[go: up one dir, main page]

JP5562049B2 - Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas - Google Patents

Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas Download PDF

Info

Publication number
JP5562049B2
JP5562049B2 JP2010014719A JP2010014719A JP5562049B2 JP 5562049 B2 JP5562049 B2 JP 5562049B2 JP 2010014719 A JP2010014719 A JP 2010014719A JP 2010014719 A JP2010014719 A JP 2010014719A JP 5562049 B2 JP5562049 B2 JP 5562049B2
Authority
JP
Japan
Prior art keywords
catalyst
partial oxidation
hydrocarbon
raw material
catalytic partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010014719A
Other languages
Japanese (ja)
Other versions
JP2011152498A (en
Inventor
尚喜 岩▲崎▼
宏一 藤江
一規 本田
嘉之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Osaka Gas Co Ltd
Original Assignee
JGC Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Osaka Gas Co Ltd filed Critical JGC Corp
Priority to JP2010014719A priority Critical patent/JP5562049B2/en
Publication of JP2011152498A publication Critical patent/JP2011152498A/en
Application granted granted Critical
Publication of JP5562049B2 publication Critical patent/JP5562049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、メタン及び炭素数2以上の炭化水素を含む天然ガスや随伴ガス等の軽質炭化水素に対し、酸素を添加して部分酸化を行うことによりGTL、DME、メタノール、アンモニア、水素製造等の原料ガスとなる一酸化炭素と水素とを含む合成ガスを製造するときに用いられる触媒、及び合成ガスの製造方法に関する。   The present invention provides GTL, DME, methanol, ammonia, hydrogen production, etc. by performing partial oxidation by adding oxygen to light hydrocarbons such as natural gas and associated gas containing methane and hydrocarbons having 2 or more carbon atoms. The present invention relates to a catalyst used when producing a synthesis gas containing carbon monoxide and hydrogen as a raw material gas, and a synthesis gas production method.

近年、石油、石炭等化石燃料の大量消費に起因する地球環境問題や将来の石油資源の枯渇問題が取り上げられていることから、天然ガス等から製造されるクリーンな燃料であるGTL(炭化水素液体燃料)やDME(ジメチルエーテル)が注目されている。GTLやDMEを製造する原料ガスは合成ガスと呼ばれ、一酸化炭素と水素とを含んでいる。   In recent years, global environmental problems caused by mass consumption of fossil fuels such as oil and coal and the problem of depletion of future petroleum resources have been taken up. Therefore, GTL (hydrocarbon liquid), which is a clean fuel produced from natural gas, etc. Fuel) and DME (dimethyl ether) are attracting attention. A raw material gas for producing GTL or DME is called a synthesis gas and contains carbon monoxide and hydrogen.

このような合成ガスを製造する手法としては、天然ガス等をスチームにより改質するスチーム改質法(SMR)、無触媒下で酸素を用いる部分酸化法(POX)、あるいは酸素バーナーを用いた酸化反応とスチーム改質反応とを同一反応器内で行うオートサーマルリフォーミング法(ATR法)等が従来より知られている。本件出願人は、これら従来法と比較して装置構成が簡素であり、反応中におけるすすの発生や炭素析出等の問題が少ない接触部分酸化法(CPO法:Catalytic Partial Oxidation)を採用した合成ガスの新たな製造プロセスを開発している。   As a method for producing such a synthesis gas, a steam reforming method (SMR) for reforming natural gas or the like with steam, a partial oxidation method (POX) using oxygen in the absence of a catalyst, or an oxidation using an oxygen burner. An autothermal reforming method (ATR method) or the like in which the reaction and the steam reforming reaction are performed in the same reactor is conventionally known. The applicant of the present invention has a simpler apparatus configuration than those of the conventional methods, and a synthesis gas employing a catalytic partial oxidation method (CPO method: Catalytic Partial Oxidation) with less problems such as soot generation and carbon deposition during the reaction. Has developed a new manufacturing process.

CPO法は、天然ガス等より分離された炭化水素ガスと、酸素含有ガスとを触媒の存在下で接触させることにより、炭化水素ガスを部分酸化して合成ガスを得る手法である(特許文献1)。CPO法はバーナーが無いためC2以上の成分が含まれていてもプレリフォーマーを必要としない点において、オートサーマルリフォーミング法に比較して優れている。更に触媒による反応の速度が極めて大きいため、数万〜数百万の高SV条件下でも反応が完結することから反応器が小さくなるという利点がある。
この反応はメタンを例にとれば主として下記の反応が含まれる。
(1) CH+1/2O→2H+CO ΔH298=−36kJ/mol
(2) CH+2O→CO+2HO ΔH298=−879kJ/mol
(3) CO+HO→CO+H ΔH298=−42kJ/mol
(4) CH+HO→CO+3H ΔH298=+206kJ/mol
(5) CH+CO→2CO+2H ΔH298=+248kJ/mol
The CPO method is a technique in which a hydrocarbon gas separated from natural gas or the like is brought into contact with an oxygen-containing gas in the presence of a catalyst to partially oxidize the hydrocarbon gas to obtain a synthesis gas (Patent Document 1). ). The CPO method is superior to the autothermal reforming method in that it does not require a pre-reformer even if a C2 or higher component is contained because there is no burner. Further, since the reaction rate by the catalyst is extremely high, the reaction is completed even under high SV conditions of tens of thousands to several millions, so that there is an advantage that the reactor becomes small.
This reaction mainly includes the following reactions when methane is taken as an example.
(1) CH 4 + 1 / 2O 2 → 2H 2 + CO ΔH298 = −36 kJ / mol
(2) CH 4 + 2O 2 → CO 2 + 2H 2 O ΔH298 = −879 kJ / mol
(3) CO + H 2 O → CO 2 + H 2 ΔH298 = −42 kJ / mol
(4) CH 4 + H 2 O → CO + 3H 2 ΔH298 = + 206 kJ / mol
(5) CH 4 + CO 2 → 2CO + 2H 2 ΔH298 = + 248 kJ / mol

(1)〜(5)の反応は併発あるいは逐次的に進行し、出口ガス組成は平衡に支配されるが、反応全体としては非常に大きな発熱反応である。これらの反応のなかでも(1)と(2)の反応速度は極めて大きく、特に(2)の完全酸化の反応熱が大きいため触媒層入口にて急激に温度が上昇する。図13に示した実線は、反応器の入口側から出口側に至るまでの位置を横軸にとり、縦軸に触媒層の温度をとった温度分布であるが、例えば200℃〜300℃程度の温度で原料ガスが供給されると、前記発熱反応の影響を受けて触媒層入口部の温度は例えば1200℃〜1500℃程度まで急激に上昇する。そして反応速度が比較的小さな例えば(4)、(5)の吸熱反応の影響により触媒層の温度は次第に低下し、やがて約1000℃程度で熱的に平衡な状態となる。   The reactions (1) to (5) proceed simultaneously or sequentially, and the outlet gas composition is governed by the equilibrium, but the reaction as a whole is a very large exothermic reaction. Among these reactions, the reaction rates of (1) and (2) are extremely high. In particular, since the reaction heat of complete oxidation (2) is large, the temperature rises rapidly at the catalyst layer inlet. The solid line shown in FIG. 13 is a temperature distribution in which the horizontal axis represents the position from the inlet side to the outlet side of the reactor, and the vertical axis represents the temperature of the catalyst layer. When the raw material gas is supplied at a temperature, the temperature of the catalyst layer inlet is rapidly increased to, for example, about 1200 ° C. to 1500 ° C. under the influence of the exothermic reaction. The temperature of the catalyst layer gradually decreases under the influence of the endothermic reactions (4) and (5), for example, where the reaction rate is relatively low, and eventually reaches a thermal equilibrium state at about 1000 ° C.

こうした触媒層の温度分布は、例えば原料ガスの組成の変化や微小な圧力変動等により急速に変化し、触媒層の温度が極大となる位置もこれらの変化に応じて例えば図13中に破線や一点鎖線にて示すように反応器の上流側や下流側へと移動する。例えば反応器中の温度分布が図13中に実線で示した状態から破線で示した状態へと変化した場合には、横軸にP点で示した位置に充填されている触媒は、例えば数百度から1200℃〜1500℃程度にまで急激に加熱される。そしてこの温度変化は例えば1秒未満〜数秒程度で起きるため当該領域の触媒は例えば250℃/秒〜1300℃/秒程度の急激な温度変化に晒されることになる。一方、実線で示した温度分布が一点鎖線で示した温度分布へと変化した場合には、例えばP点の位置に充填されている触媒は冷却されて既述のP点と同程度に急激な温度変化に晒される。 Such a temperature distribution of the catalyst layer changes rapidly due to, for example, a change in the composition of the raw material gas or a minute pressure fluctuation, and the position at which the temperature of the catalyst layer reaches a maximum is also changed according to these changes, for example, a broken line or It moves to the upstream side or downstream side of the reactor as indicated by the alternate long and short dash line. For example, when the temperature distribution in the reactor changes from the state indicated by the solid line in FIG. 13 to the state indicated by the broken line, the catalyst charged at the position indicated by point P 1 on the horizontal axis is, for example, It is heated rapidly from several hundred degrees to about 1200 ° C to 1500 ° C. Since this temperature change occurs, for example, in less than one second to several seconds, the catalyst in the region is exposed to a rapid temperature change of, for example, about 250 ° C./second to about 1300 ° C./second. On the other hand, when the temperature distribution shown by the solid line is changed to a temperature distribution shown by a dashed line, for example, the catalyst filled in the position of P 2 points are cooled to the same extent as the P 1 point described above Exposed to sudden temperature changes.

こうした触媒層内温度分布の変化は、反応器の運転中断続的に発生することから、反応器の入口付近に充填されている触媒は常にこのような急激な加熱や冷却を繰り返し受ける。そして反応器に充填されている触媒は、例えば球状、タブレット、円柱状、ハニカム状、リング状、フォーム体等に形成されているため、こうした加熱や冷却に伴う急激な膨張と収縮による応力変化、即ち熱衝撃を受けて触媒が破壊、粉化し、触媒層の目詰まりを引き起こしてしまう。触媒層が目詰まりを起こすと、反応器の圧力損失が上昇して運転を継続できなくなってしまうおそれもあることから、CPO法に用いる触媒には耐熱衝撃性の高いものが求められている。   Since such a change in the temperature distribution in the catalyst layer occurs continuously during the operation of the reactor, the catalyst filled in the vicinity of the inlet of the reactor is always repeatedly subjected to such rapid heating and cooling. The catalyst charged in the reactor is formed into, for example, a spherical shape, a tablet shape, a cylindrical shape, a honeycomb shape, a ring shape, a foam body, etc., so that stress changes due to rapid expansion and contraction associated with such heating and cooling, That is, the catalyst is broken and pulverized by thermal shock, and the catalyst layer is clogged. If the catalyst layer is clogged, the pressure loss of the reactor may increase and the operation may not be continued. Therefore, a catalyst having high thermal shock resistance is required for the CPO method.

なお特許文献2にはジルコニアを主成分する担体に活性金属を担持することにより耐熱衝撃性能を高めたCPO法に用いる触媒が記載されている。しかしながら当該触媒は800℃〜1200℃の温度範囲に亘って60℃/秒〜100℃/秒の温度変化を適用範囲としており、既述の温度変化と比較して非常に穏和な条件であり、本件出願人の開発しているCPOプロセスには適していない。   Patent Document 2 describes a catalyst used in a CPO method in which an active metal is supported on a support mainly composed of zirconia to improve the thermal shock resistance. However, the catalyst has a temperature change of 60 ° C./second to 100 ° C./second over a temperature range of 800 ° C. to 1200 ° C., which is a very mild condition compared to the temperature change described above. It is not suitable for the CPO process developed by the applicant.

特開2007−69151号公報:第0038段落〜第0042段落JP 2007-69151 A: Paragraphs 0038 to 0042 特許第4020428号公報:請求項1、第0027段落Japanese Patent No. 4020428: Claim 1, paragraph 0027

本発明は、このような事情の下になされたものであり、その目的は、耐熱衝撃性の高い炭化水素の接触部分酸化用の触媒及びこの触媒を用いた合成ガスの製造方法を提供することにある。   The present invention has been made under such circumstances, and an object thereof is to provide a catalyst for catalytic partial oxidation of hydrocarbons having high thermal shock resistance and a method for producing synthesis gas using this catalyst. It is in.

本発明に係る炭化水素の接触部分酸化用の触媒は、メタンと炭素数2以上の軽質炭化水素との少なくとも一方を含む原料炭化水素に少なくとも酸素及びスチームを添加して原料炭化水素を接触部分酸化し、一酸化炭素と水素とを含む合成ガスを製造するときに用いられ、無機酸化物からなる担体に活性金属を担持してなる炭化水素の接触部分酸化用の触媒であって、
この触媒の全細孔容積に対する細孔直径が1μm以上、10μm未満の範囲の細孔の容積の合計値の容積率A[容積%]、当該触媒において耐熱衝撃性を決定する位置の触媒の厚さB[mm]に対し、以下の条件を満たすことを特徴とする。
0<B≦1.5のとき、A≧3.0、
1.5<Bのとき、A≧0.158B−0.467B+3.411
但し、前記耐熱衝撃性を決定する位置の触媒の厚さBは、以下の値に相当する。
(a)前記触媒が半径R、長さLの円柱状である場合、
2R≦Lのとき、B=2R、
2R>Lのとき、B=L、
(b)前記触媒がリング幅D、長さLのリング状である場合、
D≦Lのとき、B=D、
D>Lのとき、B=L
(c)前記触媒が半径Rの球状である場合、
B=2R
The catalyst for catalytic partial oxidation of hydrocarbons according to the present invention comprises catalytically oxidizing partial hydrocarbons by adding at least oxygen and steam to raw hydrocarbons containing at least one of methane and light hydrocarbons having 2 or more carbon atoms. And a catalyst for catalytic partial oxidation of a hydrocarbon used when producing a synthesis gas containing carbon monoxide and hydrogen, and carrying an active metal on a carrier made of an inorganic oxide,
The volume ratio A [volume%] of the total volume of pores in the pore diameter range of 1 μm or more and less than 10 μm with respect to the total pore volume of the catalyst, the thickness of the catalyst at the position where the thermal shock resistance is determined in the catalyst It is characterized in that the following condition is satisfied for the length B [mm].
When 0 <B ≦ 1.5, A ≧ 3.0,
When 1.5 <B, A ≧ 0.158B 2 −0.467B + 3.411
However, the thickness B of the catalyst at the position where the thermal shock resistance is determined corresponds to the following value.
(A) When the catalyst has a cylindrical shape with a radius R and a length L,
When 2R ≦ L, B = 2R,
When 2R> L, B = L,
(B) when the catalyst is ring-shaped with a ring width D and a length L,
When D ≦ L, B = D,
When D> L, B = L
(C) when the catalyst is spherical with a radius R,
B = 2R

この触媒は、さらに以下の特徴を備えていてもよい。
第1に、前記触媒の比表面積が0.5m/g以上、7.0m/g以下であること。
に、前記触媒の全細孔容積が0.05cm/g以上、0.3cm/g以下であること。
The catalyst may further have the following characteristics.
First, the specific surface area before Symbol catalyst 0.5 m 2 / g or more, or less 7.0 m 2 / g.
Second, the total pore volume of the catalyst is 0.05 cm 3 / g or more, or less 0.3 cm 3 / g.

に、前記無機酸化物からなる担体の第1の構成元素はAlであり、前記担体は単位重量あたりにAl換算で30重量%以上、90重量%以下のAlを含むこと。
に、前記無機酸化物からなる担体は、前記第1の構成元素に加え、アルカリ土類金属に属する元素、希土類金属に属する元素、Sc、Bi、Zr、Si及びTiからなる元素群から選択される少なくとも2種類の元素の酸化物を含むこと。
に、前記アルカリ土類金属に属する元素は、Mg、Ca、Sr及びBaであり、前記希土類金属に属する元素は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er及びYbであること。
に、前記無機酸化物からなる担体はY、Ce、Ca、Mg、Sc、Smから選択される1種類以上の元素により安定化されたジルコニアを含むこと。
に、前記安定化されたジルコニアはイットリアにより安定化されたイットリア安定化ジルコニアであること。
に前記イットリア安定化ジルコニアは、イットリアを2モル%以上、10モル%以下の範囲で含有すること。
に、前記活性金属は、周期律表VIII族の元素から選択された1種類以上の金属であること。
10に、前記周期律表VIII族の元素は、Ru、Pt、Rh、Pd、Os及びIrであること。
11に、前記活性金属を、触媒の単位重量当たり0.05重量%以上、5.0重量%以下含むこと。




Third, the first element of the carrier comprising the inorganic oxide is Al, the carrier in terms of Al 2 O 3 at 30 wt% or more per unit weight, to contain 90 wt% or less of Al.
Fourth , in addition to the first constituent element, the support made of the inorganic oxide includes an element belonging to an alkaline earth metal, an element belonging to a rare earth metal, an element group consisting of Sc, Bi, Zr, Si, and Ti. Including oxides of at least two selected elements.
Fifth , the elements belonging to the alkaline earth metal are Mg, Ca, Sr and Ba, and the elements belonging to the rare earth metal are Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb.
Sixth , the carrier made of the inorganic oxide includes zirconia stabilized by one or more elements selected from Y, Ce, Ca, Mg, Sc, and Sm.
Seventh , the stabilized zirconia is yttria stabilized zirconia stabilized by yttria.
Eighth , the yttria-stabilized zirconia contains yttria in the range of 2 mol% to 10 mol%.
Ninth , the active metal is one or more metals selected from Group VIII elements of the Periodic Table.
Tenth , the elements of Group VIII of the periodic table are Ru, Pt, Rh, Pd, Os and Ir.
11thly , the said active metal is 0.05 to 5.0 weight% per unit weight of a catalyst.




次いで他の発明に係わる合成ガスの製造方法は、メタンと炭素数2以上の軽質炭化水素との少なくとも一方を含む原料炭化水素に酸素及びスチームを添加してなる原料ガスであって、原料炭化水素に水素が含まれていることにより及び/または水素を添加することにより水素が含まれる原料ガスを、反応器内に供給する工程と、
前記反応器内に設けられた前記炭化水素の接触部分酸化用の触媒と前記原料ガスとを加熱状態で接触させて、原料炭化水素を接触部分酸化し、一酸化炭素と水素とを含む合成ガスを製造する工程と、を含むことを特徴とする。
Next, a method for producing a synthesis gas according to another invention is a raw material gas obtained by adding oxygen and steam to a raw material hydrocarbon containing at least one of methane and a light hydrocarbon having 2 or more carbon atoms. Supplying a raw material gas containing hydrogen by containing hydrogen in the reactor and / or adding hydrogen into the reactor;
A synthesis gas containing carbon monoxide and hydrogen, which is prepared by bringing the catalyst for catalytic partial oxidation of hydrocarbon provided in the reactor into contact with the raw material gas in a heated state to catalytically oxidize the raw material hydrocarbon. And a step of manufacturing.

この合成ガスの製造方法は、さらに下記の特徴を備えていてもよい。
第1に、前記合成ガスを製造する工程において、前記触媒と原料ガスとが加熱状態で接触する領域には、当該触媒が200℃〜1500℃の温度範囲に亘って250℃/秒〜1300℃/秒の温度変化を受ける領域が含まれていること。
第2に、前記原料ガスを200℃〜500℃に予備加熱した後に、圧力が常圧〜8MPa、空間速度(GHSV)が5.0×10(NL/L/Hr)〜1.0×10(NL/L/Hr)の条件で反応器内に供給し、断熱反応条件下で触媒と接触させること。
The synthesis gas production method may further include the following features.
First, in the step of producing the synthesis gas, in the region where the catalyst and the raw material gas are in contact with each other in a heated state, the catalyst is 250 ° C./second to 1300 ° C. over a temperature range of 200 ° C. to 1500 ° C. An area subject to a temperature change of / sec is included.
Second, after preheating the source gas to 200 ° C. to 500 ° C., the pressure is normal pressure to 8 MPa, and the space velocity (GHSV) is 5.0 × 10 3 (NL / L / Hr) to 1.0 ×. Supply into the reactor under the condition of 10 6 (NL / L / Hr) and contact with the catalyst under adiabatic reaction conditions.

本発明によれば、全細孔容積に対する細孔直径が1μm以上、10μm未満の範囲の細孔の容積の合計値の容積率に対する触媒の耐熱衝撃性を決定する位置における当該触媒の厚さが、所定の関係式を満たしている触媒を用いることにより、熱衝撃を受けても破壊、粉化しにくい炭化水素の接触部分酸化用の触媒を得ることができる。これによりCPOプロセスの反応器の入口など稼動中に繰り返し熱衝撃を受ける領域に当該触媒を充填しても、触媒の破壊、粉化による触媒層の目詰まりといったトラブルが発生しにくくなり信頼性の高いプロセスとすることができる。   According to the present invention, the thickness of the catalyst at the position where the thermal shock resistance of the catalyst is determined with respect to the volume ratio of the total pore volume in the range where the pore diameter with respect to the total pore volume is 1 μm or more and less than 10 μm. By using a catalyst satisfying a predetermined relational expression, it is possible to obtain a catalyst for partial catalytic oxidation of hydrocarbons that is difficult to be destroyed or pulverized even when subjected to thermal shock. As a result, even if the catalyst is filled in an area that is repeatedly subjected to thermal shock during operation, such as the inlet of a CPO process reactor, troubles such as catalyst destruction and clogging of the catalyst layer due to pulverization are less likely to occur. It can be a high process.

実施の形態に係る接触部分酸化用の触媒の外観構成を表す説明図である。It is explanatory drawing showing the external appearance structure of the catalyst for contact partial oxidation which concerns on embodiment. 前記接触部分酸化用の触媒の外観構成を表す第2の説明図である。It is the 2nd explanatory view showing appearance composition of a catalyst for the above-mentioned contact partial oxidation. 前記第2の説明図に係る触媒の平面図である。It is a top view of the catalyst which concerns on a said 2nd explanatory drawing. 前記接触部分酸化用の触媒の外観構成を表す第3の説明図である。It is a 3rd explanatory view showing the appearance composition of the catalyst for the above-mentioned contact partial oxidation. 前記接触部分酸化用の触媒の外観構成を表す第4の説明図である。It is the 4th explanatory view showing appearance composition of a catalyst for the above-mentioned contact partial oxidation. 前記接触部分酸化用の触媒の外観構成を表す第5の説明図である。It is a 5th explanatory view showing appearance composition of a catalyst for contact partial oxidation. 本発明の合成ガスの製造方法に用いられる装置を示す概略図である。It is the schematic which shows the apparatus used for the manufacturing method of the synthesis gas of this invention. 実施例に係る触媒の各種変数と耐熱衝撃性能との関係を表す説明図である。It is explanatory drawing showing the relationship between the various variables of the catalyst which concerns on an Example, and a thermal shock performance. 実施例に係る担体の熱衝撃実験の結果を示す外観写真である。It is an external appearance photograph which shows the result of the thermal shock experiment of the support | carrier which concerns on an Example. 他の実施例に係る担体の熱衝撃実験の結果を示す外観写真である。It is an external appearance photograph which shows the result of the thermal shock experiment of the support | carrier which concerns on another Example. 比較例に係る担体の熱衝撃実験の結果を示す外観写真である。It is an external appearance photograph which shows the result of the thermal shock experiment of the support | carrier which concerns on a comparative example. 他の比較例に係る担体の熱衝撃実験の結果を示す外観写真である。It is an external appearance photograph which shows the result of the thermal shock experiment of the support | carrier which concerns on another comparative example. 反応器内のガス流れ方向における位置と触媒層の温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the position in the gas flow direction in a reactor, and the temperature of a catalyst layer.

(第1の実施の形態)
本発明の第1の実施の形態に係わる触媒において、無機酸化物である担体の製造は、例えば先ずベーマイト、擬ベーマイトあるいは水酸化アルミニウム等のアルミナ前駆体の粉末又はγ,η,χ,α-アルミナ等のアルミナ粉末を用意し、これら粉末に例えばバリウムの塩、例えば硝酸塩や酢酸バリウム等の有機酸塩の粉末あるいはその水溶液等とYSZ(イットリア安定化ジルコニア)の粉末等と、必要に応じて成型助剤としてのバインダーとを混合し、その混合物に水を添加して水分を調整する方法などにより行う。次いで、適宜水分調整を行った後例えば押し出し成型、打錠成型、プレス等、加圧により成型することで例えば円柱状、タブレット、ハニカム、リング状等の成型体を形成する。
(First embodiment)
In the catalyst according to the first embodiment of the present invention, the carrier which is an inorganic oxide is produced by, for example, a powder of an alumina precursor such as boehmite, pseudoboehmite or aluminum hydroxide, or γ, η, χ, α − Alumina powder such as alumina is prepared, and for example, barium salt, for example, organic acid salt powder such as nitrate or barium acetate or aqueous solution thereof, YSZ (yttria stabilized zirconia) powder, etc., if necessary This is performed by a method in which a binder as a molding aid is mixed and water is added to the mixture to adjust moisture. Next, after appropriately adjusting the moisture, for example, extrusion molding, tableting molding, pressing, or the like is performed by pressing to form a molded body such as a columnar shape, a tablet, a honeycomb, or a ring shape.

得られた成型体群は、必要に応じ加熱乾燥した後、焼成炉にて例えば900℃〜1800℃で例えば24時間焼成を行うことにより、アルミナを主成分とし、副成分としてBaOやYSZ及び一部がBaとAlとの複合酸化物(例えばスピネル化合物であるBaAl2やバリウムヘキサアルミネート(BaAl1119)等)、又はBaとZrとの複合酸化物(例えばBaZrO等)のバリウム酸化物を含む無機酸化物担体が得られる。この担体中におけるアルミニウムの含有量は、好ましくはアルミナ換算で30重量%〜90重量%、より好ましくは40重量%〜80重量%、更に好ましくは50重量%〜80重量%である。バリウムの含有量は好ましくはBaO換算で5重量%〜30重量%、更に好ましくは5重量%〜20重量%である。またYSZの含有量は、例えばイットリア(Y)を2モル%〜10モル%の範囲で含むYSZの重量換算で好ましくは5重量%〜40重量%、更に好ましくは10重量%〜30重量%である場合が好適である。 The obtained molded body group is heated and dried as necessary, and then calcined in a firing furnace at, for example, 900 ° C. to 1800 ° C. for 24 hours, for example, so that alumina is a main component and BaO, YSZ, and Part is a complex oxide of Ba and Al (for example, BaAl 2 O 4 which is a spinel compound, barium hexaaluminate (BaAl 11 O 19 ), or the like) or a complex oxide of Ba and Zr (for example, BaZrO 3 or the like). An inorganic oxide support containing barium oxide is obtained. The content of aluminum in the carrier is preferably 30% to 90% by weight in terms of alumina, more preferably 40% to 80% by weight, and still more preferably 50% to 80% by weight. The barium content is preferably 5 to 30% by weight, more preferably 5 to 20% by weight in terms of BaO. The content of YSZ, for example yttria (Y 2 O 3) and preferably from 5% to 40% by weight in terms of YSZ containing in the range of 2 mol% to 10 mol%, more preferably 10% to 30 The case of weight percent is preferred.

ここでアルミナに副成分(BaやYSZ)を添加する方法は既述の方法に限られるものではなく、例えば副成分の添加割合に応じて周知の含浸法や沈殿法やゾルゲル法等、一般に良く知られた各種の調製法を用いてもよいことは勿論である。また、当該担体中に含まれるAl以外の成分はこれらに限定されるものではなく、例えばMg、Ca、Sr及びBa等のアルカリ土類金属に属する元素、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er及びYb等の希土類金属に属する元素、Sc、Bi、Zr、Si及びTiからなる元素群から選択される少なくとも2種類の元素の酸化物及びYSZ以外の安定化ジルコニアが含まれていてもよい。また更には、これらの元素群に含まれていない元素を含んでいてもよい。   Here, the method of adding subcomponents (Ba and YSZ) to alumina is not limited to the above-described method, and, for example, a well-known impregnation method, precipitation method, sol-gel method, or the like is generally used depending on the addition ratio of subcomponents. Of course, various known preparation methods may be used. In addition, components other than Al contained in the support are not limited to these, for example, elements belonging to alkaline earth metals such as Mg, Ca, Sr and Ba, Y, La, Ce, Pr, Nd, Elements belonging to rare earth metals such as Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb, oxides of at least two elements selected from the element group consisting of Sc, Bi, Zr, Si and Ti, and YSZ Stabilized zirconia other than may be contained. Furthermore, an element not included in these element groups may be included.

以上に述べた手法により調製された担体は、従来用いられているアルミナ系の担体が備えている0.1μm〜1.0μmの範囲(以下、第1の範囲という)の細孔直径を持つ細孔に加えて、1.0μm〜10μmの範囲(以下、第2の範囲という)の細孔直径を持つ細孔を比較的多く含んでいる。そして、この第2の範囲の細孔直径を持つ細孔の容積の合計値が、当該触媒の全細孔容積に占める割合は、本触媒の耐熱衝撃性能を示す指標の一つとなっているが、その詳細については後述する。   The carrier prepared by the method described above is a fine particle having a pore diameter in the range of 0.1 μm to 1.0 μm (hereinafter referred to as the first range) provided by a conventionally used alumina carrier. In addition to the pores, a relatively large number of pores having a pore diameter in the range of 1.0 μm to 10 μm (hereinafter referred to as the second range) are included. The ratio of the total volume of pores having pore diameters in the second range to the total pore volume of the catalyst is one index indicating the thermal shock performance of the catalyst. The details will be described later.

焼成された担体は、種々の成型法により、円柱状、円筒状、球状など種々の形状に成型される。担体の成型方法は、例えば押し出し成型法、打錠成型法、プレス法等のように、加圧しながら成型を行う加圧成型法を用いると、前記第2の範囲の細孔径を持つ細孔を比較的多く含む触媒が得られることを発明者らは把握している。   The baked carrier is molded into various shapes such as a columnar shape, a cylindrical shape, and a spherical shape by various molding methods. The carrier is molded by using a pressure molding method in which molding is performed while applying pressure, such as an extrusion molding method, a tableting molding method, a pressing method, and the like. The inventors have grasped that a catalyst containing a relatively large amount can be obtained.

以上に説明した手法により調製された担体に対して、活性金属である周期律表VIII族の元素の塩、例えばRu(ルテニウム)、Pt(白金)、Rh(ロジウム)、Pd(パラジウム)、Os(オスミウム)及びIr(イリジウム)の塩、例えばRuの場合には硝酸ルテニウム水溶液などを噴霧し、当該担体に含浸させる。続いてこの担体を乾燥した後、電気炉内にて例えば600℃で3時間焼成を行うことにより、前記担体にルテニウムなどのVIII族の元素が担持された本発明の触媒を得る。なお活性金属の担持方法はこの例に限定されるものではなく、VIII族の元素の水溶液又は溶液を担体にコーティングするかまたはポアフィリング法あるいは担体に選択吸着させるなどの方法を採用してもよい。   For a carrier prepared by the above-described method, a salt of an element of group VIII of the periodic table that is an active metal, such as Ru (ruthenium), Pt (platinum), Rh (rhodium), Pd (palladium), Os In the case of (osmium) and Ir (iridium) salts, such as Ru, an aqueous ruthenium nitrate solution is sprayed to impregnate the carrier. Subsequently, this support is dried, and then calcined in an electric furnace at, for example, 600 ° C. for 3 hours to obtain the catalyst of the present invention in which a Group VIII element such as ruthenium is supported on the support. The method of supporting the active metal is not limited to this example, and a method such as coating an aqueous solution or solution of a group VIII element on the support, or a pore filling method or selective adsorption on the support may be employed. .

ここで既述のように第2の範囲の細孔径を持つ細孔を比較的多く含む担体に活性金属を担持することによって当該触媒の細孔径分布が変化してしまうようにも思われる。この点において、耐熱衝撃性の高い触媒は、活性金属を担持する前の担体の段階にて第2の範囲の細孔径を持つ細孔を比較的多く含んでいればよい。但し、後述のように触媒に担持される活性金属は全触媒重量の0.05重量%〜5.0重量%程度に過ぎず、活性金属を担持した後であってもこれらの指標値は大きく変化しないこと、また一度担持した活性金属を除去してこれらの指標値を計測することは現実的でないことから、活性金属を担持した後の触媒であっても上述の各指標値を満たす触媒は、高い耐熱衝撃性を備えるといえる。なお、全触媒重量の0.05重量%〜5.0重量%程度の活性金属を担持する前後で前述の各指標値が殆ど変化しないことについては、本発明者らは実験により確認している。   Here, as described above, it seems that the pore size distribution of the catalyst is changed by supporting the active metal on the support having a relatively large number of pores having the pore size in the second range. In this respect, the catalyst having high thermal shock resistance only needs to contain a relatively large number of pores having a pore diameter in the second range at the stage of the carrier before supporting the active metal. However, as described later, the active metal supported on the catalyst is only about 0.05 to 5.0% by weight of the total catalyst weight, and these index values are large even after the active metal is supported. Since it is not realistic to measure the index values after removing the active metal once supported, the catalyst that satisfies the above index values even if the catalyst after supporting the active metal is not It can be said that it has high thermal shock resistance. In addition, the present inventors have confirmed through experiments that the above index values hardly change before and after loading an active metal of about 0.05 wt% to 5.0 wt% of the total catalyst weight. .

以上に説明した構成を備えた本実施の形態に係る炭化水素の接触部分酸化用の触媒は、担体の単位重量当たりの全細孔容積V[cm/g]に対する第2の範囲の細孔直径を持つ細孔の容積の合計値V[cm/g]の容積率をA[容積%]、成型された触媒における耐熱衝撃性を決定する位置の触媒の厚さ(以下、触媒厚さという)をB[mm]とするとき、以下の条件を満たす場合に高い耐熱衝撃性能を示すことを、本発明者らは実験的に確認した。
0<B≦1.5のとき、
A≧3.0 …(6)
1.5<Bのとき、
A≧0.158B−0.467B+3.411 …(7)
The catalyst for catalytic partial oxidation of hydrocarbon according to the present embodiment having the configuration described above has a pore in the second range with respect to the total pore volume V [cm 3 / g] per unit weight of the support. The volume ratio of the total volume V 2 [cm 3 / g] of pores having a diameter is A [volume%], and the thickness of the catalyst at the position where the thermal shock resistance of the molded catalyst is determined (hereinafter referred to as catalyst thickness). The present inventors experimentally confirmed that high thermal shock resistance performance is exhibited when the following conditions are satisfied, where B is [mm].
When 0 <B ≦ 1.5,
A ≧ 3.0 (6)
When 1.5 <B,
A ≧ 0.158B 2 −0.467B + 3.411 (7)

触媒あるいは担体(以下の触媒厚さの説明においては、これらをまとめて触媒という)が形状を維持するために必要な耐熱衝撃性は、当該触媒の中心部と外表面との間の伝熱、特に固体触媒中の熱伝導による伝熱に依存している。つまり、これらの部位の熱流量が大きくなるにつれ、その耐熱衝撃性が低くても、触媒が破砕されなくなる傾向を示す。   The thermal shock resistance required to maintain the shape of the catalyst or carrier (collectively referred to as catalyst in the description of the catalyst thickness below) is the heat transfer between the center of the catalyst and the outer surface, In particular, it depends on heat transfer by heat conduction in the solid catalyst. That is, as the heat flow rate at these parts increases, the catalyst tends to be not crushed even if its thermal shock resistance is low.

また、触媒形状としては肉厚なものよりも薄いものの方が熱流量が大きくなり、触媒中心部から外表面へ速やかに伝熱(放熱)され、中心部と外表面との間の温度差が生じにくくなるため、形状を維持するための耐熱衝撃性は高くなる(破壊されにくくなる)。そのため、触媒形状を加味して耐熱衝撃性を決定する触媒の厚さを定義する必要がある。一般に熱伝導による伝熱において、熱流量を支配する因子として、伝熱面積、熱伝導率、温度差、厚さ(伝熱距離)が挙げられる。当該触媒の中心部のある点と外表面との間の三次元物体の非定常状態における熱伝導(放熱)を考えると、当該間の厚さ(伝熱距離)が小さいほど熱流量が大きくなり、触媒中心部から外表面へ速やかに放熱されることになる。本発明では、触媒厚さは、固体触媒の構成体内部のすべての位置のうち、外表面までの最短距離が最大となる位置における当該最短距離の2倍の距離と定義する。言い替えると、触媒厚さは、触媒の表面で覆われる空間に内接する球のうち、最大の径を持つ球の直径であるということができる。   In addition, the catalyst shape is thinner than the thicker one, and the heat flow is larger, and heat is transferred from the central part of the catalyst to the outer surface quickly (heat dissipation), and the temperature difference between the central part and the outer surface is reduced. Since it becomes difficult to produce, the thermal shock resistance for maintaining a shape becomes high (it becomes difficult to destroy). Therefore, it is necessary to define the thickness of the catalyst that determines the thermal shock resistance in consideration of the catalyst shape. In general, in heat transfer by heat conduction, factors that control the heat flow include heat transfer area, heat conductivity, temperature difference, and thickness (heat transfer distance). Considering the heat conduction (heat dissipation) in the unsteady state of a three-dimensional object between a point at the center of the catalyst and the outer surface, the heat flow increases as the thickness (heat transfer distance) decreases. Then, heat is quickly radiated from the center of the catalyst to the outer surface. In the present invention, the catalyst thickness is defined as a distance that is twice the shortest distance at the position where the shortest distance to the outer surface is the maximum among all the positions inside the structure of the solid catalyst. In other words, the catalyst thickness can be said to be the diameter of the sphere having the largest diameter among the spheres inscribed in the space covered with the surface of the catalyst.

具体的な例をあげてみると、円柱形状の触媒においては、触媒の耐熱衝撃性は、図1(a)のように2R≦Lとなる場合には、直径方向の長さ(2R[mm])の方が、上下方向(L[mm])の厚さよりも薄く、触媒中心部から上下面への伝熱(放熱)に対して側面からの伝熱(放熱)の方が多くなり、この触媒中心部から側面方向への距離が伝熱(放熱)を支配する。従って、この場合には触媒中心部と側面の距離の2倍の距離である2Rが耐熱衝撃性を決定する触媒厚さとなる。   As a specific example, in a cylindrical catalyst, when the thermal shock resistance of the catalyst is 2R ≦ L as shown in FIG. 1A, the length in the diameter direction (2R [mm] ]) Is thinner than the thickness in the vertical direction (L [mm]), and more heat transfer (heat dissipation) from the side than heat transfer (heat dissipation) from the center of the catalyst to the upper and lower surfaces, The distance from the center of the catalyst to the side surface dominates heat transfer (heat dissipation). Accordingly, in this case, 2R, which is twice the distance between the center of the catalyst and the side surface, is the catalyst thickness that determines the thermal shock resistance.

一方、図1(b)のように2R>Lのタブレット状の触媒の場合には、上下方向の厚さ(L)の方が、直径方向の長さ(2R)よりも薄く、触媒中心部から側面への伝熱(放熱)に対して上下面からの伝熱(放熱)の方が多くなるため、触媒中心から上下面への距離が伝熱(放熱)を支配する。従って、触媒中心部と上下面の距離Lが、既述の最短距離の2倍の距離に相当し、耐熱衝撃性を決定する触媒厚さとなる。
このように触媒形状によって耐熱衝撃性を決定する触媒厚さは異なる。
On the other hand, in the case of a tablet-shaped catalyst of 2R> L as shown in FIG. 1B, the thickness (L) in the vertical direction is thinner than the length (2R) in the diametrical direction, and the catalyst center portion. Since heat transfer from the upper and lower surfaces (heat dissipation) is greater than heat transfer from the upper surface to the side surface (heat dissipation), the distance from the catalyst center to the upper and lower surfaces dominates the heat transfer (heat dissipation). Therefore, the distance L between the center portion of the catalyst and the upper and lower surfaces corresponds to a distance twice the shortest distance described above, and becomes the catalyst thickness that determines the thermal shock resistance.
Thus, the catalyst thickness that determines the thermal shock resistance differs depending on the catalyst shape.

また、図1(c)、図1(d)に示すように、同心円の内径と外径とを有し、これら内径と外径との差(以下、リング幅という)がD[mm]、上下方向の高さL[mm]のリング形状の場合には、D≦Lならばリングの側面(内面及び外面)からの伝熱(放熱)の方が上下面からの伝熱(放熱)より大きく、触媒の内部ではリングの径方向への距離が伝熱(放熱)を支配する。よってこの場合には、リング幅Dが既述の最短距離の2倍の距離に相当し、耐熱衝撃性を決定する触媒厚さとなる。そしてこれとは反対に、D>Lならば最短距離の2倍の距離、即ち触媒厚さは触媒の上下方向の高さLとなる。 また図1(e)に示すように触媒が半径Rの球状の場合には、触媒の中心から表面までの半径は一定であるから、この半径が既述の最短距離に相当し、球の直径2Rが触媒厚さとなる。   Further, as shown in FIGS. 1 (c) and 1 (d), it has concentric inner and outer diameters, and the difference between these inner and outer diameters (hereinafter referred to as ring width) is D [mm], In the case of a ring shape with a height L [mm] in the vertical direction, if D ≦ L, heat transfer (heat dissipation) from the side surfaces (inner surface and outer surface) of the ring is greater than heat transfer (heat dissipation) from the upper and lower surfaces. The distance in the radial direction of the ring dominates heat transfer (heat dissipation) inside the catalyst. Therefore, in this case, the ring width D corresponds to a distance twice the shortest distance described above, and becomes the catalyst thickness that determines the thermal shock resistance. On the contrary, if D> L, the distance twice the shortest distance, that is, the catalyst thickness is the height L in the vertical direction of the catalyst. When the catalyst is spherical with a radius R as shown in FIG. 1 (e), the radius from the center of the catalyst to the surface is constant, so this radius corresponds to the shortest distance described above and the diameter of the sphere. 2R is the catalyst thickness.

多孔質の部材は細孔が歪むことなどによってこれに加わる応力をある程度緩和することができ、触媒の靭性を高めることができると考えられる。一方、熱応力を受けて触媒に生じる変形量は、触媒が大きくなるにつれて増大するので、熱衝撃に起因して当該触媒に加わる応力も触媒の大型化に伴って増大する。このため、触媒が大型化するほど熱衝撃による破壊が発生しやすくなると考えられるので、その分だけ耐熱衝撃性の観点における触媒の機械的強度を向上させる必要がある。そこで本例に係る炭化水素の接触部分酸化用の触媒では、第2の範囲の細孔直径を持つ細孔の容積の割合を増やすことにより、耐熱衝撃性を向上させている。   It is considered that the porous member can relax the stress applied to the porous member to some extent due to distortion of the pores, and can increase the toughness of the catalyst. On the other hand, since the amount of deformation that occurs in the catalyst due to thermal stress increases as the catalyst becomes larger, the stress applied to the catalyst due to thermal shock also increases as the catalyst becomes larger. For this reason, it is considered that the larger the size of the catalyst, the more likely it is that damage due to thermal shock occurs. Therefore, it is necessary to improve the mechanical strength of the catalyst from the viewpoint of thermal shock resistance. Accordingly, in the catalyst for catalytic partial oxidation of hydrocarbons according to this example, the thermal shock resistance is improved by increasing the volume ratio of pores having pore diameters in the second range.

一方で触媒がそれほど大きくない場合には、熱応力を受けて触媒に生じる変形量も小さいので、第2の範囲の細孔直径を持つ細孔の容積の割合をそれほど増やさなくても触媒の破壊を抑えることができる。
こうした考え方に基づき、種々のサイズ及び形状に形成された触媒の耐熱衝撃性能を調べたところ、後述の担体組成としてAl、Zr、Y、Baを含む実施例に示すように、触媒厚さBと、全細孔容積に対する第2の範囲の細孔直径を持つ細孔の容積の割合Aとの関係で整理すると、上述の(6)、(7)式の条件を満たす領域にて耐熱衝撃性能の高い触媒が得られることが確認された。
On the other hand, if the catalyst is not so large, the amount of deformation that occurs in the catalyst under thermal stress is small, so that the destruction of the catalyst can be achieved without increasing the volume ratio of pores having pore diameters in the second range. Can be suppressed.
Based on these ideas, the thermal shock performance of the catalysts formed in various sizes and shapes was examined. As shown in Examples including Al, Zr, Y, and Ba as the carrier composition described later, the catalyst thickness B and In terms of the relationship with the ratio A of the volume of the pores having the pore diameter in the second range with respect to the total pore volume, the thermal shock performance in the region satisfying the above-mentioned formulas (6) and (7) It was confirmed that a high catalyst was obtained.

ここで(6)、(7)式の条件を満たす本実施の形態に係わる触媒は、従来用いられているアルミナ系の担体が備えている0.1μm〜1.0μmの範囲(第1の範囲)の細孔直径を持つ細孔に加えて、1.0μm〜10μmの範囲(第2の範囲)の細孔直径を持つ細孔を比較的多く含んでいる。そしてこれら広い細孔範囲に亘って形成された細孔が歪むことなどにより触媒に加わる熱衝撃を吸収することができるのではないかと考えられる。この結果、細孔直径の分布が第1の範囲に集中している場合に比べてより柔軟に応力を吸収することができ、その結果、破壊、粉化されにくい触媒となっているのではないかと考えられる。また、第2の範囲は200℃〜300℃程度から1200℃〜1500℃程度までの急激な温度変化によって生じる熱衝撃を吸収するのに適した細孔直径範囲となっている可能性もある。更に本発明の如くに担体としてアルミナ以外に2種以上の金属酸化物を添加した場合、単一成分と違い熱膨張率の異なる酸化物が複合していることにより急激な熱膨張や熱収縮による応力を吸収しているとも考えられる。   Here, the catalyst according to the present embodiment satisfying the conditions of the expressions (6) and (7) is in the range of 0.1 μm to 1.0 μm (first range) provided in a conventionally used alumina-based carrier. In addition to pores having a pore diameter of), relatively many pores having a pore diameter in the range of 1.0 μm to 10 μm (second range) are included. And it is thought that the thermal shock added to a catalyst can be absorbed by the pore formed over these wide pore ranges being distorted. As a result, the stress can be absorbed more flexibly than when the pore diameter distribution is concentrated in the first range, and as a result, the catalyst is not easily destroyed or pulverized. It is thought. Further, the second range may be a pore diameter range suitable for absorbing a thermal shock caused by a rapid temperature change from about 200 ° C to 300 ° C to about 1200 ° C to 1500 ° C. Further, when two or more metal oxides other than alumina are added as a support as in the present invention, oxides having different coefficients of thermal expansion differ from single components, resulting in rapid thermal expansion and contraction. It is thought that the stress is absorbed.

このような特徴を備えた担体の調製法は、例えば予備実験により上述の調製法を組み合わせて種々の担体群を調製し、水銀ポロシメータなどを用いた水銀圧入法により細孔容積分布を計測して、各調製法の中から上述の条件を満たす担体をスクリーニングすることによって特定する。そしてスクリーニングの結果残った担体の中から、例えば耐熱衝撃性能の最も高い担体の調製法やコストの安価な調製法を選定し、当該調製法により耐熱衝撃性の高い担体を工業的規模で製造するとよい。ここで水銀圧入法による細孔分布測定においては、一般的に0.003μm〜500μmの範囲の直径を有する細孔の細孔容積及びその分布曲線を計測することができる。0.003μmよりも小さな細孔容積は、例えばガス吸着法などにより計測することができるが、本実施の形態に係わる担体には殆ど含まれていないと考えられる。   For preparing a carrier having such characteristics, various carrier groups are prepared by, for example, preliminary experiments in combination with the above-mentioned preparation methods, and pore volume distribution is measured by a mercury intrusion method using a mercury porosimeter or the like. These are identified by screening a carrier that satisfies the above conditions from each preparation method. Then, from among the carriers remaining as a result of the screening, for example, a method for preparing the carrier with the highest thermal shock performance or a method with a low cost is selected, and a carrier with high thermal shock resistance is produced on an industrial scale by the preparation method. Good. Here, in the pore distribution measurement by the mercury intrusion method, generally the pore volume of pores having a diameter in the range of 0.003 μm to 500 μm and the distribution curve thereof can be measured. A pore volume smaller than 0.003 μm can be measured by, for example, a gas adsorption method, but is considered to be hardly contained in the carrier according to the present embodiment.

ここで(6)、(7)式を用いて選別される耐熱衝撃性能の高い炭化水素の接触部分酸化用の触媒の形状は、図1(a)、図1(b)に示した円柱状(タブレット状)、図1(c)、図1(d)に示した円筒状、図1(e)に示した球状の各例に限定されるものではない。例えば三つ葉状の断面を押し出し形成して得られるトリローブ状(図2(a))や四つ葉状の断面を例えば押し出し形成して得られるクワードローブ状(図2(b))であってもよい。この場合の触媒厚さは、具体的には、たとえば次のように求められる。図3(a)、図3(b)に例えば三つ葉の場合の平面図の例を示すように、断面の中心位置から、葉状の突起が重なりあって形成される「くびれ」までの長さをD、葉状の突起内に内接する円の最大半径をDとしたとき、これらD、Dのいずれか大きい方をD[mm]とし、押し出し形成した場合の押し出し方向(軸方向)の長さをL[mm]とする。この場合には図2に示すように、「2D≦L」のとき既述の最短距離の距離はDとなり、「2D>L」のとき最短距離の距離は「L」となり、各々2D、及びLが触媒厚さとなる。 Here, the shape of the catalyst for catalytic partial oxidation of hydrocarbons with high thermal shock performance selected using the equations (6) and (7) is the cylindrical shape shown in FIGS. 1 (a) and 1 (b). (Tablet shape), the cylindrical shape shown in FIG. 1 (c) and FIG. 1 (d), and the spherical shape shown in FIG. 1 (e) are not limited. For example, it may be a trilobal shape (FIG. 2 (a)) obtained by extruding a three-leaf shaped cross section or a quadrant shape (FIG. 2 (b)) obtained by extruding a four-leaf shaped cross section, for example. Good. Specifically, the catalyst thickness in this case is obtained as follows, for example. 3 (a) and 3 (b), for example, as shown in the plan view in the case of the three leaves, the length from the center position of the cross section to the “neck” formed by overlapping the leaf-like protrusions is shown. D 1 , where D 2 is the maximum radius of a circle inscribed in the leaf-like projection, D 1 or D 2 is set to D [mm], and the extrusion direction (axial direction) when extrusion is formed Is set to L [mm]. In this case, as shown in FIG. 2, the distance of the shortest distance described above is D when “2D ≦ L”, and the distance of the shortest distance is “L” when “2D> L”. L is the catalyst thickness.

また、図4(a)に示すように。円柱状の触媒に同一形状の空洞を複数個形成したり、図4(b)に示すように、円柱状の触媒に径の異なる空洞を複数個形成したりしてもよい。これらの場合は、空洞間および空洞と外表面および外表面間の距離がD(図4中にD〜Dと記してある)、触媒の上下方向の高さがLであれば、D≦Lならば、当該距離Dが触媒の構成体のすべての位置のうち、空洞または外表面までの最短距離の2倍の距離、即ち触媒厚さに相当し、L<DならばLが触媒厚さに相当する。 As shown in FIG. A plurality of cavities having the same shape may be formed in a columnar catalyst, or a plurality of cavities having different diameters may be formed in a columnar catalyst as shown in FIG. In these cases, the distance between the cavity and between the cavity and the outer surface and an outer surface (are marked D 1 to D 4 in FIG. 4) D, the height in the vertical direction of the catalyst if L, D If ≦ L, the distance D corresponds to the distance twice the shortest distance to the cavity or the outer surface among all positions of the catalyst structure, that is, the catalyst thickness. If L <D, L is the catalyst. Corresponds to thickness.

さらにこれらの考え方を拡張して、例えば図5に示すように、フォーム体状に形成された触媒の空洞間の距離、または空洞と触媒側面までの距離が最小となる位置の厚さDの最大の値を触媒の構成体のすべての位置のうち、空洞または外表面までの最短距離の2倍の距離と考えて、当該距離Dを触媒厚さとしてもよい。また、図6に示すように例えば高さLの角柱内に高さ方向に伸びる例えば角柱状の空洞を有するハニカム形状に成された触媒において、空洞間および空洞と外表面および外表面間の空洞間の最短距離D(図6(b)にD〜Dと示してある)とすると、D≦Lならば触媒厚さはDに相当し、L<Dならば触媒厚さはLに相当する。 Further, these ideas are further expanded, for example, as shown in FIG. 5, the maximum distance D between the cavities of the catalyst formed in the form of foam or the position where the distance between the cavities and the catalyst side surface is minimum. Is considered to be twice the shortest distance to the cavity or the outer surface among all the positions of the catalyst structure, and the distance D may be the catalyst thickness. Further, as shown in FIG. 6, in a catalyst formed in a honeycomb shape having, for example, a prismatic cavity extending in the height direction in a prism having a height L, the cavity between the cavity and between the cavity and the outer surface and the outer surface Assuming that the shortest distance D is D 1 to D 3 in FIG. 6B, the catalyst thickness corresponds to D if D ≦ L, and the catalyst thickness is L if L <D. Equivalent to.

次に本実施の形態に係る炭化水素の接触部分酸化用の触媒が適用されるプロセスについて説明する。図7は本例の触媒を用いて合成ガスを製造するための装置を概略的に示した図である。4は円筒状の反応器であり、この中に本発明の触媒を充填した触媒層5が形成されている。この装置では、原料である軽質炭化水素に酸素、スチーム、二酸化炭素を添加してなる原料ガスを反応器4の上部の入口41から供給し、触媒層5を通過させて部分酸化反応を行わせ、反応器4の下方側の出口42から合成ガスが取り出される。   Next, a process to which the catalyst for catalytic partial oxidation of hydrocarbon according to the present embodiment is applied will be described. FIG. 7 is a view schematically showing an apparatus for producing synthesis gas using the catalyst of this example. 4 is a cylindrical reactor in which a catalyst layer 5 filled with the catalyst of the present invention is formed. In this apparatus, a raw material gas obtained by adding oxygen, steam, and carbon dioxide to a light hydrocarbon as a raw material is supplied from an inlet 41 at the upper part of the reactor 4 and is allowed to pass through the catalyst layer 5 to perform a partial oxidation reaction. The synthesis gas is taken out from the outlet 42 on the lower side of the reactor 4.

さらに特願2004−298971に開示された如く、脱硫後の原料炭化水素をスチームで低温水蒸気改質し、炭素数2以上の炭化水素をメタンと水素に変換した後で当該原料を反応器4に導入し接触部分酸化してもよい。   Further, as disclosed in Japanese Patent Application No. 2004-298971, the raw material hydrocarbon after desulfurization is subjected to low-temperature steam reforming with steam, and the hydrocarbon having 2 or more carbon atoms is converted into methane and hydrogen, and then the raw material is fed to the reactor 4. It may be introduced and partially oxidized by contact.

CPO反応では出口ガス組成は入口温度、圧力、及び原料ガス組成によって決まる平衡組成で支配される。このため求める合成ガスのHとCOの比によって原料ガス中の酸素濃度を決める必要があるがGTLやDME、メタノール、アンモニア用合成ガスの場合、酸素の含有量については、酸素のモル数/炭化水素中の炭素のモル数が0.2〜0.8であることが好ましい。スチームは炭素析出を防止するだけでなく上記した合成ガス組成を支配する因子であることからスチームの含有量については、スチームのモル数/炭化水素中の炭素のモル数は0.2〜3.0であることが好ましい。 In the CPO reaction, the outlet gas composition is governed by an equilibrium composition determined by the inlet temperature, pressure, and feed gas composition. For this reason, it is necessary to determine the oxygen concentration in the raw material gas by the ratio of H 2 and CO of the synthesis gas to be obtained. In the case of the synthesis gas for GTL, DME, methanol, and ammonia, the oxygen content is determined by the number of moles of oxygen / It is preferable that the number of moles of carbon in the hydrocarbon is 0.2 to 0.8. Since steam is a factor that not only prevents carbon deposition but also dominates the above-described synthesis gas composition, the steam content is 0.2 to 3. mol of steam / mol of carbon in hydrocarbon. 0 is preferred.

また、GTLやDME、メタノール用合成ガスの場合、求める合成ガスのHとCOの比を調整するために、原料ガス中に二酸化炭素を含有させることが好ましい。二酸化炭素の含有量については、二酸化炭素のモル数/炭化水素中の炭素のモル数が好ましくは0.01〜0.6であり、より好ましくは0.1〜0.3である。 In the case of GTL, DME, or methanol synthesis gas, it is preferable to contain carbon dioxide in the raw material gas in order to adjust the ratio of H 2 and CO in the synthesis gas to be obtained. Regarding the carbon dioxide content, the number of moles of carbon dioxide / number of moles of carbon in the hydrocarbon is preferably 0.01 to 0.6, more preferably 0.1 to 0.3.

原料ガスは200℃〜500℃の範囲内の例えば200℃〜300℃に予備加熱されて反応器4内に供給され、反応器4の入口41における圧力は例えば常圧〜8MPaである。また空間速度(GHSV)は、例えば5.0×10(NL/L/Hr)〜1.0×10(NL/L/Hr)であり、より好ましくは2.0×10(NL/L/Hr)〜2.0×10(NL/L/Hr)である。 The source gas is preheated to 200 ° C. to 300 ° C. within the range of 200 ° C. to 500 ° C. and supplied into the reactor 4, and the pressure at the inlet 41 of the reactor 4 is, for example, normal pressure to 8 MPa. The space velocity (GHSV) is, for example, 5.0 × 10 3 (NL / L / Hr) to 1.0 × 10 6 (NL / L / Hr), and more preferably 2.0 × 10 4 (NL / L / Hr) to 2.0 × 10 5 (NL / L / Hr).

反応器4内に原料ガスを供給すると、触媒により背景技術の項目の(1)式、(2)式に示した酸化反応が起こり、図13にて説明したように触媒層5の入口では大きな発熱が生じるので当該部位の温度が上昇する。こうした領域において背景技術にて説明したように当該温度上昇の発生する位置が触媒層5の上流側や下流側へと移動した場合には、この移動する領域に充填されている触媒は200℃〜300℃程度の温度から1200℃〜1500℃程度までの急激な温度変化に伴う熱衝撃に晒されることになる。しかし本実施の形態に係わる触媒は、後述の実施例に示すように高い耐熱衝撃性能を備えていることから、熱衝撃を受けても破壊、粉化されにくくなっている。   When the raw material gas is supplied into the reactor 4, the oxidation reaction shown in the background art items (1) and (2) occurs by the catalyst and is large at the inlet of the catalyst layer 5 as described with reference to FIG. 13. Since the heat is generated, the temperature of the part increases. As described in the background art in such a region, when the position where the temperature rise occurs moves to the upstream side or the downstream side of the catalyst layer 5, the catalyst filled in the moving region is 200 ° C. to It will be exposed to the thermal shock accompanying the rapid temperature change from the temperature of about 300 degreeC to about 1200 degreeC-1500 degreeC. However, since the catalyst according to the present embodiment has a high thermal shock resistance as shown in the examples described later, it is difficult to be destroyed or pulverized even when subjected to a thermal shock.

そして前記の急激に温度が上昇する領域よりも下流側の触媒層5では、既述の(1)〜(5)式が同時に進行し平衡組成に到達するので、触媒層5の温度は原料ガスの組成と反応圧力によって決定される出口ガス組成の平衡温度、例えばGTL用合成ガスの場合は1000℃程度の温度に安定する。この場合、反応器4の出口42では、1000℃における平衡で決まる組成のガス、即ちGTL用合成ガスに適した割合の一酸化酸素及び水素を含む合成ガスが得られる。   In the catalyst layer 5 on the downstream side of the region where the temperature suddenly increases, the above-described equations (1) to (5) proceed simultaneously to reach the equilibrium composition, so the temperature of the catalyst layer 5 is the source gas. Equilibrium temperature of the outlet gas composition determined by the composition and the reaction pressure, for example, in the case of GTL synthesis gas, it is stabilized at a temperature of about 1000 ° C. In this case, a gas having a composition determined by equilibrium at 1000 ° C., that is, a synthesis gas containing oxygen monoxide and hydrogen in a proportion suitable for the GTL synthesis gas is obtained at the outlet 42 of the reactor 4.

この合成ガス中には二酸化炭素が含まれるが、後段の工程にて合成ガスから二酸化炭素が分離され、この二酸化炭素が原料ガスに加えられて反応器4内に供給され、こうして二酸化炭素が再使用(リサイクル)される。また原料ガス中に供給する二酸化炭素はこのようなCPOプロセスからのリサイクルに限られるものではなく、例えば合成ガスを原料としてGTLを合成するフィッシャートロプシュ反応プロセス(FTプロセス)からの未反応ガス中に含まれる二酸化炭素をリサイクルしてもよい。また、この未反応ガスにはCOガスが含まれることからこの未反応ガスを原料ガスとしてリサイクルしたり、GTLの精製過程で得られる軽質炭化水素を含むガス(FT合成オフガスという)を原料ガスとしてリサイクルしたりしてもよい。   This synthesis gas contains carbon dioxide, but carbon dioxide is separated from the synthesis gas in a later step, and this carbon dioxide is added to the raw material gas and supplied into the reactor 4. Used (recycled). Carbon dioxide supplied into the raw material gas is not limited to recycling from such a CPO process. For example, unreacted gas from a Fischer-Tropsch reaction process (FT process) that synthesizes GTL using synthetic gas as a raw material. The contained carbon dioxide may be recycled. Since this unreacted gas contains CO gas, this unreacted gas is recycled as a raw material gas, or a gas containing light hydrocarbons (referred to as FT synthesis off-gas) obtained in the GTL purification process is used as a raw material gas. It may be recycled.

また本発明に係る接触部分酸化用の触媒を製造する場合、原料ガス中に塩素分が含まれていて、焼成後においても一定濃度で塩素が残留すると反応器下流において露点以下の温度条件になる配管、機器等で応力腐食割れや減肉腐食が起こる。従って本発明の接触部分酸化触媒を製造する原料には塩素を含まない原料を用いるか、或いは塩素を除去することが好ましい。触媒中に残留する塩素はバリウムやVIII族の元素等の原料に起因する。そこで原料として水酸化物および硝酸塩や炭酸塩、有機酸塩他の塩素を含まない原料を用いることにより塩素を含有しない触媒を製造することが出来る。またVIII族の元素の原料として例えば塩化ロジウムや塩化ルテニウム等を使用する場合には、担持工程において塩素を除去する方法を採用してもよい。この塩素除去方法については例えば特開昭60−190240に開示されている方法によっても100ppm以下に除去することが出来るが、アルカリ水溶液で洗浄する等の方法によっても可能である。   In the case of producing a catalyst for catalytic partial oxidation according to the present invention, if chlorine content is contained in the raw material gas and chlorine remains at a constant concentration even after calcination, the temperature condition is below the dew point downstream of the reactor. Stress corrosion cracking and thinning corrosion occur in piping and equipment. Therefore, it is preferable to use a raw material which does not contain chlorine as a raw material for producing the catalytic partial oxidation catalyst of the present invention or to remove chlorine. Chlorine remaining in the catalyst originates from raw materials such as barium and group VIII elements. Thus, a catalyst containing no chlorine can be produced by using a raw material which does not contain hydroxide, nitrate, carbonate, organic acid salt or other chlorine as a raw material. When, for example, rhodium chloride or ruthenium chloride is used as a raw material for the Group VIII element, a method of removing chlorine in the supporting step may be employed. As for this chlorine removal method, for example, it can be removed to 100 ppm or less by the method disclosed in JP-A-60-190240, but it can also be carried out by a method such as washing with an alkaline aqueous solution.

以上において、本発明の触媒を用いて製造する合成ガスは、GTLやメタノール、DME、水素等の原料として用いられることに限らず、アンモニアガスの合成原料として用いられるガスも含まれる。この場合には、例えば酸素プラントからの純度の高い酸素の代わりに空気や酸素富化空気を用い、空気や酸素富化空気及びスチームを原料炭化水素に添加して、水素、窒素及び一酸化炭素を含む合成ガスが得られる。この合成ガスは、後工程で一酸化炭素および二酸化炭素が除去されてアンモニアの合成原料となる。   In the above, the synthesis gas produced using the catalyst of the present invention is not limited to being used as a raw material such as GTL, methanol, DME, or hydrogen, but also includes a gas used as a synthetic raw material for ammonia gas. In this case, for example, air or oxygen-enriched air is used instead of high-purity oxygen from the oxygen plant, and the air, oxygen-enriched air and steam are added to the raw material hydrocarbon, and hydrogen, nitrogen and carbon monoxide are added. A synthesis gas containing is obtained. This synthesis gas is used as a synthesis raw material of ammonia by removing carbon monoxide and carbon dioxide in a later step.

本実施の形態によれば以下の効果がある。全細孔容積に対する細孔直径が1μm以上、10μm未満の範囲の細孔の容積の合計値の容積率に対する触媒の耐熱衝撃性を決定する位置における当該触媒の厚さが、所定の関係式を満たしている触媒を用いることにより、熱衝撃を受けても破壊、粉化しにくい炭化水素の接触部分酸化用の触媒を得ることができる。これによりCPOプロセスの反応器4の入口など稼動中に繰り返し熱衝撃を受ける領域に当該触媒を充填しても、触媒の破壊、粉化による触媒層5の目詰まりといったトラブルが発生しにくくなり信頼性の高いプロセスとすることができる。   The present embodiment has the following effects. The thickness of the catalyst at a position that determines the thermal shock resistance of the catalyst with respect to the volume ratio of the total pore volume in the range where the pore diameter with respect to the total pore volume is 1 μm or more and less than 10 μm is a predetermined relational expression. By using a satisfying catalyst, it is possible to obtain a catalyst for catalytic partial oxidation of hydrocarbons that is difficult to be destroyed or pulverized even under thermal shock. As a result, even if the catalyst is filled in a region that receives repeated thermal shocks during operation, such as the inlet of the reactor 4 of the CPO process, troubles such as catalyst destruction and clogging of the catalyst layer 5 due to pulverization are less likely to occur. It can be a highly reliable process.

ここで本実施の形態に係わる触媒は反応器4内の触媒層5全体に充填する場合に限定されない。例えば既述の急激な温度変化を生じる位置が移動する領域、例えば触媒層5の上流側、全触媒層の5分の1〜2分の1の領域に本実施の形態に係わる触媒を充填し、その下流側には従来型の担体を用いて製造した触媒を充填するようにしてもよい。   Here, the catalyst according to the present embodiment is not limited to the case where the entire catalyst layer 5 in the reactor 4 is filled. For example, the area where the position where the rapid temperature change described above moves, for example, the upstream side of the catalyst layer 5 and the area of 1/5 to 1/2 of the entire catalyst layer is filled with the catalyst according to the present embodiment. The downstream side may be filled with a catalyst manufactured using a conventional carrier.

(第2の実施の形態)
第2の実施の形態に係わる触媒は、アルミナを担体の主成分とし、Ca酸化物、Si酸化物及びMg酸化物を副成分として含んでいる。担体の製造方法については第1の実施の形態に係わる担体の製造方法と同様であるがアルミナ又はアルミナ前駆体の粉末にYSZの代わりにアルミナセメント及びシリカゾルと酸化マグネシウム粉末を添加した。当該担体中のAlの含有量は、Al換算で好ましくは30重量%〜90重量%、より好ましくは40重量%〜80重量%、更に好ましくは50重量%〜80重量%である。カルシウムの含有量はCaO換算で好ましくは5重量%〜30重量%、より好ましくは10重量%〜30重量%である。またケイ素の含有量はSiO換算で好ましくは5重量%〜30重量%、より好ましくは10重量%〜20重量%である。そしてマグネシウムの含有量はMgO換算で好ましくは5重量%〜30重量%、より好ましくは10重量%〜30重量%である。また、当該担体中に含まれる成分はこれらに限定されるものではなくAl、Ca、Si及びMg以外の元素を含んでいてもよい。
(Second Embodiment)
The catalyst according to the second embodiment contains alumina as a main component of the carrier and Ca oxide, Si oxide, and Mg oxide as subcomponents. The carrier production method is the same as the carrier production method according to the first embodiment, but alumina cement, silica sol, and magnesium oxide powder are added to the alumina or alumina precursor powder instead of YSZ. The content of Al in the carrier is preferably 30% by weight to 90% by weight, more preferably 40% by weight to 80% by weight, and still more preferably 50% by weight to 80% by weight in terms of Al 2 O 3 . The calcium content is preferably 5% by weight to 30% by weight and more preferably 10% by weight to 30% by weight in terms of CaO. The content of silicon is preferably in terms of SiO 2 5 wt% to 30 wt%, more preferably from 10 wt% to 20 wt%. The magnesium content is preferably 5 to 30% by weight, more preferably 10 to 30% by weight in terms of MgO. Moreover, the component contained in the said support | carrier is not limited to these, You may contain elements other than Al, Ca, Si, and Mg.

当該担体においても第1の実施の形態の場合と同様に、例えば種々の調製法にて調製された担体群の中から、上述の(6)、(7)式の条件を満たす担体調製法がスクリーニングなどにより選定される。   Also in the carrier, as in the case of the first embodiment, a carrier preparation method that satisfies the conditions of the above-mentioned formulas (6) and (7) is selected from, for example, a group of carriers prepared by various preparation methods. Selected by screening.

そして例えばVIII族の元素であるルテニウム等を活性金属として担持し、図7に示すCPOプロセスに適用して合成ガスを製造する点は既述の第1の実施の形態と同様なので説明を省略する。
このように第2の実施の形態に係わる触媒は、第1の実施の形態に係る触媒とは担体の成分が異なっているが、後述の担体組成としてAl、Ca、Si、Mgを含む実施例に示すように高い耐熱衝撃性能を備えていることを確認できた。
For example, ruthenium, which is an element of group VIII, is supported as an active metal and applied to the CPO process shown in FIG. .
As described above, the catalyst according to the second embodiment is different from the catalyst according to the first embodiment in the components of the carrier, but examples include Al, Ca, Si, and Mg as the carrier composition described later. It was confirmed that it had high thermal shock resistance as shown in.

(第3の実施の形態)
第3の実施の形態に係る触媒は、アルミナを担体の主成分とし、Mg酸化物及びYSZを副成分として含み、アルミニウムの含有量は、アルミナ換算で好ましくは30重量%〜90重量%、より好ましくは40重量%〜80重量%、更に好ましくは50重量%〜80重量%である。またマグネシウムの含有量はMgO換算で好ましくは5重量%〜30重量%、より好ましくは10重量%〜30重量%である。そしてYSZの含有量は、例えばイットリア(Y)を2モル%〜10モル%の範囲で含むYSZの重量換算で好ましくは5重量%〜40重量%、より好ましくは10重量%〜30重量%である。また当該担体の調製方法、活性金属の担持方法、例えばスクリーニングによる担体の調製方法の選定などの細孔直径の調整方法、CPOプロセスへの適用などについては既述の第1の実施の形態と同様なので説明を省略する。また、当該担体中に含まれる成分はこれらに限定されるものではなくAl、MgOやYSZ以外の酸化物を含んでいてもよい。
(Third embodiment)
The catalyst according to the third embodiment includes alumina as a main component of support, Mg oxide and YSZ as subcomponents, and the aluminum content is preferably 30% by weight to 90% by weight in terms of alumina. Preferably they are 40 weight%-80 weight%, More preferably, they are 50 weight%-80 weight%. Further, the magnesium content is preferably 5 to 30% by weight, more preferably 10 to 30% by weight in terms of MgO. The content of YSZ, for example yttria (Y 2 O 3) and preferably from 5% to 40% by weight in terms of YSZ containing in the range of 2 mol% to 10 mol%, more preferably 10% to 30 % By weight. The carrier preparation method, the active metal loading method, for example, the pore diameter adjustment method such as selection of the carrier preparation method by screening, and the application to the CPO process are the same as in the first embodiment described above. Therefore, explanation is omitted. Further, the components may contain oxides other than Al 2 O 3 is not limited to these, MgO and YSZ contained in the carrier.

当該担体においても第1の実施の形態の場合と同様に、例えば種々の調製法にて調製された担体群の中から、上述の(6)、(7)式の条件を満たす担体調製法がスクリーニングなどにより選定される。第3の実施の形態に係わる触媒によれば、後述の担体組成としてAl、Zr、Y、Mgを含む実施例に示すように高い耐熱衝撃性能が確認された。   Also in the carrier, as in the case of the first embodiment, a carrier preparation method that satisfies the conditions of the above-mentioned formulas (6) and (7) is selected from, for example, a group of carriers prepared by various preparation methods. Selected by screening. According to the catalyst of the third embodiment, high thermal shock resistance was confirmed as shown in the examples including Al, Zr, Y, and Mg as the carrier composition described later.

本発明に係わる炭化水素の接触部分酸化用の触媒の成分は、これまでに例示した第1の実施の形態〜第3の実施の形態に限定されるものではなく、副成分である無機酸化物の元素には、Al以外に周期律表のIIA族、IIIA族、IVA族、IIB族、IIIB族、IVB族、及びランタノイドから選択される元素の酸化物、例えばマグネシウム、ケイ素、カルシウム、チタン、バリウム、イットリウム、ジルコニウム、ランタン及びセリウムからなる元素群から選択される少なくとも2種類の元素の酸化物を含んでいるとよい。また本実施の形態に係わる触媒の一般的な指標値として、全細孔容積は0.05cm/g〜0.3cm/g、比表面積は0.5m/g〜7.0m/g程度であることが好ましい。 The components of the catalyst for catalytic partial oxidation of hydrocarbons according to the present invention are not limited to the first to third embodiments exemplified so far, but are inorganic oxides which are subcomponents. In addition to Al, oxides of elements selected from Group IIA, Group IIIA, Group IVA, Group IIB, Group IIIB, Group IVB, and lanthanoids other than Al, such as magnesium, silicon, calcium, titanium, An oxide of at least two elements selected from the element group consisting of barium, yttrium, zirconium, lanthanum, and cerium is preferably included. Also as a general index of the catalyst according to the present embodiment, the total pore volume is 0.05cm 3 /g~0.3cm 3 / g, a specific surface area of 0.5m 2 /g~7.0m 2 / It is preferable that it is about g.

(実験)
担体の単位重量当たりの全細孔容積に対する第2の範囲の細孔直径を持つ細孔の容積の割合A、並びに触媒形状及びその触媒厚さBの値を種々変化させた担体の成型体を各々調製し、これらの成型体に熱衝撃を加えて破壊、粉化の発生状況を確認した。試験は、マッフル炉にて担体5g〜10gを1200℃まで加熱して10分間保持した後、当該担体を炉内から取り出してすぐに20℃に保持した1Lの水中に投入することにより温度差が約1200℃での急冷却による熱衝撃を与えた。その後水中より担体を取り出してマッフル炉に再び投入しこの操作を10回繰り返して急冷却と急加熱による熱衝撃試験を行った。水は原料ガスよりも比熱が大きく、且つ、1200℃といった高温での投入により担体からは水の蒸発潜熱が奪われることから、水の温度上昇を考慮しても、反応器4内で発生する250℃/秒〜1300℃/秒程度の温度変化に匹敵する熱衝撃を当該担体に与えることができる。
(Experiment)
The ratio of the pore volume having a pore diameter in the second range to the total pore volume per unit weight of the support, and the shape of the support with various changes in the catalyst shape and the catalyst thickness B Each was prepared, and thermal shock was applied to these molded bodies to confirm the occurrence of destruction and pulverization. In the test, 5 g to 10 g of the carrier was heated to 1200 ° C. in a muffle furnace and held for 10 minutes, and then the carrier was taken out of the furnace and immediately put into 1 L of water held at 20 ° C. Thermal shock was applied by rapid cooling at about 1200 ° C. Thereafter, the carrier was taken out of the water, put into the muffle furnace again, and this operation was repeated 10 times to conduct a thermal shock test by rapid cooling and rapid heating. Water has a specific heat larger than that of the raw material gas, and the latent heat of vaporization of water is lost from the carrier when charged at a high temperature of 1200 ° C. Therefore, it is generated in the reactor 4 even if the temperature rise of water is taken into consideration. A thermal shock comparable to a temperature change of about 250 ° C./second to about 1300 ° C./second can be given to the carrier.

A.実験条件
担体の単位重量当たりの全細孔容積に対する第2の範囲の細孔直径を持つ細孔の容積の割合A、触媒形状(担体形状)及びその触媒厚さB並びに担体組成が異なる合計44種類の触媒について熱衝撃試験を行い、各担体の耐熱衝撃性能を評価した。
A. Experimental conditions
The ratio of the volume of pores having a pore diameter in the second range to the total pore volume per unit weight of the support A, the catalyst shape (support shape) and its catalyst thickness B, and a total of 44 types with different support compositions The catalyst was subjected to a thermal shock test to evaluate the thermal shock performance of each carrier.

B.実験結果
熱衝撃試験の結果、担体の破壊や粉化が殆ど見られず高い耐熱衝撃性能を示した30種類の担体を実施例とし、熱衝撃試験により破壊、粉化した14種類の担体を比較例とした。(表1)に各実施例、比較例に係る担体の触媒厚さB[mm]、第2の範囲の細孔容積割合[vol%]、触媒形状(担体形状)及びそのサイズ並びに担体組成を示す。担体のサイズについては円柱状(タブレット状)の場合は図1(a)、図1(b)に示す2R及びLの値を示し、リング状の場合は図1(c)、図1(d)に示すD及びLの値を示し、また球の場合には図1(e)の2Rの値を示している。ここで(表1)中のグラニュールは、ほぼ球形の粒子状に形成されているので、球状に含まれる。
また図8には、横軸に触媒厚さB[mm]、縦軸に第2の範囲の細孔の容積率A[vol%]を取り、実施例を黒丸「●」、比較例を黒塗りの三角「▲」でプロットした結果を図8に示す。
B. Experimental result
As a result of the thermal shock test, 30 types of carriers exhibiting high thermal shock resistance with almost no destruction or pulverization of the carrier were taken as examples, and 14 types of carriers broken and pulverized by the thermal shock test were compared with comparative examples. did. (Table 1) shows the catalyst thickness B [mm] of the carrier according to each example and comparative example, the pore volume ratio [vol%] in the second range, the catalyst shape (carrier shape), its size, and the carrier composition. Show. As for the size of the carrier, the values of 2R and L shown in FIG. 1 (a) and FIG. 1 (b) are shown in the case of a cylindrical shape (tablet shape), and in the case of a ring shape, FIG. 1 (c) and FIG. The values of D and L shown in FIG. 1) are shown, and in the case of a sphere, the value of 2R in FIG. Here, since the granules in (Table 1) are formed in a substantially spherical particle shape, they are included in a spherical shape.
In FIG. 8, the horizontal axis represents the catalyst thickness B [mm], and the vertical axis represents the volume ratio A [vol%] of the second range of pores. FIG. 8 shows the results plotted with the filled triangle “」 ”.

さらに(実施例1〜実施例30)の代表的な実験結果として(実施例10)及び(実施例25)に係わる担体に対してマッフル炉による急加熱、水中への投入による急冷却を10回繰り返した後の外観写真を各々図9、図10に示し、(比較例1〜比較例4)の代表的な実験結果として(比較例4)及び(比較例10)について同様の熱衝撃試験を行った結果の外観写真を各々図11、図12に示す。   Further, as a representative experimental result of (Example 1 to Example 30), the carrier according to (Example 10) and (Example 25) is subjected to rapid heating by a muffle furnace and rapid cooling by throwing it into water 10 times. The appearance photograph after repeating is shown in FIG. 9 and FIG. 10, respectively, and the same thermal shock test is performed for (Comparative Example 4) and (Comparative Example 10) as representative experimental results of (Comparative Example 1 to Comparative Example 4). The appearance photographs of the results are shown in FIGS. 11 and 12, respectively.

(表1)

Figure 0005562049
(Table 1)
Figure 0005562049

図9に示した(実施例10)の実験結果によれば、1200℃から常温までの急激な冷却と加熱に伴う熱衝撃を10回繰り返し受けたにも拘らず、各担体の破壊や粉化は確認されなかった。図10に示した(実施例25)の結果においても同様である。また写真には示していない各実施例に係る実験結果においても図9、図10と同様に、各担体には破壊や粉化は確認されなかった。これに対して図11に示した(比較例4)の結果によれば、球状に形成された担体は、わずか4回の熱衝撃によって元の形状を殆ど留めない程度にまで殆どの担体が破砕及び粉化してしまった。また、図12に示した(比較例10)においてもタブレット状に形成された担体は10回の熱衝撃で全て破壊された。さらに写真には示していない各比較例の実験結果においても図11、図12と同様に各担体は10回以内の熱衝撃性評価において破砕及び粉化してしまった。   According to the experimental result of (Example 10) shown in FIG. 9, each carrier was broken or pulverized despite repeated repeated thermal shocks from 1200 ° C. to room temperature and repeated heating 10 times. Was not confirmed. The same applies to the result of (Example 25) shown in FIG. In addition, in the experimental results according to each example not shown in the photograph, as in FIGS. 9 and 10, no breakage or pulverization was confirmed in each carrier. On the other hand, according to the result of (Comparative Example 4) shown in FIG. 11, most of the carriers in the spherical shape are crushed to such an extent that the original shape is hardly retained by only four thermal shocks. And powdered. Also in FIG. 12 (Comparative Example 10), the carrier formed in a tablet shape was all destroyed by 10 thermal shocks. Further, in the experimental results of each comparative example not shown in the photograph, each carrier was crushed and pulverized in the thermal shock evaluation within 10 times as in FIGS.

このような熱衝撃実験の結果をまとめた(表1)及び図8に示した結果によれば、触媒形状、担体組成の違いにかかわらず、耐熱衝撃性の高い担体と熱衝撃に弱い担体とは、触媒厚さBと第2の範囲の細孔容積割合Aとの関係で整理することができる。詳細には、触媒厚さBが大きくなるに伴って、第2の範囲の細孔容積割合Aを高くすれば担体の耐熱衝撃性が高まる一方、触媒厚さBを小さくすると第2の範囲の細孔容積割合Aを低くしても熱衝撃による破壊、粉化が発生しにくくなる。そしてさらに触媒厚さBの小さな領域では、耐熱衝撃性に対する触媒厚さBと第2の範囲の細孔容積割合Aとの相関は小さくなり、第2の範囲の細孔が一定割合存在すれば、その担体には耐熱衝撃性能が備わっていることが分かる。   According to the results of such thermal shock experiments summarized (Table 1) and the results shown in FIG. 8, regardless of the catalyst shape and the carrier composition, the carrier having high thermal shock resistance and the carrier weak to thermal shock Can be organized by the relationship between the catalyst thickness B and the pore volume ratio A in the second range. Specifically, as the catalyst thickness B increases, increasing the pore volume ratio A in the second range increases the thermal shock resistance of the carrier, while decreasing the catalyst thickness B decreases the second range. Even if the pore volume ratio A is lowered, breakage and powdering due to thermal shock hardly occur. Further, in a region where the catalyst thickness B is smaller, the correlation between the catalyst thickness B and the second range pore volume ratio A with respect to thermal shock resistance becomes smaller, and if there is a certain percentage of pores in the second range. It can be seen that the carrier has thermal shock resistance.

そこで担体の耐熱衝撃性について、触媒厚さBと第2の範囲の細孔容積割合Aとの間の相関が見られるB>1.5の領域では、比較例との境界をなす実施例のデータに基づいて近似曲線を引き、実施例と比較例とが混在する領域に重ならないようにマージンを持たせてこの近似曲線を上方側へ移動させ、A=0.158B−0.467B+3.411の境界線を得た。そして図8に示したグラフでは、この境界線よりも上側の領域(当該境界線を含む)の担体にて熱衝撃試験にて良好な結果が得られているので、(7)式の条件を満たす担体を用いることにより耐熱衝撃性能の高い触媒が得られることが分かる。 Therefore, in the region of B> 1.5 where the correlation between the catalyst thickness B and the pore volume ratio A in the second range is observed with respect to the thermal shock resistance of the carrier, An approximate curve is drawn based on the data, and the approximate curve is moved upward with a margin so as not to overlap the region where the example and the comparative example are mixed, and A = 0.158B 2 −0.467B + 3. A boundary line of 411 was obtained. In the graph shown in FIG. 8, since a good result is obtained in the thermal shock test with the carrier in the region above (including the boundary line) the boundary line, the condition of the expression (7) is satisfied. It can be seen that a catalyst having high thermal shock resistance can be obtained by using a carrier to be filled.

一方、触媒厚さBと第2の範囲の細孔容積割合Aとの間の相関が低い0<B≦1.5の領域では、前記Aの値が3.0vol%以上であって既述の(6)式を満たしていれば、触媒厚さに係らず高い耐熱衝撃性能を得ることができている。   On the other hand, in the region of 0 <B ≦ 1.5 where the correlation between the catalyst thickness B and the pore volume ratio A in the second range is low, the value of A is 3.0 vol% or more, as described above. If the formula (6) is satisfied, a high thermal shock resistance performance can be obtained regardless of the catalyst thickness.

4 反応器
5 触媒層
41 入口
42 出口
4 reactor 5 catalyst layer 41 inlet 42 outlet

Claims (15)

メタンと炭素数2以上の軽質炭化水素との少なくとも一方を含む原料炭化水素に少なくとも酸素及びスチームを添加して原料炭化水素を接触部分酸化し、一酸化炭素と水素とを含む合成ガスを製造するときに用いられ、無機酸化物からなる担体に活性金属を担持してなる炭化水素の接触部分酸化用の触媒であって、
この触媒の全細孔容積に対する細孔直径が1μm以上、10μm未満の範囲の細孔の容積の合計値の容積率A[容積%]、当該触媒において耐熱衝撃性を決定する位置の触媒の厚さB[mm]に対し、以下の条件を満たすことを特徴とする炭化水素の接触部分酸化用の触媒。
0<B≦1.5のとき、A≧3.0、
1.5<Bのとき、A≧0.158B−0.467B+3.411
但し、前記耐熱衝撃性を決定する位置の触媒の厚さBは、以下の値に相当する。
(a)前記触媒が半径R、長さLの円柱状である場合、
2R≦Lのとき、B=2R、
2R>Lのとき、B=L、
(b)前記触媒がリング幅D、長さLのリング状である場合、
D≦Lのとき、B=D、
D>Lのとき、B=L
(c)前記触媒が半径Rの球状である場合、
B=2R
At least oxygen and steam are added to a raw material hydrocarbon containing at least one of methane and a light hydrocarbon having 2 or more carbon atoms to catalytically oxidize the raw material hydrocarbon to produce a synthesis gas containing carbon monoxide and hydrogen. A catalyst for catalytic partial oxidation of hydrocarbons, sometimes used, with an active metal supported on a support made of an inorganic oxide,
The volume ratio A [volume%] of the total volume of pores in the pore diameter range of 1 μm or more and less than 10 μm with respect to the total pore volume of the catalyst, the thickness of the catalyst at the position where the thermal shock resistance is determined in the catalyst A catalyst for catalytic partial oxidation of hydrocarbons, characterized by satisfying the following conditions for B [mm].
When 0 <B ≦ 1.5, A ≧ 3.0,
When 1.5 <B, A ≧ 0.158B 2 −0.467B + 3.411
However, the thickness B of the catalyst at the position where the thermal shock resistance is determined corresponds to the following value.
(A) When the catalyst has a cylindrical shape with a radius R and a length L,
When 2R ≦ L, B = 2R,
When 2R> L, B = L,
(B) when the catalyst is ring-shaped with a ring width D and a length L,
When D ≦ L, B = D,
When D> L, B = L
(C) when the catalyst is spherical with a radius R,
B = 2R
前記触媒の比表面積が0.5m/g以上、7.0m/g以下であることを特徴とする請求項に記載の炭化水素の接触部分散化用の触媒。 2. The catalyst for dispersing a hydrocarbon contact portion according to claim 1 , wherein the catalyst has a specific surface area of 0.5 m 2 / g or more and 7.0 m 2 / g or less. 前記触媒の全細孔容積が0.05cm/g以上、0.3cm/g以下であることを特徴とする請求項1または2に記載の炭化水素の接触部分酸化用の触媒。 The total pore volume of the catalyst is 0.05 cm 3 / g or more, 0.3 cm 3 / g catalyst for catalytic partial oxidation of hydrocarbon according to claim 1 or 2, characterized in that less. 前記無機酸化物からなる担体の第1の構成元素はAlであり、前記担体は単位重量あたりにAl換算で30重量%以上、90重量%以下のAlを含むことを特徴とする請求項1ないしのいずれか一つに記載の炭化水素の接触部分酸化用の触媒。 The first element of the carrier comprising the inorganic oxide is Al, the carrier in terms of Al 2 O 3 at 30 wt% or more per unit weight, claims, characterized in that it comprises 90 wt% or less of Al Item 4. The catalyst for catalytic partial oxidation of hydrocarbon according to any one of Items 1 to 3 . 前記無機酸化物からなる担体は、前記第1の構成元素に加え、アルカリ土類金属に属する元素、希土類金属に属する元素、Sc、Bi、Zr、Si及びTiからなる元素群から選択される少なくとも2種類の元素の酸化物を含むことを特徴とする請求項に記載の炭化水素の接触部分酸化用の触媒。 The support made of the inorganic oxide is at least selected from the group consisting of elements belonging to alkaline earth metals, elements belonging to rare earth metals, Sc, Bi, Zr, Si and Ti in addition to the first constituent element. The catalyst for catalytic partial oxidation of hydrocarbon according to claim 4 , comprising an oxide of two kinds of elements. 前記アルカリ土類金属に属する元素は、Mg、Ca、Sr及びBaであり、前記希土類金属に属する元素は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er及びYbであることを特徴とする請求項に記載の炭化水素の接触部部分酸化用の触媒。 Elements belonging to the alkaline earth metal are Mg, Ca, Sr and Ba, and elements belonging to the rare earth metal are Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, The catalyst for partial oxidation of a hydrocarbon contact portion according to claim 5 , wherein the catalyst is Er and Yb. 前記無機酸化物からなる担体はY、Ce、Ca、Mg、Sc、Smから選択される1種類以上の元素により安定化されたジルコニアを含むことを特徴とする請求項またはに記載の炭化水素の接触部分酸化用の触媒。 The carbonization according to claim 5 or 6 , wherein the support made of the inorganic oxide includes zirconia stabilized by one or more elements selected from Y, Ce, Ca, Mg, Sc, and Sm. Catalyst for catalytic partial oxidation of hydrogen. 前記安定化されたジルコニアはイットリアにより安定化されたイットリア安定化ジルコニアであることを特徴とする請求項に記載の炭化水素の接触部分酸化用の触媒。 The catalyst for catalytic partial oxidation of hydrocarbon according to claim 7 , wherein the stabilized zirconia is yttria stabilized zirconia stabilized by yttria. 前記イットリア安定化ジルコニアは、イットリアを2モル%以上、10モル%以下の範囲で含有することを特徴とする請求項に記載の炭化水素の接触部分酸化用の触媒。 The catalyst for catalytic partial oxidation of hydrocarbon according to claim 8 , wherein the yttria-stabilized zirconia contains yttria in a range of 2 mol% to 10 mol%. 前記活性金属は、周期律表VIII族の元素から選択された1種類以上の金属であることを特徴とする請求項1ないしのいずれか一つに記載の炭化水素の接触部分酸化用の触媒。 The catalyst for catalytic partial oxidation of hydrocarbon according to any one of claims 1 to 9 , wherein the active metal is one or more metals selected from Group VIII elements of the Periodic Table . 前記周期律表VIII族の元素は、Ru、Pt、Rh、Pd、Os及びIrであることを特徴とする請求項10に記載の炭化水素の接触部分酸化用の触媒。 The catalyst for catalytic partial oxidation of hydrocarbon according to claim 10 , wherein the elements of Group VIII of the periodic table are Ru, Pt, Rh, Pd, Os and Ir. 前記活性金属を、触媒の単位重量当たり0.05重量%以上、5.0重量%以下含むことを特徴とする請求項1ないし11のいずれか一つに記載の炭化水素の接触部分酸化用の触媒。 The active metal, the catalyst per unit weight 0.05% by weight or more, for catalytic partial oxidation of hydrocarbon according to any one of claims 1 to 11, characterized in that it comprises 5.0 wt% or less catalyst. メタンと炭素数2以上の軽質炭化水素との少なくとも一方を含む原料炭化水素に酸素及びスチームを添加してなる原料ガスであって、原料炭化水素に水素が含まれていることにより及び/または水素を添加することにより水素が含まれる原料ガスを、反応器内に供給する工程と、
前記反応器内に設けられた請求項1ないし12のいずれか一つに記載の触媒と前記原料ガスとを加熱状態で接触させて、原料炭化水素を接触部分酸化し、一酸化炭素と水素とを含む合成ガスを製造する工程と、を含むことを特徴とする合成ガスの製造方法。
A raw material gas obtained by adding oxygen and steam to a raw material hydrocarbon containing at least one of methane and a light hydrocarbon having 2 or more carbon atoms, and / or hydrogen containing hydrogen in the raw material hydrocarbon Supplying a raw material gas containing hydrogen by adding to the reactor,
The catalyst according to any one of claims 1 to 12 provided in the reactor and the raw material gas are brought into contact with each other in a heated state to subject the raw material hydrocarbon to partial oxidation, so that carbon monoxide and hydrogen A process for producing a synthesis gas comprising: a synthesis gas comprising:
前記合成ガスを製造する工程において、前記触媒と原料ガスとが加熱状態で接触する領域には、当該触媒が200℃〜1500℃の温度範囲に亘って250℃/秒〜1300℃/秒の温度変化を受ける領域が含まれていることを特徴とする請求項13に記載の合成ガスの製造方法。 In the step of producing the synthesis gas, in the region where the catalyst and the raw material gas are in contact with each other in a heated state, the catalyst is at a temperature of 250 ° C./second to 1300 ° C./second over a temperature range of 200 ° C. to 1500 ° C. 14. The method for producing synthesis gas according to claim 13 , wherein a region to be changed is included. 前記原料ガスを200℃〜500℃に予備加熱した後に、圧力が常圧〜8MPa、空間速度(GHSV)が5.0×10(NL/L/Hr)〜1.0×10(NL/L/Hr)の条件で反応器内に供給し、断熱反応条件下で触媒と接触させることを特徴とする請求項13または14に記載の合成ガスの製造方法。 After preheating the source gas to 200 ° C. to 500 ° C., the pressure is normal pressure to 8 MPa, and the space velocity (GHSV) is 5.0 × 10 3 (NL / L / Hr) to 1.0 × 10 6 (NL The method for producing a synthesis gas according to claim 13 or 14 , wherein the reaction gas is supplied into the reactor under the conditions of / L / Hr) and is brought into contact with the catalyst under the adiabatic reaction conditions.
JP2010014719A 2010-01-26 2010-01-26 Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas Expired - Fee Related JP5562049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014719A JP5562049B2 (en) 2010-01-26 2010-01-26 Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014719A JP5562049B2 (en) 2010-01-26 2010-01-26 Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas

Publications (2)

Publication Number Publication Date
JP2011152498A JP2011152498A (en) 2011-08-11
JP5562049B2 true JP5562049B2 (en) 2014-07-30

Family

ID=44538839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014719A Expired - Fee Related JP5562049B2 (en) 2010-01-26 2010-01-26 Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas

Country Status (1)

Country Link
JP (1) JP5562049B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2015148344A (en) 2013-04-12 2017-05-17 ДжиТиЭлПЕТРОЛ ЭлЭлСи PRODUCTION OF HYDROCARBONS FROM THE FISCHER-TROPSH CATALYTIC REACTOR
JP7450359B2 (en) 2019-10-01 2024-03-15 株式会社キャタラー Exhaust gas purification catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8514344D0 (en) * 1985-06-06 1985-07-10 Ici Plc Catalyst support
JP4377699B2 (en) * 2004-01-05 2009-12-02 千代田化工建設株式会社 Synthesis gas production catalyst and synthesis gas production method using the same
EP2251080B1 (en) * 2008-03-06 2022-05-18 Toda Kogyo Corp. A porous catalytic body that decomposes hydrocarbons and a manufacturing method thereof, a method for manufacturing mixed reformed gas that comprises hydrogen from hydrocarbon, and a fuel cell system

Also Published As

Publication number Publication date
JP2011152498A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5292194B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
US9511351B2 (en) Catalysts for use in steam reforming processes
CN108430621B (en) Heat-resistant hydrocarbon reforming catalyst based on rhodium on lanthanum-stabilized theta-alumina
EP1930076A1 (en) Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
JP2017501958A (en) Method for reforming a mixture containing hydrocarbons and carbon dioxide
CA2415833A1 (en) Catalytic oxidation process
KR20230050314A (en) steam reforming
JP5562049B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
JP4759243B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
US9975099B2 (en) Fuel synthesis catalyst and fuel synthesis system
EP1703979B1 (en) Catalyst for manufacturing synthesis gas and method of manufacturing synthesis gas using the same
JP2005193110A (en) Synthesis gas production catalyst and synthesis gas production method using the same
US20040147619A1 (en) Chlorine-containing synthesis gas catalyst
JP4377700B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
KR20100120773A (en) Metal-structure for catalyst layer for autothermal methane reforming to synthetic gas for fischer-tropsch process, manufacturing method thereof and metal-structured catalyst
KR20250133873A (en) Dry reforming catalyst system
Bao et al. Novel catalysts for synthesis gas generation from natural

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees