[go: up one dir, main page]

JP5426830B2 - Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same - Google Patents

Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP5426830B2
JP5426830B2 JP2008042090A JP2008042090A JP5426830B2 JP 5426830 B2 JP5426830 B2 JP 5426830B2 JP 2008042090 A JP2008042090 A JP 2008042090A JP 2008042090 A JP2008042090 A JP 2008042090A JP 5426830 B2 JP5426830 B2 JP 5426830B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
gas diffusion
fuel cell
diffusion electrode
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008042090A
Other languages
Japanese (ja)
Other versions
JP2009199954A (en
Inventor
利保 鈴木
拓哉 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2008042090A priority Critical patent/JP5426830B2/en
Publication of JP2009199954A publication Critical patent/JP2009199954A/en
Application granted granted Critical
Publication of JP5426830B2 publication Critical patent/JP5426830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体高分子型燃料電池用ガス拡散電極、それを用いた膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池に関する。   The present invention relates to a gas diffusion electrode for a polymer electrolyte fuel cell, a membrane-electrode assembly using the same, a method for producing the same, and a polymer electrolyte fuel cell using the same.

燃料電池は、燃料と酸化剤を連続的に供給し、これが電気化学反応したときの化学エネルギーを電力として取り出す発電システムである。この電気化学反応による発電方式を用いた燃料電池は、水の電気分解の逆反応、すなわち水素と酸素が結びついて電子と水が生成する仕組みを利用しており、高効率と優れた環境特性を有することから近年脚光を浴びている。   A fuel cell is a power generation system that continuously supplies fuel and an oxidant, and extracts chemical energy as electric power when the fuel and an oxidant react with each other. Fuel cells using this electrochemical power generation method use the reverse reaction of water electrolysis, that is, a mechanism in which hydrogen and oxygen are combined to produce electrons and water, and have high efficiency and excellent environmental characteristics. In recent years it has been in the spotlight.

燃料電池は、電解質の種類によって、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池および固体高分子型燃料電池に分別される。近年、特に常温で起動し、かつ起動時間が極めて短い等の利点を有する固体高分子型燃料電池が注目されている。この固体高分子型燃料電池を構成する単セルの基本構造は、固体高分子電解質膜の両側に触媒層を有するガス拡散電極を接合し、その外側の両面にセパレータを配したものである。   Fuel cells are classified into phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, alkaline fuel cells and solid polymer fuel cells depending on the type of electrolyte. In recent years, solid polymer fuel cells that have advantages such as startup at room temperature and extremely short startup time have attracted attention. The basic structure of a single cell constituting this polymer electrolyte fuel cell is such that a gas diffusion electrode having a catalyst layer is bonded to both sides of a polymer electrolyte membrane, and separators are arranged on both outer surfaces thereof.

このような固体高分子型燃料電池では、まず、燃料極側に供給された水素がセパレータ内のガス流路を通ってガス拡散電極に導かれる。次いで、その水素は、ガス拡散電極にて均一に拡散された後に、燃料極側の触媒層に導かれ、白金などの触媒によって水素イオンと電子とに分離される。そして、水素イオンは電解質膜を通って電解質膜を挟んで反対側の酸素極における触媒層に導かれる。一方、燃料極側に発生した電子は、負荷を有する回路を通って、酸素極側のガス拡散層に導かれ、更には酸素側の触媒層に導かれる。これと同時に、酸素極側のセパレータから導かれた酸素は、酸素極側のガス拡散電極を通って、酸素極側の触媒層に到達する。そして、酸素、電子、水素イオンとから水を生成して発電サイクルを完結する。なお、固体高分子型燃料電池に用いられる水素以外の燃料としては、メタノールおよびエタノール等のアルコールがあげられ、それらを直接燃料として用いることもできる。   In such a polymer electrolyte fuel cell, first, hydrogen supplied to the fuel electrode side is guided to the gas diffusion electrode through the gas flow path in the separator. Next, the hydrogen is uniformly diffused by the gas diffusion electrode and then led to the catalyst layer on the fuel electrode side, where it is separated into hydrogen ions and electrons by a catalyst such as platinum. Then, the hydrogen ions are guided through the electrolyte membrane to the catalyst layer in the oxygen electrode on the opposite side across the electrolyte membrane. On the other hand, electrons generated on the fuel electrode side are led to a gas diffusion layer on the oxygen electrode side through a circuit having a load, and further to a catalyst layer on the oxygen side. At the same time, oxygen introduced from the separator on the oxygen electrode side passes through the gas diffusion electrode on the oxygen electrode side and reaches the catalyst layer on the oxygen electrode side. Then, water is generated from oxygen, electrons, and hydrogen ions to complete the power generation cycle. In addition, examples of the fuel other than hydrogen used in the polymer electrolyte fuel cell include alcohols such as methanol and ethanol, and these can be directly used as fuel.

従来、固体高分子型燃料電池のガス拡散層としては、カーボン繊維からなるカーボンペーパーやカーボンクロスが用いられている。このカーボンペーパーやカーボンクロスにおいては、燃料電池運転時の加湿水やカソードでの電極反応で生成した水によるフラッディングを防止する目的で、表面またはその空隙内部に、ポリテトラフルオロエチレン(PTFE)等の撥水性バインダーによって撥水処理が施されている。しかしながら、これらのカーボンペーパーやカーボンクロスは、空孔径が非常に大きいため、十分な撥水効果が得られずに空孔中に水が滞留することがあった。   Conventionally, carbon paper or carbon cloth made of carbon fiber has been used as a gas diffusion layer of a polymer electrolyte fuel cell. In this carbon paper or carbon cloth, for the purpose of preventing flooding due to humidified water during fuel cell operation or water generated by electrode reaction at the cathode, such as polytetrafluoroethylene (PTFE) is formed on the surface or inside the gap. Water repellent treatment is performed with a water repellent binder. However, since these carbon paper and carbon cloth have a very large pore diameter, water may stay in the pores without obtaining a sufficient water repellent effect.

この点を改善するためのものとして、例えば特許文献1に示すように、カーボンペーパーに炭素等からなる導電性フィラーを含む有孔性樹脂を含有させたガス拡散電極が提案されている。しかしながら、特許文献1に示されるようなガス拡散電極は、カーボンペーパー表面上に直接、炭素などからなる導電性フィラーを含む有孔性樹脂を構成する塗料を塗布し、含浸・溶媒抽出・乾燥して作製するために、カーボンペーパーの空隙を多く塞いでしまい、そのため、空隙内部のガス透過性が悪くなり、電池性能を低下させるという問題を有していた。   In order to improve this point, for example, as shown in Patent Document 1, a gas diffusion electrode in which a porous resin containing a conductive filler made of carbon or the like is included in carbon paper has been proposed. However, the gas diffusion electrode as shown in Patent Document 1 is applied directly on the surface of carbon paper with a paint constituting a porous resin containing a conductive filler made of carbon or the like, impregnated, solvent extracted, and dried. Therefore, many gaps in the carbon paper are blocked, and therefore, gas permeability inside the voids is deteriorated, and the battery performance is deteriorated.

また、特許文献2には、ステンレス鋼メッシュにカーボンブラックとPTFEとの混合物を塗布して撥水化層を形成することが記載されている。しかしながら、このような混合物を塗布して形成したものは、ステンレス鋼メッシュの空隙を多く塞いでしまい、そのため空隙内部のガス透過性が悪くなり、電池性能が低下するという問題があった。さらに、燃料電池の製造時には、ガス拡散電極を電解質に密着させたり、接着剤を用いて接着させたりする必要があるが、ガス拡散電極に圧力が付加されると、ガス拡散電極の多孔質膜の空隙がつぶされ、ガス・水の排出が妨げられてしまうという問題もあった。   Patent Document 2 describes that a water repellent layer is formed by applying a mixture of carbon black and PTFE to a stainless steel mesh. However, those formed by applying such a mixture have a problem that many of the gaps in the stainless steel mesh are blocked, resulting in poor gas permeability inside the gaps and a decrease in battery performance. Furthermore, when manufacturing the fuel cell, it is necessary to make the gas diffusion electrode adhere to the electrolyte or to use an adhesive. When pressure is applied to the gas diffusion electrode, the porous film of the gas diffusion electrode There was also a problem that the gap of the gas was crushed and gas / water discharge was hindered.

特許文献3には、粒子径の分布中心の異なる少なくとも2種類の炭素粒子を混合したガス拡散層を備えた固体高分子膜型燃料電池が記載され、粒子径の大きい方の炭素粒子として黒鉛を用いること、フッ素樹脂で被覆して撥水性を付与した炭素粒子を用いて拡散層を形成することが記載されている。しかしながら、この固体高分子型燃料電池は、形成された拡散層の強度が低く、拡散層の撥水性も十分でないという問題があった。
特開2003−303595号公報 特開2000−58072号公報 特開2001−57215号公報
Patent Document 3 describes a solid polymer membrane fuel cell including a gas diffusion layer in which at least two types of carbon particles having different particle size distribution centers are mixed. Graphite is used as the carbon particles having a larger particle size. It is described that the diffusion layer is formed by using carbon particles coated with a fluororesin to impart water repellency. However, this polymer electrolyte fuel cell has a problem that the formed diffusion layer has low strength and the water repellency of the diffusion layer is not sufficient.
JP 2003-303595 A JP 2000-58072 A JP 2001-57215 A

本発明は、以上のような問題点を改善することを目的としてなされたものである。すなわち、本発明の目的は、多孔質の膜を通してガス拡散性を良好に保ち、それによって電池特性を良好に保ち得る固体高分子型燃料電池用ガス拡散電極を提供することにある。本発明の他の目的は、上記の固体高分子型燃料電池用ガス拡散電極を用いた膜−電極接合体およびその簡便な製造方法を提供することにある。本発明の更に他の目的は、上記の固体高分子型燃料電池用ガス拡散電極を用いた電池性能が優れた固体高分子型燃料電池を提供することにある。   The present invention has been made for the purpose of improving the above problems. That is, an object of the present invention is to provide a gas diffusion electrode for a polymer electrolyte fuel cell that can maintain good gas diffusibility through a porous membrane and thereby maintain good cell characteristics. Another object of the present invention is to provide a membrane-electrode assembly using the gas diffusion electrode for a polymer electrolyte fuel cell and a simple production method thereof. Still another object of the present invention is to provide a polymer electrolyte fuel cell having excellent cell performance using the gas diffusion electrode for a polymer electrolyte fuel cell.

上記課題を解決する本発明の固体高分子型燃料電池用ガス拡散電極は、不織布が導電性多孔質体に包含された固体高分子型燃料電池用ガス拡散電極であって、前記導電性多孔質体が、炭素材料と、下記の(a)または(b)と、からなることを特徴とする。
(a)テトラフルオロエチレンとヘキサフルオロプロピレンとビニリデンフルオライドとの3元系フッ素ポリマー
(b)テトラフルオロエチレンとビニリデンフルオライドとの2元系フッ素ポリマー
また、本発明の固体高分子型燃料電池用膜−電極接合体は、上記固体高分子型燃料電池用ガス拡散電極が、高分子電解質膜の両面に触媒層を介して積層されてなることを特徴とする。
また、上記の固体高分子型燃料電池用膜−電極接合体の第1の製造方法は、前記の固体高分子型燃料電池用ガス拡散電極に触媒層を形成し、触媒層付きガス拡散電極を得る第1工程と、該触媒層付きガス拡散電極の触媒層面を、高分子電解質膜の両面にそれぞれ配し、熱プレスにて、触媒層付きガス拡散電極と高分子電解質膜とを接合する第2工程を有することを特徴とする。
The gas diffusion electrode for a polymer electrolyte fuel cell of the present invention that solves the above problems is a gas diffusion electrode for a polymer electrolyte fuel cell in which a nonwoven fabric is included in a conductive porous body, and the conductive porous quality body, to a carbon material, the following as (a) or (b), characterized in that it consists of.
(A) Ternary fluoropolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride (b) Binary fluoropolymer of tetrafluoroethylene and vinylidene fluoride Also for the polymer electrolyte fuel cell of the present invention The membrane-electrode assembly is characterized in that the gas diffusion electrode for a solid polymer fuel cell is laminated on both sides of a polymer electrolyte membrane via a catalyst layer.
The first method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell includes the steps of forming a catalyst layer on the gas diffusion electrode for the polymer electrolyte fuel cell, and providing the gas diffusion electrode with a catalyst layer. A first step of obtaining, a catalyst layer surface of the gas diffusion electrode with a catalyst layer being disposed on both sides of the polymer electrolyte membrane, and joining the gas diffusion electrode with a catalyst layer and the polymer electrolyte membrane by hot pressing It has two steps.

また、上記の固体高分子型燃料電池用膜−電極接合体の第2の製造方法は、高分子電解質膜の両面に触媒層を形成して、触媒層付き高分子電解質膜を得る第1工程と、前記の固体高分子型燃料電池用ガス拡散電極を、該固体高分子型燃料電池用ガス拡散電極の導電性多孔質体が上記触媒層付き高分子電解質膜の各触媒層面に接触するように配し、熱プレスにて触媒層付き高分子電解質膜とガス拡散電極を接合する第2工程とを有することを特徴とする。
また、本発明の固体高分子型燃料電池は、高分子電解質膜の両面に、触媒層を介して前記の固体高分子型燃料電池用ガス拡散電極を設け、その外側にセパレータを配したことを特徴とする。
The second method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell is a first step of obtaining a polymer electrolyte membrane with a catalyst layer by forming catalyst layers on both sides of the polymer electrolyte membrane. And the gas diffusion electrode for the polymer electrolyte fuel cell so that the conductive porous body of the gas diffusion electrode for the polymer electrolyte fuel cell is in contact with each catalyst layer surface of the polymer electrolyte membrane with the catalyst layer. And a second step of joining the polymer electrolyte membrane with a catalyst layer and the gas diffusion electrode by hot pressing.
In the solid polymer fuel cell of the present invention, the gas diffusion electrode for a solid polymer fuel cell is provided on both sides of the polymer electrolyte membrane via a catalyst layer, and a separator is disposed on the outside thereof. Features.

本発明の固体高分子型燃料電池用ガス拡散電極は、炭素材料を含有する多孔質のフッ素樹脂膜からなる導電性多孔質体を有し、該導電性多孔質体による撥水性・排水性、および炭素材料による導電性を備えた滑らかな表面を有するものである。ただし、導電性多孔質体のみでは、製造工程にある加熱プレス時に空隙が潰れる問題が生じるので、その補強材として不織布を用いる。本発明における不織布は耐圧縮性に優れるため、不織布の空隙内部に包含される導電性多孔質体の空隙が不織布によって守られ加熱プレスによって潰れることがない。本発明の固体高分子型燃料電池用ガス拡散電極は、上記の特徴を有しているので、燃料電池運転時の加湿水や生成水によるフラッディングを防止し、また反応ガスの供給、除去を速やかに行うための撥水性、発生した電気を効率よく伝える導電性に優れている。また、不織布の働きにより、燃料電池作製時に負荷されるガス拡散電極への圧力によっても、多孔質であるガス拡散電極の空隙がつぶされることがなく、水やガスの透過を妨げることがない。   The gas diffusion electrode for a polymer electrolyte fuel cell according to the present invention has a conductive porous body made of a porous fluororesin film containing a carbon material, and has water repellency and drainage by the conductive porous body. And having a smooth surface with conductivity due to the carbon material. However, since only the conductive porous body has a problem that the voids are crushed during the hot pressing in the manufacturing process, a nonwoven fabric is used as the reinforcing material. Since the nonwoven fabric in this invention is excellent in compression resistance, the space | gap of the electroconductive porous body included by the inside of the space | gap of a nonwoven fabric is protected by a nonwoven fabric, and is not crushed by a hot press. Since the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention has the above-mentioned characteristics, flooding due to humidified water or generated water during operation of the fuel cell is prevented, and supply and removal of the reaction gas are promptly performed. It is excellent in water repellency for conducting the heat and the conductivity that efficiently transmits the generated electricity. Further, due to the function of the non-woven fabric, the voids of the porous gas diffusion electrode are not crushed and the permeation of water and gas is not hindered by the pressure applied to the gas diffusion electrode that is loaded when the fuel cell is manufactured.

また、導電性多孔質体は触媒層との密着がよく隙間が出来ないので、触媒層と導電性多孔質体との間に水が溜まることがない。
また、炭素材料を用いることにより導電性も保たれる。一方、本発明の固体高分子型燃料電池用ガス拡散電極を用いた燃料電池は、発電サイクルにおいて、ガス・水の排出性、導電性に優れている。また、本発明の固体高分子型燃料電池用ガス拡散電極は滑らかな表面を有するので、従来の炭素繊維シートを用いた場合に比べて、触媒層や高分子固体電解質膜を傷つけたり破壊したりすることが無いという効果もある。
Further, since the conductive porous body has good adhesion to the catalyst layer and no gap is formed, water does not accumulate between the catalyst layer and the conductive porous body.
In addition, conductivity is maintained by using a carbon material. On the other hand, a fuel cell using the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention is excellent in gas / water discharge and conductivity in a power generation cycle. In addition, since the gas diffusion electrode for a solid polymer fuel cell of the present invention has a smooth surface, the catalyst layer and the polymer solid electrolyte membrane may be damaged or destroyed as compared with the case of using a conventional carbon fiber sheet. There is also an effect that there is nothing to do.

以下、本発明について具体的に説明する。
本発明の固体高分子型燃料電池用ガス拡散電極(以下、ガス拡散電極ともいう)は、炭素材料を含む導電性多孔質体を有し、構造保持(空隙潰れ抑止)材料として不織布を用い、前記導電性多孔質体に不織布を包含する構造である。導電性多孔質体の厚さが不織布の厚さよりも厚いことが好ましく、導電性多孔質体は滑らかな面を有することが好ましい。本発明の固体高分子型燃料電池用ガス拡散電極は、導電性多孔質体にフッ素ポリマーを含むために撥水性・排水性、および炭素材料による導電性、不織布による強度を備えた滑らかな表面を有することができる。
Hereinafter, the present invention will be specifically described.
The gas diffusion electrode for a polymer electrolyte fuel cell of the present invention (hereinafter also referred to as a gas diffusion electrode) has a conductive porous body containing a carbon material, and uses a nonwoven fabric as a structure-retaining (void collapse prevention) material. The conductive porous body includes a nonwoven fabric. The thickness of the conductive porous body is preferably larger than the thickness of the nonwoven fabric, and the conductive porous body preferably has a smooth surface. The gas diffusion electrode for a polymer electrolyte fuel cell according to the present invention has a smooth surface having water repellency / drainage, conductivity by a carbon material, strength by a nonwoven fabric because the conductive porous body contains a fluoropolymer. Can have.

上記導電性多孔質体には、下記の(a)及び(b)の少なくとも1種を含むことが必要である。(a)テトラフルオロエチレン(TFE)とヘキサフルオロプロピレン(HFP)とビニリデンフルオライド(VdF)との3元系フッ素ポリマー(以下、このポリマーをTHVともいう)(b)テトラフルオロエチレン(TFE)とビニリデンフルオライド(VdF)との2元系フッ素ポリマー(以下、このポリマーをTVともいう)
つまり、これらの(a)または(b)のポリマー(以下、これら2種のポリマーを総称してフッ素ポリマーという)を単独で用いる場合に加えて、2種以上の樹脂を混合して使用することも本発明に包含される。
The conductive porous body needs to contain at least one of the following (a) and (b). (A) ternary fluoropolymer of tetrafluoroethylene (TFE), hexafluoropropylene (HFP) and vinylidene fluoride (VdF) (hereinafter this polymer is also referred to as THV) (b) tetrafluoroethylene (TFE) Binary fluoropolymer with vinylidene fluoride (VdF) (hereinafter this polymer is also referred to as TV)
That is, in addition to the case where these polymers (a) or (b) (hereinafter these two types of polymers are collectively referred to as fluoropolymers) are used alone, two or more types of resins should be used in combination. Are also encompassed by the present invention.

前記(a)及び(b)は、テトラフルオロエチレン(TFE)5〜80質量%、ヘキサフルオロプロピレン(HFP)0〜60質量%、ビニリデンフルオライド(VdF)5〜95質量%の組成比からなることが好ましい。テトラフルオロエチレン(TFE)が5質量%よりも少ないと撥水性が低下しやすい。テトラフルオロエチレン(TFE)が80質量%よりも多いと不織布への結着性が低下しやすいし、炭素材料のフッ素ポリマーへの結着性を低下しやすい。また、ビニリデンフルオライド(VdF)が5質量%よりも少ないと不織布へのフッ素ポリマーの結着性や炭素材料のフッ素ポリマーへの結着性が低下しやすい。ビニリデンフルオライド(VdF)が95質量%よりも多いと撥水性が低下しやすい。すなわちTFEは撥水性に寄与し、VdFは不織布や炭素材料の結着性に寄与する。またHFPはTFEとVdFの調和的な役割を有し、必ずしも含まれなくとも良い。ヘキサフルオロプロピレン(HFP)は0〜60質量%が好適な範囲である。本発明においては、上記のフッ素ポリマーを用いるため不織布、フッ素ポリマー、炭素材料が相互に結着することができる。   Said (a) and (b) consist of tetrafluoroethylene (TFE) 5-80 mass%, hexafluoropropylene (HFP) 0-60 mass%, vinylidene fluoride (VdF) 5-95 mass%. It is preferable. If the amount of tetrafluoroethylene (TFE) is less than 5% by mass, the water repellency tends to decrease. When there is more tetrafluoroethylene (TFE) than 80 mass%, the binding property to a nonwoven fabric will fall easily and the binding property to the fluoropolymer of a carbon material will fall easily. Further, when the vinylidene fluoride (VdF) is less than 5% by mass, the binding property of the fluoropolymer to the nonwoven fabric and the binding property of the carbon material to the fluoropolymer are liable to be lowered. If the vinylidene fluoride (VdF) is more than 95% by mass, the water repellency tends to decrease. That is, TFE contributes to water repellency, and VdF contributes to the binding properties of nonwoven fabrics and carbon materials. HFP has a harmonious role of TFE and VdF, and is not necessarily included. Hexafluoropropylene (HFP) is preferably in the range of 0 to 60% by mass. In the present invention, since the above fluoropolymer is used, the nonwoven fabric, the fluoropolymer, and the carbon material can be bound to each other.

炭素材料は、如何なるものでも利用することが可能であり、粒子状の炭素材料を挙げることができる。例えば、ファーネスブラック、チャネルブラック、アセチレンブラック等に代表される、いわゆるカーボンブラックを用いることができる。カーボンブラックは、比表面積や粒子径の大きさによらず、いずれのグレードのものでも使用可能であり、例えば、ライオンアクゾ社製:ケッチェンEC、キャボット社製:バルカンXC72R、電気化学工業社製:デンカブラック等があげられる。また、これらの中でも、高導電性および塗液中での分散性の点から、カーボンブラックが好適に用いられ、特にアセチレンブラックが好適に用いられる。本発明において、これらの炭素材料は、平均一次粒子径が10〜100nmの範囲のものが好ましい。   Any carbon material can be used, and examples thereof include particulate carbon materials. For example, so-called carbon black represented by furnace black, channel black, acetylene black and the like can be used. Carbon black can be used in any grade regardless of the specific surface area and particle size. For example, Lion Akzo: Ketjen EC, Cabot: Vulcan XC72R, Electrochemical Industry: For example, Denka Black. Among these, carbon black is preferably used from the viewpoint of high conductivity and dispersibility in the coating liquid, and acetylene black is particularly preferably used. In the present invention, these carbon materials preferably have an average primary particle diameter in the range of 10 to 100 nm.

本発明のガス拡散電極には、上記の微粒子状の炭素材料の他に、繊維状の炭素材料(以下、炭素繊維という)を使用してもよい。炭素繊維には、カーボン繊維や昭和電工のカーボンナノファイバー(商品名:VGCF)やカーボンナノチューブが挙げられる。炭素繊維のアスペクト比(繊維の断面の直径と繊維の長さ(曲がっていれば曲がったなりの長さ))は、5乃至1000が好ましい。本発明でもちいる炭素繊維は、グラファイト化が進んだ高い導電性をもつので、ガス拡散電極の抵抗低減に効果がある。   In the gas diffusion electrode of the present invention, a fibrous carbon material (hereinafter referred to as carbon fiber) may be used in addition to the fine particle carbon material. Carbon fibers include carbon fibers, Showa Denko's carbon nanofibers (trade name: VGCF), and carbon nanotubes. The aspect ratio of the carbon fiber (the diameter of the cross section of the fiber and the length of the fiber (the bent length if bent)) is preferably 5 to 1000. Since the carbon fiber used in the present invention has high conductivity with advanced graphitization, it is effective in reducing the resistance of the gas diffusion electrode.

本発明においては、さらに上記の炭素材料以外のフィラーを含んでも良い。特にポリテトラフルオロエチレン粒子などの撥水性を向上させるものが好ましい。フィラーの粒子径としては、いずれの大きさのものでも使用可能であるが、非常に大きい場合は、多孔質の空孔を塞いでしまうという問題が発生する。したがって、一般には、粒子状の炭素材料の粒子径と同程度の粒径範囲、すなわち、10〜500nmの範囲のものが好ましい。   In the present invention, a filler other than the above carbon material may be further included. In particular, those that improve water repellency such as polytetrafluoroethylene particles are preferred. As the particle size of the filler, any particle size can be used. However, when the particle size is very large, there is a problem that the porous pores are blocked. Therefore, generally, a particle size range comparable to the particle size of the particulate carbon material, that is, a range of 10 to 500 nm is preferable.

前記不織布とフッ素ポリマー(THVまたはTV)と炭素材料との質量比は、不織布:THVまたはTVの少なくとも1種:炭素材料=100:5〜150:15〜80であることをが望ましい。この範囲外では、以下の理由により燃料電池の性能低下を起こすので好ましくない。不織布100質量部に対しフッ素ポリマーが5質量部より少ないと結着、撥水性が不足したり、炭素材料の結着性が悪くなりやすく、150質量部よりも多いと空隙率が不足し発電時の生成水の排水が悪くなり好ましくない。また、不織布100質量部に対し炭素材料が15質量部よりも少ないと導電性が足りず、80質量部よりも多いと空隙率が不足し発電時の生成水の排水が悪くなり好ましくない。   The mass ratio of the nonwoven fabric, the fluoropolymer (THV or TV), and the carbon material is desirably at least one of nonwoven fabric: THV or TV: carbon material = 100: 5-150: 15-80. Outside this range, the fuel cell performance is lowered for the following reasons, which is not preferable. When the amount of fluoropolymer is less than 5 parts by mass with respect to 100 parts by mass of the nonwoven fabric, binding and water repellency are likely to be insufficient, and the binding property of the carbon material is liable to be deteriorated. The drainage of the generated water is unfavorable. Further, when the amount of the carbon material is less than 15 parts by mass with respect to 100 parts by mass of the nonwoven fabric, the conductivity is insufficient, and when it is more than 80 parts by mass, the porosity is insufficient and the drainage of generated water at the time of power generation is not preferable.

また、本発明のガス拡散電極においては、上記導電性多孔質体にシート状の導電性の多孔質膜が積層されていてもよい。導電性の多孔質膜としては、カーボン繊維からなるカーボンペーパー及びカーボンクロス、発泡ニッケル、チタン繊維焼結体等をあげることができる。導電性の多孔質膜が積層されたガス拡散電極は、導電性多孔質体と導電性の多孔質膜とが積層構造を有しているため、前記特許文献1に記載の燃料電池用ガス拡散電極とは異なり、導電性多孔質体を構成するフッ素ポリマー及び炭素材料などによって導電性の多孔質膜の空隙が塞がれることがない。したがって、空隙内部のガス透過性が良好であり、電池性能を低下させるという問題がなくなる。   In the gas diffusion electrode of the present invention, a sheet-like conductive porous film may be laminated on the conductive porous body. Examples of the conductive porous film include carbon paper and carbon cloth made of carbon fiber, nickel foam, titanium fiber sintered body, and the like. Since the gas diffusion electrode in which the conductive porous film is laminated has a laminated structure of the conductive porous body and the conductive porous film, the gas diffusion for fuel cells described in Patent Document 1 is used. Unlike the electrodes, the voids of the conductive porous film are not blocked by the fluoropolymer and the carbon material constituting the conductive porous body. Therefore, the gas permeability inside the voids is good, and the problem of reducing battery performance is eliminated.

本発明において、前記ガス拡散電極の厚みとしては、5μm乃至200μmであることが好ましく、より好ましくは10μm乃至150μmであり、さらに好ましくは15μm乃至70μmである。厚みが5μmより小さいと、保水効果が十分でなく、200μmより大きいと、厚すぎてガス拡散能力、排水能力が低下し、燃料電池性能低下を引き起こしやすい。また、導電性多孔質体の厚さは不織布と同じかそれより厚いことが好ましい。導電性多孔質体は不織布よりも触媒層への密着がよいので、不織布の厚さよりもわずかに厚くし、加熱プレス時の接着層とするのが望ましい。これにより、触媒層と本発明による導電性多孔質体との間に隙間ができることがない。導電性多孔質体は不織布よりもわずかに厚いため滑らかな面を有する。   In the present invention, the thickness of the gas diffusion electrode is preferably 5 μm to 200 μm, more preferably 10 μm to 150 μm, and still more preferably 15 μm to 70 μm. If the thickness is smaller than 5 μm, the water retention effect is not sufficient, and if it is larger than 200 μm, it is too thick and the gas diffusing capacity and drainage capacity are lowered, and the fuel cell performance is likely to be lowered. Moreover, it is preferable that the thickness of the conductive porous body is the same as or thicker than that of the nonwoven fabric. Since the conductive porous body has better adhesion to the catalyst layer than the nonwoven fabric, it is desirable that the conductive porous body be slightly thicker than the thickness of the nonwoven fabric to be an adhesive layer during hot pressing. Thereby, there is no gap between the catalyst layer and the conductive porous body according to the present invention. Since the conductive porous body is slightly thicker than the nonwoven fabric, it has a smooth surface.

前記不織布としては、炭素繊維、ガラス繊維、アラミド繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、ポリブチルテレフタレート繊維、ポリアリレート繊維、ポリビニールアルコール繊維、ベンズアゾール繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリフェニレンサルファイド繊維、ポリテトラフルオロエチレン繊維などの繊維からなる不織布を挙げることができる。この中でも炭素材料やフッ素ポリマーの定着性が優れており、高温時や高圧力下で分解をせず変形がごくわずかなポリアリレート繊維から得られた不織布が好ましい。   As the nonwoven fabric, carbon fiber, glass fiber, aramid fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, polybutyl terephthalate fiber, polyarylate fiber, polyvinyl alcohol fiber, benzazole fiber, polyparaphenylene benzobisoxazole fiber, Nonwoven fabrics made of fibers such as polyphenylene sulfide fibers and polytetrafluoroethylene fibers can be mentioned. Among these, non-woven fabrics obtained from polyarylate fibers which are excellent in fixability of carbon materials and fluoropolymers and do not decompose at a high temperature or under a high pressure and have very little deformation are preferred.

本発明のガス拡散電極は、上記フッ素ポリマーにより導電性多孔質体が不織布中に形成されるが、このような多孔質膜の構造を測る尺度としては、密度、空隙率、孔径がある。本発明のガス拡散電極の空隙率は、60%〜95%の範囲が好適であり、より好ましくは70%以上、特に好ましくは80%以上の範囲である。空隙率が60%未満では、ガス拡散能および水の排出が不十分であり、95%を超えると、機械的強度が著しく低下し、燃料電池を組み上げるまでの工程で破損しやすくなる。   In the gas diffusion electrode of the present invention, a conductive porous body is formed in a non-woven fabric by the above-mentioned fluoropolymer, and there are density, porosity, and pore diameter as scales for measuring the structure of such a porous film. The porosity of the gas diffusion electrode of the present invention is preferably in the range of 60% to 95%, more preferably 70% or more, and particularly preferably 80% or more. If the porosity is less than 60%, the gas diffusing capacity and water discharge are insufficient, and if it exceeds 95%, the mechanical strength is remarkably lowered, and the fuel cell is easily damaged in the process until it is assembled.

なお、上記の空隙率は、x=(導電性多孔質体におけるフッ素ポリマーの比重)×(導電性多孔質体におけるフッ素ポリマーの質量含有率)、y=(炭素材料の比重)×(導電性多孔質体における炭素材料の質量含有率)、z=(不織布の比重)×(導電性多孔質体における不織布の質量含有率)、および導電性多孔質体の密度を下記の式に代入することにより求めることができる。ここで、フッ素ポリマーには、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、ビニリデンフルオライド(VdF)の3元系フッ素ポリマー(THV)やテトラフルオロエチレン(TFE)とビニリデンフルオライド(VdF)との2元系フッ素ポリマー(TV)の比重や質量含有率を代入し、空隙率の計算が可能である。
空隙率(%)=[{(x+y+z)―導電性多孔質体の密度}/(x+y+z)]×100
In addition, said porosity is x = (specific gravity of fluoropolymer in conductive porous body) × (mass content of fluoropolymer in conductive porous body), y = (specific gravity of carbon material) × (conductivity) Substituting the mass content of the carbon material in the porous body), z = (specific gravity of the nonwoven fabric) × (mass content of the nonwoven fabric in the conductive porous body), and the density of the conductive porous body into the following equation: It can ask for. Here, the fluoropolymers include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), vinylidene fluoride (VdF) ternary fluoropolymer (THV), tetrafluoroethylene (TFE) and vinylidene fluoride (VdF). The porosity can be calculated by substituting the specific gravity and mass content of the binary fluoropolymer (TV) with
Porosity (%) = [{(x + y + z) −density of conductive porous body} / (x + y + z)] × 100

また、密度は、以下に示すように、ガス拡散電極の導電性多孔質体の膜厚および単位面積当たりの質量で決定でき、0.10乃至0.65g/cmの範囲が上記と同様の理由で好適である。
密度(g/cm)=単位面積当たりの質量/(膜厚×単位面積)
The density can be determined by the film thickness of the conductive porous body of the gas diffusion electrode and the mass per unit area as shown below, and the range of 0.10 to 0.65 g / cm 3 is the same as above. It is preferable for the reason.
Density (g / cm 3 ) = mass per unit area / (film thickness × unit area)

また、導電性多孔質体の孔径は、0.5μm〜10μmの範囲が好適であり、より好ましくは3μm〜10μm、更に好ましくは5μm〜10μmである。孔径が0.5μm未満であると、ガス拡散性能および水の排出が不十分となりやすい。   The pore diameter of the conductive porous body is preferably in the range of 0.5 μm to 10 μm, more preferably 3 μm to 10 μm, and still more preferably 5 μm to 10 μm. When the pore diameter is less than 0.5 μm, gas diffusion performance and water discharge tend to be insufficient.

本発明の固体高分子型燃料電池用ガス拡散電極は、次のようにして製造することができる。まず、前記(a)及び(b)の少なくとも1種のフッ素ポリマー溶液に炭素材料を分散させて溶媒混合物(塗料)を作製する。フッ素ポリマーが溶解する溶媒としては、例えば、ケトン系、エステル系、アセトン、酢酸エチル、酢酸ブチル、1−メチル−2−ピロリドンなど様々な有機溶剤を選択することができる。
フッ素ポリマー溶液に炭素材料を分散・混合させるのには、市販の撹拌機、分散機を用いることができる。得られた塗料を不織布に塗布し、乾燥することによって導電性多孔質体を形成し、本発明のガス拡散電極を得ることができる。また、別の方法として上記のフッ素ポリマー溶液に炭素材料を分散させた溶媒混合物(塗料)の中に、不織布を含浸させ、適当な間隔をあけたロールなどの隙間で余分な塗料をすりきった後に乾燥することによって導電性多孔質体を形成し、本発明のガス拡散電極を得ることができる。
The gas diffusion electrode for a polymer electrolyte fuel cell of the present invention can be produced as follows. First, a carbon mixture is dispersed in at least one fluoropolymer solution of (a) and (b) to prepare a solvent mixture (paint). As the solvent in which the fluoropolymer is dissolved, various organic solvents such as ketones, esters, acetone, ethyl acetate, butyl acetate, 1-methyl-2-pyrrolidone can be selected.
In order to disperse and mix the carbon material in the fluoropolymer solution, a commercially available stirrer or disperser can be used. The obtained paint can be applied to a nonwoven fabric and dried to form a conductive porous body, whereby the gas diffusion electrode of the present invention can be obtained. As another method, the nonwoven fabric is impregnated into the solvent mixture (paint) in which the carbon material is dispersed in the above-described fluoropolymer solution, and the excess paint is scraped off with a gap such as a roll having an appropriate interval. The conductive porous body can be formed by drying later to obtain the gas diffusion electrode of the present invention.

さらに別な方法として、適当な基体に、上記のフッ素ポリマー溶液に炭素材料を分散させた溶媒混合物(塗料)を塗布した後、不織布に転写して、乾燥することによって導電性多孔質体を形成し、本発明のガス拡散電極を得ることができる。このときの基体は乾燥後に剥離するか、膜−電極接合体を作製するときに除去する。上記基体としては、例えばポリイミドフィルム、ポリエチレンナフタレートフィルム(PEN)などが好適に使用される。
または、不織布に前記(a)及び(b)の少なくとも1種のフッ素ポリマー溶液を含浸若しくは塗布することにより不織布繊維に該フッ素ポリマーが定着されている不織布を作製した後、加熱乾燥して不織布を撥水化し、その後炭素材料の分散液を不織布に含浸もしくは塗布し、乾燥することによって導電性多孔質体を形成し、本発明のガス拡散電極を得ることができる。
As another method, a conductive porous body is formed by applying a solvent mixture (paint) in which a carbon material is dispersed in the above-mentioned fluoropolymer solution to a suitable substrate, then transferring it to a nonwoven fabric and drying it. Thus, the gas diffusion electrode of the present invention can be obtained. At this time, the substrate is peeled off after drying or removed when a membrane-electrode assembly is produced. For example, a polyimide film or a polyethylene naphthalate film (PEN) is preferably used as the substrate.
Alternatively, a nonwoven fabric in which the fluoropolymer is fixed to a nonwoven fabric fiber is prepared by impregnating or applying at least one fluoropolymer solution of (a) and (b) to the nonwoven fabric, and then heated and dried to form the nonwoven fabric. The gas diffusion electrode of the present invention can be obtained by making it water-repellent and then impregnating or applying a dispersion of a carbon material onto a nonwoven fabric and drying to form a conductive porous body.

また、本発明の固体高分子型燃料電池用ガス拡散電極が、上記の導電性多孔質体にシート状導電性の多孔質膜を積層した構造の場合には、上記のようにして形成された導電性多孔質体の上に、シート状導電性の多孔質膜を重ね、熱プレス等によって加圧して接合することによって作製することができる。   In addition, when the gas diffusion electrode for a polymer electrolyte fuel cell according to the present invention has a structure in which a sheet-like conductive porous film is laminated on the conductive porous body, it is formed as described above. It can be produced by stacking a sheet-like conductive porous film on a conductive porous body and pressurizing and joining them by hot pressing or the like.

本発明の固体高分子型燃料電池用膜−電極接合体は、上記のようにして作製された固体高分子型燃料電池用ガス拡散電極が、高分子電解質膜の両面に触媒層を介して積層された構造を有するものである。この固体高分子型燃料電池用膜−電極接合体は、次のようにして製造することができる。その製造方法の一つは、まず、基体の上に、上記と同様にして、炭素材料を含むフッ素ポリマーよりなる導電性多孔質体を形成してガス拡散電極を作製し、その上に触媒層形成用の塗料を塗布して触媒層付きガス拡散電極を作製し、次いで得られた2つの触媒層付きガス拡散電極を、それらの触媒層が高分子電解質膜の両面に接するように載置し、熱プレスによって、高分子電解質膜と触媒付きガス拡散電極とを接合させることによって、固体高分子型燃料電池用の膜−電極接合体を作製することができる。   In the membrane-electrode assembly for a polymer electrolyte fuel cell of the present invention, the gas diffusion electrode for a polymer electrolyte fuel cell produced as described above is laminated on both sides of the polymer electrolyte membrane via a catalyst layer. It has a structured. This membrane-electrode assembly for a polymer electrolyte fuel cell can be produced as follows. In one of the manufacturing methods, first, a conductive porous body made of a fluoropolymer containing a carbon material is formed on a substrate in the same manner as described above to produce a gas diffusion electrode, and a catalyst layer is formed thereon. A gas diffusion electrode with a catalyst layer is prepared by applying a coating material for formation, and then the obtained two gas diffusion electrodes with a catalyst layer are placed so that the catalyst layers are in contact with both surfaces of the polymer electrolyte membrane. A membrane-electrode assembly for a polymer electrolyte fuel cell can be produced by joining the polymer electrolyte membrane and the gas diffusion electrode with catalyst by hot pressing.

また、他の一つは、高分子電解質膜の両面に触媒層形成用の塗料を塗布して触媒層を形成し、触媒層付き高分子電解質膜を作製する。次いで、触媒層付き高分子電解質膜の触媒層両面に、それぞれ上記のようにして作製されたガス拡散電極を配し、熱プレスにて触媒層付き高分子電解質膜とガス拡散電極を接合させることによって、固体高分子型燃料電池用膜−電極接合体を作製することができる。   In the other method, a catalyst layer-forming coating material is applied to both surfaces of the polymer electrolyte membrane to form a catalyst layer, thereby producing a polymer electrolyte membrane with a catalyst layer. Next, the gas diffusion electrodes prepared as described above are disposed on both sides of the catalyst layer of the polymer electrolyte membrane with the catalyst layer, and the polymer electrolyte membrane with the catalyst layer and the gas diffusion electrode are joined by hot pressing. Thus, a membrane-electrode assembly for a polymer electrolyte fuel cell can be produced.

本発明の膜−電極接合体の製造方法は、上記のように触媒層付きガス拡散電極又は触媒層付き高分子電解質膜を作製し、熱プレスによりそれぞれ高分子電解質膜又はガス拡散電極に接合するのみであるので、膜−電極接合体を非常に簡単に製造することができる。また、形成された膜−電極接合体は、上記のガス拡散電極を備えているので、ガス・水の排出が良く、導電性に優れている。   In the method for producing a membrane-electrode assembly of the present invention, a gas diffusion electrode with a catalyst layer or a polymer electrolyte membrane with a catalyst layer is prepared as described above, and bonded to the polymer electrolyte membrane or the gas diffusion electrode by hot pressing, respectively. Therefore, the membrane-electrode assembly can be manufactured very easily. Further, since the formed membrane-electrode assembly is provided with the gas diffusion electrode described above, the gas / water discharge is good and the conductivity is excellent.

また、高分子電解質膜の両面に、触媒層を介して前記の固体高分子型燃料電池用ガス拡散電極を設け、その外側にセパレータを配することによって固体高分子型燃料電池を得ることができる。   In addition, a solid polymer fuel cell can be obtained by providing the gas diffusion electrode for a solid polymer fuel cell on both sides of the polymer electrolyte membrane via a catalyst layer and arranging a separator on the outside thereof. .

したがって、上記膜−電極接合体の両面にセパレータを配したセルよりなる本発明の固体高分子型燃料電池は、優れた発電特性を有するものとなる。また、膜−電極接合体の両面にカーボンペーパーやクロスを配し、そしてその外側にセパレータを配したセルの構成でも良い。なお、セパレータとしては、固体高分子型燃料電池において使用される公知のものならば如何なるものでも使用することができる。   Therefore, the polymer electrolyte fuel cell of the present invention composed of cells in which separators are arranged on both surfaces of the membrane-electrode assembly has excellent power generation characteristics. Moreover, the structure of the cell which distribute | arranged carbon paper and cloth on both surfaces of the membrane-electrode assembly, and has arrange | positioned the separator on the outer side may be sufficient. As the separator, any known separator used in solid polymer fuel cells can be used.

本発明を実施例によってより具体的に説明する。以下のようにガス拡散電極を作製し、続いて該ガス拡散電極を燃料極側および酸素極側のいずれにも配備した固体高分子型燃料電池を作製し評価した。   The present invention will be described more specifically with reference to examples. A gas diffusion electrode was prepared as follows, and then a polymer electrolyte fuel cell in which the gas diffusion electrode was disposed on both the fuel electrode side and the oxygen electrode side was manufactured and evaluated.

実施例1〜11
(ガス拡散電極の製造)
表1記載の組成比のテトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、ビニリデンフルオライド(VdF)のフッ素ポリマーの20質量%メチル・エチル・ケトン溶液を作製した。次いで平均一次粒子径40nmのアセチレンブラックを表1記載の質量部になるように1−メチル−2−ピロリドンに分散し、上記のフッ素ポリマーのメチル・エチル・ケトン溶液と混合して5質量%の混合溶液(塗料)を得た。得られた塗料を、ポリアリレート不織布にアプリケーターを用いて塗工して塗工膜を得、乾燥させて、表1記載の導電性多孔質体よりなるガス拡散電極を得た。乾燥時には、ポリアリレート不織布の両面ともに何の基体も存在させていない。(表1中のフッ素ポリマー及びアセチレンブラックの質量部はポリアリレート不織布100質量部に対する値として記載した。また、表1に記載のフッ素ポリマー内の組成比率について表2に記した。)
Examples 1-11
(Manufacture of gas diffusion electrode)
A 20 mass% methyl ethyl ketone solution of a fluoropolymer of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VdF) having the composition ratio shown in Table 1 was prepared. Next, acetylene black having an average primary particle diameter of 40 nm was dispersed in 1-methyl-2-pyrrolidone so as to have a mass part shown in Table 1, and mixed with a methyl ethyl ketone solution of the above fluoropolymer to obtain 5 mass%. A mixed solution (paint) was obtained. The obtained paint was applied to a polyarylate non-woven fabric using an applicator to obtain a coating film, and dried to obtain a gas diffusion electrode made of a conductive porous material described in Table 1. No substrate is present on both sides of the polyarylate nonwoven during drying. (The parts by mass of the fluoropolymer and acetylene black in Table 1 are shown as values with respect to 100 parts by mass of the polyarylate nonwoven fabric. The composition ratio in the fluoropolymer shown in Table 1 is shown in Table 2.)

比較例1
(ガス拡散電極の製造)
ポリビニリデンフルオライド(PVdF)30質量部を600質量部の1−メチル−2−ピロリドンに分散して溶液を作製した。次いで平均一次粒子径40nmのアセチレンブラックと平均一次粒子径400nmのポリテトラフルオロエチレン(PTFE)を表1記載の質量部になるように1−メチル−2−ピロリドンに分散し、上記のPVdF溶液と混合して5質量%の混合溶液(塗料)を得た。得られた塗料を、ポリアリレート不織布にアプリケーターを用いて塗工して塗工膜を得、乾燥させて、表1記載の多孔質フッ素樹脂膜よりなるガス拡散電極を得た。(表1中のPTFE、PVdF及びアセチレンブラックの質量部はポリアリレート不織布100質量部に対する値として記載した。)
Comparative Example 1
(Manufacture of gas diffusion electrode)
A solution was prepared by dispersing 30 parts by mass of polyvinylidene fluoride (PVdF) in 600 parts by mass of 1-methyl-2-pyrrolidone. Next, acetylene black having an average primary particle diameter of 40 nm and polytetrafluoroethylene (PTFE) having an average primary particle diameter of 400 nm are dispersed in 1-methyl-2-pyrrolidone so as to have a mass part shown in Table 1, and the above PVdF solution By mixing, a 5 mass% mixed solution (paint) was obtained. The obtained paint was applied to a polyarylate non-woven fabric using an applicator to obtain a coating film, and dried to obtain a gas diffusion electrode made of a porous fluororesin film described in Table 1. (The mass parts of PTFE, PVdF and acetylene black in Table 1 are shown as values relative to 100 mass parts of the polyarylate nonwoven fabric.)

(物性値測定と表面撥水性確認試験)
前記実施例1〜11及び比較例1におけるガス拡散電極の膜厚と単位面積当たりの質量を測定した。測定した質量から密度を算出し、その結果から空隙率を算出した。続いて、純水接触角を接触角計を用いて測定し、その結果を表1に記した。
(Physical property measurement and surface water repellency confirmation test)
The film thickness and the mass per unit area of the gas diffusion electrode in Examples 1 to 11 and Comparative Example 1 were measured. The density was calculated from the measured mass, and the porosity was calculated from the result. Subsequently, the pure water contact angle was measured using a contact angle meter, and the results are shown in Table 1.

Figure 0005426830
Figure 0005426830

Figure 0005426830
Figure 0005426830

表1の結果から明らかなように、実施例1〜10は純水接触角が148°以上且つ空隙率80%以上あり、撥水性と高空隙率を併せ持つ好適な範囲である。比較例1は実施例2とPTFE(TFE)とPVdF(VdF)の質量部がほぼ同程度であるが共重合していない点が異なる。このような比較例1は、純水接触角が139°と低い。比較例1の純水接触角が低い理由としては、高い撥水性を担うPTFEがPVdF内に内包されているか、偏在し、撥水性への寄与が充分引き出されていないためと考えられる。一方、実施例では、TFEとVdFが共重合しているために、TFEがVdF内に内包されずらいため、撥水性が向上していると考える。   As is clear from the results in Table 1, Examples 1 to 10 have a pure water contact angle of 148 ° or more and a porosity of 80% or more, which is a suitable range having both water repellency and high porosity. Comparative Example 1 is different from Example 2 in that the mass parts of PTFE (TFE) and PVdF (VdF) are approximately the same, but are not copolymerized. Such Comparative Example 1 has a pure water contact angle as low as 139 °. The reason why the contact angle of pure water in Comparative Example 1 is low is considered to be that PTFE responsible for high water repellency is included in PVdF or unevenly distributed, and the contribution to water repellency is not sufficiently extracted. On the other hand, in the examples, since TFE and VdF are copolymerized, TFE is difficult to be included in VdF, so that water repellency is considered to be improved.

(固体高分子型燃料電池の作製)
(1)固体高分子型燃料電池の作製1
実施例1〜11及び比較例1で得られた50mm角のガス拡散電極を2枚用意した。白金触媒を担持させたカーボンとイオン伝導性樹脂および水とエタノールの混合溶媒からなる触媒塗料を2枚のガス拡散電極の多孔質膜の表面にそれぞれ塗布・乾燥し、触媒層を形成し、触媒層付きガス拡散電極を得た。それぞれの白金触媒の量は、0.3mg/cmであった。次いで、触媒層付きガス拡散電極を、触媒層面が電解質膜(デュポン社製、商品名:ナフィオン117)と接するように配し、熱プレス(120℃、10MPa、10分)にて触媒層付きガス拡散電極と電解質膜とを接合し、膜−電極接合体を得た。得られた膜−電極接合体の両側にカーボンペーパーを配し、その外側に黒鉛製セパレータを配し、単セルに組み込んで評価用の固体高分子型燃料電池(実施例1−1〜11−1、比較例1−1)を得た。なお、実施例1−1〜11−1は、それぞれ実施例1〜11のガス拡散電極を用いた固体高分子型燃料電池であり、比較例1−1は、比較例1のガス拡散電極を用いた固体高分子型燃料電池である。
(Production of polymer electrolyte fuel cell)
(1) Fabrication of polymer electrolyte fuel cell 1
Two 50 mm square gas diffusion electrodes obtained in Examples 1 to 11 and Comparative Example 1 were prepared. A catalyst coating consisting of a carbon / ion conductive resin carrying platinum catalyst and a mixed solvent of water and ethanol is applied and dried on the porous membrane surfaces of the two gas diffusion electrodes to form a catalyst layer. A gas diffusion electrode with a layer was obtained. The amount of each platinum catalyst was 0.3 mg / cm 2 . Next, the gas diffusion electrode with the catalyst layer is arranged so that the catalyst layer surface is in contact with the electrolyte membrane (manufactured by DuPont, trade name: Nafion 117), and the gas with the catalyst layer is formed by hot pressing (120 ° C., 10 MPa, 10 minutes). The diffusion electrode and the electrolyte membrane were joined to obtain a membrane-electrode assembly. A carbon paper is arranged on both sides of the obtained membrane-electrode assembly, a graphite separator is arranged on the outside thereof, and the polymer electrolyte fuel cell for evaluation (Examples 1-1 to 11-) is incorporated into a single cell. 1 and Comparative Example 1-1) were obtained. Examples 1-1 to 11-1 are solid polymer fuel cells using the gas diffusion electrodes of Examples 1 to 11, respectively. Comparative Example 1-1 is a gas diffusion electrode of Comparative Example 1. It is the used polymer electrolyte fuel cell.

(2)固体高分子型燃料電池の作製2
高分子電解質膜(デュポン社製、商品名:ナフィオン117)の両面に、白金触媒を担持させたカーボンとイオン伝導性樹脂および溶媒からなる触媒塗料を塗布・乾燥し、触媒層を形成して、触媒層付き高分子電解質膜を得た。それぞれの白金触媒の量は、0.3mg/cmであった。次いで、前記実施例1〜11及び比較例1で得られたガス拡散電極を、ガス拡散電極面が触媒層付き高分子電解質膜に接するように配し、熱プレス(120℃、10MPa、10分)にて触媒層付き高分子電解質膜とガス拡散電極とを接合し、膜−電極接合体を得た。得られた膜−電極接合体の両面にカーボンペーパーを配し、その外側に黒鉛製セパレータを配し、単セルに組み込んで評価用の固体高分子型燃料電池(実施例2−1〜11−2、比較例1−2)を得た。なお、実施例1−2〜11−2は、それぞれ実施例1〜11のガス拡散電極を用いた固体高分子型燃料電池であり、比較例1−2は、比較例1のガス拡散電極を用いた固体高分子型燃料電池である。
(2) Fabrication of polymer electrolyte fuel cell 2
Applying and drying a catalyst coating made of carbon, an ion conductive resin and a solvent carrying a platinum catalyst on both sides of a polymer electrolyte membrane (manufactured by DuPont, trade name: Nafion 117) to form a catalyst layer, A polymer electrolyte membrane with a catalyst layer was obtained. The amount of each platinum catalyst was 0.3 mg / cm 2 . Next, the gas diffusion electrodes obtained in Examples 1 to 11 and Comparative Example 1 were arranged so that the gas diffusion electrode surface was in contact with the polymer electrolyte membrane with a catalyst layer, and hot pressing (120 ° C., 10 MPa, 10 minutes). ), The polymer electrolyte membrane with a catalyst layer and the gas diffusion electrode were joined together to obtain a membrane-electrode assembly. A carbon paper is arranged on both surfaces of the obtained membrane-electrode assembly, a graphite separator is arranged on the outside thereof, and the polymer electrolyte fuel cell for evaluation (Examples 2-1 to 11-) is incorporated into a single cell. 2, Comparative Example 1-2) was obtained. Examples 1-2 to 11-2 are polymer electrolyte fuel cells using the gas diffusion electrodes of Examples 1 to 11, respectively. Comparative Example 1-2 is a gas diffusion electrode of Comparative Example 1. It is the used polymer electrolyte fuel cell.

(固体高分子型燃料電池の評価)
上記、固体高分子型燃料電池24種(実施例1−1〜11−1、比較例1−1)(実施例1−2〜11−2、比較例1−2)の発電特性を下記の要領で評価した。固体高分子型燃料電池の供給ガスとして、燃料極側に水素ガスおよび酸素極側に酸素ガスを用いた。水素ガスは85℃の加湿温度で500mL/min、0.1MPaとなるように供給し、酸素ガスは70℃の加湿温度で1000mL/min、0.1MPaとなるように供給した。この条件下で、電流密度1A/cmでの電圧を測定した。その結果を表3に示す。
(Evaluation of polymer electrolyte fuel cells)
The power generation characteristics of the 24 types of polymer electrolyte fuel cells (Examples 1-1 to 11-1, Comparative Example 1-1) (Examples 1-2 to 11-2, Comparative Example 1-2) are as follows. I evaluated it in the way. Hydrogen gas was used on the fuel electrode side and oxygen gas was used on the oxygen electrode side as the supply gas for the polymer electrolyte fuel cell. Hydrogen gas was supplied at a humidification temperature of 85 ° C. so as to be 500 mL / min and 0.1 MPa, and oxygen gas was supplied so as to be 1000 mL / min and 0.1 MPa at a humidification temperature of 70 ° C. Under this condition, the voltage at a current density of 1 A / cm 2 was measured. The results are shown in Table 3.

Figure 0005426830
Figure 0005426830

表3に示すように、実施例1〜11で得られたガス拡散電極を備えた固体高分子型燃料電池(実施例1−1〜実施例11−1、実施例1−2〜実施例11−2)は、比較例1で得られたガス拡散電極を備えた固体高分子型燃料電池(比較例1−1、比較例1−2)よりも、電流密度1A/cmでの電圧は高く、発電特性が優れていた。これは、本発明のガス拡散電極が、不織布を含有するテトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン、(HFP)、ビニリデンフルオライド(VdF)の3元系フッ素ポリマー(THV)またはテトラフルオロエチレン(TFE)、ビニリデンフルオライド(VdF)の2元系フッ素ポリマー(TV)及び炭素材料からなる導電性多孔質体の撥水性能が優れているため、燃料電池運転時の加湿水や生成水によるフラッディングを防止することができ、ガス透過性が高くなったため、固体高分子型燃料電池の発電特性に代表される電池性能が良好となったものである。一方、比較例1は実施例のようにテトラフルオロエチレン(TFE)とビニリデンフルオライド(VdF)が共重合していないので、撥水性が向上せず、発電性能が充分得られなかった。 As shown in Table 3, polymer electrolyte fuel cells (Example 1-1 to Example 11-1, Example 1-2 to Example 11) provided with the gas diffusion electrodes obtained in Examples 1 to 11 -2) is a voltage at a current density of 1 A / cm 2 than the polymer electrolyte fuel cell (Comparative Example 1-1, Comparative Example 1-2) provided with the gas diffusion electrode obtained in Comparative Example 1. High power generation characteristics. This is because the gas diffusion electrode of the present invention is made of a terpolymer fluoropolymer (THV) or tetrafluoroethylene (THV), tetrafluoroethylene (TFE), hexafluoropropylene, (HFP), vinylidene fluoride (VdF) containing a nonwoven fabric. TFE), vinylidene fluoride (VdF) binary fluoropolymer (TV), and conductive porous bodies made of carbon materials have excellent water repellency, so flooding with humidified water or generated water during fuel cell operation Since the gas permeability is increased, the battery performance represented by the power generation characteristics of the solid polymer fuel cell is improved. On the other hand, in Comparative Example 1, since tetrafluoroethylene (TFE) and vinylidene fluoride (VdF) were not copolymerized as in the examples, water repellency was not improved and sufficient power generation performance was not obtained.

Claims (15)

不織布が導電性多孔質体に包含された固体高分子型燃料電池用ガス拡散電極であって、前記導電性多孔質体が、炭素材料と、下記の(a)または(b)と、からなることを特徴とする固体高分子型燃料電池用ガス拡散電極。
(a)テトラフルオロエチレンとヘキサフルオロプロピレンとビニリデンフルオライドとの3元系フッ素ポリマー
(b)テトラフルオロエチレンとビニリデンフルオライドとの2元系フッ素ポリマー
A gas diffusion electrode for a polymer electrolyte fuel cell in which a nonwoven fabric is included in a conductive porous body, wherein the conductive porous body includes a carbon material and the following (a) or (b) : A gas diffusion electrode for a polymer electrolyte fuel cell.
(A) ternary fluoropolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride (b) binary fluoropolymer of tetrafluoroethylene and vinylidene fluoride
前記(a)及び(b)が、テトラフルオロエチレン5〜80質量%、ヘキサフルオロプロピレン0〜60質量%、ビニリデンフルオライド5〜95質量%の組成比からなることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The said (a) and (b) consist of 5-80 mass% of tetrafluoroethylene, 0-60 mass% of hexafluoropropylene, and 5-95 mass% of vinylidene fluorides, It is characterized by the above-mentioned. A gas diffusion electrode for a polymer electrolyte fuel cell as described. 前記炭素材料が、粒子状であることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the carbon material is in the form of particles. 前記炭素材料が、カーボンブラックであることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the carbon material is carbon black. 前記カーボンブラックが、アセチレンブラックであることを特徴とする請求項4に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 4, wherein the carbon black is acetylene black. 前記不織布と(a)及び(b)の少なくとも1種の成分と炭素材料との質量比が、不織布:(a)及び(b)の少なくとも1種の成分:炭素材料=100:5〜150:15〜80であることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The mass ratio of the nonwoven fabric to at least one component of (a) and (b) and the carbon material is at least one component of nonwoven fabric: (a) and (b): carbon material = 100: 5 to 150: It is 15-80, The gas diffusion electrode for polymer electrolyte fuel cells of Claim 1 characterized by the above-mentioned. 導電性の多孔質膜が、前記導電性多孔質体に積層されてなることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein a conductive porous membrane is laminated on the conductive porous body. 前記導電性多孔質体の厚さが、不織布の厚さよりも厚いことを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   2. The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the conductive porous body is thicker than the nonwoven fabric. 前記不織布が、ポリアリレート繊維を含むことを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the nonwoven fabric contains polyarylate fibers. 前記導電性多孔質体が、炭素材料と(a)及び(b)の少なくとも1種とを分散した塗料を不織布に塗布または含浸してなることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   2. The solid polymer according to claim 1, wherein the conductive porous body is formed by applying or impregnating a nonwoven fabric with a paint in which a carbon material and at least one of (a) and (b) are dispersed. Diffuser gas diffusion electrode. 前記導電性多孔質体が、予め(a)及び(b)の少なくとも1種のフッ素ポリマー溶液を含浸若しくは塗布することにより得た不織布に、炭素材料の分散液を含浸若しくは塗布してなることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The conductive porous body is obtained by impregnating or applying a carbon material dispersion to a nonwoven fabric obtained by impregnating or applying at least one fluoropolymer solution of (a) and (b) in advance. The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the gas diffusion electrode is a solid polymer fuel cell. 請求項1乃至請求項11のいずれか1項に記載の固体高分子型燃料電池用ガス拡散電極が、高分子電解質膜の両面に触媒層を介して積層されてなることを特徴とする固体高分子型燃料電池用膜−電極接合体。   The solid polymer fuel cell gas diffusion electrode according to any one of claims 1 to 11, wherein the gas diffusion electrode is laminated on both surfaces of a polymer electrolyte membrane via a catalyst layer. Membrane-electrode assembly for molecular fuel cell. 請求項1記載の固体高分子型燃料電池用ガス拡散電極に触媒層を形成し、触媒層付きガス拡散電極を得る第1工程と、該触媒層付きガス拡散電極の触媒層面を、高分子電解質膜の両面にそれぞれ配し、熱プレスにて、触媒層付きガス拡散電極と高分子電解質膜とを接合する第2工程を有することを特徴とする固体高分子型燃料電池用膜−電極接合体の製造方法。   A first step of forming a catalyst layer on the gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1 to obtain a gas diffusion electrode with a catalyst layer, and a catalyst layer surface of the gas diffusion electrode with a catalyst layer is provided with a polymer electrolyte. A membrane-electrode assembly for a polymer electrolyte fuel cell, comprising a second step of joining the gas diffusion electrode with a catalyst layer and the polymer electrolyte membrane by hot pressing, respectively, on both sides of the membrane Manufacturing method. 高分子電解質膜の両面に触媒層を形成して、触媒層付き高分子電解質膜を得る第1工程と、請求項1記載の固体高分子型燃料電池用ガス拡散電極を、該固体高分子型燃料電池用ガス拡散電極の導電性多孔質体が上記触媒層付き高分子電解質膜の各触媒層面に接触するように配し、熱プレスにて触媒層付き高分子電解質膜とガス拡散電極を接合する第2工程とを有することを特徴とする固体高分子型燃料電池用膜−電極接合体の製造方法。   A gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein a catalyst layer is formed on both sides of the polymer electrolyte membrane to obtain a polymer electrolyte membrane with a catalyst layer; The conductive porous body of the fuel cell gas diffusion electrode is placed in contact with the catalyst layer surface of the polymer electrolyte membrane with the catalyst layer, and the polymer electrolyte membrane with the catalyst layer and the gas diffusion electrode are joined by hot pressing. A method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell. 高分子電解質膜の両面に、触媒層を介して請求項1乃至請求項11のいずれか1項に記載の固体高分子型燃料電池用ガス拡散電極を設け、その外側にセパレータを配したことを特徴とする固体高分子型燃料電池。   The gas diffusion electrode for a polymer electrolyte fuel cell according to any one of claims 1 to 11 is provided on both surfaces of the polymer electrolyte membrane via a catalyst layer, and a separator is disposed on the outside thereof. A solid polymer fuel cell.
JP2008042090A 2008-02-22 2008-02-22 Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same Expired - Fee Related JP5426830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042090A JP5426830B2 (en) 2008-02-22 2008-02-22 Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042090A JP5426830B2 (en) 2008-02-22 2008-02-22 Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2009199954A JP2009199954A (en) 2009-09-03
JP5426830B2 true JP5426830B2 (en) 2014-02-26

Family

ID=41143238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042090A Expired - Fee Related JP5426830B2 (en) 2008-02-22 2008-02-22 Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5426830B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100372A (en) * 2000-09-22 2002-04-05 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and its manufacturing method
US20050064275A1 (en) * 2003-09-18 2005-03-24 3M Innovative Properties Company Fuel cell gas diffusion layer
US7608334B2 (en) * 2005-03-29 2009-10-27 3M Innovative Properties Company Oxidatively stable microlayers of gas diffusion layers

Also Published As

Publication number Publication date
JP2009199954A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP6121007B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6717748B2 (en) Gas diffusion base material
EP2461401B1 (en) Use of a gas diffusion layer member in a solid polymer fuel cell
TWI648162B (en) Gas diffusion electrode substrate, membrane electrode assembly having the same, and fuel cell
KR20140006718A (en) Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell comprising the gas diffusion layer
JP2008204945A (en) Substrate for gas diffusion electrode, gas diffusion electrode and method for producing the same, and fuel cell
KR20170081197A (en) Gas diffusion electrode base and method for producing gas diffusion electrode base
JP5193478B2 (en) Gas diffusion electrode, membrane-electrode assembly and method for producing the same, and polymer electrolyte fuel cell
JP4348155B2 (en) Catalyst membrane for polymer electrolyte fuel cell, production method thereof and fuel cell using the same
JP2008311180A (en) Membrane electrode assembly, method for producing the same, and fuel cell using the membrane electrode assembly
JP2010153222A (en) Flexible type gas diffusion electrode substrate and membrane-electrode assembly
JP2007317435A (en) Solid polymer fuel cell and manufacturing method thereof
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2006339018A (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JP2007128671A (en) Gas diffusion electrode, membrane-electrode assembly and method for producing the same, and polymer electrolyte fuel cell
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP5311538B2 (en) Method for producing porous carbon electrode substrate
JP2005100748A (en) Electrolyte membrane electrode bonded laminate, its manufacturing method as well as solid polymer fuel cell
JP2007012424A (en) Gas diffusion electrode, membrane-electrode assembly and method for producing the same, and polymer electrolyte fuel cell
JP2007227008A (en) Porous carbon electrode substrate and fuel cell using the same
JP2009037933A (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP2008311181A (en) Membrane electrode assembly, method for producing the same, and fuel cell using the membrane electrode assembly
CN117063315A (en) Electrode base material and method for producing same
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method
JP5426830B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees