JP5413333B2 - Radar equipment - Google Patents
Radar equipment Download PDFInfo
- Publication number
- JP5413333B2 JP5413333B2 JP2010194070A JP2010194070A JP5413333B2 JP 5413333 B2 JP5413333 B2 JP 5413333B2 JP 2010194070 A JP2010194070 A JP 2010194070A JP 2010194070 A JP2010194070 A JP 2010194070A JP 5413333 B2 JP5413333 B2 JP 5413333B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- transmission
- unit
- short
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Description
この発明は、複数の素子アンテナに電波を送信し、かつ位相を電子的に変化させることにより高速で主ビームを変更することが可能である目標の検出や大気状況の観察を行う大規模なフェイズドアレイアンテナを用いたレーダ装置に関し、特に、フェイズドアレイアンテナを用いたレーダ装置のビーム方向精度に重要な要素であるアンテナ装置までの伝送線路(ケーブル)位相を短時間に、測定及び補償することを可能とするものに関する。 The present invention provides a large-scale phased detection for detecting a target and observing atmospheric conditions that can change the main beam at high speed by transmitting radio waves to a plurality of element antennas and changing the phase electronically. Regarding radar devices using array antennas, in particular, measuring and compensating transmission line (cable) phase to antenna devices, which is an important element for beam direction accuracy of radar devices using phased array antennas, in a short time. It relates to what is possible.
従来、フェイズドアレイレーダには、素子アンテナに八木宇田アンテナを選択し、各アンテナの距離を等間隔に配置するもの(例えば、特許文献1)がある。また、このようなレーダ装置において、アンテナ装置までの伝送線路(ケーブル)位相を測定及び補償するための方法としては、目標物にビーム照射し、測定されたビーム反射信号の受信強度を元に、移相器で補正しながら受信強度を最大化させるように調整するものがある。さらに、アンテナ装置までの伝送線路(ケーブル)位相を測定及び補償だけでなく、レーダ装置(アレイアンテナ)を起点として要求覆域が存在する方向の範囲に、密にサンプル点を配置し、サンプル点方向の最大所要探知距離での探知状況をチェックして要求覆域の制約を判定し、制約が満たされていない場合にはビームの送信態様に適切な変更を加え、要求覆域を満たし且つ高効率のビーム構成を求めることのできるレーダパラメータ最適化を行うレーダ装置もある(例えば、特許文献2参照)。 Conventionally, there is a phased array radar that selects a Yagi-Uda antenna as an element antenna and arranges the antennas at equal intervals (for example, Patent Document 1). Further, in such a radar apparatus, as a method for measuring and compensating the transmission line (cable) phase to the antenna apparatus, the target is irradiated with a beam, and based on the received intensity of the measured beam reflection signal, There are some which adjust so as to maximize the reception intensity while correcting with a phase shifter. In addition to measuring and compensating the phase of the transmission line (cable) to the antenna device, the sample points are densely arranged in a range in the direction where the required coverage area exists starting from the radar device (array antenna). Check the detection status at the maximum required detection distance in the direction to determine the constraint of the required coverage, and if the constraint is not satisfied, make appropriate changes to the beam transmission mode to meet the required coverage and high There is also a radar apparatus that performs radar parameter optimization capable of obtaining an efficient beam configuration (see, for example, Patent Document 2).
従来、伝送線路(ケーブル)の位相測定には、同軸ケーブルのコネクタを介してパルス送受信機を接続することで、内導体に波長λのパルス信号を印加する。同軸の内導体に接続された内導体線と、同軸の外導体に接続された外導体線の先端を接続し、パルス送受信機にてパルス信号の反射時間t1を測定する。内導体線と、外導体線の先端を被測定体であるアンテナ部品上の所望の2点に接続し、パルス送受信機にてパルス信号の反射時間t2を測定することで、被測定体であるアンテナ部品の位相を求めるものがある(例えば、特許文献3参照)。 Conventionally, to measure the phase of a transmission line (cable), a pulse transmitter / receiver is connected via a connector of a coaxial cable to apply a pulse signal having a wavelength λ to the inner conductor. The inner conductor wire connected to the coaxial inner conductor and the tip of the outer conductor wire connected to the coaxial outer conductor are connected, and the pulse signal reflection time t1 is measured by a pulse transceiver. Connect the tip of the inner conductor wire and the outer conductor wire to two desired points on the antenna component that is the object to be measured, and measure the reflection time t2 of the pulse signal with the pulse transmitter / receiver to obtain the object to be measured. There exists what calculates | requires the phase of an antenna component (for example, refer patent document 3).
複数の素子アンテナまでのそれぞれの伝送線路の長さを、性能の個体差を考慮した上で、同じ長さにして、フェイズドアレイアンテナを用いたレーダ装置を運用していても、伝送線路ごとの位相の変動は、温度条件により生じるため、レーダ装置の設置環境が急激な温度変化や雪・日射による個々の伝送線路の状態が刻々と変化するような環境の場合、短時間・かつ自動的に伝送線路ごとの位相を測定できることが要求される。しかし、多数の素子アンテナにより構成されているフェイズドアレイアンテナを用いたレーダ装置においては、前述の従来技術では、短時間にこれらの位相および損失を測定することが困難であるという課題があった。これは、素子アンテナが広いエリアに広がって設置される場合は、伝送線路が必然的に長くなるので、さらに、顕著となる。また、特許文献3に記載のもののように、伝送線路(同軸ケーブル)ごとに、位相を測定する場合は、フェイズドアレイアンテナを用いたレーダ装置が設置されている場所の天候などにより測定そのものが困難な状況が考えられるという課題もあった。
Even if a radar device using a phased array antenna is operated, the length of each transmission line up to a plurality of element antennas is set to the same length in consideration of individual differences in performance. Phase fluctuations occur due to temperature conditions, so if the environment where the radar equipment is installed is an environment where the conditions of individual transmission lines change from moment to moment due to sudden temperature changes or snow or solar radiation, it will automatically occur in a short time. It is required that the phase for each transmission line can be measured. However, in the radar apparatus using the phased array antenna constituted by a large number of element antennas, there is a problem that it is difficult to measure the phase and loss in a short time with the above-described conventional technology. This becomes more conspicuous when the element antenna is installed over a wide area because the transmission line is necessarily long. In addition, when measuring the phase of each transmission line (coaxial cable) as in
また、目標物にビーム照射しながら伝送線路位相を移相器で補正しながら最適化する方法は、目標物が明確に存在しなければ利用することができないので、例えば、気象レーダ・大気観測用レーダのような目標物が明確でないものを測定する装置においては、反射物をフィールドに配置することができず、実施することが不可能であるという課題があった。 In addition, the method of optimizing while correcting the transmission line phase with a phase shifter while irradiating the target with a beam cannot be used unless the target is clearly present. In an apparatus that measures an object whose target is not clear, such as a radar, there is a problem that a reflector cannot be placed in the field and cannot be implemented.
この発明は、上記のような課題を解消するためになされたもので、大規模なフェイズドアレイアンテナ装置において、フィールド内で温度差が発生する場合において、アンテナ装置までのケーブルの位相を自動的に測定及び補償することが可能なレーダ装置を提供することを目的とする。 The present invention has been made to solve the above problems, and in a large-scale phased array antenna apparatus, when a temperature difference occurs in the field, the phase of the cable to the antenna apparatus is automatically adjusted. An object of the present invention is to provide a radar apparatus capable of measuring and compensating.
請求項1の発明に係るレーダ装置は、複数の素子アンテナから構成されるフェイズドアレイアンテナから送信波を送信し、その送信波が物質により反射した電波を受信波として受信することで、目標の検出や大気状況の観察を行うレーダ装置において、前記複数の素子アンテナにそれぞれ接続された複数の移相器と、これらの複数の移相器を介して、前記複数の素子アンテナにそれぞれ接続され、送信波及び受信波を伝送する複数の伝送線路と、前記複数の移相器と前記複数の素子アンテナとの接続をそれぞれ短絡へ切り替え可能な複数の接続・短絡切替部と、これらの複数の接続・短絡切替部のうち、少なくとも一つが短絡側へ切り替わったときに、短絡された伝送線路以外の前記複数の伝送線路を伝送する各信号の位相を、短絡された伝送線路に対応する前記移相器以外の、前記複数の移相器の移相量を制御し、波源からの送信波が前記複数の接続・短絡切替部による短絡で生じた反射波を含む前記波源からの送信波の反射波のデータが生ずるごとに、位相を変更させる位相設定部と、前記反射波のデータが生ずるごとに、当該反射波のデータを、蓄積していくデータ蓄積部と、このデータ蓄積部が所定回数蓄積した反射波のデータの加算値から、短絡された伝送線路の位相を測定する伝送線路位相測定部と、この伝送線路位相測定部により位相を測定された伝送線路に対応する前記移相器の移相量を制御し、位相を補償することが可能な位相補償制御部とを備えたことを特徴とするものである。 The radar apparatus according to claim 1 detects a target by transmitting a transmission wave from a phased array antenna including a plurality of element antennas, and receiving a radio wave reflected by the substance as a reception wave. And a radar apparatus for observing atmospheric conditions, a plurality of phase shifters respectively connected to the plurality of element antennas, and a plurality of phase shifters connected to the plurality of element antennas, respectively. A plurality of transmission lines for transmitting waves and received waves, a plurality of connection / short-circuit switching units each capable of switching the connection between the plurality of phase shifters and the plurality of element antennas to a short circuit, and a plurality of these connections / When at least one of the short-circuit switching units is switched to the short-circuit side, the phase of each signal transmitted through the plurality of transmission lines other than the short-circuited transmission line is changed. The non-phase shifter corresponding to the line to control the amount of phase shift of the plurality of phase shifters, wherein the wave source comprising a reflected wave transmission wave from the wave source occurs in short-circuit by said plurality of connection or short circuit switch portion each time data of the reflected wave of the transmitted wave from occurs, a phase setting unit for changing the phase, every time data of the reflected wave is generated, and a data storage unit for the data of the reflected wave, and accumulates, this Corresponds to the transmission line phase measurement unit that measures the phase of the shorted transmission line from the sum of the reflected wave data accumulated by the data storage unit a predetermined number of times, and the transmission line whose phase is measured by this transmission line phase measurement unit And a phase compensation control unit capable of controlling the phase shift amount of the phase shifter and compensating for the phase.
請求項2の発明に係るレーダ装置は、送信波を送信し、その送信波が物質により反射した電波を受信波として受信するフェイズドアレイアンテナを構成する複数の素子アンテナと、これらの複数の素子アンテナから放射する送信波の波源である種信号生成部と、この種信号生成部からの信号を分配し、前記複数の素子アンテナが受信した受信波由来の各信号を合成する合成分配部と、この合成分配部が分配した各信号及び前記複数の素子アンテナが受信した受信波由来の各信号をそれぞれ伝送する複数の伝送線路と、一端が前記複数の伝送線路に、他端が前記複数の素子アンテナに接続され、前記合成分配部が分配した各信号の位相をそれぞれ制御して、前記アレイアンテナの放射パターンを制御する複数の送受信処理部と、前記種信号生成部と前記合成分配部との間に設けられ、送受信を切り替え、後記信号処理部へ前記複数の素子アンテナが受信した受信波由来の信号であって、前記合成分配部が合成した信号を送る送受切替部と、切り替えることによって前記種信号生成部からの信号を前記複数の送受信処理部内で短絡することが可能な前記送受信処理部ごとにそれぞれ設けられた複数の接続・短絡切替部と、この接続・短絡切替部ごとに設けられ、前記複数の伝送線路を伝送する信号の位相をそれぞれ変化させること可能な複数の移相器と、前記複数の素子アンテナが受信した受信波を前記合成分配部が合成した合成信号、前記複数の接続・短絡切替部が前記種信号生成部からの信号が前記複数の送受信処理部内の短絡で生じた反射波の信号、及び、前記複数の伝送線路及び前記送受信処理部内で生じた反射波を前記合成分配部が合成した合成信号をディジタル信号に変換する受信部と、この受信部が変換したディジタル信号を高速フーリエ変換して、目標の検出や大気状況の観察を行う信号処理部と、前記複数の接続・短絡切替部のうち、少なくとも一つが短絡側へ切り替わったときに、短絡された伝送線路以外の前記複数の伝送線路を伝送する各信号の位相を、短絡された伝送線路に対応する前記移相器以外の、前記複数の移相器の移相量を制御し、前記種信号生成部からの送信波が前記複数の接続・短絡切替部による短絡で生じた反射波と前記複数の伝送線路及び前記送受信処理部内で生じた反射波とのデータが生ずるごとに、位相を変更させる位相設定部と、前記種信号生成部からの送信波が前記複数の接続・短絡切替部による短絡で生じた反射波と前記複数の伝送線路及び前記送受信処理部内で生じた反射波とが前記合成分配部により合成された合成信号を前記信号処理部が処理したデータが生ずるごとに、当該反射波のデータを、蓄積していくデータ蓄積部と、このデータ蓄積部が所定回数蓄積した反射波のデータの加算値から、短絡された伝送線路の位相を測定する伝送線路位相測定部と、この伝送線路位相測定部により位相を測定された伝送線路に対応する前記移相器の移相量を制御し、位相を補償することが可能な位相補償制御部とを備えたことを特徴とするものである。 A radar apparatus according to a second aspect of the invention includes a plurality of element antennas constituting a phased array antenna that transmits a transmission wave and receives the radio wave reflected by the substance as a reception wave, and the plurality of element antennas. A seed signal generation unit that is a wave source of a transmission wave radiated from the signal, a synthesis distribution unit that distributes signals from the seed signal generation unit and synthesizes signals derived from reception waves received by the plurality of element antennas, and A plurality of transmission lines for transmitting each signal distributed by the combining / distributing unit and each signal derived from the received wave received by the plurality of element antennas, one end to the plurality of transmission lines, and the other end to the plurality of element antennas A plurality of transmission / reception processing units for controlling the radiation pattern of the array antenna by controlling the phase of each signal distributed by the combining / distributing unit, and the seed signal generation And transmission / reception switching for switching between transmission and reception, and for transmitting a signal derived from a received wave received by the plurality of element antennas to the signal processing unit described later and synthesized by the synthesis distribution unit A plurality of connection / short-circuit switching units provided for each of the transmission / reception processing units capable of short-circuiting the signal from the seed signal generation unit in the plurality of transmission / reception processing units by switching, and this connection / A combination of a plurality of phase shifters provided for each short-circuit switching unit and capable of changing a phase of a signal transmitted through the plurality of transmission lines and a received wave received by the plurality of element antennas. The combined signal, the plurality of connection / short-circuit switching units, the signal from the seed signal generation unit is a reflected wave signal generated by a short circuit in the plurality of transmission / reception processing units, and the plurality of transmission lines and A receiving unit that converts a combined signal obtained by combining the reflected waves generated in the transmission / reception processing unit into a digital signal, and a digital signal converted by the receiving unit, and performs fast Fourier transform on the digital signal to detect a target or an atmospheric condition The phase of each signal transmitted through the plurality of transmission lines other than the shorted transmission line when at least one of the signal processing unit and the plurality of connection / short-circuit switching units is switched to the short-circuit side. The phase shift amount of the plurality of phase shifters other than the phase shifter corresponding to the shorted transmission line is controlled, and the transmission wave from the seed signal generation unit is generated by the plurality of connection / short circuit switching units. Each time data of a reflected wave generated by a short circuit and the reflected wave generated in the plurality of transmission lines and the transmission / reception processing unit is generated, a phase setting unit that changes the phase, and a transmission wave from the seed signal generation unit Multiple connections Data and reflected waves generated by the plurality of transmission lines and said transmission and reception processing section and a reflected wave generated by the short circuit due Zoku short switching unit has processed the signal processing unit the combined composite signal by the combining and distributing section each resulting, the data of the reflected wave, and accumulated and going data storage unit, the data storage unit from the sum of the data of the reflected wave by a predetermined number of times accumulated transmission lines for measuring the phase of the shorted transmission lines A phase measurement unit; and a phase compensation control unit capable of controlling the phase shift amount of the phase shifter corresponding to the transmission line whose phase is measured by the transmission line phase measurement unit and compensating the phase. It is characterized by this.
請求項3の発明に係るレーダ装置は、前記複数の接続・短絡切替部の接続側と短絡側との切り替えを制御する接続・短絡切替制御部を有する請求項1又は2に記載のものである。
A radar apparatus according to a third aspect of the present invention is the radar apparatus according to
請求項4の発明に係るレーダ装置は、前記接続・短絡切替制御部が、前記伝送線路位相測定部が短絡された伝送線路の位相を測定するごとに、前記複数の接続・短絡切替部のうち、接続側から短絡側へ切り替わるものを順次入れ替えていく制御を行う請求項3に記載のものである。
In the radar device according to the invention of
請求項5の発明に係るレーダ装置は、前記位相設定部が、ランダムに位相を変更させる請求項1〜4のいずれかに記載のものである。 The radar apparatus according to a fifth aspect of the present invention is the radar apparatus according to any one of the first to fourth aspects, wherein the phase setting unit randomly changes the phase.
請求項6の発明に係るレーダ装置は、前記位相設定部が、前記移相器の移相量を一定の値とする請求項1〜4のいずれかに記載のものである。 The radar apparatus according to a sixth aspect of the present invention is the radar apparatus according to any one of the first to fourth aspects, wherein the phase setting unit sets the phase shift amount of the phase shifter to a constant value .
請求項7の発明に係るレーダ装置は、前記位相設定部が、前記移相器のビット数で360°を割った値を当該移相器の移相量とする請求項6に記載のものである。
The radar apparatus according to
請求項8の発明に係るレーダ装置は、前記伝送線路が、同軸ケーブルである請求項1〜7のいずれかに記載のものである。 The radar apparatus according to an eighth aspect of the present invention is the radar apparatus according to any one of the first to seventh aspects, wherein the transmission line is a coaxial cable.
以上のように、この発明によれば、測定時間が数秒程度で、伝送線路の位相や複数の伝送線路の位相差を測定することが可能となり、急激な環境変化に対しても迅速な伝送線路(ケーブル)の位相差の補償処理を行うことができるようになり、人手がかからないため、屋外条件が厳しい状態(降雨・降雪・強風等)に影響されることなく、位相測定及び位相補償処理を行うことができるレーダ装置を得ることができる。 As described above, according to the present invention, it is possible to measure the phase of a transmission line and the phase difference of a plurality of transmission lines in a measurement time of about several seconds, and a rapid transmission line against a sudden environmental change. (Cable) phase difference compensation processing can be performed, and it does not require manual labor, so phase measurement and phase compensation processing can be performed without being affected by harsh outdoor conditions (rainfall, snowfall, strong winds, etc.). A radar device that can be performed can be obtained.
実施の形態1.
以下、この発明の実施の形態1について図1〜5を用いて説明する。図1〜5において、1は複数の素子アンテナ1−1、1−2、〜、1−n(nは整数)から構成されるフェイズドアレイアンテナ、2は複数の素子アンテナ1−1、1−2、〜、1−nから放射する送信波の波源である種信号生成部、3は種信号生成部2からの信号を分配し、複数の素子アンテナ1−1、1−2、〜、1−nが受信した受信波由来の各信号を合成する合成分配部(合成分配器)、4は合成分配部3が分配した各信号及び複数の素子アンテナ1−1、1−2、〜、1−nが受信した受信波由来の各信号をそれぞれ伝送する複数の伝送線路4−1、4−2、〜、4−n(nは整数)で構成された伝送線路群であり、伝送線路4−1、4−2、〜、4−nは同軸ケーブルを使用することにより、伝搬する信号(電波)の漏洩が少なくすることができる。5は一端が伝送線路群4に、他端がフェイズドアレイアンテナ1(素子アンテナ1−1、1−2、〜、1−n)に接続され、合成分配部3が分配した各信号の位相をそれぞれ制御して、フェイズドアレイアンテナ1の放射パターンを制御する複数の送受信処理部5−1、5−2、〜、5−n(nは整数)で構成された送受信処理部群、6は送受信処理部群5(詳しくは、後述する第3の送受切替部群)とフェイズドアレイアンテナ1とを接続する複数のアンテナ接続用伝送線路6−1、6−2、〜、6−n(nは整数)から構成されたアンテナ接続用伝送線路群(図1上では、アンテナ接続用伝送線路群6の符号表示は省略する)である。
続いて、7は種信号生成部2と合成分配部3との間に設けられ、送受信を切り替え、後述する信号処理部へフェイズドアレイアンテナ1が受信した受信波由来の信号であって、合成分配部3が合成した信号を送る送受切替部(第1の送受切替部)、8は種信号生成部2からの信号を複数の送受信処理部群5内で、それぞれで短絡する送受信処理部ごとに設けられた複数の接続・短絡切替部8−1、8−2、〜、8−n(nは整数)から構成された接続・短絡切替部群、9は第2の送受切替部9−1、9−2、〜、9−n(nは整数)から構成された第2の送受切替部群、10は第3の送受切替部10−1、10−2、〜、10−n(nは整数)から構成された第3の送受切替部群、11は第2の送受切替部群9と第3の送受切替部群10との間に設けられ、種信号生成部2が生成した信号由来の各信号(送信信号)を増幅する送信信号増幅部11−1、11−2、〜、11−n(nは整数)から構成される送信信号増幅部群、12は第2の送受切替部群9と第3の送受切替部群10との間に設けられ、フェイズドアレイアンテナ1が受信した受信波由来の各信号(受信信号)を増幅する受信信号増幅部12−1、12−2、〜、12−n(nは整数)から構成される受信信号増幅部群である。
Subsequently, 7 is provided between the seed
続いて、13はフェイズドアレイアンテナ1に対して、接続・短絡切替部群8の後段に、接続・短絡切替部8−1、8−2、〜、8−nごとに設けられ、複数の素子アンテナ1−1、1−2、〜、1−nにそれぞれ接続され、伝送線路4−1、4−2、〜、4−nを伝送する信号の位相をそれぞれ変化させる複数の移相器13−1、13−2、〜、13−n(nは整数)から構成された移相器群であり、複数の移相器13−1、13−2、〜、13−nと複数の素子アンテナ1−1、1−2、〜、1−nとの接続をそれぞれ短絡へ切り替え可能なものが複数の接続・短絡切替部8−1、8−2、〜、8−nである。また、複数の伝送線路伝送線路4−1、4−2、〜、4−nは、複数の移相器移相器13−1、13−2、〜、13−nを介して、複数の素子アンテナ1−1、1−2、〜、1−nにそれぞれ接続され、送信波及び受信波を伝送するものといえる。14は表示部である。なお、図1上では、接続・短絡切替部群8、第2の送受切替部群9、第3の送受切替部群10、送信信号増幅部群11、受信信号増幅部群12、移相器群13の符号表示は省略する。
Subsequently, 13 is provided in the subsequent stage of the connection / short-circuit switching unit group 8 for the
続いて、15はフェイズドアレイアンテナ1が受信した受信波由来の信号であって、合成分配部3が合成した信号、及び、波源からの送信波が複数の接続・短絡切替部による短絡で生じた反射波を含む波源からの送信波の反射波を合成分配部3が合成した信号をディジタル信号に変換する受信部である。波源からの送信波が複数の接続・短絡切替部による短絡で生じた反射波を含む波源からの送信波の反射波とは、接続・短絡切替部群8が種信号生成部2からの信号が送受信処理部群5(送受信処理部5−1、5−2、〜、5−nの少なくとも一つ)内の短絡で生じた反射波と伝送線路群4及び送受信処理部群5内で生じた反射波を指す。16は受信部15が変換したディジタル信号を高速フーリエ変換(以下、FFTと称す)して、フェイズドアレイアンテナ1が受信した受信波由来の信号(受信信号)から目標の検出や大気状況の観察を行い、レーダ装置の内部回路・線路の反射波の受信処理も行う信号処理部、17は接続・短絡切替部群8を制御して、各接続・短絡切替部8−1、8−2、〜、8−nを設定する接続・短絡切替制御部であり、具体的には、接続・短絡切替制御部17は各接続・短絡切替部8−1、8−2、〜、8−nと制御線で繋がれ、各接続・短絡切替部8−1、8−2、〜、8−nを接続側と短絡側との切り替えを制御するものである。制御線は、図1に示すように、接続・短絡切替制御部17から各接続・短絡切替部8−1、8−2、〜、8−nの直前で分岐するように配設してもよいし、複数の伝送線路4−1、4−2、〜、4−nのように、複数の接続・短絡切替部8−1、8−2、〜、8−nごとに配設してもよい。なお、複数の伝送線路が近しい位置に配設されている場合は、複数の接続・短絡切替部を短絡側に切り替えても、反射波の振幅が複数倍になるだけなので、後述する位相補償がまとめてできる。
Subsequently, 15 is a signal derived from the received wave received by the phased
続いて、18は接続・短絡切替制御部17により制御されて、複数の接続・短絡切替部群8が種信号生成部2からの信号を送受信処理部群5のうち、少なくとも一つの送受信処理部内で、対応する接続・短絡切替部を一つが短絡側へ切り替え、線路を短絡したときに、移相器群13の移相量を制御し、複数の伝送線路4−1、4−2、〜、4−nのうち、少なくとも先の送受信処理部に対応する伝送線路を伝送する信号の位相を不変とし(つまり、移相器を固定する)、この位相を不変とした信号以外の複数の伝送線路を伝送する各信号(つまり、短絡された伝送線路以外の伝送線路を伝送する各信号)の位相をそれぞれランダムに又は等間隔で変更していく制御を行う位相設定部である。位相設定部18は、各移相器13−1、13−2、〜、13−nと制御線で繋がれている。この制御線は、図1に示すように、位相設定部18から各移相器13−1、13−2、〜、13−nの直前で分岐するように配設してもよいし、複数の伝送線路4−1、4−2、〜、4−nのように、複数の移相器13−1、13−2、〜、13−nごとに配設してもよい。
Subsequently, 18 is controlled by the connection / short-circuit switching control unit 17, so that the plurality of connection / short-circuit switching unit groups 8 receive signals from the seed
さらに、19は位相設定部18が移相器群13を制御した後に、種信号生成部2からの信号が送受信処理部群5内で接続・短絡切替部群8による短絡で生じた反射波由来と伝送線路群4及び送受信処理部群5内で生じた反射波由来との信号を信号処理部16が高速フーリエ変換したデータを、蓄積していくデータ蓄積部、20はデータ蓄積部19が波源からの送信波が複数の接続・短絡切替部による短絡で生じた反射波を含む波源からの送信波の反射波を、順次、蓄積していき、所定回数蓄積したデータの加算値から、伝送する信号の位相が固定された少なくとも一つの伝送線路(送受信処理部5−1、5−2、〜、5−nのいずれか)の位相を測定する伝送線路位相測定部である。データの加算は、少なくともデータ蓄積部19又は伝送線路位相測定部20のいずれかで行えばよい。なお、データ蓄積部19は、通常のレーダ装置運用時のデータを蓄積してもよい。つまり、データ蓄積部19は、信号処理部16からのデータを蓄積するものである。
Further, 19 is derived from a reflected wave generated by a short circuit by the connection / short circuit switching unit group 8 in the transmission / reception processing unit group 5 after the
加えて、21は先の少なくとも一つの伝送線路に対応する移相器(移相器13−1、13−2、〜、13−nのいずれか)を制御し、伝送線路位相測定部20が測定した位相から少なくとも一つの伝送線路の位相を補償する位相補償制御部であり、伝送線路位相測定部20により位相を測定された伝送線路に対応する移相器の移相量を制御し、位相を補償することが可能なものである。位相補償制御部21で一つの伝送線路の位相を補償する場合は、予め設定された値からのずれ分を位相設定部18が移相器群13を制御して補償すればよいし、予め設定された値を使わずに、全ての伝送線路4−1、4−2、〜、4−nの位相を揃えることだけを要するのであれば、位相設定部18が、伝送線路群4にうち、伝送する信号の位相を不変する伝送線路を順次変更、つまり、伝送線路位相測定部20が短絡された伝送線路の位相を測定するごとに、複数の接続・短絡切替部8−1、8−2、〜、8−nのうち、接続側から短絡側へ切り替わるものを順次入れ替えていく制御を行い、全ての伝送線路4−1、4−2、〜、4−nの位相を伝送線路位相測定部20により、測定して、全ての伝送線路4−1、4−2、〜、4−nのずれを位相補償制御部21が位相を補償すればよい。また、同じ手順で、単に、伝送線路位相測定部20により、二つの伝送線路の位相差を測定し、位相補償制御部21が、二つの伝送線路の位相を補償してもよい。22は実施の形態1に係るレーダ装置において、送受切替部7以降の構成を複数配列する際に、種信号生成部からの信号(種信号)を各送受切替部7に分配する分配部である。なお、表示部14は、信号処理部16が処理した目標や大気状況の表示やデータ蓄積部19に蓄積された伝送線路群4の位相の情報やその補償に関する各種情報の表示を行うものである。
In addition, 21 controls a phase shifter (any one of the phase shifters 13-1, 13-2,..., 13-n) corresponding to at least one transmission line. A phase compensation control unit that compensates the phase of at least one transmission line from the measured phase, controls the phase shift amount of the phase shifter corresponding to the transmission line whose phase is measured by the transmission line
次に動作について説明する。図1に記載の実施の形態1に係るレーダ装置において、種信号生成部2で発生した種信号は、送受切替部7から合成分配部3を通り、伝送線路4−1、4−2、〜、4−nにそれぞれ接続された送受信処理部5−1、5−2、〜、5−nに分配される。実施の形態1に係るレーダ装置をフェイズドアレイアンテナ1から送信波を送信し、その送信波が物質により反射した電波を受信波として受信することで、目標の検出や大気状況の観察を行うように動作させる場合、つまり、レーダ動作させる場合は、接続・短絡切替制御部17において接続・短絡切替部群8を制御して、全ての接続・短絡切替部8−1、8−2、〜、8−nをフェイズドアレイアンテナ1に繋がる方(短絡する方とは反対側の方、つまり、短絡側に対して接続側)に接続することを選択する。なお、図1では、接続・短絡切替部8−1は、短絡する方(短絡側)に接続されている状態を図示している。その後、送受信処理部群5内に設けられた移相器群13、接続・短絡切替部群8を経由した種信号が第2の送受切替部群9、送信信号増幅部群11、第3の送受切替部群10を経由し、増幅された電磁波(電波)がフェイズドアレイアンテナ1から空中に放射される。目標物などの物質から反射した信号は、送受切替部7、第2の送受切替部群9および第3の送受切替部群10を受信側に変更した後、フェイズドアレイアンテナ1から送受信処理部群5内の、第3の送受切替部群10、受信信号増幅部群12、第2の送受切替部群9、接続・短絡切替部群8、移相器群13を経由して合成分配部3でアナログ合成された後、送受切替部7を経由して受信部15にてディジタル信号に変換され、信号処理部16にてFFTおよび目標検出などの処理を行う。なお、図1では、第2の送受信切替部9−1、9−2、〜、9−n(第2の送受信切替部群9)は、全て送信側に接続された状態を示している。
Next, the operation will be described. In the radar apparatus according to the first embodiment shown in FIG. 1, the seed signal generated by the seed
ここで、接続・短絡切替制御部17において接続・短絡切替部8−1、8−2、〜、8−nのうち、短絡切替部8−1を制御して、送受信処理部5−1のみ短絡を選択することにより、種信号生成部2にて生成された信号を接続・短絡切替部8−1で反射させるとともに、送受切替部7を受信状態とすることにより、反射された信号を受信部15、信号処理部16を経由してデータ蓄積部19にデータ保存される。この保存されたデータを時系列データとして保存すれば、時系列波形からレーダ装置における伝送線路4−1、4−2、〜、4−n(伝送線路群4)を含む送受切替部7から接続・短絡切替部8−1、8−2、〜、8−n(接続・短絡切替部群8)までの伝達路振幅および位相を把握することが可能となる。
Here, the connection / short circuit switching control unit 17 controls the short circuit switching unit 8-1 among the connection / short circuit switching units 8-1, 8-2 to 8 -n, and only the transmission / reception processing unit 5-1. By selecting the short circuit, the signal generated by the seed
しかし、送受信処理部群5において、接続・短絡切替部群8を接続状態(フェイズドアレイアンテナ1に繋がる状態)である接続側にすれば理想的な状態では種信号が反射しないが、実際は、レーダ装置の各接続部(特に、接続・短絡切替部群8)では、必ず通過する成分と反射する成分が存在し、若干のインピーダンスのミスマッチ等で発生するリターンロスと呼ばれる反射成分があるというハードウェアの性質上からくる特性のため、送受信処理部5−1、5−2、〜、5−nからの反射波(反射受信信号)が存在する。そのために、これらの反射波が合成分配部3にて送受信処理部5−1の信号(送受信処理部5−1の短絡切替部8−1による反射波)とアナログ合成されてしまい、結果として合成分配部3〜接続・短絡切替部8−1までの位相差を把握することができないことが想定される。一般的には種信号レベルに対して、最大で−10dB程度の反射が想定される。送受信処理部5−1から得られる時系列データおよび、送受信処理部群5から得られる時系列データの和のシミュレーション例を図2に示す。
However, in the transmission / reception processing unit group 5, if the connection / short-circuit switching unit group 8 is set to the connection side in a connection state (a state connected to the phased array antenna 1), the seed signal is not reflected in an ideal state. Hardware that each component (especially connection / short-circuit switching unit group 8) of the apparatus has a component that always passes and a component that reflects, and a reflection component called a return loss that occurs due to a slight impedance mismatch or the like. Therefore, there are reflected waves (reflected reception signals) from the transmission / reception processing units 5-1, 5-2,..., 5-n. Therefore, these reflected waves are analog-synthesized with the signal of the transmission / reception processing unit 5-1 (the reflected wave by the short-circuit switching unit 8-1 of the transmission / reception processing unit 5-1) in the combining / distributing
このシミュレーションでは、送受信処理部群5が19あるという条件下で行っている。換言すると、送受信処理部5−nのnは、n=19である。以後、n=19である場合の説明を行うが、nは整数であれば、特に制限がないことはいうまでもない。また、接続・短絡切替制御部17により、接続・短絡切替部8−1のみを短絡側にしている場合で説明を進める。図2において、測定されるデータ(図2のΣ(#1〜#19))は、送受信処理部5−1から送受信処理部5−19までの総和であるため、測定したい送受信処理部5−1の位相および振幅は、他の送受信処理部5−2から受信処理部5−19から来る前述の反射波の合成信号(図2のΣ(#2〜#19))に影響を受けた結果となってしまい、結果をデータ蓄積部19に保存する作業を所定回数(ここでは、M回)繰り返したとしても、図2の#1のような理想的な送受信処理部5−1の位相および振幅の正確な測定ができない。なお、図2の#1の波形は、送受信処理部5−2から受信処理部5−19から来る前述の反射波の合成信号がなく、送受信処理部5−1(接続・短絡切替部8−1)から来る反射波の信号のみという仮想の状態のシミュレーション値である。同じく、図2のΣ(#2〜#19)の波形は、送受信処理部5−1(接続・短絡切替部8−1)から来る反射波の信号がなく、送受信処理部5−2から受信処理部5−19から来る前述の反射波の合成信号を算出するという仮想の状態のシミュレーション値である。これは、以下の説明で用いる図3でも同様である。
This simulation is performed under the condition that there are 19 transmission / reception processing unit groups 5. In other words, n of the transmission / reception processing unit 5-n is n = 19. Hereinafter, the case where n = 19 will be described. Needless to say, there is no particular limitation as long as n is an integer. Further, the description will be given in the case where only the connection / short-circuit switching unit 8-1 is on the short-circuit side by the connection / short-circuit switching control unit 17. In FIG. 2, the data to be measured (Σ (# 1 to # 19) in FIG. 2) is the sum from the transmission / reception processing unit 5-1 to the transmission / reception processing unit 5-19, and therefore the transmission / reception processing unit 5- The phase and amplitude of 1 are affected by the above-described reflected wave composite signal (Σ (# 2 to # 19 in FIG. 2)) coming from the other transmission / reception processing unit 5-2 and the reception processing unit 5-19. Thus, even if the operation of storing the result in the
そこで、実施の形態1に係るレーダ装置において、位相設定部18により、送受信処理部5−1の移相器13−1は固定し、他の送受信処理部5−2〜5−19の移相器13−2〜13−19は、測定ごとに位相をランダムに変化させ、それぞれの結果をデータ蓄積部19に保存する作業をM回繰り返す。データ蓄積部19に保存されたM個の時系列データを時系列方向に加算すると、図3に示すように、送受信処理部5−1は同位相のため、同相加算される(#1×M)。その一方、送受信処理部5−2〜5−19においては、M個の時系列データの位相は移相器を測定ごとにランダムに設定するため、反射波は同相ではないので、加算しても低いレベルとなる(Σ(#2〜#19)×M)。よって(Σ(#1〜#19)×M)が(#1×M)との値が、ほぼ一致する。これは、送受信処理部5−1はコヒーレンシーのある時系列データである一方、送受信処理部5−2〜5−19はコヒーレンシーのない時系列データであることを示している。なお、測定ごとに位相をランダムに変更する場合、移相器ごとに個別に位相を変更してもよいし、移相器13−2〜13−19をすべて同じ動作にしてもよい。
Therefore, in the radar apparatus according to the first embodiment, the phase shifter 13-1 of the transmission / reception processing unit 5-1 is fixed by the
したがって、データ蓄積部19に保存されたM個のデータを時系列方向に加算されたデータは、M=100回とすれば、いわゆるコヒーレント積分と同義の効果となるため、送受信処理部5−1の振幅は、送受信処理部5−2〜5−19の信号に対して+20dBの差が出てくる。このことは送受信処理部群5の信号(前述の反射受信信号)を無視することができることを意味する。すなわち、送受切替部7から接続・短絡切替部8−1までの位相は、送受信処理部5−1まで接続されているケーブル位相のみを検出することが可能となる。同様に、送受信処理部群5のうち、他の送受信処理部5−2〜5−19についても上記と同様の処理を行うことにより、結果として送受切替部7から送受信処理部5−1〜5−19、それぞれの、接続・短絡切替部8−1〜8−19までの伝達路振幅および位相差を取得することができる。この位相差情報を、位相設定部18にレーダ動作前に再設定させることによりフェイズドアレイアンテナのケーブル状態(伝送線路)を反映させることが可能となる。
Accordingly, the data obtained by adding the M pieces of data stored in the
なお、送受信処理部5−2〜5−19の移相器13−2〜13−19において位相をランダムではなく、等間隔に変化させた場合は、例えば、5ビット移相器の場合、360°/25=11.25°単位で32回数分設定し加算処理させると、不要反射波(送受信処理部5−2〜5−19からの反射波)は、すべて打ち消されるという効果がある。
When the phase shifters 13-2 to 13-19 of the transmission / reception processing units 5-2 to 5-19 are changed at equal intervals instead of random , for example, in the case of a 5-bit phase shifter, 360 When ° / 25 = 11.25 ° set number of 32 times the unit to be addition processing, unnecessary reflected waves (reflected waves from the transmission and reception processing unit 5-2~5-19) has the effect that all canceled.
実施の形態1に係るレーダ装置の効果について、再度図3を用いて説明する。送受信処理部群5から得られる時系列データの和(図3のΣ(#2〜#19)×M)が、送受信処理部5−1から得られる時系列データ(図3の#1×M)に対して極めて小さく、誤差のレベルになっていることが分かる。なお、誤差の範囲としては、例えば、5ビット移相器の場合、±5.625°以内であるかどうかが基準となる。次に、実際に測定に掛かる時間について試算する。パルス繰り返し周期を1msに設定した場合、M=100とすると、これをたとえばN=1000素子とした場合1ms×100回×1000素子=100秒の時間があれば、1000素子におけるそれぞれのケーブル位相差データをデータ蓄積部19に蓄積することが可能となる。
The effect of the radar apparatus according to the first embodiment will be described again with reference to FIG. The sum of the time series data obtained from the transmission / reception processing unit group 5 (Σ (# 2 to # 19) × M in FIG. 3) is the time series data obtained from the transmission / reception processing unit 5-1 (# 1 × M in FIG. 3). It can be seen that the error level is extremely small. For example, in the case of a 5-bit phase shifter, the error range is based on whether it is within ± 5.625 °. Next, the actual time required for the measurement is estimated. When the pulse repetition period is set to 1 ms, assuming that M = 100, for example, if N = 1000 elements, if there is a time of 1 ms × 100 times × 1000 elements = 100 seconds, each cable phase difference in 1000 elements Data can be stored in the
次に、図4のフローチャートを用いて、実施の形態1に係るレーダ装置の位相補償運用(一例)を説明する。この運用は、レーダ装置の通常運用である目標の検出や大気状況の観察を行う合間や定期的に行えばよい。ここでの位相補償は、伝送線路位相測定部20が短絡された伝送線路の位相を測定するごとに、複数の接続・短絡切替部8−1、8−2、〜、8−nのうち、接続側から短絡側へ切り替わるものを順次入れ替えていく制御を行い、全ての伝送線路4−1、4−2、〜、4−nの位相を伝送線路位相測定部20により、測定して、全ての伝送線路4−1、4−2、〜、4−nのずれを補償する場合である。
Next, phase compensation operation (one example) of the radar apparatus according to
まず、STEP1にて、レーダ装置の通常運用状態又は運用可能状態である全ての接続・短絡切替部8−1〜8−nが接続側に設定されている状態から、接続・短絡切替部8−1〜8−nのいずれかを、順次、短絡側に切り替えて、反射波を測定する。具体的には、順次、短絡側に切り替えた接続・短絡切替部を反射波を測定ごとに、接続側へ戻して、別の接続・短絡切替部を短絡側に切り替える動作を繰り返す。測定データはデータ蓄積部19に蓄積される(STEP2)。STEP3にて、伝送線路位相測定部20が、各伝送線路(伝送線路4−1〜4−n)の位相差を計算し、STEP4として算出した位相差データを位相補償制御部21へ送る。次に、STEP5にて、位相補償制御部21は、移相器出力で同位相となるように各移相器(移相器13−1〜13−n)の移相量を設定して、各移相器へ移相量を設定指示する。最後に、STEP1〜STEP3と同じ動作をSTEP6〜STEP8として行い、各伝送線路(伝送線路4−1〜4−n)の位相差が補償されたかを確認する。レーダ装置の設置場所が、急激な環境変化が生じるような場所であれば、この確認で位相差が補償されていないことが判明することもありうるが(補償動作後に、環境の状況が変わる場合などを想定)、その場合は、STEP1〜STEP8を繰り返せばよい。位相差の補償が確認された後、レーダ装置を通常運用状態に復帰させる。また、STEP6〜STEP8のフロー省略する運用を行ってもよい。
First, in
次に、実施の形態1に係るレーダ装置の変形例に関して図5を用いて説明する。図1に記載のレーダ装置の構成を示すブロック図では、受信部15(送受切替部7)は、一つであったが、図5のように受信部15複数設けてもよい。なお、図5においては、送受切替部7以降のフェイズドアレイアンテナ1までの構成,接続・短絡切替制御部が制御する接続・短絡切替部群8の構成,位相設定部18が制御する移相器群13の構成の図示は省略する。ここで、たとえば受信部15を20個設置すると、100/20=5秒で測定が終了することになるため、観測の合間に測定を実施しながら伝送線路(ケーブル)位相補正(補償)を行うことにより、より急激な環境変化による位相変動にも対応が可能である。
Next, a modified example of the radar apparatus according to
実施の形態1に係るレーダ装置及びその変形例では、送受信処理部群5内に反射機能を設けることにより、フィールドに反射物を置かなくとも送信電力を反射させることが可能となる。さらに、種信号をアナログ分配した後、送受信処理部群5にて増幅・受信する構成の場合、送受信処理部群5の反射電力がアナログ合成されるため、アナログ分配〜送受信処理部までの伝送線路(ケーブル)位相差の測定が困難となるが、送受信処理部群の移相器を活用することによって不要信号を相殺することが可能となり、所望の伝送線路(ケーブル)位相差・損失データを得ることが可能となる。これらのデータを蓄積し、レーダ動作前に位相設定を行うことにより位相補償を行う。 In the radar apparatus according to the first embodiment and the modification thereof, by providing a reflection function in the transmission / reception processing unit group 5, it is possible to reflect the transmission power without placing a reflector in the field. Further, in the case of a configuration in which the seed signal is distributed in analog and then amplified and received by the transmission / reception processing unit group 5, the reflected power of the transmission / reception processing unit group 5 is analog-synthesized, so the transmission line from the analog distribution to the transmission / reception processing unit Although it is difficult to measure the (cable) phase difference, it is possible to cancel unnecessary signals by using the phase shifter of the transmission / reception processing unit group, and to obtain the desired transmission line (cable) phase difference / loss data. It becomes possible. These data are accumulated and phase compensation is performed by setting the phase before the radar operation.
実施の形態2.
この発明の実施の形態2(実施の形態1の応用)について説明する。実施の形態1に係るレーダ装置及びその変形例によって得られた時系列データ(振幅・位相)を継続的に測定・比較することにより、振幅の減少があれば、ケーブル断線などの故障を発見する装置としても利用可能である。また、同様に、ケーブル周囲の温度変化検知や、レーダ装置のフィールド上での降雨・降雪しているエリアの検出及び日照しているエリアの検出にも応用することが可能である。
A second embodiment (application of the first embodiment) of the present invention will be described. By continuously measuring and comparing the time series data (amplitude / phase) obtained by the radar apparatus according to the first embodiment and its modification, if there is a decrease in the amplitude, a fault such as a cable disconnection is discovered. It can also be used as a device. Similarly, the present invention can be applied to temperature change detection around a cable, detection of an area where rainfall / snow is falling on a field of a radar device, and detection of an area where the sun is shining.
具体的に説明すると、伝送線路4−1〜4−nの温度による位相のシフト特性を事前のグラフ化しておくことにより、伝送線路ごとの位相のシフト量から、その伝送線路の周囲の温度が逆算できる。また、接続・短絡切替部8−1〜8−nによる短絡で生じた反射波が正常な値ではない場合や、接続・短絡切替部8−1〜8−nが短絡側ではなく、接続側に設定されているにも関わらず、レーダ装置の内部回路・線路の反射波よりも大きい値の反射波が存在する場合は、対応する伝送線路にケーブル断線などの故障が生じていると判断できる。これらの機能は、伝送線路位相測定部20に付加してもよいし、信号処理部16などのレーダ装置の別の回路に付加してもよい。
Specifically, by graphing the phase shift characteristics depending on the temperatures of the transmission lines 4-1 to 4-n in advance, the temperature around the transmission line can be determined from the amount of phase shift for each transmission line. You can calculate backwards. Moreover, when the reflected wave produced by the short circuit by the connection / short circuit switching units 8-1 to 8-n is not a normal value, or the connection / short circuit switching units 8-1 to 8-n are not the short circuit side but the connection side If there is a reflected wave with a value larger than the reflected wave of the internal circuit / line of the radar device even though it is set to, it can be determined that a failure such as cable disconnection has occurred in the corresponding transmission line. . These functions may be added to the transmission line
1・・フェイズドアレイアンテナ,1−1、1−2、〜、1−n・・素子アンテナ,2・・種信号生成部,3・・合成分配部(合成分配器),4・・伝送線路群,4−1、4−2、〜、4−n・・伝送線路,5・・送受信処理部群,5−1、5−2、〜、5−n・・送受信処理部,6・・アンテナ接続用伝送線路群,6−1、6−2、〜、6−n・・アンテナ接続用伝送線路,7・・送受切替部(第1の送受切替部),8・・接続・短絡切替部群,8−1、8−2、〜、8−n・・接続・短絡切替部,9・・第2の送受切替部群,9−1、9−2、〜、9−n・・第2の送受切替部,10・・第3の送受切替部群,10−1、10−2、〜、10−n・・第3の送受切替部,11・・送信信号増幅部群,11−1、11−2、〜、11−n・・送信信号増幅部,12・・受信信号増幅部群,12−1、12−2、〜、12−n・・受信信号増幅部,13・・移相器群,13−1、13−2、〜、13−n・・移相器,14・・表示部,15・・受信部,16・・信号処理部,17・・接続・短絡切替制御部,18・・位相設定部,19・・データ蓄積部,20・・伝送線路位相測定部,21・・位相補償制御部,22・・分配部。 1 .. Phased array antenna, 1-1, 1-2,..., 1-n .. Element antenna, 2 .. Seed signal generator, 3 .. Synthesizer / distributor (synthesizer / distributor), 4 .... Transmission line Group, 4-1, 4-2,..., 4-n .. transmission line, 5. .. transmission / reception processing unit group, 5-1, 5-2,. Antenna connection transmission line group, 6-1, 6-2, ..., 6-n ··· Antenna connection transmission line, 7 ·· Transmission / reception switching unit (first transmission / reception switching unit), 8 ·· Connection / short circuit switching Group, 8-1, 8-2,..., 8-n .. connection / short circuit switching unit, 9. .. second transmission / reception switching unit group, 9-1, 9-2,. Second transmission / reception switching unit, 10... Third transmission / reception switching unit group, 10-1, 10-2 to 10-n, third transmission / reception switching unit, 11 ... transmission signal amplification unit group, 11 -1, 11-2, ..., 11-n Transmission signal amplification unit, 12... Reception signal amplification unit group, 12-1, 12-2, 12-n... Reception signal amplification unit, 13. ..., 13-n... Phase shifter, 14... Display unit, 15 .. Receiving unit, 16 .. Signal processing unit, 17 .. Connection and short-circuit switching control unit, 18. Data storage unit, 20... Transmission line phase measurement unit, 21... Phase compensation control unit, 22.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010194070A JP5413333B2 (en) | 2009-08-31 | 2010-08-31 | Radar equipment |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009199664 | 2009-08-31 | ||
| JP2009199664 | 2009-08-31 | ||
| JP2010194070A JP5413333B2 (en) | 2009-08-31 | 2010-08-31 | Radar equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2011069819A JP2011069819A (en) | 2011-04-07 |
| JP5413333B2 true JP5413333B2 (en) | 2014-02-12 |
Family
ID=44015206
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2010194070A Active JP5413333B2 (en) | 2009-08-31 | 2010-08-31 | Radar equipment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5413333B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110476300A (en) * | 2017-03-31 | 2019-11-19 | 三菱电机株式会社 | The phase adjusting method of array antenna device, antenna measurement device and phased array antenna |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5408219B2 (en) * | 2011-09-30 | 2014-02-05 | 三菱電機株式会社 | Communication device and radar device |
| KR101173426B1 (en) * | 2012-03-29 | 2012-08-10 | 에스티엑스엔진 주식회사 | The radar system with dual optical fiber and the dualization method of optical fiber in radar system |
| JP6678838B2 (en) * | 2017-12-21 | 2020-04-08 | 三菱電機株式会社 | Phase difference detection circuit and radar device |
| JP6992589B2 (en) * | 2018-02-23 | 2022-01-13 | 沖電気工業株式会社 | Phase adjuster and wireless device |
| CN112180351B (en) * | 2020-09-22 | 2023-07-14 | 中国科学院空天信息创新研究院 | Phase compensation method, device, equipment and computer storage medium |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2812319B2 (en) * | 1996-12-13 | 1998-10-22 | 日本電気株式会社 | Active phased array radar phase calibration system |
| JPH1114749A (en) * | 1997-06-26 | 1999-01-22 | Mitsubishi Electric Corp | Radar equipment |
| JP4858051B2 (en) * | 2006-09-29 | 2012-01-18 | ブラザー工業株式会社 | Radio receiving apparatus, radio tag communication apparatus, and correction method for radio receiving apparatus |
-
2010
- 2010-08-31 JP JP2010194070A patent/JP5413333B2/en active Active
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110476300A (en) * | 2017-03-31 | 2019-11-19 | 三菱电机株式会社 | The phase adjusting method of array antenna device, antenna measurement device and phased array antenna |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011069819A (en) | 2011-04-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5413333B2 (en) | Radar equipment | |
| CN111193560B (en) | Multi-target measurement and control communication antenna array optical fiber closed-loop calibration method | |
| CN114185008B (en) | System and method for compensating amplitude and phase errors of receiving channel of narrow-band digital array radar system | |
| CN102955155B (en) | Distributed active phased array radar and beam forming method thereof | |
| JP4215173B2 (en) | Antenna calibration method and apparatus | |
| JP5881680B2 (en) | A system that simulates an electromagnetic environment including a network of multiple probes | |
| CN102426300A (en) | Satellite-borne beam forming receiving channel amplitude and phase error calibration system and method thereof | |
| US11171416B2 (en) | Multi-element antenna array with integral comparison circuit for phase and amplitude calibration | |
| US7038633B2 (en) | Antenna system and net drift verification | |
| AU2008291899A1 (en) | Antenna calibration | |
| CN115390022B (en) | High-precision real-time dynamic test method for radar antenna internal calibration network | |
| US8085189B2 (en) | Antenna calibration | |
| WO2019198192A1 (en) | Antenna device and calibration method | |
| WO2024110018A1 (en) | Device and method for calibration of a phased array device | |
| US8004457B2 (en) | Antenna calibration | |
| Kumar et al. | Efficacy Analysis of In-Situ Calibration of Airborne AESA | |
| AU2008291897B2 (en) | Antenna calibration | |
| CN117832882A (en) | Analog multi-beam receiving phased array antenna, design method, device and system | |
| JP6057841B2 (en) | Delay time difference measuring device, phased array antenna device, and delay time difference measuring method | |
| JPH1164487A (en) | Monitoring system for phased array antenna | |
| JP7630755B1 (en) | Antenna Measuring Equipment | |
| RU2792222C1 (en) | Method of correction of the amplitude-phase distribution of opened antenna array | |
| Fu et al. | Research on Internal Calibration Technology of Bi-satellite Ka-band FMCW SAR System | |
| JP7379350B2 (en) | Large-scale distribution timing, calibration, and control systems | |
| WO2025203711A1 (en) | Radar echo level calibration system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111207 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130213 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130218 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131028 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 5413333 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |