、油水分離槽又は重力沈降槽を用い、油水分離処理を行って固形物及び水分の一部を除去した後に、疎水性中空糸膜エレメントで処理して残部の固形物及び水分の一部を除去する方法がある。固形物のうち金属屑のような大きいものは遠心分離処理、油水分離槽又は重力沈降槽を用いた油水分離処理で分離し、固形物のうち金属粉のような小さいものは疎水性中空糸膜エレメントで分離すると共に、エマルジョン化した水分を疎水性中空糸膜エレメントにより分離し、水分の除去を行なうようにしている(例えば、特許文献1参照)。   Further, as a method of removing solids in the lubricating oil and removing moisture in the oil, for example, the lubricating oil containing solids and moisture is separated into oil and water using a centrifugal separation process, an oil / water separation tank or a gravity settling tank. There is a method of removing a part of solids and moisture by performing treatment with a hydrophobic hollow fiber membrane element after removing a part of solids and moisture by performing the treatment. Large solids such as metal scrap are separated by centrifugal separation, oil / water separation tank or oil / water separation process using gravity sedimentation tank, and small solids such as metal powder are hydrophobic hollow fiber membranes. While separating by the element, the emulsified water is separated by the hydrophobic hollow fiber membrane element to remove the water (see, for example, Patent Document 1).

ここで、潤滑油の中に水分が含まれている場合、磨耗・腐食など機器の損傷が生じる可能性が高くなるため、潤滑油中の水分による障害が生じる前に水分量を、例えば、0.2%よりも大きい範囲で検知する必要がある(例えば、非特許文献1参照)。   Here, when moisture is contained in the lubricating oil, there is a high possibility that equipment damage such as wear and corrosion will occur. Therefore, the moisture content is reduced to 0, for example, before the failure due to moisture in the lubricating oil occurs. It is necessary to detect within a range larger than 2% (for example, see Non-Patent Document 1).

特開2005−904号公報JP-A-2005-904

日本工業規格 JIS K 2275Japanese Industrial Standard JIS K 2275

しかしながら、従来の水分の除去方法では、採取した潤滑油の分析を行うようにしているため、分析に時間を要する、という問題がある。   However, the conventional method for removing moisture has a problem in that it takes time to analyze the collected lubricating oil because it is analyzed.

そのため、潤滑油中の水分を短時間で検知し、機器の損傷を防止する必要がある。   Therefore, it is necessary to detect moisture in the lubricating oil in a short time and prevent damage to the equipment.

本発明は、前記問題に鑑み、潤滑油中の水分を短時間で検知することができる油中水分検知装置および油中水分検知方法を提供することを課題とする。   This invention makes it a subject to provide the water-in-oil detection apparatus and the water-in-oil detection method which can detect the water | moisture content in lubricating oil in a short time in view of the said problem.

上述した課題を解決するための本発明の第1の発明は、配管内の潤滑油中の水分を検知する油中水分検知装置であって、前記配管内から前記潤滑油を抜き出す潤滑油抜出し管と、抜き出した潤滑油を加熱する加熱手段と、潤滑油を加熱することにより分離された水蒸気を計測する計測手段と、を有し、前記潤滑油抜出し管に前記潤滑油中の添加物を除去する分離手段が設けられてなることを特徴とする油中水分検知装置にある。 A first invention of the present invention for solving the above-described problem is a moisture detector in oil that detects moisture in lubricating oil in a pipe, and is a lubricating oil extraction pipe for extracting the lubricating oil from the pipe. When a heating means for heating the withdrawn lubricating oil, and measuring means for measuring the separated steam by heating the lubricating oil, have a, the additive of the lubricating oil in the lubricating oil withdrawing pipe removed In the oil-in-oil moisture detecting device, the separating means is provided .

の発明は、第の発明において、前記潤滑油抜出し管に設けられ、前記分離手段と前記加熱手段との間にある前記潤滑油を前記分離手段の上流側に循環させる潤滑油循環ラインと、前記分離手段と前記潤滑油循環ラインの前記潤滑油を抜き出す抜出し部との間に設けられ、前記潤滑油抜出し管内の前記潤滑油中の添加物を測定する添加物測定手段と、を有することを特徴とする油中水分検知装置にある。 According to a second aspect of the present invention, in the first aspect , the lubricating oil circulation line is provided in the lubricating oil extraction pipe and circulates the lubricating oil between the separating means and the heating means upstream of the separating means. And an additive measuring means that is provided between the separating means and an extraction portion for extracting the lubricating oil in the lubricating oil circulation line and measures an additive in the lubricating oil in the lubricating oil extraction pipe. It is in the moisture detection apparatus in oil characterized by this.

の発明は、第1又は2の発明において、赤外線を照射する赤外線照射装置と、前記水蒸気を収容する水蒸気収容容器と、照射された赤外線を検出する検出部とからなることを特徴とする油中水分検知装置にある。 A third invention is characterized in that, in the first or second invention, an infrared irradiation device that irradiates infrared rays, a water vapor storage container that stores the water vapor, and a detection unit that detects the irradiated infrared rays. It is in the moisture detector in oil.

の発明は、第の発明において、前記赤外線照射装置から照射される赤外線を分岐し、分岐した赤外線を波長変換し、前記潤滑油中の添加物の測定を行なうことを特徴とする油中水分検知装置にある。 A fourth invention is the oil according to the third invention, wherein the infrared rays irradiated from the infrared irradiation device are branched, the wavelength of the branched infrared rays is converted, and the additive in the lubricating oil is measured. In the middle moisture detector.

の発明は、配管内の潤滑油中の水分を検知する油中水分検知方法であって、前記配管内から前記潤滑油の一部を抜き出し、抜き出した潤滑油を加熱し、前記潤滑油を加熱することにより分離された水蒸気を計測すると共に、抜き出した潤滑油中の添加物を加熱する前に予め除去することを特徴とする油中水分検知方法にある。 5th invention is the moisture-in-oil detection method which detects the water | moisture content in the lubricating oil in piping, Comprising: A part of said lubricating oil is extracted from the said piping, the extracted lubricating oil is heated, The said lubricating oil In the method for detecting moisture in oil, the water vapor separated by heating is measured , and the additive in the extracted lubricating oil is removed in advance before heating .

の発明は、第の発明において、前記潤滑油中の添加物を除去した後、前記潤滑油中の固形物を確認し、前記潤滑油中に固形物が含まれている場合、前記潤滑油を加熱する前に前記潤滑油を抜き出し、再度、前記潤滑油中の添加物を除去することを特徴とする油中水分検知方法にある。 Sixth invention, in the fifth aspect, the after removal of the additive in the lubricating oil, check the solids of the lubricating oil, the case where the solid matter in the lubricating oil is contained, the In the method for detecting moisture in oil, the lubricating oil is extracted before heating the lubricating oil, and the additive in the lubricating oil is removed again.

の発明は、第5又は6の発明において、前記潤滑油を加熱することにより分離された水蒸気に赤外線を照射し、照射された赤外線を検出し、赤外線の吸収スペクトルを検出することを特徴とする油中水分検知方法にある。 A seventh invention is characterized in that, in the fifth or sixth invention, the water vapor separated by heating the lubricating oil is irradiated with infrared rays, the irradiated infrared rays are detected, and an infrared absorption spectrum is detected. In the method for detecting moisture in oil.

の発明は、第乃至の何れか一つの発明において、前記潤滑油の計測に用いる赤外線の一部を分岐し、分岐した赤外線を用いて前記潤滑油中の微粒子の測定も同時に行なうことを特徴とする油中水分検知方法にある。 According to an eighth invention, in any one of the fifth to seventh inventions, a part of the infrared rays used for the measurement of the lubricating oil is branched, and the fine particles in the lubricating oil are simultaneously measured using the branched infrared rays. This is a method for detecting moisture in oil.

本発明によれば、配管内から潤滑油を少量採取し、配管内から抜き出した潤滑油を加熱することで分離された水蒸気を計測することにより、潤滑油中の水分をオンラインで短時間で検知することができる。これにより、機器の磨耗・腐食などによる損傷を防ぐことができる。   According to the present invention, a small amount of lubricating oil is collected from the inside of the pipe, and the water vapor separated by heating the lubricating oil extracted from the inside of the pipe is measured to detect moisture in the lubricating oil online in a short time. can do. As a result, it is possible to prevent damage due to equipment wear and corrosion.

図1は、本発明の実施例1に係る第一の油中水分検知装置の構成を簡略に示す図である。FIG. 1 is a diagram simply showing the configuration of a first oil-in-water detector according to Embodiment 1 of the present invention. 図2は、本発明の実施例2に係る第二の油中水分検知装置の構成を簡略に示す図である。FIG. 2 is a diagram simply showing the configuration of the second oil-in-water detector according to the second embodiment of the present invention. 図3は、本発明の実施例3に係る第三の油中水分検知装置の構成を簡略に示す図である。FIG. 3 is a diagram simply illustrating the configuration of the third oil-in-water detector according to the third embodiment of the present invention. 図4は、潤滑油中の微粒子の測定を行なう装置の構成を模式的に示す図である。FIG. 4 is a diagram schematically showing the configuration of an apparatus for measuring fine particles in lubricating oil. 図5は、測定装置から照射されるレーザと直交する方向から見たときの構成を模式的に示す図である。FIG. 5 is a diagram schematically showing a configuration when viewed from a direction orthogonal to the laser irradiated from the measuring apparatus. 図6は、本発明の実施例4に係る第四の油中水分検知装置の構成を簡略に示す図である。FIG. 6 is a diagram simply showing a configuration of a fourth oil-in-oil detector according to the fourth embodiment of the present invention.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る第一の油中水分検知装置について、図面を参照して説明する。
図1は、本発明の実施例1に係る第一の油中水分検知装置の構成を簡略に示す図である。
図1に示すように、本実施例に係る第一の油中水分検知装置10Aは、配管11内の潤滑油12中の水分を検知する油中水分検知装置であって、配管11内から潤滑油12を抜き出す潤滑油抜出し管13と、抜き出した潤滑油12を加熱する加熱装置(加熱手段)14と、潤滑油12を加熱することにより分離された水蒸気15を計測する測定装置(計測手段)16Aと、を有するものである。
A first oil-in-water detector according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram simply showing the configuration of a first oil-in-water detector according to Embodiment 1 of the present invention.
As shown in FIG. 1, the first oil-in-oil detector 10 </ b> A according to the present embodiment is an oil-in-water detector that detects moisture in the lubricating oil 12 in the pipe 11. Lubricating oil extraction pipe 13 for extracting oil 12, heating device (heating means) 14 for heating the extracted lubricating oil 12, and measuring device (measuring means) for measuring water vapor 15 separated by heating the lubricating oil 12. 16A.

尚、本発明において潤滑油は、水分を含む潤滑油をいう。潤滑油の種類としては、特に限定されるものではなく、例えば、鉱物油、合成油及び植物油等が挙げられる。   In the present invention, the lubricating oil refers to a lubricating oil containing moisture. The type of lubricating oil is not particularly limited, and examples thereof include mineral oil, synthetic oil, and vegetable oil.

配管11には潤滑油抜出し管13が連結されており、配管11内を流れる潤滑油12を潤滑油抜出し管13に少量抜き出す。抜出した潤滑油12はポンプP1で加熱装置14に送給される。抜出した潤滑油12の油量は、流量計21により測定され、調節弁V11により配管11から潤滑油抜出し管13に抜き出す潤滑油12を調整する。   A lubricating oil extraction pipe 13 is connected to the pipe 11, and a small amount of lubricating oil 12 flowing in the pipe 11 is extracted to the lubricating oil extraction pipe 13. The extracted lubricating oil 12 is fed to the heating device 14 by the pump P1. The oil amount of the extracted lubricating oil 12 is measured by the flow meter 21, and the lubricating oil 12 extracted from the piping 11 to the lubricating oil extraction tube 13 is adjusted by the control valve V11.

潤滑油抜出し管13に抜出した潤滑油12は、加熱装置14に送給される。加熱装置14は、潤滑油12を収容する加熱容器14aと、加熱容器14aの外周に設けられるヒータ14bとで構成されている。加熱容器14a内に収容された潤滑油12はヒータ14bにより加熱される。ヒータ14bにより潤滑油12を加熱する温度としては、潤滑油12中の水分を蒸発させ、潤滑油12が蒸発しない温度であればよい。潤滑油12は、例えばヒータ14bにより90℃以上110℃以下で加熱するのが好ましく、更には95℃以上105℃以下で加熱するのが好ましく、更には100℃前後で加熱するのがより好ましい。ヒータ14bにより潤滑油12を110℃より高い温度で加熱すると、潤滑油12の粘度の低下など劣化することにより機器摺動面の磨耗を起こす懸念があるためである。   The lubricating oil 12 extracted to the lubricating oil extraction pipe 13 is fed to the heating device 14. The heating device 14 includes a heating container 14a that contains the lubricating oil 12, and a heater 14b that is provided on the outer periphery of the heating container 14a. The lubricating oil 12 accommodated in the heating container 14a is heated by the heater 14b. The temperature at which the lubricating oil 12 is heated by the heater 14b may be a temperature at which the water in the lubricating oil 12 is evaporated and the lubricating oil 12 is not evaporated. The lubricating oil 12 is preferably heated at 90 ° C. or more and 110 ° C. or less, for example, by the heater 14b, more preferably 95 ° C. or more and 105 ° C. or less, and further more preferably heated at around 100 ° C. This is because, when the lubricating oil 12 is heated at a temperature higher than 110 ° C. by the heater 14b, there is a concern that the sliding surface of the equipment may be worn due to deterioration of the viscosity of the lubricating oil 12 or the like.

加熱容器14a内に収容された潤滑油12をヒータ14bにより加熱することで、潤滑油12中の水分を蒸発させることができるため、水蒸気15として潤滑油12から潤滑油12中の水分を分離することができる。   Since the moisture in the lubricating oil 12 can be evaporated by heating the lubricating oil 12 accommodated in the heating container 14a with the heater 14b, the moisture in the lubricating oil 12 is separated from the lubricating oil 12 as water vapor 15. be able to.

加熱装置14で潤滑油12から分離された水蒸気15は、加熱装置14から抜出されて水蒸気抜出し通路22を通って測定装置16Aに送給される。測定装置16Aでは、赤外分光法(Infrared spectroscopy:IR)を用いて行なわれる。測定装置16Aは、赤外線23を照射する赤外線照射装置24と、水蒸気抜出し通路22を通ってきた水蒸気15を収容する光透過用窓25a、25bを具備したセル(水蒸気収容容器)25と、セル25内の水蒸気15に赤外線23を照射し、照射された赤外線23を検出し、赤外線23の吸収スペクトルを測定する検知器26とで構成されている。
なお、赤外線とは、赤色光よりも波長が長く、ミリ波長の電波よりも波長の短い電磁波全般をいい、波長は0.7μm以上1000μm以下である。本発明において、赤外線は、近赤外線、中赤外線、遠赤外線を含むものをいう。
The water vapor 15 separated from the lubricating oil 12 by the heating device 14 is extracted from the heating device 14 and supplied to the measuring device 16 </ b> A through the water vapor extraction passage 22. In the measurement apparatus 16A, the measurement is performed using infrared spectroscopy (IR). The measurement device 16A includes an infrared irradiation device 24 that irradiates infrared rays 23, a cell (water vapor storage container) 25 that includes light transmission windows 25a and 25b that store the water vapor 15 that has passed through the water vapor extraction passage 22, and a cell 25. The water vapor 15 is irradiated with an infrared ray 23, the irradiated infrared ray 23 is detected, and a detector 26 that measures the absorption spectrum of the infrared ray 23 is formed.
Infrared rays refer to all electromagnetic waves that have a longer wavelength than red light and a shorter wavelength than millimeter-wave radio waves, and have a wavelength of 0.7 μm or more and 1000 μm or less. In the present invention, infrared rays include those including near infrared rays, middle infrared rays, and far infrared rays.

また、測定装置16Aでは、赤外線23の吸収スペクトルを求める赤外分光法(Infrared spectroscopy:IR)の他に、フーリエ変換赤外分光法(Fourier Transform Infrared spectrometer:FT−IR)、特定波長の光を照射するレーザ光などを用いて行なうようにしてもよい。   Further, in the measuring device 16A, in addition to infrared spectroscopy (IR) for obtaining the absorption spectrum of the infrared ray 23, Fourier transform infrared spectroscopy (FT-IR), light of a specific wavelength is used. You may make it carry out using the laser beam etc. to irradiate.

加熱容器14aから抜出された水蒸気15は、水蒸気抜出し通路22を介してセル25内に送給される。赤外線照射装置24より光透過用窓25aを介してセル25内の水蒸気15に向けて赤外線23を照射すると、セル25内の水蒸気15に起因した赤外線23の特定の波長の光が吸収される。光透過用窓25bを通過した赤外線23は検知器26に照射され、検知器26で水分子に起因した赤外吸収スペクトルを得ることができる。   The water vapor 15 extracted from the heating container 14 a is fed into the cell 25 through the water vapor extraction passage 22. When the infrared ray 23 is irradiated from the infrared irradiation device 24 toward the water vapor 15 in the cell 25 through the light transmission window 25a, the light having a specific wavelength of the infrared ray 23 caused by the water vapor 15 in the cell 25 is absorbed. The infrared ray 23 that has passed through the light transmission window 25b is applied to the detector 26, and the detector 26 can obtain an infrared absorption spectrum caused by water molecules.

よって、配管11内から潤滑油12を少量採取し、配管11内から抜き出した潤滑油12を加熱することで分離された水蒸気15を用いて計測することにより、潤滑油12中の水分をオンラインで短時間で検知することができる。   Therefore, by collecting a small amount of the lubricating oil 12 from the pipe 11 and measuring it using the water vapor 15 separated by heating the lubricating oil 12 extracted from the pipe 11, the moisture in the lubricating oil 12 is online. It can be detected in a short time.

また、加熱装置14で水蒸気15が分離された潤滑油12は、加熱装置14から排出され、潤滑油送給管27を通過して、配管11に戻される。潤滑油抜出し管13から配管11に戻される潤滑油12の量は、調節弁V12により調整される。   Further, the lubricating oil 12 from which the water vapor 15 has been separated by the heating device 14 is discharged from the heating device 14, passes through the lubricating oil supply pipe 27, and is returned to the pipe 11. The amount of the lubricating oil 12 returned from the lubricating oil extraction pipe 13 to the pipe 11 is adjusted by the control valve V12.

このように、本実施例に係る第一の油中水分検知装置10Aによれば、採取した少量の潤滑油12を用いて、潤滑油12中の水分をオンラインで短時間で分析することができるため、潤滑油12中の水分により、機器が磨耗又は腐食により損傷が生じるのを防止することができる。   As described above, according to the first oil-in-water detector 10A according to the present embodiment, the water in the lubricating oil 12 can be analyzed in a short time online using a small amount of the collected lubricating oil 12. Therefore, the moisture in the lubricating oil 12 can prevent the equipment from being damaged due to wear or corrosion.

また、本実施例に係る第一の油中水分検知装置10Aにおいて用いられる潤滑油としては、例えば、製鉄所や非鉄の圧延工程において圧延ローラーの軸受部分、シール用軸受などで循環使用される潤滑油、被圧延物と圧延ローラーとの間に噴霧され回収される潤滑油等があるが、特にこれに限定されるものではなく、油圧制御装置、ポンプ、エンジン、ピストン、軸受、弁などに使用される潤滑油にも用いることができる。   Further, as the lubricating oil used in the first oil-in-water detector 10A according to the present embodiment, for example, lubrication that is circulated and used in a rolling roller bearing portion, a seal bearing, or the like in a steel mill or a non-ferrous rolling process. Oil, lubricating oil that is sprayed and collected between the workpiece and rolling roller, but is not limited to this, used for hydraulic control devices, pumps, engines, pistons, bearings, valves, etc. It can also be used for lubricating oil.

本発明による実施例2に係る第二の油中水分検知装置について、図面を参照して説明する。なお、実施例1に係る油中水分検知装置の構成と重複する部材については、同一符号を付してその説明は省略する。
図2は、本発明の実施例2に係る第二の油中水分検知装置の構成を簡略に示す図である。
図2に示すように、本実施例に係る第二の油中水分検知装置10Bは、図1に示す本発明の実施例1に係る第一の油中水分検知装置10Aの潤滑油抜出し管13に潤滑油12中の添加物を除去する分離手段としてフィルタ31が設けられてなるものである。
A second oil-in-water detector according to Embodiment 2 of the present invention will be described with reference to the drawings. In addition, about the member which overlaps with the structure of the water-in-oil detection apparatus which concerns on Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
FIG. 2 is a diagram simply showing the configuration of the second oil-in-water detector according to the second embodiment of the present invention.
As shown in FIG. 2, the second oil-in-water detector 10B according to the present embodiment is a lubricating oil extraction pipe 13 of the first oil-in-water detector 10A according to the first embodiment of the present invention shown in FIG. In addition, a filter 31 is provided as a separating means for removing the additive in the lubricating oil 12.

本発明において潤滑油は、水分を含む潤滑油をいうが、汚染物質として夾雑物を更に含む潤滑油も含まれる。夾雑物は、潤滑油を機器等で用いることで混入するものであり、例えば、すす、酸化物、ニトロ化物、硫黄化物、燃料残留物、水、グリコール混入物、劣化した潤滑油などがある。その他、添加物としては固形物も含まれる。固形物としては、例えば、鉄屑や非鉄金属屑等の金属屑、塗料、樹脂、鉄粉や非鉄金属粉等の金属粉及び砂、ほこりなど各種塵埃などが挙げられる。   In the present invention, the lubricating oil refers to a lubricating oil containing moisture, but also includes a lubricating oil further containing impurities as a contaminant. Contaminants are mixed by using lubricating oil in equipment and the like, and include, for example, soot, oxides, nitrated products, sulfurized products, fuel residues, water, glycol contaminants, and deteriorated lubricating oils. In addition, solid materials are also included as additives. Examples of the solid material include metal scraps such as iron scraps and non-ferrous metal scraps, paints, resins, metal powders such as iron powders and non-ferrous metal powders, and various dusts such as sand and dust.

配管11から潤滑油抜出し管13に抜き出された潤滑油12はフィルタ31に送給され、フィルタ31において潤滑油12中に含まれる添加物が除去される。フィルタ31では、潤滑油12中の粒径が例えば1μm以上5μm以下の添加物を除去することができる。潤滑油12中に存在する添加物の粒径は、1μm以上100μm以下の範囲のものがほとんどであり、潤滑油12中に最も多く存在する添加物の粒径は、1μm以上5μm以下の範囲だからである。   The lubricating oil 12 extracted from the piping 11 to the lubricating oil extraction pipe 13 is fed to the filter 31, and the additive contained in the lubricating oil 12 is removed in the filter 31. In the filter 31, an additive having a particle size in the lubricating oil 12 of, for example, 1 μm or more and 5 μm or less can be removed. The particle size of the additive present in the lubricating oil 12 is mostly in the range of 1 μm or more and 100 μm or less, and the particle size of the additive present most in the lubricating oil 12 is in the range of 1 μm or more and 5 μm or less. It is.

フィルタ31としては、例えば、カートリッジフィルタ、デプスフィルタ、サーフェスフィルタ、スクリーンフィルタなどが用いられる。また、潤滑油12中の添加物を除去する分離手段として、フィルタ31を用いているが、本発明はこれに限定されるものではなく、遠心分離機など潤滑油12と添加物とを分離できるものであればよい。   As the filter 31, for example, a cartridge filter, a depth filter, a surface filter, a screen filter, or the like is used. Moreover, although the filter 31 is used as a separating means for removing the additive in the lubricating oil 12, the present invention is not limited to this, and the lubricating oil 12 and the additive such as a centrifuge can be separated. Anything is acceptable.

よって、潤滑油抜出し管13にフィルタ31を設けることで、潤滑油12を加熱装置14に送給する前に潤滑油12中の添加物を予め除去することができるため、加熱装置14は潤滑油12のみを加熱することができる。これにより、潤滑油12から分離した水蒸気15を測定する際、潤滑油12から分離した添加物が水蒸気15に同伴してセル25内に送給されるのを防ぐことができるため、水蒸気15の測定を行う際、潤滑油12中の添加物に起因した赤外吸収スペクトルのノイズを除去することができ、水蒸気15の測定精度を向上させることができる。   Therefore, by providing the filter 31 in the lubricating oil extraction pipe 13, the additive in the lubricating oil 12 can be removed in advance before the lubricating oil 12 is fed to the heating device 14. Only 12 can be heated. Thereby, when measuring the water vapor 15 separated from the lubricating oil 12, it is possible to prevent the additive separated from the lubricating oil 12 from being accompanied by the water vapor 15 and fed into the cell 25. When performing the measurement, the noise of the infrared absorption spectrum due to the additive in the lubricating oil 12 can be removed, and the measurement accuracy of the water vapor 15 can be improved.

従って、本実施例に係る第二の油中水分検知装置10Bによれば、予め潤滑油12中の添加物を除去することで、添加物を含んでいる潤滑油12中の水分を測定する場合に比べて潤滑油12中の水分の分析精度を向上させることができるため、より高精度に潤滑油12中の水分を分析することができる。   Therefore, according to the second oil-in-water detector 10B according to the present embodiment, the moisture in the lubricating oil 12 containing the additive is measured by removing the additive in the lubricating oil 12 in advance. Compared to the above, the analysis accuracy of moisture in the lubricating oil 12 can be improved, so that the moisture in the lubricating oil 12 can be analyzed with higher accuracy.

本発明による実施例3に係る油中水分検知装置について、図面を参照して説明する。なお、実施例1及び実施例2に係る油中水分検知装置の構成と重複する部材については、同一符号を付してその説明は省略する。
図3は、本発明の実施例3に係る第三の油中水分検知装置の構成を簡略に示す図であり、図4は、潤滑油中の微粒子の測定を行なう装置の構成を模式的に示す図であり、図5は、測定装置から照射されるレーザと直交する方向から見たときの構成を模式的に示す図である。
図3に示すように、本実施例に係る第三の油中水分検知装置10Cは、図2に示す本発明による実施例2に係る第二の油中水分検知装置10Bの潤滑油抜出し管13にフィルタ31と加熱装置14との間にある潤滑油12をフィルタ31の上流側に循環させる潤滑油循環ライン32と、フィルタ31と潤滑油循環ライン32の潤滑油12を抜き出す抜出し部32aとの間に設けられ、潤滑油抜出し管13内の潤滑油12中の添加物を測定する添加物測定装置(添加物測定手段)33と、を有するものである。
A moisture detector in oil according to a third embodiment of the present invention will be described with reference to the drawings. In addition, about the member which overlaps with the structure of the moisture-in-oil detection apparatus which concerns on Example 1 and Example 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
FIG. 3 is a diagram simply showing the configuration of a third oil-in-oil detector according to Embodiment 3 of the present invention, and FIG. 4 schematically shows the configuration of a device that measures fine particles in lubricating oil. FIG. 5 is a diagram schematically showing a configuration when viewed from a direction orthogonal to the laser irradiated from the measuring apparatus.
As shown in FIG. 3, the third oil-in-water detector 10C according to the present embodiment is a lubricating oil extraction pipe 13 of the second oil-in-water detector 10B according to the second embodiment of the present invention shown in FIG. A lubricating oil circulation line 32 that circulates the lubricating oil 12 between the filter 31 and the heating device 14 upstream of the filter 31, and an extraction portion 32 a that extracts the lubricating oil 12 of the filter 31 and the lubricating oil circulation line 32. And an additive measuring device (additive measuring means) 33 for measuring an additive in the lubricating oil 12 in the lubricating oil extraction pipe 13.

添加物測定装置33は、レーザ光34を照射するレーザ光照射装置35と、潤滑油抜出し管13を通過したレーザ光34を遮光するビームダンパ36と、レーザ光34を検出する検出器37とで構成されている。また、図4に示すように、潤滑油抜出し管13には、レーザ光照射装置35から照射されたレーザ光34が通過可能な窓38、39が設けられている。また、図5に示すように、潤滑油抜出し管13には、潤滑油抜出し管13と検出器37との間に設けられたレーザ光34が透過可能な窓40が設けられている。   The additive measuring device 33 includes a laser beam irradiation device 35 that irradiates a laser beam 34, a beam damper 36 that blocks the laser beam 34 that has passed through the lubricant extraction pipe 13, and a detector 37 that detects the laser beam 34. Has been. As shown in FIG. 4, the lubricating oil extraction pipe 13 is provided with windows 38 and 39 through which the laser beam 34 irradiated from the laser beam irradiation device 35 can pass. Further, as shown in FIG. 5, the lubricating oil extraction pipe 13 is provided with a window 40 that is provided between the lubricating oil extraction pipe 13 and the detector 37 and is capable of transmitting laser light 34.

レーザ光照射装置35から照射されるレーザ光34としては、ヘリウム(He)とネオン(Ne)の混合ガスによる波長が633nmのHe−Neレーザなどが用いられる。用いられるレーザ光34としては、He−Neレーザに特に限定されるものではなく、他のレーザ光を用いてもよい。   As the laser beam 34 irradiated from the laser beam irradiation device 35, a He—Ne laser having a wavelength of 633 nm using a mixed gas of helium (He) and neon (Ne) is used. The laser beam 34 used is not particularly limited to a He—Ne laser, and other laser beams may be used.

レーザ光照射装置35から潤滑油抜出し管13中の潤滑油12に向けてレーザ光34が照射されると、潤滑油12に添加物が混入していない場合には、レーザ光34は潤滑油抜出し管13を通過してビームダンパ36で遮光される。一方、潤滑油12に添加物が混入している場合、レーザ光34は添加物と衝突することで散乱する。よって、潤滑油12中に添加物が多く含有されているほど、レーザ光34の散乱具合は大きくなる。このため、レーザ光34の散乱具合を測定することにより、潤滑油12中の添加物の含有割合を確認することができる。   When the laser light 34 is irradiated from the laser light irradiation device 35 toward the lubricating oil 12 in the lubricating oil extraction pipe 13, the laser light 34 is extracted when no additive is mixed in the lubricating oil 12. The light passes through the tube 13 and is shielded by the beam damper 36. On the other hand, when the additive is mixed in the lubricating oil 12, the laser beam 34 is scattered by colliding with the additive. Therefore, the more additives are contained in the lubricating oil 12, the greater the degree of scattering of the laser light 34. For this reason, the content ratio of the additive in the lubricating oil 12 can be confirmed by measuring the degree of scattering of the laser beam 34.

添加物測定装置33により、潤滑油12中に添加物が含有されていると確認された場合には、潤滑油循環ライン32より潤滑油12を抜き出す。潤滑油循環ライン32には、潤滑油12中の添加物を除去するフィルタ41が設けられている。潤滑油循環ライン32に抜出した潤滑油12は、フィルタ41により潤滑油12中の添加物を除去し、潤滑油抜出し管13に戻す。このとき、調節弁V13を閉鎖し、調節弁V14を開放する。そして、フィルタ31により再度、潤滑油12中の添加物を除去し、添加物測定装置33により、同様に、潤滑油12中に添加物が含有されているか測定する。添加物測定装置33により潤滑油12中に添加物が含有されていないと確認された場合には、加熱装置14に潤滑油12を送給する。このとき、調節弁V13を開放し、調節弁V14を閉鎖する。   When it is confirmed by the additive measuring device 33 that the additive is contained in the lubricating oil 12, the lubricating oil 12 is extracted from the lubricating oil circulation line 32. The lubricating oil circulation line 32 is provided with a filter 41 that removes additives in the lubricating oil 12. The lubricating oil 12 extracted to the lubricating oil circulation line 32 removes the additive in the lubricating oil 12 by the filter 41 and returns it to the lubricating oil extraction pipe 13. At this time, the control valve V13 is closed and the control valve V14 is opened. Then, the additive in the lubricating oil 12 is removed again by the filter 31, and whether the additive is contained in the lubricating oil 12 is similarly measured by the additive measuring device 33. When it is confirmed by the additive measuring device 33 that no additive is contained in the lubricating oil 12, the lubricating oil 12 is fed to the heating device. At this time, the control valve V13 is opened and the control valve V14 is closed.

よって、加熱装置14に潤滑油12を送給する前に添加物測定装置33により潤滑油12中の添加物を確認することで、加熱装置14には添加物が含有されていない潤滑油12を安定して供給することができる。   Therefore, by confirming the additive in the lubricating oil 12 by the additive measuring device 33 before feeding the lubricating oil 12 to the heating device 14, the lubricating oil 12 containing no additive is added to the heating device 14. It can be supplied stably.

このように、本実施例に係る第三の油中水分検知装置10Cによれば、添加物測定装置33により潤滑油12中の固形物など添加物の除去効率を確認し、潤滑油循環ライン32により潤滑油12中の添加物が除去されるまで循環させ、潤滑油12を加熱装置14に送給する前に潤滑油12中の添加物を予め除去することで、加熱装置14には添加物が除去された潤滑油12を安定して送給し、加熱することができる。これにより、潤滑油12から分離した水蒸気15を測定する際、水蒸気15中に添加物が同伴してセル25内に送給されるのを確実に防ぐことができるため、水蒸気15の分析を行う際に潤滑油12中の添加物に起因したノイズを除去することができる。このため、潤滑油12中に水分の分析精度を更に向上させることができる。   As described above, according to the third oil-in-water detector 10C according to the present embodiment, the additive measuring device 33 confirms the removal efficiency of additives such as solids in the lubricating oil 12, and the lubricating oil circulation line 32. Is circulated until the additive in the lubricating oil 12 is removed, and the additive in the lubricating oil 12 is removed in advance before the lubricating oil 12 is fed to the heating device 14. Can be stably fed and heated. Thereby, when measuring the water vapor 15 separated from the lubricating oil 12, it is possible to reliably prevent the additive from being accompanied in the water vapor 15 and fed into the cell 25, so that the water vapor 15 is analyzed. At this time, noise caused by the additive in the lubricating oil 12 can be removed. For this reason, the analysis accuracy of moisture in the lubricating oil 12 can be further improved.

本発明による実施例4に係る油中水分検知装置について、図面を参照して説明する。なお、実施例1乃至実施例3に係る油中水分検知装置の構成と重複する部材については、同一符号を付してその説明は省略する。
図6は、本発明の実施例4に係る第四の油中水分検知装置の構成を簡略に示す図である。
図6に示すように、本実施例に係る第四の油中水分検知装置10Dは、赤外線照射装置24から照射される赤外線23を分岐し、分岐した赤外線23を用いて潤滑油12中の添加物の測定を行なうものである。
即ち、本実施例に係る第四の油中水分検知装置10Dの測定装置16Bは、赤外線照射装置24とセル25との間に赤外線照射装置24から照射される赤外線23を分岐するハーフミラー42を設けてなるものである。
A moisture detector in oil according to a fourth embodiment of the present invention will be described with reference to the drawings. In addition, about the member which overlaps with the structure of the water-in-oil detection apparatus which concerns on Example 1 thru | or Example 3, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
FIG. 6 is a diagram simply showing a configuration of a fourth oil-in-oil detector according to the fourth embodiment of the present invention.
As shown in FIG. 6, the fourth oil-in-oil detector 10 </ b> D according to the present embodiment branches the infrared ray 23 irradiated from the infrared irradiation device 24, and uses the branched infrared ray 23 to add in the lubricating oil 12. It is for measuring objects.
That is, the measuring device 16B of the fourth oil-in-oil detector 10D according to the present embodiment includes a half mirror 42 that branches the infrared ray 23 irradiated from the infrared irradiation device 24 between the infrared irradiation device 24 and the cell 25. It is provided.

赤外線照射装置24から赤外線23が照射され、ハーフミラー42により分光される。分光された赤外線23Aは、潤滑油12中の添加物の測定用に用いられ、ハーフミラー42を通過した赤外線23Bは、潤滑油12中の水分の測定用に用いられる。   Infrared rays 23 are irradiated from the infrared irradiation device 24 and split by the half mirror 42. The spectroscopic infrared rays 23 </ b> A are used for measuring additives in the lubricating oil 12, and the infrared rays 23 </ b> B that have passed through the half mirror 42 are used for measuring moisture in the lubricating oil 12.

赤外線23Aは波長変換装置43により波長変換される。赤外線照射装置24から照射される赤外線23が例えば1064nmの波長の光である場合、赤外線23Aは波長変換装置43で波長が532nmのレーザ光44に変換される。赤外線23Aは波長変換装置43で波長が532nmのレーザ光44に変換された後、反射板45で反射して潤滑油抜出し管13中の潤滑油12に照射される。潤滑油12中の添加物で散乱したレーザ光44は、検出器46に照射され、潤滑油12中の添加物の確認を行なう。   The infrared light 23 </ b> A is wavelength-converted by the wavelength conversion device 43. When the infrared ray 23 irradiated from the infrared irradiation device 24 is, for example, light having a wavelength of 1064 nm, the infrared ray 23 </ b> A is converted into a laser beam 44 having a wavelength of 532 nm by the wavelength conversion device 43. The infrared ray 23A is converted into a laser beam 44 having a wavelength of 532 nm by the wavelength converter 43, then reflected by the reflector 45 and applied to the lubricating oil 12 in the lubricating oil extraction pipe 13. The laser beam 44 scattered by the additive in the lubricating oil 12 is irradiated to the detector 46, and the additive in the lubricating oil 12 is confirmed.

波長変換装置43には、非線形光学結晶が備えられ、この非線形光学結晶に赤外線23Aを照射することで赤外線23Aの波長を変換する。非線形光学結晶の結晶材質としては例えばKTP結晶などが用いられる。   The wavelength conversion device 43 includes a nonlinear optical crystal, and converts the wavelength of the infrared ray 23A by irradiating the nonlinear optical crystal with the infrared ray 23A. As a crystal material of the nonlinear optical crystal, for example, a KTP crystal is used.

検出器46としては、例えば、光電子増倍管(photo multiplier tube:PMT)、フォトダイオード(photodiode:PD)などが用いられる。   As the detector 46, for example, a photomultiplier tube (PMT), a photodiode (photodiode: PD), or the like is used.

また、ハーフミラー42で分光された赤外線23Bは、図6に示すように、セル25内に照射され、潤滑油12中の水分の測定を行なう。   Further, as shown in FIG. 6, the infrared rays 23 </ b> B dispersed by the half mirror 42 are irradiated into the cell 25 and the moisture in the lubricating oil 12 is measured.

よって、本実施例に係る第四の油中水分検知装置10Dによれば、ハーフミラー42により、赤外線照射装置24から照射される赤外線23を分光することで、セル25内の潤滑油12と、潤滑油抜出し管13中の潤滑油12とに同時に照射することができる。このため、1台の赤外線照射装置24で潤滑油12中の水分の測定と、潤滑油抜出し管13中の潤滑油12の添加物の有無の測定とを同時に行なうことができるため、装置の構成を簡素化することができる。   Therefore, according to the fourth oil-in-moisture detection device 10D according to the present embodiment, the half-mirror 42 divides the infrared rays 23 emitted from the infrared irradiation device 24, whereby the lubricating oil 12 in the cell 25, The lubricating oil 12 in the lubricating oil extraction pipe 13 can be irradiated simultaneously. For this reason, since the measurement of the water | moisture content in the lubricating oil 12 and the measurement of the presence or absence of the additive of the lubricating oil 12 in the lubricating oil extraction pipe | tube 13 can be performed simultaneously with one infrared irradiation apparatus 24, the structure of an apparatus Can be simplified.

また、本実施例に係る第四の油中水分検知装置10Dにおいては、赤外線照射装置24から照射される赤外線23が例えば1064nmの波長の光である場合、赤外線23Aを532nmに波長変換して潤滑油12中の添加物を測定するようにしているが、本発明は532nmの波長の光に限定されるものではなく、可視光における他の波長領域の光や他の波長領域の光を潤滑油12中の添加物の測定用に用いるようにしてもよい。   Further, in the fourth oil-in-water detector 10D according to the present embodiment, when the infrared ray 23 irradiated from the infrared irradiation device 24 is light having a wavelength of, for example, 1064 nm, the infrared ray 23A is wavelength-converted to 532 nm and lubricated. Although the additive in the oil 12 is measured, the present invention is not limited to light having a wavelength of 532 nm, and the lubricating oil is used for light in other wavelength regions and light in other wavelength regions in visible light. 12 may be used for the measurement of the additive.

また、本実施例に係る第四の油中水分検知装置10Dにおいては、赤外線23Aの光路中に波長変換装置43を一つ設けるようにしているが、本発明はこれに限定されるものではなく、赤外線23Aの光路中に波長変換装置を複数設けるようにしてもよい。   In the fourth oil-in-oil detector 10D according to the present embodiment, one wavelength converter 43 is provided in the optical path of the infrared ray 23A. However, the present invention is not limited to this. A plurality of wavelength conversion devices may be provided in the optical path of the infrared ray 23A.

以上は、本発明の油中水分検知装置として、配管内から流れる潤滑油中の水分の測定を行なう装置について説明したが、本発明はこれに限定されるものではなく、潤滑油以外の他の溶液中の水分の分析を行う装置等についても適用することができる。   The above is a description of the device for measuring moisture in the lubricating oil flowing from the inside of the pipe as the moisture detecting device in oil of the present invention. However, the present invention is not limited to this, and other devices than the lubricating oil can be used. The present invention can also be applied to an apparatus for analyzing water in a solution.

以上のように、本発明に係る油中水分検知装置は、潤滑油中の水分の含有割合をオンラインで短時間に測定することができ、潤滑油中の水分の測定の判断に用いるのに適している。   As described above, the moisture detector in oil according to the present invention can measure the moisture content in the lubricating oil online in a short time, and is suitable for use in determining the measurement of moisture in the lubricating oil. ing.

10A〜10D 第一の油中水分検知装置〜第四の油中水分検知装置
11 配管
12 潤滑油
13 潤滑油抜出し管
14 加熱装置(加熱手段)
14a 加熱容器
14b ヒータ
15 水蒸気
16A、16B 測定装置(計測手段)
21 流量計
22 水蒸気抜出し通路
23 赤外線
24 赤外線照射装置(照射装置)
25 セル
26 検知器
27 潤滑油送給管
31 フィルタ(分離手段)
32 潤滑油循環ライン
32a 抜出し部
33 添加物測定装置(添加物測定手段)
34 レーザ光
35 レーザ光照射装置
36 ビームダンパ
37 検出器
38〜40 窓
41 フィルタ
42 ハーフミラー
44 レーザ光
45 反射板
46 検出器
V11〜V14 調節弁
10A to 10D 1st oil moisture detecting device to 4th oil moisture detecting device 11 Piping 12 Lubricating oil 13 Lubricating oil outlet tube 14 Heating device (heating means)
14a Heating container 14b Heater 15 Water vapor 16A, 16B Measuring device (measuring means)
21 Flowmeter 22 Steam Extraction Passage 23 Infrared 24 Infrared Irradiation Device (Irradiation Device)
25 cell 26 detector 27 lubricating oil supply pipe 31 filter (separation means)
32 Lubricating oil circulation line 32a Extraction part 33 Additive measuring device (additive measuring means)
34 Laser light 35 Laser light irradiation device 36 Beam damper 37 Detector 38-40 Window 41 Filter 42 Half mirror 44 Laser light 45 Reflector 46 Detector V11-V14 Control valve

Claims (8)

配管内の潤滑油中の水分を検知する油中水分検知装置であって、
前記配管内から前記潤滑油を抜き出す潤滑油抜出し管と、
抜き出した潤滑油を加熱する加熱手段と、
潤滑油を加熱することにより分離された水蒸気を計測する計測手段と、
を有し、
前記潤滑油抜出し管に前記潤滑油中の添加物を除去する分離手段が設けられてなることを特徴とする油中水分検知装置。
A device for detecting moisture in oil that detects moisture in lubricating oil in piping,
A lubricating oil extraction pipe for extracting the lubricating oil from the pipe;
Heating means for heating the extracted lubricating oil;
A measuring means for measuring water vapor separated by heating the lubricating oil;
I have a,
The oil-in-oil moisture detecting device is characterized in that a separation means for removing the additive in the lubricating oil is provided in the lubricating oil extraction pipe .
請求項において、
前記潤滑油抜出し管に設けられ、前記分離手段と前記加熱手段との間にある前記潤滑油を前記分離手段の上流側に循環させる潤滑油循環ラインと、
前記分離手段と前記潤滑油循環ラインの前記潤滑油を抜き出す抜出し部との間に設けられ、前記潤滑油抜出し管内の前記潤滑油中の添加物を測定する添加物測定手段と、
を有することを特徴とする油中水分検知装置。
In claim 1 ,
A lubricating oil circulation line that is provided in the lubricating oil extraction pipe and circulates the lubricating oil between the separating means and the heating means upstream of the separating means;
An additive measuring means provided between the separating means and an extraction portion for extracting the lubricating oil in the lubricating oil circulation line, and measuring an additive in the lubricating oil in the lubricating oil extraction pipe;
A device for detecting moisture in oil, comprising:
請求項1又は2において、
前記計測手段が、赤外線を照射する赤外線照射装置と、前記水蒸気を収容する水蒸気収容容器と、照射された赤外線を検出する検出部とからなることを特徴とする油中水分検知装置。
In claim 1 or 2 ,
The water-in-oil detector according to claim 1, wherein the measuring means includes an infrared irradiation device that irradiates infrared rays, a water vapor storage container that stores the water vapor, and a detection unit that detects the irradiated infrared rays.
請求項において、
前記赤外線照射装置から照射される赤外線を分岐し、分岐した赤外線を波長変換し、前記潤滑油中の添加物の測定を行なうことを特徴とする油中水分検知装置。
In claim 3 ,
A water-in-oil detector that branches the infrared rays emitted from the infrared irradiation device, converts the wavelength of the branched infrared rays, and measures the additive in the lubricating oil.
配管内の潤滑油中の水分を検知する油中水分検知方法であって、
前記配管内から前記潤滑油の一部を抜き出し、抜き出した潤滑油を加熱し、前記潤滑油を加熱することにより分離された水蒸気を計測すると共に、
抜き出した潤滑油中の添加物を加熱する前に予め除去することを特徴とする油中水分検知方法。
A method for detecting moisture in oil that detects moisture in lubricating oil in a pipe,
Withdrawing a part of the lubricating oil from within the pipe, heating the extracted lubricating oil, measuring the water vapor separated by heating the lubricating oil ,
A method for detecting moisture in oil, wherein the additive in the extracted lubricating oil is removed in advance before heating .
請求項において、
前記潤滑油中の添加物を除去した後、前記潤滑油中の固形物を確認し、前記潤滑油中に固形物が含まれている場合、前記潤滑油を加熱する前に前記潤滑油を抜き出し、再度、前記潤滑油中の添加物を除去することを特徴とする油中水分検知方法。
In claim 5 ,
After removing the additive in the lubricating oil, check the solids in the lubricating oil, and if the lubricating oil contains solids, extract the lubricating oil before heating the lubricating oil The method for detecting moisture in oil, wherein the additive in the lubricating oil is removed again.
請求項5又は6において、
前記潤滑油を加熱することにより分離された水蒸気に赤外線を照射し、照射された赤外線を検出し、赤外線の吸収スペクトルを検出することを特徴とする油中水分検知方法。
In claim 5 or 6 ,
A method for detecting moisture in oil comprising irradiating water vapor separated by heating the lubricating oil with infrared rays, detecting the irradiated infrared rays, and detecting an absorption spectrum of the infrared rays.
請求項乃至の何れか一つにおいて、
前記潤滑油の計測に用いる赤外線の一部を分岐し、分岐した赤外線を用いて前記潤滑油中の微粒子の測定も同時に行なうことを特徴とする油中水分検知方法。
In any one of Claims 5 thru | or 7 ,
A method for detecting moisture in oil, wherein a part of infrared rays used for measurement of the lubricating oil is branched, and fine particles in the lubricating oil are also measured simultaneously using the branched infrared rays.
JP2009198850A 2009-08-28 2009-08-28 Moisture detection device in oil and moisture detection method in oil Active JP5461114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198850A JP5461114B2 (en) 2009-08-28 2009-08-28 Moisture detection device in oil and moisture detection method in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198850A JP5461114B2 (en) 2009-08-28 2009-08-28 Moisture detection device in oil and moisture detection method in oil

Publications (2)

Publication Number Publication Date
JP2011047904A JP2011047904A (en) 2011-03-10
JP5461114B2 true JP5461114B2 (en) 2014-04-02

Family

ID=43834364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198850A Active JP5461114B2 (en) 2009-08-28 2009-08-28 Moisture detection device in oil and moisture detection method in oil

Country Status (1)

Country Link
JP (1) JP5461114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303540B2 (en) * 2013-04-29 2016-04-05 General Electric Company Turbomachine lubricating oil analyzer apparatus
JP6766248B2 (en) * 2018-03-30 2020-10-07 日本郵船株式会社 Moisture contamination detection device, moisture contamination detection program, moisture contamination detection method, and moisture contamination detection system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2153471C3 (en) * 1971-10-27 1978-08-24 Ipsen Ind Int Gmbh Method and device for measuring the content of low-boiling components in a liquid
JPH0752479Y2 (en) * 1990-03-19 1995-11-29 石川島播磨重工業株式会社 Roll bearing lubricator for papermaking machines
FI114339B (en) * 2001-05-16 2004-09-30 Vaisala Oyj Method and apparatus for determining the water content of a liquid

Also Published As

Publication number Publication date
JP2011047904A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
Kumar et al. Advancement and current status of wear debris analysis for machine condition monitoring: A review
Abu-Elella et al. Used motor oil treatment: turning waste oil into valuable products
EP3612845B1 (en) Method for the contactless determining of flow parameters
JP5461114B2 (en) Moisture detection device in oil and moisture detection method in oil
Baszanowska et al. Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra
CN103712949A (en) Photo-thermal absorption spectrum technology-based cooking oil detection method and photo-thermal absorption spectrum technology-based cooling oil detection device
Phillips et al. The origin, measurement and control of fine particles in non‐aqueous hydraulic fluids and their effect on fluid and system performance
Hong et al. Varnish Formation and removal in lubrication systems: a review
Boguszko et al. Property measurement utilizing atomic/molecular filter-based diagnostics
Mihalčová Tribotechnical diagnosis in aircraft engine practice
JP5709375B2 (en) Moisture / foreign matter removal device in oil and method for removing moisture / foreign matter in oil
Braeuer Prospects: Facing current challenges in high pressure high temperature process engineering with in situ Raman measurements
KR20220100233A (en) Detection method for microplastic
Gonçalves et al. Predictive maintenance of a reducer with contaminated oil under an excentrical load through vibration and oil analysis
Myshkin et al. Wear prediction for tribosystems based on debris analysis
FI116000B (en) Method and apparatus for determining concentration of a component of dispersed form in fluid stream
Mabe et al. Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils
Akintunde Spectrometric Oil Analysis–An Untapped Resource for Condition Monitoring
Zöllner et al. Optical and analytical studies on DPF soot properties and consequences for regeneration behavior
FR2714464A1 (en) A method of controlling surface contamination of a solid and a device for carrying out the work.
US20170227750A9 (en) System and method for measuring oil content in water using laser-induced fluorescent imaging
JP5427586B2 (en) Moisture removal device in oil and moisture removal method in oil
Yong et al. Investigating Wastewater Pollution Using Laser-Induced Breakdown Spectroscopy
Whitlock X-Ray Methods for Monitoring Machinery Condition
Maurizi Microplastic and nanoplastic analysis in drinking water and indoor air with Raman micro-spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R151 Written notification of patent or utility model registration

Ref document number: 5461114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151