[go: up one dir, main page]

JP5545234B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5545234B2
JP5545234B2 JP2011018423A JP2011018423A JP5545234B2 JP 5545234 B2 JP5545234 B2 JP 5545234B2 JP 2011018423 A JP2011018423 A JP 2011018423A JP 2011018423 A JP2011018423 A JP 2011018423A JP 5545234 B2 JP5545234 B2 JP 5545234B2
Authority
JP
Japan
Prior art keywords
copper alloy
sealing resin
semiconductor device
film
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011018423A
Other languages
Japanese (ja)
Other versions
JP2012160539A5 (en
JP2012160539A (en
Inventor
志織 井高
圭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011018423A priority Critical patent/JP5545234B2/en
Publication of JP2012160539A publication Critical patent/JP2012160539A/en
Publication of JP2012160539A5 publication Critical patent/JP2012160539A5/ja
Application granted granted Critical
Publication of JP5545234B2 publication Critical patent/JP5545234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

この発明は、半導体素子を樹脂で封止して形成される半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device formed by sealing a semiconductor element with a resin and a manufacturing method thereof.

半導体装置(以降、パワー半導体装置と称す)は、電源(電力)の制御や供給を行う半導体素子(以降、パワー半導体素子と称す)を樹脂で封止して電気的な絶縁を確保する。従来から、この種のパワー半導体装置としては、金属体およびこの金属体にパワー半導体素子などの電子素子を電気的に接続した実装体を、モールド樹脂で封止したものが利用されている(例えば、特許文献1参照)。このパワー半導体装置では、金属体として加工性および導電性に優れた銅合金が使用され、金属部材である銅合金にパワー半導体素子がはんだ付け(ダイボンド)された後に、パワー半導体素子と銅合金の一部とがワイヤボンディングで接続される。しかしながら、部材の製造・保管工程やパワー半導体装置の製造工程の熱履歴によって銅合金が酸化されやすい。このため、銅合金の表面に形成される酸化膜によって、接合性、ワイヤボンディング性、封止樹脂との密着性が著しく低下する。そこで、銅合金の表面には、防錆剤としてBTA(ベンゾトリアゾール)系防錆皮膜が形成されることが一般的である。   In a semiconductor device (hereinafter referred to as a power semiconductor device), a semiconductor element (hereinafter referred to as a power semiconductor element) that controls and supplies power (power) is sealed with resin to ensure electrical insulation. Conventionally, as this type of power semiconductor device, a metal body and a mounting body in which an electronic element such as a power semiconductor element is electrically connected to the metal body is sealed with a mold resin (for example, , See Patent Document 1). In this power semiconductor device, a copper alloy having excellent workability and conductivity is used as the metal body, and after the power semiconductor element is soldered (die-bonded) to the copper alloy as the metal member, the power semiconductor element and the copper alloy Some are connected by wire bonding. However, the copper alloy is likely to be oxidized by the thermal history of the member manufacturing / storage process and the power semiconductor device manufacturing process. For this reason, the bonding property, wire bonding property, and adhesion to the sealing resin are remarkably lowered by the oxide film formed on the surface of the copper alloy. Therefore, a BTA (benzotriazole) rust preventive film is generally formed on the surface of the copper alloy as a rust preventive agent.

一方、一般的な銅合金の防錆剤として用いられるBTA系防錆皮膜は、酸化により銅合金表面に銅との反応層を形成するが、この銅合金表面の反応層も接合性、ワイヤボンディング性、封止樹脂との密着性を低下させてしまう。そこで、銅合金表面の酸化の対策として、銅よりも酸化されにくい金属を金属体にめっきする方法が考えられる。しかしながら、ニッケル、パラジウム、銀、金といった銅より酸化されにくい金属は非常に高価であり、製造コストが高くなるばかりか、封止樹脂との密着性が低く、必要箇所に限定した部分めっき処理を行う必要があるため製造工程が煩雑となってしまう。そこで、BTA系防錆剤よりも熱分解温度の低く、プロセス温度で分解除去可能な非BTA系防錆剤を銅合金表面に塗布し、非BTA系防錆剤の熱分解温度以下でパワー半導体素子をダイボンドし、非BTA系防錆剤が分解する温度でワイヤボンディングする方法がある(例えば、特許文献2参照)。また、BTA系防錆皮膜を用いる場合、銅合金を実装する前に銅合金表面の酸化膜と防錆皮膜とを管理することによって、封止樹脂との密着性の低下を抑える方法がある(例えば、特許文献3〜5参照)。   On the other hand, the BTA rust preventive film used as a general copper alloy rust preventive film forms a reaction layer with copper on the surface of the copper alloy by oxidation. The reaction layer on the surface of the copper alloy also has bondability and wire bonding. And adhesiveness with the sealing resin are reduced. Therefore, as a countermeasure against oxidation of the copper alloy surface, a method of plating a metal body with a metal that is less oxidized than copper is conceivable. However, metals that are harder to oxidize than copper, such as nickel, palladium, silver, and gold, are very expensive, resulting in high manufacturing costs and low adhesion to the sealing resin. Since it is necessary to do so, the manufacturing process becomes complicated. Therefore, a non-BTA rust inhibitor that has a lower thermal decomposition temperature than the BTA rust preventive agent and can be decomposed and removed at the process temperature is applied to the copper alloy surface, and the power semiconductor is below the thermal decomposition temperature of the non-BTA rust inhibitor. There is a method in which the element is die-bonded and wire-bonded at a temperature at which the non-BTA rust preventive decomposes (see, for example, Patent Document 2). Moreover, when using a BTA type rust preventive film, there is a method for suppressing a decrease in adhesion to the sealing resin by managing the oxide film and the rust preventive film on the surface of the copper alloy before mounting the copper alloy ( For example, see Patent Documents 3 to 5).

特開平9−129822号公報(第6−7頁、第1図)Japanese Patent Laid-Open No. 9-129822 (page 6-7, FIG. 1) 特開2003−197827号公報(第4頁、第2図)Japanese Patent Laid-Open No. 2003-197827 (page 4, FIG. 2) 特開2001−160610号公報(第3−4頁、第1図)JP 2001-160610 A (page 3-4, FIG. 1) 特開2000-307051号公報(第5頁、表1)JP 2000-307051 (Page 5, Table 1) 特開平7−48641号公報(第4−5頁、表1)JP 7-48641 A (page 4-5, Table 1)

従来のパワー半導体装置では、BTA系防錆皮膜を用いる場合、封止樹脂との密着性の低下を抑えるため、特許文献3〜5のように実装工程前の銅合金表面の酸化膜と防錆剤皮膜とを管理する方法が提案されているが、管理するために特殊な設備が必要であること、実際の銅合金の表面状態のばらつきが大きく、かつ、評価エリアがパワー半導体装置の表面積に比べて極めて小さく、その評価値がパワー半導体装置を代表する値とは言いがたいので、銅合金表面の酸化膜および防錆皮膜を管理する方法として実際の工程に適用することは困難であるという問題があった。   In conventional power semiconductor devices, when a BTA rust preventive film is used, an oxide film and a rust preventive film on the surface of the copper alloy before the mounting process as described in Patent Documents 3 to 5 are used to suppress a decrease in adhesion with the sealing resin. Although a method for managing the adhesive film has been proposed, special equipment is required for the management, the surface condition of the actual copper alloy varies widely, and the evaluation area is the surface area of the power semiconductor device. The evaluation value is extremely small compared to the power semiconductor device, so it is difficult to apply it to the actual process as a method for managing the oxide film and rust preventive film on the copper alloy surface. There was a problem.

この発明は、上述のような課題を解決するためになされたもので、銅合金表面の酸化膜および防錆剤皮膜を管理するための特殊な設備や工程がなくても、金属部材である銅合金と封止樹脂との界面にこれらの密着性を阻害する防錆皮膜が介在することを防ぎ、金属部材と封止樹脂との密着性に優れた信頼性の高い半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and copper that is a metal member can be obtained without special equipment and processes for managing an oxide film and a rust preventive film on the surface of a copper alloy. It is possible to prevent a rust preventive film from interfering with these adhesions at the interface between the alloy and the sealing resin, and to obtain a highly reliable semiconductor device having excellent adhesion between the metal member and the sealing resin. .

この発明に係る半導体装置は、銅合金製の金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置であって、金属部材と封止樹脂との界面に、膜厚が100nm以下で、かつ、酸性かつ還元性を有するガス雰囲気中で形成され、酸素および銅の成分濃度が50at%以上の酸化膜が介在し、金属部材を防錆するための防錆皮膜が介在しないものである。 A semiconductor device according to the present invention is a semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a copper alloy metal member with a sealing resin, and at the interface between the metal member and the sealing resin, A rust-preventing film that is formed in a gas atmosphere having a film thickness of 100 nm or less and having an acidic and reducing property, and an oxide film having an oxygen and copper component concentration of 50 at% or more intervenes to rust the metal member. Is not intervening.

この発明は、金属部材と封止樹脂との界面に、膜厚が100nm以下で、かつ、酸性かつ還元性を有するガス雰囲気中で形成され、酸素および銅の成分濃度が50at%以上の酸化膜が介在し、金属部材を防錆するための防錆皮膜が介在しないので、金属部材と封止樹脂との密着性にすぐれた信頼性の高い半導体装置を得ることができる。 The present invention provides an oxide film having a film thickness of 100 nm or less, an acidic and reducing gas atmosphere at the interface between a metal member and a sealing resin, and an oxygen and copper component concentration of 50 at% or more. Since a rust preventive film for preventing rust of the metal member is not interposed, a highly reliable semiconductor device having excellent adhesion between the metal member and the sealing resin can be obtained.

本発明の実施の形態1におけるパワー半導体装置の横断面概略図である。It is a cross-sectional schematic diagram of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1におけるパワー半導体装置の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1におけるパワー半導体装置の製造工程を示す別のフロー図である。It is another flowchart which shows the manufacturing process of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における銅合金フレーム表面の防錆皮膜の膜厚および酸化膜の膜厚の測定結果である。It is a measurement result of the film thickness of the rust preventive film on the copper alloy frame surface in Embodiment 1 of this invention, and the film thickness of an oxide film. 本発明の実施の形態1における封止樹脂の界面剥離率の測定結果である。It is a measurement result of the interface peeling rate of sealing resin in Embodiment 1 of the present invention. 本発明の実施の形態2におけるパワー半導体装置の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the power semiconductor device in Embodiment 2 of this invention. 本発明の実施の形態2における銅合金フレーム表面の酸化膜の膜厚および封止樹脂の界面剥離率の測定結果である。It is a measurement result of the film thickness of the oxide film of the copper alloy frame surface in Embodiment 2 of this invention, and the interface peeling rate of sealing resin.

実施の形態1.
図1は、本発明の実施の形態1におけるパワー半導体装置の断面概略図である。図1に示すように、パワー半導体装置7は、ヒートスプレッダ1、リードフレーム2a,2b、接合材3a,3b、パワー半導体素子4、ボンディングワイヤ5、封止樹脂6などによって構成されている。ヒートスプレッダ1、リードフレーム2a,2bは、金属部材である銅合金で形成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a power semiconductor device according to Embodiment 1 of the present invention. As shown in FIG. 1, the power semiconductor device 7 includes a heat spreader 1, lead frames 2a and 2b, bonding materials 3a and 3b, a power semiconductor element 4, a bonding wire 5, a sealing resin 6, and the like. The heat spreader 1 and the lead frames 2a and 2b are formed of a copper alloy that is a metal member.

ヒートスプレッダ1は、パワー半導体素子4から発生する熱を放熱するものであり、その一方の面にパワー半導体素子4が設けられる。ヒートスプレッダ1とパワー半導体素子4は、接合材3aによって接合されている。リードフレーム2aの一端は、ボンディングワイヤ5を介してパワー半導体素子4と電気的に接続されている。また、リードフレーム2bの一端は、接合材3bによってパワー半導体素子4と接合され、パワー半導体素子4と電気的に接続されている。リードフレーム2a,2bの他端は、パワー半導体装置7の外部に突出しており、外部配線と接続することができる。ヒートスプレッダ1、リードフレーム2a,2b、およびパワー半導体素子4によって実装体が構成される。そして、実装体を封止樹脂6で封止してパワー半導体装置7が形成される。   The heat spreader 1 radiates heat generated from the power semiconductor element 4, and the power semiconductor element 4 is provided on one surface thereof. The heat spreader 1 and the power semiconductor element 4 are bonded by a bonding material 3a. One end of the lead frame 2 a is electrically connected to the power semiconductor element 4 through a bonding wire 5. One end of the lead frame 2 b is joined to the power semiconductor element 4 by a joining material 3 b and is electrically connected to the power semiconductor element 4. The other ends of the lead frames 2a and 2b protrude outside the power semiconductor device 7 and can be connected to external wiring. A mounting body is configured by the heat spreader 1, the lead frames 2 a and 2 b, and the power semiconductor element 4. Then, the power semiconductor device 7 is formed by sealing the mounting body with the sealing resin 6.

このように、パワー半導体装置7は、封止樹脂6で封止されているため、ヒートスプレッダ1およびリードフレーム2a,2bと封止樹脂6との密着性がパワー半導体装置7の信頼性を大きく左右する。ヒートスプレッダ1およびリードフレーム2a,2bは、電気・熱伝導性に優れる銅合金を使用しており、通常、その表面には変色防止を目的とした防錆剤が塗布されている。しかしながら、その防錆剤がヒートスプレッダ1およびリードフレーム2a,2bと封止樹脂6との密着性を阻害する可能性がある。   Thus, since the power semiconductor device 7 is sealed with the sealing resin 6, the adhesion between the heat spreader 1 and the lead frames 2a, 2b and the sealing resin 6 greatly affects the reliability of the power semiconductor device 7. To do. The heat spreader 1 and the lead frames 2a and 2b use a copper alloy having excellent electrical and thermal conductivity, and usually a rust preventive agent for preventing discoloration is applied to the surface. However, the rust preventive agent may inhibit the adhesion between the heat spreader 1 and the lead frames 2 a and 2 b and the sealing resin 6.

我々は、銅合金と封止樹脂6との密着性に影響する因子が、パワー半導体素子4やリードフレーム2a,2bの接合時の加熱であると考えて、銅合金に対する熱履歴と封止樹脂の密着性との関係について調査を行った。この結果、封止樹脂の密着性に対して銅合金表面の防錆剤有無の影響が大きく、銅合金表面に対する防錆処理の有無で酸化膜の成長過程が異なること、BTA系防錆剤が塗布されている場合には加熱温度の上昇に伴って封止樹脂の密着性が著しく低下することがわかった。さらに、防錆剤の熱特性を調査した結果、銅合金表面の防錆皮膜が一般的な接合時の温度範囲(180〜400度)において、多段の熱分解を生じ、その反応によって酸化膜の形態が変化して封止樹脂の密着強度が低下することが判明した。そこで、次のような手法によって封止樹脂の密着強度が低下を防ぐことにした。   We consider that the factor that affects the adhesion between the copper alloy and the sealing resin 6 is the heating at the time of joining the power semiconductor element 4 and the lead frames 2a and 2b. We investigated the relationship with the adhesion of the. As a result, the influence of the presence or absence of a rust inhibitor on the surface of the copper alloy is greatly affected by the adhesion of the sealing resin, and the growth process of the oxide film differs depending on the presence or absence of the rust prevention treatment on the copper alloy surface. When applied, it was found that the adhesiveness of the sealing resin was significantly lowered as the heating temperature increased. Furthermore, as a result of investigating the thermal characteristics of the rust preventive agent, the rust preventive film on the copper alloy surface undergoes multi-stage thermal decomposition in the general temperature range (180 to 400 degrees) at the time of joining, and the reaction causes the oxide film It has been found that the adhesive strength of the sealing resin is reduced by changing the form. Therefore, it was decided to prevent the adhesion strength of the sealing resin from being lowered by the following method.

図2は、本発明の実施の形態1におけるパワー半導体装置の製造工程を示すフロー図である。金属部材成形工程にて、ヒートスプレッダ1およびリードフレーム2a,2bの金属部材は、銅合金をプレスあるいは銅合金をエッチングすることによって成形される。洗浄工程の後、防錆剤塗布工程にて、銅合金の表面にBTAを主成分とする防錆皮膜が形成され、防錆皮膜が形成された状態で保管される。BTA防錆皮膜は、BTAおよびBTAと銅合金との反応層で構成されている。例えばBTAの希釈液に銅合金を浸した後、銅合金を乾燥することによって、膜厚が1nm以上300nm以下のBTA防錆皮膜を得ることができる。   FIG. 2 is a flowchart showing manufacturing steps of the power semiconductor device according to the first embodiment of the present invention. In the metal member forming step, the metal members of the heat spreader 1 and the lead frames 2a and 2b are formed by pressing a copper alloy or etching a copper alloy. After the cleaning process, in the rust preventive coating process, a rust preventive film mainly composed of BTA is formed on the surface of the copper alloy, and the rust preventive film is stored. The BTA rust preventive film is composed of BTA and a reaction layer of BTA and a copper alloy. For example, after immersing a copper alloy in a diluted solution of BTA, the copper alloy is dried to obtain a BTA rust preventive film having a thickness of 1 nm to 300 nm.

次に、素子搭載工程にて、表面に防錆皮膜が形成されたヒートスプレッダ1の所定の位置に接合材3aを介してパワー半導体素子4を搭載する。そして、ヒートスプレッダ1とパワー半導体素子4とを、酸性・還元性ガス(例えば、3重量%のギ酸を含む窒素ガス)雰囲気中に曝し、加熱1工程にて、ヒートスプレッダ1とパワー半導体素子4とを加熱して接合させ、パワー半導体素子4がヒートスプレッダ1にダイボンドされる。雰囲気温度180℃以上、加熱時間5分以上の加熱条件であれば、用いる接合材によって加熱条件を選択できる。なお、はんだ等、溶融を伴う接合材を用いる場合には、ガス雰囲気が負圧状態であることが望ましい。接合材3a,3bは、主にスズを主成分とするはんだを用いるが、亜鉛系、ビスマス系など各種はんだや、導電性無機フィラを低温焼結させる金属焼結型、無機フィラをバインダ樹脂で固着させる導電性接着剤などであってもよい。また、接合材3a,3bの供給形態もペレットのほか、ペースト状、パウダーであってもよい。酸性・還元性ガスは、ギ酸、酢酸など分子中にカルボキシル基を持つもの(カルボン酸)が好ましく、シュウ酸やリンゴ酸などの多価カルボン酸を単一あるいはこれらを含む混合ガスを酸性・還元性ガスとして用いることができる。   Next, in the element mounting step, the power semiconductor element 4 is mounted through a bonding material 3a at a predetermined position of the heat spreader 1 having a rust preventive film formed on the surface. Then, the heat spreader 1 and the power semiconductor element 4 are exposed to an atmosphere of an acidic / reducing gas (for example, nitrogen gas containing 3% by weight of formic acid), and the heat spreader 1 and the power semiconductor element 4 are combined in one heating step. The power semiconductor element 4 is die-bonded to the heat spreader 1 by heating and bonding. If the heating conditions are an atmospheric temperature of 180 ° C. or more and a heating time of 5 minutes or more, the heating conditions can be selected depending on the bonding material to be used. In addition, when using joining materials with melting, such as solder, it is desirable that the gas atmosphere is in a negative pressure state. As the bonding materials 3a and 3b, a solder mainly composed of tin is used. However, various solders such as zinc and bismuth, a metal sintered type for sintering a conductive inorganic filler at a low temperature, and an inorganic filler with a binder resin. It may be a conductive adhesive to be fixed. Moreover, the supply form of the bonding materials 3a and 3b may be a paste or powder in addition to pellets. The acidic / reducing gas preferably has a carboxyl group in the molecule such as formic acid and acetic acid (carboxylic acid), and a single or mixed gas containing polyvalent carboxylic acid such as oxalic acid or malic acid is acidic / reduced. It can be used as a sex gas.

次に、フレーム搭載工程にて、表面に防錆皮膜が形成されたリードフレーム2bを、ヒートスプレッダ1およびヒートスプレッダ1が接合された面とは逆側のパワー半導体素子4の主面に接合材3bを介して設置する。ヒートスプレッダ1およびパワー半導体素子4とリードフレーム2bとを前述と同じ酸性・還元性ガス雰囲気中に曝し、加熱2工程にて、ヒートスプレッダ1およびパワー半導体素子4の主面とリードフレーム2bとを加熱して接合する。本実施の形態では、ヒートスプレッダ1とパワー半導体素子4とを加熱する工程と、ヒートスプレッダ1およびパワー半導体素子4とリードフレーム2bとを加熱する工程とを分けているが、図3に示すように同時に加熱してもよい。酸性・還元性ガス雰囲気中での加熱工程によって、銅合金であるヒートスプレッダ1およびリードフレーム2bの表面では、BTA系防錆皮膜および/または防錆剤と銅の反応層が分解・除去されるとともに、酸化膜が還元されて5nm以下の膜厚となっている。   Next, in the frame mounting process, the lead frame 2b having a rust preventive film formed on the surface thereof is bonded to the heat spreader 1 and the main surface of the power semiconductor element 4 opposite to the surface where the heat spreader 1 is bonded. Install through. Heat spreader 1 and power semiconductor element 4 and lead frame 2b are exposed to the same acidic / reducing gas atmosphere as described above, and the main surface of heat spreader 1 and power semiconductor element 4 and lead frame 2b are heated in two heating steps. And join. In the present embodiment, the process of heating the heat spreader 1 and the power semiconductor element 4 and the process of heating the heat spreader 1, the power semiconductor element 4 and the lead frame 2b are separated, but simultaneously as shown in FIG. You may heat. The heating process in an acidic / reducing gas atmosphere decomposes and removes the BTA anticorrosive film and / or the reaction layer of the anticorrosive and copper on the surfaces of the heat spreader 1 and the lead frame 2b, which are copper alloys. The oxide film is reduced to a thickness of 5 nm or less.

次に、ワイヤボンディング工程(配線工程)に進み、パワー半導体素子4とリードフレーム2aとをボンディングワイヤ5で接続する。ボンディングワイヤ5の接続方法として、アルミのスティッチボンドのほか、金や銅のボールボンディングなど公知のワイヤボンディング工程が利用できる。このようにして、ヒートスプレッダ1、リードフレーム2a,2b、およびパワー半導体素子4が接合され、実装体が得られる。   Next, the process proceeds to a wire bonding process (wiring process), and the power semiconductor element 4 and the lead frame 2 a are connected by the bonding wire 5. As a method for connecting the bonding wires 5, known wire bonding processes such as gold or copper ball bonding can be used in addition to aluminum stitch bonding. In this way, the heat spreader 1, the lead frames 2a and 2b, and the power semiconductor element 4 are joined to obtain a mounting body.

その後、封止工程に進み、トランスファモールドや液状注型などのモールド工法によって、リードフレーム2a,2bの一部を残して、実装体を封止樹脂6で覆い、キュア工程で封止樹脂6を硬化してパワー半導体装置7を得る。封止樹脂6には、エポキシ樹脂、硬化剤および無機質充填材を主成分とするエポキシ樹脂組成物のほか、一般的な樹脂封止材が使用される。ここで、ワイヤボンディング工程および封止工程により、ヒートスプレッダ1およびリードフレーム2a,2bの銅合金の表面には、膜厚が100nmより薄く(より好ましくは60nm以下)、酸素の成分と銅の成分との合計が50at%以上の酸化膜が形成されており、銅合金と封止樹脂6との界面に防錆皮膜が介在しない。この酸化膜を介して銅合金と封止樹脂6とが強固に結合し、剥離しにくくなる。なお、酸化膜の成分に酸素および銅以外の窒素、炭素、その他の合金が多く含まれると酸化膜の膜質が劣化するが、酸素の成分と銅の成分との合計が50at%以上であれば、酸化膜本来の特性が得られ、銅合金と封止樹脂6との密着性も良好となる。また、酸化膜は主にCuOとCuOで構成されるが、酸化膜の膜厚が100nmより厚くなると、膜質が脆いCuOの膜厚が厚くなるため、封止樹脂6が銅合金から剥離しやすくなるが、酸化膜の膜厚が100nm以下であれば、銅合金と封止樹脂6との密着性も良好となる。 Thereafter, the process proceeds to a sealing process, and the mounting body is covered with a sealing resin 6 while leaving a part of the lead frames 2a and 2b by a molding method such as transfer molding or liquid casting, and the sealing resin 6 is applied in a curing process. Curing is performed to obtain the power semiconductor device 7. For the sealing resin 6, a general resin sealing material is used in addition to an epoxy resin composition mainly composed of an epoxy resin, a curing agent, and an inorganic filler. Here, the surface of the copper alloy of the heat spreader 1 and the lead frames 2a and 2b is thinner than 100 nm (more preferably 60 nm or less) by the wire bonding process and the sealing process, and the oxygen component and the copper component An oxide film having a total of 50 at% or more is formed, and no rust preventive film is interposed at the interface between the copper alloy and the sealing resin 6. The copper alloy and the sealing resin 6 are firmly bonded through this oxide film, and are difficult to peel off. If the oxide film component contains a large amount of nitrogen, carbon, and other alloys other than oxygen and copper, the film quality of the oxide film deteriorates. However, if the total of the oxygen component and the copper component is 50 at% or more, The original characteristics of the oxide film can be obtained, and the adhesion between the copper alloy and the sealing resin 6 can be improved. In addition, the oxide film is mainly composed of CuO and Cu 2 O. However, if the thickness of the oxide film is greater than 100 nm, the film quality of Cu 2 O, which is brittle in film quality, is increased. However, if the thickness of the oxide film is 100 nm or less, the adhesion between the copper alloy and the sealing resin 6 is also good.

以下、酸性・還元性ガス雰囲気中で加熱を行った場合の銅合金フレーム(ヒートスプレッダ1およびリードフレーム2a,2bに相当)の表面状態の測定結果、および銅合金フレームと封止樹脂との界面剥離率の測定結果を説明し、銅合金フレームと封止樹脂との密着性向上の効果を明らかにする。図4に、加熱処理条件別に測定した銅合金フレーム表面の防錆皮膜および酸化膜の膜厚の測定結果を示す。図4において、横軸は、加熱処理条件で、縦軸は、防錆皮膜厚(単位nm)または酸化膜厚(単位nm)である。実験に用いた銅合金フレームは、事前にBTAを主成分とする防錆皮膜が形成されたものである。   Hereinafter, the measurement results of the surface state of the copper alloy frame (corresponding to the heat spreader 1 and the lead frames 2a and 2b) when heated in an acidic / reducing gas atmosphere, and the interface peeling between the copper alloy frame and the sealing resin The measurement result of the rate will be explained, and the effect of improving the adhesion between the copper alloy frame and the sealing resin will be clarified. In FIG. 4, the measurement result of the film thickness of the rust preventive film and oxide film of the copper alloy frame surface measured according to heat processing conditions is shown. In FIG. 4, the horizontal axis represents heat treatment conditions, and the vertical axis represents the rust preventive film thickness (unit: nm) or oxide film thickness (unit: nm). The copper alloy frame used in the experiment has a rust preventive film formed mainly of BTA in advance.

加熱処理条件は、BTA系防錆剤が塗布された銅合金フレームを酸性・還元性ガス(3重量%のギ酸を含む窒素ガス)雰囲気中で、3分、5分、15分、30分間加熱処理した場合と、比較のために、窒素ガス雰囲気中で3分加熱処理した場合の5条件である。また、参考として加熱処理前に相当する未処理の場合についても示した。図4(a)、図4(b)、図4(c)は、それぞれ加熱温度が150℃、180℃、250℃の場合の結果である。膜厚の測定は、製造ロットの異なる銅合金フレーム20枚に対して、X線光電子分光分析法(XPS)によるデプスプロファイルモードにて行った。防錆皮膜の膜厚は、窒素と銅との光電子強度比を用いて算出し、酸化膜の膜厚は、酸素と銅との光電子強度比を用いて算出した。図4と後述の図5において、各条件毎に示したエラーバーは20枚の銅合金フレームでの測定結果の最大・最小を示し、「△」、「◇」等の記号は各条件毎の平均値を示す。   Heat treatment conditions are as follows: a copper alloy frame coated with a BTA rust inhibitor is heated in an acidic / reducing gas (nitrogen gas containing 3% by weight formic acid) atmosphere for 3 minutes, 5 minutes, 15 minutes, or 30 minutes. For comparison, there are five conditions for heat treatment in a nitrogen gas atmosphere for 3 minutes for comparison. For reference, an untreated case corresponding to the heat treatment is also shown. FIG. 4A, FIG. 4B, and FIG. 4C show the results when the heating temperatures are 150 ° C., 180 ° C., and 250 ° C., respectively. The film thickness was measured in depth profile mode by X-ray photoelectron spectroscopy (XPS) on 20 copper alloy frames with different production lots. The film thickness of the anticorrosive film was calculated using the photoelectron intensity ratio between nitrogen and copper, and the film thickness of the oxide film was calculated using the photoelectron intensity ratio between oxygen and copper. In FIG. 4 and FIG. 5 to be described later, the error bar shown for each condition indicates the maximum / minimum of the measurement results of 20 copper alloy frames, and symbols such as “Δ” and “◇” indicate the respective conditions. Average values are shown.

図5に、加熱処理条件別の封止樹脂の界面剥離率を示す。図5(a)、図5(b)、図5(c)は、それぞれ加熱温度が150℃、180℃、250℃の場合の結果である。界面剥離率は、単位面積当たりの封止樹脂が剥離している面積の割合を示す値である。この界面剥離率によって、銅合金フレームと封止樹脂との密着性がわかる。封止樹脂は、日立化成工業(株)製CEL−4650を用いた。銅合金フレーム表面に直径3mmのプリンカップ形状に、トランスファモールド装置で成形したものを、プッシュプルテスタ(アイコーエンジニアリング(株)製RX−20)を用いて1mm/secの定速で横荷重をかけ、せん断破壊したときの破壊面における界面剥離の面積率で比較した。界面剥離率30%以下であれば、実用上問題がないレベルであり、界面剥離率30%が密着性基準となる。界面剥離率30%を満足するためには、防錆皮膜の膜厚がほぼ0nmであり、酸化膜の膜厚が100nm以下である必要がある。   In FIG. 5, the interface peeling rate of the sealing resin according to heat processing conditions is shown. 5 (a), 5 (b), and 5 (c) show the results when the heating temperatures are 150 ° C., 180 ° C., and 250 ° C., respectively. The interfacial peeling rate is a value indicating the ratio of the area where the sealing resin is peeled per unit area. The adhesion between the copper alloy frame and the sealing resin can be understood from the interface peeling rate. As the sealing resin, CEL-4650 manufactured by Hitachi Chemical Co., Ltd. was used. Using a push-pull tester (RX-20 manufactured by Aiko Engineering Co., Ltd.), a lateral load is applied at a constant speed of 1 mm / sec. Comparison was made by the area ratio of interfacial debonding at the fracture surface when shear fracture occurred. If the interfacial peel rate is 30% or less, there is no problem in practical use, and the interfacial peel rate of 30% is the adhesion standard. In order to satisfy the interface peeling rate of 30%, the film thickness of the rust preventive film needs to be approximately 0 nm, and the film thickness of the oxide film needs to be 100 nm or less.

図4(a)、図5(a)より、酸性・還元性ガス雰囲気中での加熱条件150℃以上の場合、加熱時間に関係なく、銅部材表面の防錆皮膜は平均150nmで、界面剥離率がほぼ100%であり、銅合金フレームと封止樹脂とが密着しにくい条件であることがわかる。これに対して、図4(b)、図5(b)より、酸性・還元性ガス雰囲気中での加熱条件180℃、5分以上の場合、銅部材表面の防錆皮膜は0nmであり、銅部材表面の酸化膜は100nm以下であり、界面剥離率が30%以下であり密着性基準を満足している。また、図4(c)、図5(c)より、酸性・還元性ガス雰囲気中での加熱条件250℃以上、3分以上の場合、銅部材表面の防錆皮膜は0nmであり、銅部材表面の酸化膜は100nm以下であり、界面剥離率が30%以下であり密着性基準を満足している。つまり、酸性・還元性ガス雰囲気中での加熱条件180℃以上かつ5分以上の場合、または250℃以上かつ3分以上の場合、銅部材表面の防錆皮膜は0nmであり、銅部材表面の酸化膜は100nm以下であり、界面剥離率が30%以下であり銅合金フレームと封止樹脂との密着性基準を満足している。一方、窒素ガス雰囲気中で加熱した場合では、加熱温度(150℃、180℃、250℃)に関係なく、防錆皮膜が残存しており、界面剥離率がほぼ100%であり、銅合金フレームと封止樹脂とが密着しにくい条件であることがわかる。   4 (a) and 5 (a), when the heating conditions in the acidic / reducing gas atmosphere are 150 ° C. or higher, the rust preventive film on the copper member surface has an average of 150 nm regardless of the heating time, and the interface peeling It can be seen that the rate is almost 100%, which is a condition in which the copper alloy frame and the sealing resin are hardly adhered to each other. On the other hand, from FIG. 4 (b) and FIG. 5 (b), in the case of heating conditions in an acidic / reducing gas atmosphere at 180 ° C. for 5 minutes or more, the rust preventive film on the surface of the copper member is 0 nm, The oxide film on the surface of the copper member is 100 nm or less, and the interface peeling rate is 30% or less, which satisfies the adhesion standard. Moreover, from FIG.4 (c) and FIG.5 (c), when the heating conditions in acidic / reducing gas atmosphere are 250 degreeC or more and 3 minutes or more, the rust preventive film on the surface of a copper member is 0 nm, The oxide film on the surface is 100 nm or less, and the interface peeling rate is 30% or less, which satisfies the adhesion standard. That is, when the heating conditions in an acidic / reducing gas atmosphere are 180 ° C. or more and 5 minutes or more, or 250 ° C. or more and 3 minutes or more, the rust preventive film on the surface of the copper member is 0 nm, The oxide film has a thickness of 100 nm or less, an interface peeling rate of 30% or less, and satisfies the adhesion standard between the copper alloy frame and the sealing resin. On the other hand, when heated in a nitrogen gas atmosphere, the rust preventive film remains and the interfacial peeling rate is almost 100% regardless of the heating temperature (150 ° C., 180 ° C., 250 ° C.). It can be seen that the sealing resin and the sealing resin are difficult to adhere to each other.

以上のように、酸性かつ還元性ガス雰囲気中にて180℃以上の温度で実装体を5分間以上加熱し、実装体と封止樹脂とを封止することによって、実装体を構成する銅合金と封止樹脂との界面に膜厚が100nm以下で、かつ、酸素および銅の成分が50at%以上の酸化銅のみを介在させ、銅合金を防錆するための防錆皮膜を介在させないことができる。また、酸性・還元性ガス雰囲気中での加熱工程によって、実装体における銅合金であるヒートスプレッダ1およびリードフレーム2a,2bの表面では、BTA系防錆皮膜および/または防錆剤と銅の反応層が分解・除去されるとともに、酸化膜が還元されて5nm以下にすることもできる。このような製造方法によって、銅合金と封止樹脂との界面に密着性を阻害する防錆剤、防錆剤と銅合金との反応層、脆弱な構造に成長した酸化膜がなくなるので、銅合金と封止樹脂との密着性にすぐれた信頼性の高い半導体装置を得ることができる。また、銅合金表面の酸化膜および防錆剤皮膜を管理するための特殊な設備や工程を必要とせず、封止樹脂との密着性にすぐれた表面状態にある実装体を得ることができる。   As described above, the copper alloy constituting the mounting body is formed by heating the mounting body for 5 minutes or more at a temperature of 180 ° C. or higher in an acidic and reducing gas atmosphere to seal the mounting body and the sealing resin. In the interface between the sealing resin and the sealing resin, only copper oxide having a film thickness of 100 nm or less and oxygen and copper components of 50 at% or more may be interposed, and a rust preventive film for preventing rust of the copper alloy may not be interposed. it can. In addition, a BTA-based anticorrosive film and / or a reaction layer of copper and an antirust agent is formed on the surfaces of the heat spreader 1 and the lead frames 2a and 2b, which are copper alloys in the mounting body, by a heating process in an acidic / reducing gas atmosphere. Is decomposed and removed, and the oxide film is reduced to 5 nm or less. By such a manufacturing method, there is no rust preventive agent that inhibits adhesion at the interface between the copper alloy and the sealing resin, the reaction layer of the rust preventive agent and the copper alloy, and the oxide film that has grown into a fragile structure. A highly reliable semiconductor device having excellent adhesion between the alloy and the sealing resin can be obtained. In addition, a special equipment or process for managing the oxide film and the rust preventive film on the surface of the copper alloy is not required, and a mounting body in a surface state with excellent adhesion to the sealing resin can be obtained.

実施の形態2.
図6は、本発明の実施の形態1におけるパワー半導体装置の製造工程を示すフロー図である。銅合金であるリードフレームを加熱した直後に、酸素を含有するドライガスに実装体を暴露する工程を含む点が実施の形態1と異なる。図6に示すように、酸性・還元性ガス雰囲気中でヒートスプレッダ1およびパワー半導体素子4とリードフレーム2bとを加熱し、接合材3bを介して接合する工程の直後に、酸素を含み水分量500ppm以下の酸素ガス(ドライガス)に暴露する工程が追加されている。
Embodiment 2. FIG.
FIG. 6 is a flowchart showing manufacturing steps of the power semiconductor device according to the first embodiment of the present invention. The first embodiment is different from the first embodiment in that it includes a step of exposing the mounting body to a dry gas containing oxygen immediately after heating the lead frame which is a copper alloy. As shown in FIG. 6, immediately after the step of heating the heat spreader 1 and the power semiconductor element 4 and the lead frame 2b in an acid / reducing gas atmosphere and bonding them via the bonding material 3b, the oxygen-containing water content is 500 ppm. A process of exposing to the following oxygen gas (dry gas) has been added.

図7に、加熱処理条件および酸素ガス暴露工程の有無に対する、金属部材である銅合金フレーム表面に形成される酸化膜の膜厚、酸化膜の膜中成分(酸素および銅の成分濃度)、および銅合金フレームと封止樹脂との密着性を表す界面剥離率を測定した結果を示す。なお、酸素および銅の成分濃度は、酸化膜中に含まれる酸素と銅とを合わせた成分濃度を示すものであり、単位はat%である。銅合金フレームとして、BTA系防錆剤が塗布された無酸素銅とCu−0.5wt%Sn合金とを準備し、それぞれ3重量%のギ酸を含む窒素ガス中で、150℃または180℃で15分加熱した後、直ちに水分量500ppm以下の50at%酸素・50at%窒素の乾燥ガスに置換してから大気中で保管した。   FIG. 7 shows the thickness of the oxide film formed on the surface of the copper alloy frame, which is a metal member, the components in the oxide film (oxygen and copper component concentrations), with respect to the heat treatment conditions and the presence or absence of the oxygen gas exposure step. The result of having measured the interface peeling rate showing the adhesiveness of a copper alloy frame and sealing resin is shown. The component concentration of oxygen and copper indicates the component concentration of oxygen and copper contained in the oxide film, and the unit is at%. As a copper alloy frame, oxygen-free copper coated with a BTA-based rust preventive agent and Cu-0.5 wt% Sn alloy were prepared, and at 150 ° C. or 180 ° C. in nitrogen gas containing 3% by weight of formic acid, respectively. After heating for 15 minutes, it was immediately replaced with a dry gas of 50 at% oxygen and 50 at% nitrogen having a water content of 500 ppm or less, and then stored in the atmosphere.

膜厚の測定は、実施の形態1と同様に、製造ロットの異なる銅合金フレーム20枚に対して、X線光電子分光分析法(XPS)によるデプスプロファイルモードにて行った。併せて、ワイドスキャンモードにおいて各検出成分(C,Nおよび合金成分)の成分比を測定した。図7より、180℃で加熱後に酸素を含む乾燥ガスに暴露したものが、加熱後直ちに大気暴露したものに比べて銅合金フレームと封止樹脂との密着性に優れ、このときの酸化膜には酸素および銅の成分濃度が50at%以上(酸素および銅以外の他成分の濃度が50at%以下)である条件を満たしている。一方、Snを含有するCu−0.5wt%Sn合金については、180℃で15分加熱しても、界面剥離率(平均値)が30%程度と高めであり、無酸素銅に比べて封止樹脂との密着性が良くないことがわかる。   The film thickness was measured in the depth profile mode by X-ray photoelectron spectroscopy (XPS) on 20 copper alloy frames with different production lots as in the first embodiment. In addition, the component ratio of each detection component (C, N and alloy component) was measured in the wide scan mode. From FIG. 7, the one exposed to a dry gas containing oxygen after heating at 180 ° C. has better adhesion between the copper alloy frame and the sealing resin than the one exposed to the air immediately after heating, and the oxide film at this time Satisfies the condition that the concentration of oxygen and copper components is 50 at% or more (the concentration of other components other than oxygen and copper is 50 at% or less). On the other hand, the Cu-0.5 wt% Sn alloy containing Sn has a high interface peeling rate (average value) of about 30% even when heated at 180 ° C. for 15 minutes. It can be seen that the adhesion with the stop resin is not good.

以上のように、金属部材を酸性・還元ガス中で180℃以上かつ5分以上加熱した直後に、酸素を含み水分量500ppm以下のドライガスに暴露する工程を加えて、金属部材である銅合金と封止樹脂とを封止することによって、大気に暴露する前に酸素と接触させて銅合金表面に酸化膜を形成することができるので、さらに、金属部材と封止樹脂との密着性にすぐれた信頼性の高い半導体装置を得ることができる。   As described above, immediately after heating a metal member in an acid / reducing gas at 180 ° C. or more and for 5 minutes or more, a step of exposing to a dry gas containing oxygen and a water content of 500 ppm or less is added to form a copper alloy as a metal member By sealing the sealing resin with the sealing resin, it is possible to form an oxide film on the surface of the copper alloy by contacting with oxygen before exposure to the atmosphere. An excellent and highly reliable semiconductor device can be obtained.

なお、実施の形態1、2では、接合材3としてはんだを用いる場合について説明したが、接合材3として銀ナノペーストを用いてもよい。銀ナノペーストを用い、3重量%のギ酸を含む窒素ガス中で、180℃で15分加熱した後に水分量500ppm以下の50at%酸素50at%窒素混合ガスに置換して300℃で15分焼成した場合、銀ナノペーストと封止樹脂との密着強度は大気中で焼成したときの1.5倍となり、封止樹脂との密着性基準を満足することがわかっている。   In the first and second embodiments, the case where solder is used as the bonding material 3 has been described, but silver nanopaste may be used as the bonding material 3. Using silver nanopaste, after heating at 180 ° C. for 15 minutes in nitrogen gas containing 3% by weight of formic acid, it was replaced with 50 at% oxygen and 50 at% nitrogen mixed gas with a water content of 500 ppm or less and baked at 300 ° C. for 15 minutes. In this case, the adhesion strength between the silver nanopaste and the sealing resin is 1.5 times that when fired in the air, and it is known that the adhesion standard with the sealing resin is satisfied.

1 ヒートスプレッダ、2a,2b リードフレーム、3a,3b 接合材、4 パワー半導体素子、5 ボンディングワイヤ、6 封止樹脂、7 パワー半導体装置。   DESCRIPTION OF SYMBOLS 1 Heat spreader, 2a, 2b Lead frame, 3a, 3b Bonding material, 4 Power semiconductor element, 5 Bonding wire, 6 Sealing resin, 7 Power semiconductor device.

Claims (4)

銅合金製の金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置であって、
前記金属部材と前記封止樹脂との界面に、膜厚が100nm以下で、かつ、酸性かつ還元性を有するガス雰囲気中で形成され、酸素および銅の成分濃度が50at%以上の酸化膜が介在し、前記金属部材を防錆するための防錆皮膜が介在しないことを特徴とする半導体装置。
A semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a copper alloy metal member with a sealing resin,
At the interface between the metal member and the sealing resin, an oxide film having a film thickness of 100 nm or less, an acidic and reducing gas atmosphere, and an oxygen and copper component concentration of 50 at% or more is interposed. And a rust preventive film for preventing the metal member from being rusted.
銅合金製の金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置の製造方法であって、
前記実装体を前記封止樹脂によって封止する封止工程と、
前記封止工程の前に、酸性かつ還元性を有するガス雰囲気中にて180℃以上の温度で前記実装体を5分間以上加熱する加熱工程とを備えることを特徴とする半導体装置の製造方法。
A manufacturing method of a semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a copper alloy metal member with a sealing resin,
A sealing step of sealing the mounting body with the sealing resin;
A method of manufacturing a semiconductor device comprising: a heating step of heating the mounting body for 5 minutes or more at a temperature of 180 ° C. or higher in an acidic and reducing gas atmosphere before the sealing step.
前記封止工程の前に、前記加熱工程に続いて水分濃度が500ppm以下の酸素含有ガス雰囲気中に前記実装体を暴露する工程を備えることを特徴とする請求項2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 2, further comprising a step of exposing the mounting body in an oxygen-containing gas atmosphere having a moisture concentration of 500 ppm or less following the heating step before the sealing step. . 前記加熱工程によって、前記金属部材の表面に形成される防錆皮膜の膜厚がゼロになることを特徴とする請求項2または請求項3に記載の半導体装置の製造方法。 Wherein the heating step, the method of manufacturing a semiconductor device according to claim 2 or claim 3, characterized in that a film thickness Gaze Hollow rust preventing film formed on the surface of the metal member.
JP2011018423A 2011-01-31 2011-01-31 Semiconductor device and manufacturing method thereof Active JP5545234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018423A JP5545234B2 (en) 2011-01-31 2011-01-31 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018423A JP5545234B2 (en) 2011-01-31 2011-01-31 Semiconductor device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2012160539A JP2012160539A (en) 2012-08-23
JP2012160539A5 JP2012160539A5 (en) 2012-11-29
JP5545234B2 true JP5545234B2 (en) 2014-07-09

Family

ID=46840838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018423A Active JP5545234B2 (en) 2011-01-31 2011-01-31 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5545234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181346A (en) * 2013-03-18 2014-09-29 Dowa Metaltech Kk Method of producing metal-ceramic circuit board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627522B2 (en) 2016-01-15 2020-01-08 富士電機株式会社 Semiconductor device member, method of manufacturing semiconductor device, and semiconductor device member
JP7642501B2 (en) 2021-09-16 2025-03-10 株式会社東芝 Cleaning agent and method for manufacturing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738753B2 (en) * 1989-09-29 1998-04-08 株式会社日立製作所 Pellet bonding equipment
JP3720941B2 (en) * 1997-03-10 2005-11-30 株式会社神戸製鋼所 Copper alloy material for lead frames with excellent oxide film adhesion
JP3373499B2 (en) * 2001-03-09 2003-02-04 富士通株式会社 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP3537417B2 (en) * 2001-12-25 2004-06-14 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2002252236A (en) * 2001-12-25 2002-09-06 Toshiba Corp Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181346A (en) * 2013-03-18 2014-09-29 Dowa Metaltech Kk Method of producing metal-ceramic circuit board

Also Published As

Publication number Publication date
JP2012160539A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
KR101121117B1 (en) Lead frame and method of producing the same
CN1258816C (en) Semiconductor device and mfg. method thereof
JP4644718B2 (en) Metal / resin adhesion structure, resin-encapsulated semiconductor device, and manufacturing method thereof
JP2002100718A (en) Lead frame for semiconductor device, method of manufacturing the same, and semiconductor device using the same
TW201336599A (en) Composite wire of silver-palladium alloy coated with metal thin film and method thereof
WO1990010731A1 (en) Method for improving the adhesion of a plastic encapsulant to copper containing leadframes
JP5545234B2 (en) Semiconductor device and manufacturing method thereof
JP2015149370A (en) Semiconductor device and manufacturing method of the same
TWI660068B (en) Lead-frame structure, lead-frame, surface mount electronic device and methods of producing same
KR100885673B1 (en) High density printed circuit board with silver-palladium plating layer for soldering and wire bonding and plating method
US20020113322A1 (en) Semiconductor device and method to produce the same
JP2003197827A (en) Semiconductor device and method of manufacturing the same
JPS6243343B2 (en)
JPH07326701A (en) Conductive material for electric-electronic part, lead frame and semiconductor integrated circuit using the same
WO2007083538A1 (en) Epoxy bleedout-preventing agent
KR101663695B1 (en) Leadframe and semiconductor package thereof and manufacture method thereof
KR101375192B1 (en) Method for preventing epoxy bleed out of lead frame
JP3590603B2 (en) Semiconductor device and manufacturing method thereof
JP4740773B2 (en) Lead frame, semiconductor device, and lead frame manufacturing method
JPH1126672A (en) Semiconductor package and manufacturing method thereof
JPH09252070A (en) Lead frame and semiconductor device using the same
JP4307473B2 (en) Conductor base material and semiconductor device manufacturing method
JP2006196920A5 (en)
KR100691338B1 (en) Leadframe for Semiconductor Device Manufacturing
JPH0558259B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5545234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250