JP5580704B2 - Purification method of contaminated water - Google Patents
Purification method of contaminated water Download PDFInfo
- Publication number
- JP5580704B2 JP5580704B2 JP2010210850A JP2010210850A JP5580704B2 JP 5580704 B2 JP5580704 B2 JP 5580704B2 JP 2010210850 A JP2010210850 A JP 2010210850A JP 2010210850 A JP2010210850 A JP 2010210850A JP 5580704 B2 JP5580704 B2 JP 5580704B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- water
- nitrite
- nitrate
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 58
- 238000000746 purification Methods 0.000 title description 7
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 claims description 60
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 claims description 52
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 44
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 34
- 239000003638 chemical reducing agent Substances 0.000 claims description 33
- 229910052757 nitrogen Inorganic materials 0.000 claims description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 15
- 239000011593 sulfur Substances 0.000 claims description 15
- 229910052717 sulfur Inorganic materials 0.000 claims description 15
- 239000003463 adsorbent Substances 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- 238000005341 cation exchange Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 238000010926 purge Methods 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- -1 ammonium ions Chemical class 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- 229910021529 ammonia Inorganic materials 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229920002988 biodegradable polymer Polymers 0.000 description 6
- 239000004621 biodegradable polymer Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 5
- 230000001651 autotrophic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003673 groundwater Substances 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 125000001477 organic nitrogen group Chemical group 0.000 description 5
- 230000033116 oxidation-reduction process Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000002306 biochemical method Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000000909 electrodialysis Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000011197 physicochemical method Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910000669 Chrome steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003864 humus Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 208000005135 methemoglobinemia Diseases 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241000605159 Nitrobacter Species 0.000 description 1
- 241001453382 Nitrosomonadales Species 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006193 diazotization reaction Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000816 effect on animals Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
- C02F1/705—Reduction by metals
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/425—Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/166—Nitrites
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Sorption (AREA)
Description
本発明は、硝酸性窒素および/または亜硝酸性窒素に汚染された水を効果的に浄化する方法に関するものであり、特に上記のような汚染水を迅速且つ簡便に浄化する方法に関するものである。 The present invention relates to a method for effectively purifying water contaminated with nitrate nitrogen and / or nitrite nitrogen, and particularly to a method for quickly and easily purifying such contaminated water. .
硝酸性窒素や亜硝酸性窒素による健康への影響として、次のような点が指摘されている。硝酸性窒素は、人体内で亜硝酸性窒素に還元され、亜硝酸性窒素がヘモグロビンと結合しメタヘモグロビンを形成することから、酸素欠乏症(メトヘモグロビン血症)を引き起こすと言われている。特に、乳幼児の胃腸内部は酸度が弱いため、微生物による硝酸性窒素還元が起きやすく、メトヘモグロビン血症にかかりやすいと言われている。 The following points have been pointed out as the health effects of nitrate nitrogen and nitrite nitrogen. Nitrate nitrogen is reduced to nitrite nitrogen in the human body, and nitrite nitrogen is combined with hemoglobin to form metahemoglobin, which is said to cause oxygen deficiency (methemoglobinemia). In particular, it is said that the inside of the gastrointestinal tract of infants is weak in acidity, so that nitrate nitrogen reduction by microorganisms is likely to occur and methemoglobinemia is likely to occur.
硝酸性窒素や亜硝酸性窒素は、環境基本法第16条に基づく、「地下水の水質汚濁に関わる環境基準」において、平成11年2月に環境基準項目に追加され、平成11年度より水質汚濁防止法に基づく常時監視が行なわれている。
Nitrate nitrogen and nitrite nitrogen were added to the environmental standard items in February 1999 in the “Environmental Standards for Water Pollution of Groundwater” based on
硝酸性窒素や亜硝酸性窒素による地下水汚染は、施肥、家畜排泄物、生活排水等、汚染原因が多岐に亘り、また汚染が広範囲に及ぶことがあるから、問題となる汚染物質である。 Groundwater contamination by nitrate nitrogen or nitrite nitrogen is a problematic pollutant because of various causes of contamination, such as fertilization, livestock excrement, and domestic wastewater, and the contamination can be widespread.
硝酸性窒素や亜硝酸性窒素は、基本的に窒素循環によって生成されることになる。例えば、蛋白質を始めとする有機窒素化合物は、不溶性有機窒素と水溶性有機窒素に分けられる。このうち、不溶性有機窒素は尿素分解酵素によって水溶性有機窒素に分解され、水溶性有機窒素はアンモニアに変化する。 Nitrate nitrogen and nitrite nitrogen are basically generated by nitrogen circulation. For example, organic nitrogen compounds including proteins are classified into insoluble organic nitrogen and water-soluble organic nitrogen. Among these, insoluble organic nitrogen is decomposed into water-soluble organic nitrogen by urea decomposing enzyme, and the water-soluble organic nitrogen is converted into ammonia.
アンモニアは、水に容易に溶けることから、水中ではアンモニウムイオン(アンモニア性窒素)として存在することになる。アンモニウムイオンは、好気性雰囲気においてニトロソモナス属等のアンモニア酸化菌により、亜硝酸イオン(亜硝酸性窒素)を生成する。次いで、亜硝酸イオンは、好気性雰囲気でニトロバクター属等の亜硝酸酸化菌により、硝酸イオン(硝酸性窒素)を生成することになる。硝酸性窒素や亜硝酸窒素は、このように水中ではイオンとして存在することになる。 Ammonia easily dissolves in water and therefore exists as ammonium ions (ammonia nitrogen) in water. Ammonium ions generate nitrite ions (nitrite nitrogen) by ammonia oxidizing bacteria such as nitrosomonas in an aerobic atmosphere. Next, nitrite ions generate nitrate ions (nitric nitrogen) by nitrite oxidizing bacteria such as nitrobacter in an aerobic atmosphere. Nitrate nitrogen and nitrogen nitrite are thus present as ions in water.
硝酸性窒素や亜硝酸性窒素を含有する水(汚染水)の浄化方法としては、物理化学的方法と生物化学的方法に大別される。このうち、物理化学的方法としては、イオン交換法、電気透析法、逆浸透膜法、触媒脱窒法等が知られている。一方、生物化学的方法としては、従属栄養性脱窒法、独立栄養性脱窒法等が知られている。 Methods for purifying water (contaminated water) containing nitrate nitrogen or nitrite nitrogen are roughly classified into physicochemical methods and biochemical methods. Among these, ion exchange methods, electrodialysis methods, reverse osmosis membrane methods, catalytic denitrification methods and the like are known as physicochemical methods. On the other hand, heterotrophic denitrification method, autotrophic denitrification method and the like are known as biochemical methods.
物理化学的方法としてのイオン交換法は、強塩基性陰イオン交換樹脂を用いて、陰イオンである硝酸性窒素、亜硝酸性窒素を分解除去する方法であるが、設備費が嵩むことや、イオン交換樹脂の再生に多量の塩化ナトリウムを使用することにより、高濃度の塩化ナトリウムが発生し、その処理が必要になるという根本的な問題がある。 The ion exchange method as a physicochemical method is a method of decomposing and removing nitrate nitrogen and nitrite nitrogen as anions using a strongly basic anion exchange resin. By using a large amount of sodium chloride for the regeneration of the ion exchange resin, there is a fundamental problem that a high concentration of sodium chloride is generated and the treatment is required.
電気透析法は、陰イオン交換膜を通水させ、硝酸性窒素や亜硝酸性窒素を分離する方法である。逆浸透膜法は、半透膜の片側に存在する硝酸性窒素や亜硝酸性窒素を含有する水に圧力を加えることによって、硝酸性窒素や亜硝酸性窒素を除去した水を半透膜の反対側に分離する方法である。これら電気透析法、逆浸透膜法は、いずれも設備費、維持費が嵩むと共に、硝酸性窒素、亜硝酸性窒素が高濃度となった廃水処理が必要になるという問題もある。 The electrodialysis method is a method of separating nitrate nitrogen and nitrite nitrogen by passing an anion exchange membrane. The reverse osmosis membrane method applies pressure to water containing nitrate nitrogen and nitrite nitrogen existing on one side of the semipermeable membrane to remove water from which nitrate nitrogen and nitrite nitrogen have been removed. It is a method of separating to the opposite side. Both the electrodialysis method and the reverse osmosis membrane method have a problem that the facility cost and the maintenance cost increase, and the waste water treatment in which nitrate nitrogen and nitrite nitrogen have a high concentration is required.
生物化学的方法としての従属栄養性脱窒法は、従属栄養性脱窒菌が付着・増殖した粒状濾層で硝酸性窒素や亜硝酸性窒素含有水を濾過し、硝酸性窒素や亜硝酸性窒素を窒素ガスに還元するものである。また、独立栄養性脱窒法は、独立栄養菌である硫黄脱窒菌を付着・増殖した濾層で、従属栄養菌性脱窒法と同様に処理するものである。これら従属栄養性脱窒法、独立栄養性脱窒法では、処理効率が水温(即ち、気温)に依存するという問題や、特に独立栄養性脱窒法では反応速度が遅く、しかも副産物として硫酸が生成しやすいという問題がある。加えて、装置の運転管理に当り、高度の技術が必要になるという欠点がある。 Heterotrophic denitrification as a biochemical method is a method of filtering nitrate nitrogen and nitrite nitrogen-containing water through a granular filter layer on which heterotrophic denitrifiers have adhered and grown, and then removing nitrate nitrogen and nitrite nitrogen. It is reduced to nitrogen gas. In addition, the autotrophic denitrification method is the same as the heterotrophic denitrification method, with a filter layer on which sulfur denitrifying bacteria, which are autotrophic bacteria, are attached and grown. In these heterotrophic denitrification method and autotrophic denitrification method, the treatment efficiency depends on the water temperature (ie, temperature), and in particular, the autotrophic denitrification method has a slow reaction rate and easily produces sulfuric acid as a by-product. There is a problem. In addition, there is a drawback that a high level of technology is required for operation management of the apparatus.
汚染水の浄化方法として、これまでにも様々提案されており、例えば、特許文献1には、脱窒菌および生分解性高分子を含む浄化壁を、硝酸やリン酸によって汚染された地下水層に埋設することによって、汚染された地下水を浄化する方法が提案されている。また、特許文献2には、上記の方法に加え、還元剤を併用することが提案されており、この還元剤は脱窒菌が嫌気性雰囲気において脱窒活動を行ない易いように、地下水を嫌気性雰囲気にするためのものである。
Various methods for purifying contaminated water have been proposed so far. For example, in Patent Document 1, a purification wall containing denitrifying bacteria and a biodegradable polymer is applied to a groundwater layer contaminated with nitric acid or phosphoric acid. A method for purifying contaminated groundwater by burying has been proposed.
しかしながら、上記特許文献1に示される技術では、浄化処理に時間がかかり過ぎるという基本的な問題がある。また、特許文献2の技術では、上記の問題に加え、鉄粉末の存在によって生分解性高分子の分解が阻害される様な微生物分解が生じることもあり、また鉄粉の添加量が少ない方が脱窒に要するカラム内の距離が少なくて済むという逆転現象が生じており、生分解性高分子の種類によっては、鉄粉の影響が異なる(有効にも無効にも作用する)という問題がある。
However, the technique disclosed in Patent Document 1 has a basic problem that the purification process takes too long. In addition, in the technique of
しかも、脱窒菌および生分解性高分子を含む浄化壁を用いる方法では、実際の処理土壌や浄化壁に存在する脱窒菌種類や量は様々であり、場合によっては、脱窒が十分に行なわれないという問題が生じたり、生分解性高分子の分解により、処理水中の全有機炭素量が増加し、活性炭処理やオゾン処理等の二次処理が必要となることがある。 Moreover, in the method using the denitrifying bacteria and the purification wall containing the biodegradable polymer, there are various kinds and amounts of denitrifying bacteria present in the actual treated soil and the purification wall, and in some cases, the denitrification is sufficiently performed. In some cases, the amount of total organic carbon in the treated water increases due to decomposition of the biodegradable polymer, and secondary treatment such as activated carbon treatment or ozone treatment may be required.
一方、硝酸性窒素や亜硝酸性窒素を各種還元剤によって、一旦アンモニア性窒素まで還元し、その後アンモニア性窒素を浄化する方法も提案されている。こうした技術は、硝酸性窒素や亜硝酸性窒素を、一旦アンモニア性窒素に還元することによって、その後の浄化工程を容易にするものである。 On the other hand, a method has also been proposed in which nitrate nitrogen or nitrite nitrogen is once reduced to ammonia nitrogen by various reducing agents, and then ammonia nitrogen is purified. Such a technique facilitates the subsequent purification process by once reducing nitrate nitrogen or nitrite nitrogen to ammonia nitrogen.
こうした技術として、例えば特許文献3には、硫酸第一鉄(FeSO4)や塩化第一鉄(FeCl2)等の第一鉄化合物を還元剤として用い、汚染水中の硝酸性窒素や亜硝酸性窒素を還元する方法が提案されている。また、特許文献4には、各種形態(粉末状、粒状、板状等)の鉄を還元剤として用い、これと硝酸性窒素や亜硝酸性窒素と接触させることによって、硝酸性窒素や亜硝酸性窒素を還元する方法も提案されている。
As such a technique, for example, Patent Document 3 uses ferrous sulfate (FeSO 4 ), ferrous chloride (FeCl 2 ) and other ferrous compounds as a reducing agent, and nitrate nitrogen or nitrite in contaminated water. A method for reducing nitrogen has been proposed.
しかしながら、これらの技術で提案された還元剤は、硝酸性窒素や亜硝酸性窒素の還元能力が十分なものとは言えず、更なる改良が望まれているのが実情である。また、上記特許文献3の技術では、汚泥処理をする必要があり、工程が煩雑となるという問題もある。 However, the reducing agents proposed in these techniques cannot be said to have sufficient reducing ability of nitrate nitrogen or nitrite nitrogen, and the actual situation is that further improvement is desired. Moreover, in the technique of the said patent document 3, it is necessary to perform a sludge process and there also exists a problem that a process becomes complicated.
本発明は上記の様な状況の下でなされたものであって、その目的は、硝酸性窒素や亜硝酸性窒素を迅速且つ確実に除去して、汚染水の浄化を行なうための有用な方法を提供することにある。 The present invention has been made under the circumstances as described above, and an object thereof is a useful method for purifying contaminated water by quickly and reliably removing nitrate nitrogen and nitrite nitrogen. Is to provide.
上記課題を解決することのできた本発明方法は、硝酸性窒素および/または亜硝酸性窒素に汚染された水を浄化するに当り、前記汚染された水を、硫黄を0.3〜2.0質量%含有する鉄粉と接触させ、前記硝酸性窒素および/または亜硝酸性窒素をアンモニア性窒素に還元し、アンモニア性窒素を含有する水からアンモニア性窒素を除去することによって、水を浄化する点に要旨を有するものである。 In the method of the present invention that has been able to solve the above-mentioned problems, in purifying water contaminated with nitrate nitrogen and / or nitrite nitrogen, the contaminated water is treated with 0.3 to 2.0 sulfur. Purify the water by bringing it into contact with the iron powder containing mass%, reducing the nitrate nitrogen and / or nitrite nitrogen to ammonia nitrogen, and removing the ammonia nitrogen from the water containing the ammonia nitrogen. It has a gist in terms.
本発明方法においては、前記汚染された水を、前記鉄粉と共に、陽イオン交換能を有する吸着剤に接触させることが有用であり、これによって硝酸性窒素および/または亜硝酸性窒素からアンモニア性窒素への還元と同時に、アンモニア性窒素の除去を行なうことができる。 In the method of the present invention, it is useful to bring the contaminated water into contact with an adsorbent having a cation exchange capacity together with the iron powder, whereby ammonia nitrogenous from nitrate nitrogen and / or nitrite nitrogen. Simultaneously with the reduction to nitrogen, ammoniacal nitrogen can be removed.
本発明によれば、硫黄を0.3〜2.0質量%含有する鉄粉と汚染水を接触させることによって、硝酸性窒素や亜硝酸性窒素を迅速且つ確実に除去することが可能になり、汚染水の浄化を行なうための有用な方法が実現できた。 According to the present invention, it is possible to quickly and reliably remove nitrate nitrogen and nitrite nitrogen by contacting contaminated water with iron powder containing 0.3 to 2.0 mass% of sulfur. A useful method for purifying contaminated water has been realized.
硝酸性窒素や亜硝酸性窒素の発生源となるアンモニアの経路は、以下に示す2通りが考えられる。まず、アンモニアが硝酸性窒素や亜硝酸性窒素に変化する経路であり、この経路は更に2通りが考えられる。アンモニアが硝酸性窒素や亜硝酸性窒素に変化する経路の一つとして、アンモニアが雨水に溶解し、アンモニア性窒素となり、アンモニア性窒素を溶解した雨水が、硝酸性窒素に酸化され、土中に浸透する経路である。これは、雨水はおよそpH5〜6、酸化還元電位[標準水素電極(SHE)基準:以下同じ]+0.8〜+1.0Vの範囲にあり、この範囲では、アンモニア性窒素が硝酸性窒素に還元される。 There are two possible routes for ammonia, which is the source of nitrate nitrogen and nitrite nitrogen, as shown below. First, there is a path through which ammonia changes to nitrate nitrogen or nitrite nitrogen, and two more paths are possible. As one of the routes in which ammonia changes to nitrate nitrogen or nitrite nitrogen, ammonia dissolves in rainwater to become ammonia nitrogen, and rainwater in which ammonia nitrogen is dissolved is oxidized to nitrate nitrogen and enters the soil. This is the penetration path. This is because rainwater is in the range of about pH 5-6, oxidation-reduction potential [standard hydrogen electrode (SHE) standard: the same applies hereinafter) +0.8 to +1.0 V. In this range, ammonia nitrogen is reduced to nitrate nitrogen. Is done.
もう一つの経路としては、アンモニア性窒素がバクテリアによって硝酸性窒素や亜硝酸性窒素に変化する経路である。この反応のアンモニア性窒素から硝酸性窒素に酸化される過程で中間的に生成されるのが亜硝酸性窒素である。アンモニア性窒素よりも亜硝酸性窒素の方が、酸化反応速度が大きくなるので、通常、亜硝酸性窒素が土壌中に集積することはない。しかしながら、pH等の影響によって、硝酸菌の活性が抑制されると、亜硝酸性窒素が土壌中に集積することがある。 As another route, ammoniacal nitrogen is converted into nitrate nitrogen or nitrite nitrogen by bacteria. Nitrite nitrogen is generated in the middle of the reaction from ammonia nitrogen to nitrate nitrogen. Since nitrite nitrogen has a higher oxidation reaction rate than ammonia nitrogen, nitrite nitrogen usually does not accumulate in soil. However, when the activity of nitrate bacteria is suppressed due to the influence of pH or the like, nitrite nitrogen may accumulate in the soil.
硝酸性窒素や亜硝酸性窒素の発生源となるアンモニアの経路の2つめとしては、土壌中の粘土鉱物や腐植土に吸着され、アンモニア窒素のままに留まることが考えられる。これは、アンモニア性窒素は正電荷を帯びており、土壌中の粘土鉱物や腐植土等は負に帯電しているためである。 The second route of ammonia, which is the source of nitrate nitrogen and nitrite nitrogen, may be adsorbed by clay minerals and humus in the soil and remain ammonia nitrogen. This is because ammonia nitrogen is positively charged, and clay minerals and humus soil in the soil are negatively charged.
本発明者らは、上記のような状況を考慮しつつ、土壌中に浸透した硝酸性窒素や亜硝酸性窒素を、如何に迅速且つ確実に無害化できるかを様々な角度から検討した。硝酸性窒素や亜硝酸性窒素を、浄化しやすいアンモニア性窒素に還元し、得られたアンモニア性窒素を含む汚染水から、アンモニア性窒素を浄化(アンモニア性窒素の窒素ガス化)することによって、汚染水を浄化ことは知られている(前記特許文献3、4)。しかしながら、これまで提案されている還元剤では、その還元能力に限界があった。 The present inventors examined from various angles how quickly and surely the nitrate nitrogen and nitrite nitrogen that have penetrated into the soil can be rendered harmless in consideration of the above situation. By reducing nitrate nitrogen and nitrite nitrogen to ammonia nitrogen that is easy to purify, and purifying ammonia nitrogen from the contaminated water containing ammonia nitrogen obtained (nitrogen gasification of ammonia nitrogen), It is known to purify contaminated water (Patent Documents 3 and 4). However, the reducing agents that have been proposed so far have limitations on their reducing ability.
本発明者らは、硝酸性窒素や亜硝酸性窒素をアンモニア性窒素に還元する還元剤について、更に検討したところ、硫黄を0.3〜2.0質量%含有する鉄粉を用いることが極めて有用であることを見出し、本発明を完成した。 The present inventors have further examined a reducing agent that reduces nitrate nitrogen or nitrite nitrogen to ammonia nitrogen, and it is extremely preferable to use iron powder containing 0.3 to 2.0 mass% of sulfur. It was found useful and the present invention was completed.
本発明方法では、硝酸性窒素や亜硝酸性窒素をアンモニア性窒素に還元する還元剤として、硫黄を0.3〜2.0質量%含有する鉄粉を用いることが重要である。還元剤としての効果を有効に発揮させるためには、鉄粉中の硫黄含有量は0.3質量%以上とする必要がある。また、硫黄含有量を2.0質量%以下とすることで、還元剤のコストアップを抑制した上で、還元効率を高めることができる。硫黄含有量は、好ましくは0.6質量%以上、1.5質量%以下である。 In the method of the present invention, it is important to use iron powder containing 0.3 to 2.0% by mass of sulfur as a reducing agent for reducing nitrate nitrogen or nitrite nitrogen to ammonia nitrogen. In order to effectively exhibit the effect as the reducing agent, the sulfur content in the iron powder needs to be 0.3% by mass or more. Moreover, reduction efficiency can be improved after suppressing the cost increase of a reducing agent by making sulfur content into 2.0 mass% or less. The sulfur content is preferably 0.6% by mass or more and 1.5% by mass or less.
硝酸性窒素や亜硝酸性窒素をアンモニア性窒素に還元するためには、pH5〜6の範囲で、酸化還元電位を+0.4V以下となるように制御すれば良いとの着想が得られている。即ち、本発明で用いる還元剤は、標準水素電極基準の酸化還元電位が+0.4V以下であるものを用いれば、硝酸性窒素や亜硝酸性窒素を効果的に還元できるものと考えられた。 In order to reduce nitrate nitrogen or nitrite nitrogen to ammonia nitrogen, the idea that the oxidation-reduction potential should be controlled to be +0.4 V or less in the range of pH 5 to 6 has been obtained. . That is, it was considered that the reducing agent used in the present invention can effectively reduce nitrate nitrogen and nitrite nitrogen by using a standard hydrogen electrode standard redox potential of +0.4 V or less.
酸化還元電位が+0.4V以下となる金属としては、鉄の他、銅、ビスマス、鉛、錫、ニッケル、コバルト、チタン、インジウム、カドミウム、ガリウム、クロム、亜鉛、マンガン、アルミニウム、ベリリウム、マグネシウム、ナトリウム、カルシウム、ストロンチウム、バリウム、セシウム、ルビシウム、カリウム、リチウム等、様々なものが考えられる。また。酸化還元電位が+0.4V以下となる合金としては、鋳鉄、炭素鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼等の鉄基合金、青銅、丹銅、黄銅等の銅基合金、半田等の鉛−錫合金等も考えられる。 As a metal whose oxidation-reduction potential is +0.4 V or less, in addition to iron, copper, bismuth, lead, tin, nickel, cobalt, titanium, indium, cadmium, gallium, chromium, zinc, manganese, aluminum, beryllium, magnesium, Various things such as sodium, calcium, strontium, barium, cesium, rubidium, potassium, lithium and the like can be considered. Also. Examples of alloys whose oxidation-reduction potential is +0.4 V or less include iron-based alloys such as cast iron, carbon steel, nickel chrome steel, nickel chrome molybdenum steel, chrome steel, chrome molybdenum steel, manganese steel, bronze, red brass, brass, etc. Copper-base alloys, lead-tin alloys such as solder, etc. are also conceivable.
しかしながら、酸化還元電位が+0.4V以下となる要件だけを満足させても、還元剤としての能力には限界があることが判明したのである。加えて、これらの還元剤は、安全性やコストの点で下記のような問題がある。 However, even if only the requirement that the oxidation-reduction potential is +0.4 V or less is satisfied, the ability as a reducing agent has been found to be limited. In addition, these reducing agents have the following problems in terms of safety and cost.
銅、亜鉛は、人体への影響は少ないものの、動・植物への影響の可能性がある。ビスマスは高価であり、その有害性がある可能性を持っている。鉛、カドミウム、クロムは、それらの溶出による二次汚染の恐れがある。錫は、その発塵を吸引することによって、錫肺症を引き起こす恐れがある。ニッケル、コバルトは高価である。インジウム、ベリリウムは、発ガン性がある。ガリウムは融点が高く、その取り扱い性に問題がある。 Copper and zinc have little effect on the human body, but may have an effect on animals and plants. Bismuth is expensive and has the potential to be harmful. Lead, cadmium, and chromium may cause secondary contamination due to their elution. Tin can cause tin pneumonia by aspirating the dust. Nickel and cobalt are expensive. Indium and beryllium are carcinogenic. Gallium has a high melting point and has a problem in handling.
チタン、アルミニウム、マグネシウム、ナトリウム、カルシウム、ストロンチウム、バリウム、セシウム、ルビシウム、カリウム、リチウムは空気に接触させることにより発火する、或は水に接触させることにより発火し、または可燃性のガスを発生させる危険を有し、取り扱いに高度の技術を要する。マンガンは、比較的反応性の高い粉末にすると、空気中の水、酸素と反応して酸化物となるため、マンガンイオンの水への溶出量が少なくなり、還元反応の持続性に問題がある。 Titanium, Aluminum, Magnesium, Sodium, Calcium, Strontium, Barium, Cesium, Rubium, Potassium, Lithium ignites by contact with air, ignites by contact with water, or generates flammable gas It is dangerous and requires advanced techniques for handling. When manganese is a relatively highly reactive powder, it reacts with water and oxygen in the air to form oxides, so the amount of manganese ions eluted into water is reduced, and there is a problem with the sustainability of the reduction reaction. .
一方、合金では、鉄基合金のクロムを含有するステンレスのように不動態を形成するものは、金属の水中への溶出を阻害するため、還元反応の持続性に問題があり、不動態を形成しない合金が好ましい。そこで、本発明では、所定量の硫黄を含む鉄粉を還元剤として用いたのである。 On the other hand, in the case of alloys, those that form a passive state, such as stainless steel containing chromium in the iron-based alloy, inhibit the elution of metal into water, so there is a problem in the persistence of the reduction reaction, forming a passive state. Preferred is an alloy that does not. Therefore, in the present invention, iron powder containing a predetermined amount of sulfur is used as a reducing agent.
本発明で還元剤として用いる鉄粉は、その形態としては、反応面積が大きいこと(即ち、比表面積が大きいこと)から、粉末状は勿論のこと、或る程度粒が大きくなっているもの(例えば、顆粒状のもの)も用いることができるが、その大きさは取り扱い性の面から平均粒径で1μm以上、10mm以下程度であることが好ましい。より好ましくは10μm以上、5mm以下である。 The iron powder used as a reducing agent in the present invention has a large reaction area (that is, a large specific surface area). For example, granules may be used, but the size is preferably about 1 μm or more and 10 mm or less in terms of average particle size from the viewpoint of handleability. More preferably, it is 10 μm or more and 5 mm or less.
本発明の浄化方法は、(1)硝酸性窒素や亜硝酸性窒素をアンモニア性窒素に還元する工程と、(2)アンモニア性窒素を除去する工程を含むものである。 The purification method of the present invention includes (1) a step of reducing nitrate nitrogen or nitrite nitrogen to ammonia nitrogen, and (2) a step of removing ammonia nitrogen.
上記(1)の工程としては、例えば図1に示すように、還元剤を充填した層(還元剤充填層)に汚染水(硝酸、亜硝酸性窒素含有水)を導入部から通水し、アンモニア性窒素還元水として取り出す(排出部)構成を採用することにとによって達成される。或は、図2に示すように、還元剤を分散させた撹拌槽内に汚染水(硝酸、亜硝酸性窒素含有水)を導入部から通水し、アンモニア性窒素還元水として取り出す(排出部)構成を採用することによっても達成される。いずれの構成を採用する場合でも、外部からの酸素供給を断ち、還元性雰囲気を確保するために、窒素パージ等を行なうことによって、外部からの空気を遮断することが望ましい。 As the step (1), for example, as shown in FIG. 1, contaminated water (nitric acid, nitrite-containing nitrogen-containing water) is passed from the introduction part to the layer filled with the reducing agent (reducing agent packed layer), This is achieved by adopting a structure for taking out (discharge part) as ammoniacal nitrogen-reduced water. Alternatively, as shown in FIG. 2, contaminated water (nitric acid, nitrite-containing nitrogen-containing water) is introduced into the stirring tank in which the reducing agent is dispersed, and taken out as ammoniacal nitrogen-reduced water (discharge part). It is also achieved by adopting a configuration. In any case, it is desirable to shut off the air from the outside by performing a nitrogen purge or the like in order to cut off the oxygen supply from the outside and secure a reducing atmosphere.
前記図1に示した還元剤充填層には、通水性確保のために、充填層の空隙率を高めるための粉末粒体(例えば、天然鉱物等)を還元剤と併用するようにしても良い。また、汚染水の通水に当たっては、上向流、下向流のいずれも採用できる。 In the reducing agent packed layer shown in FIG. 1, powder particles (for example, natural minerals) for increasing the porosity of the packed layer may be used in combination with the reducing agent in order to ensure water permeability. . In addition, both upward flow and downward flow can be used for passing contaminated water.
また、前記図2に示したような撹拌槽を採用する場合には、その反応性を高めるために、図示したように撹拌機を設置しても良い。この撹拌機は、羽状のものやコンベア状のもののいずれも採用できる。また、図2に示した沈殿槽は、浮遊還元剤を外部に排出させないためのものであって、必要によって併設される。 Further, when the stirring tank as shown in FIG. 2 is employed, a stirrer may be installed as shown in order to increase the reactivity. This stirrer can employ either a wing-like one or a conveyor-like one. Further, the settling tank shown in FIG. 2 is for preventing the floating reducing agent from being discharged to the outside, and is provided side by side as necessary.
次に、上記(2)の工程では、微生物脱窒法、アンモニアストリッピング方法、不連続点塩素添加法、イオン交換法、ゼオライト吸着法、膜分離法、触媒脱窒法等、従来公知の方法の少なくとも1種以上の方法によって、アンモニア性窒素が窒素ガス化されて除去される。 Next, in the step (2), at least a conventionally known method such as a microbial denitrification method, an ammonia stripping method, a discontinuous point chlorine addition method, an ion exchange method, a zeolite adsorption method, a membrane separation method, or a catalytic denitrification method is used. Ammonia nitrogen is gasified and removed by one or more methods.
本発明で用いる還元剤(鉄粉)と共に、陽イオン交換能を有する吸着剤を汚染水に同時に接触させる構成を採用することも有効であり、こうした構成を採用することによって、硝酸性窒素や亜硝酸性窒素からアンモニア性窒素への還元と共に、アンモニア性窒素の除去を同時に行なうことができる。上記陽イオン交換能を有する吸着剤としては、ゼオライト等の天然鉱物、シリカゲル、活性アルミナ、陽イオン交換樹脂等が挙げられる。 It is also effective to employ a configuration in which an adsorbent having a cation exchange capacity is simultaneously brought into contact with contaminated water together with the reducing agent (iron powder) used in the present invention. Ammonia nitrogen can be removed simultaneously with reduction from nitrate nitrogen to ammonia nitrogen. Examples of the adsorbent having cation exchange ability include natural minerals such as zeolite, silica gel, activated alumina, cation exchange resin and the like.
本発明で用いる還元剤として、少なくとも鉄成分を含む場合には、還元反応は下記(1)式に従って進行し、時間の経過と共に水酸化物イオン濃縮し、pHが9以上に上昇することになる。Feの不動態電位に及ぼすpHの影響を図3に示す(図中、領域AはFeの安定域、領域Bは腐食域、領域Cは不動態域を、夫々示す)。
2Fe+O2+2H2O→2Fe2++4OH- …(1)
When the reducing agent used in the present invention contains at least an iron component, the reduction reaction proceeds according to the following formula (1), and hydroxide ions are concentrated with the passage of time, and the pH rises to 9 or more. . The influence of pH on the passive potential of Fe is shown in FIG. 3 (in the figure, region A shows a stable region of Fe, region B shows a corrosion region, and region C shows a passive region).
2Fe + O 2 + 2H 2 O → 2Fe 2+ + 4OH − (1)
pHが上昇することによって、不動態域が広がり(不動態が形成され)、還元反応が進みにくくなることが考えられる。しかしながら、処理水に塩素を加えることによって(即ち、不連続点塩素添加法を採用することによって)、水素イオンが発生するため、pH上昇を抑制でき、硝酸性窒素や亜硝酸性窒素からアンモニア性窒素への還元と共に、アンモニア性窒素の除去を同時に行なうことができるようになるので、好ましい。 As the pH increases, it is considered that the passive region is expanded (passivity is formed) and the reduction reaction is difficult to proceed. However, by adding chlorine to the treated water (that is, by adopting the discontinuous point chlorine addition method), hydrogen ions are generated, so that the increase in pH can be suppressed and ammonia nitrogenous from nitrate nitrogen or nitrite nitrogen. This is preferable because ammonia nitrogen can be removed simultaneously with the reduction to nitrogen.
以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out by changing to the above, and they are all included in the technical scope of the present invention.
[実施例1]
(硝酸性窒素からアンモニア性窒素への還元試験)
イオン交換水:2000mLに、硝酸ナトリウム試薬(特級:和光純薬製)を243mg添加し、スターラを用いて撹拌し、水溶液とした(以下、「原水」と呼ぶ)。この原水を、500mLのポリエチレン製容器に250mL入れ、更に還元剤として、硫黄含有量を変えた鉄粉を各50g添加し、窒素ガスを流量500L/minで3分間パージした後、25℃で水平振とう機で140rpmにて振とうを96時間まで行なった。
[Example 1]
(Reduction test from nitrate nitrogen to ammonia nitrogen)
Ion exchange water: To 2,000 mL, 243 mg of sodium nitrate reagent (special grade: manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred using a stirrer to obtain an aqueous solution (hereinafter referred to as “raw water”). 250 mL of this raw water is put into a 500 mL polyethylene container, and 50 g of iron powder with different sulfur content is added as a reducing agent, and nitrogen gas is purged at a flow rate of 500 L / min for 3 minutes, and then at 25 ° C. The shaker was shaken at 140 rpm for up to 96 hours.
原水、および24時間振とう後、48時間振とう後、96時間振とう後溶液の硝酸性窒素、亜硝酸性窒素の濃度を、用いた鉄粉別に測定した。 The concentration of nitrate nitrogen and nitrite nitrogen in the raw water and after shaking for 48 hours, after shaking for 48 hours, and after shaking for 96 hours was measured for each iron powder used.
原水中および各時間振とう後溶液の硝酸性窒素および亜硝酸性窒素の濃度は、ポータブル吸光光度計(商品名「ODYSSEY」:HACH社製)を用い、硝酸性窒素についてはクロモトロプ酸法、亜硝酸性窒素についてはジアゾ化法によるTNT試薬を使用して、夫々分析した。 The concentration of nitrate nitrogen and nitrite nitrogen in the raw water and the solution after shaking for each time was determined using a portable absorptiometer (trade name “ODYSSEY” manufactured by HACH). Nitrate nitrogen was analyzed using a TNT reagent by a diazotization method.
これらの結果を、下記表1に示すが(実験No.1〜6)、硫黄含有量が増すにつれて、硝酸性窒素濃度が低減されており、特に硫黄含有量が0.3質量%以上の鉄粉を還元剤として用いたものでは(実験No.2〜6)、硝酸性窒素濃度が効果的に低減されていることが分かる。 These results are shown in Table 1 below (Experiment Nos. 1 to 6). As the sulfur content increases, the concentration of nitrate nitrogen is reduced, and in particular, iron with a sulfur content of 0.3% by mass or more. It can be seen that the nitrate nitrogen concentration was effectively reduced when powder was used as the reducing agent (Experiment Nos. 2 to 6).
[実施例2]
(硝酸性窒素からアンモニア性窒素への還元試験)
イオン交換水:1000mLに、硝酸ナトリウム試薬(特級:和光純薬製)を121mg添加し、スターラを用いて撹拌し、水溶液とした(以下、「原水」と呼ぶ)。この原水を、500mLのポリエチレン製容器に250mL入れ、更に還元剤として、実験No.5で用いた硫黄含有量が1.20質量%で平均粒径が54μmの鉄粉を125g添加し、窒素ガスを流量500L/minで3分間パージした後、25℃で水平振とう機で140rpmにて48時間振とうを行なった。
[Example 2]
(Reduction test from nitrate nitrogen to ammonia nitrogen)
Ion exchange water: To 1000 mL, 121 mg of sodium nitrate reagent (special grade: manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred using a stirrer to obtain an aqueous solution (hereinafter referred to as “raw water”). 250 mL of this raw water was placed in a 500 mL polyethylene container, and experiment No. 1 was used as a reducing agent. 125 g of iron powder having a sulfur content of 1.20% by mass and an average particle size of 54 μm used in No. 5 was added and purged with nitrogen gas at a flow rate of 500 L / min for 3 minutes, and then 140 rpm on a horizontal shaker at 25 ° C. And shaken for 48 hours.
[実施例3]
(硝酸性窒素からアンモニア性窒素への還元剤および陽イオン吸着剤によるアンモニア性窒素吸着試験)
上記原水を、500mLのポリエチレン製容器に250mL入れ、更に還元剤として、実施例2で用いたものと同じ鉄粉を62.5g、陽イオン吸着剤としてゼオライト(商品名「ZO♯2070」:日東粉化製)を62.5g添加し、実施例1および2と同様に、窒素ガスを流量500L/minで3分間パージした後、25℃で水平振とう機で140rpmにて48時間振とうを行なった。
[Example 3]
(Ammonia nitrogen adsorption test with reducing agent and cation adsorbent from nitrate nitrogen to ammonia nitrogen)
250 mL of the raw water is put into a 500 mL polyethylene container, and 62.5 g of the same iron powder as used in Example 2 is used as a reducing agent, and zeolite (trade name “ZO # 2070”: Nitto) as a cation adsorbent. After adding 62.5 g of powdered product and purging nitrogen gas at a flow rate of 500 L / min for 3 minutes in the same manner as in Examples 1 and 2, the mixture was shaken for 48 hours at 140 ° C. with a horizontal shaker at 25 ° C. I did it.
原水、および実施例2、3の振とう後溶液の硝酸性窒素、亜硝酸性窒素の濃度を、実施例1と同様にして測定した。またアンモニア性窒素の濃度も下記の方法によって測定した。その結果を、硝酸性窒素、亜硝酸性窒素およびアンモニア性窒素の濃度の合計量(トータル窒素)と共に、下記表2に示す。 The concentrations of nitrate water and nitrite nitrogen in the raw water and the solutions after shaking in Examples 2 and 3 were measured in the same manner as in Example 1. The concentration of ammonia nitrogen was also measured by the following method. The results are shown in Table 2 below together with the total amount of nitrate nitrogen, nitrite nitrogen and ammonia nitrogen (total nitrogen).
[アンモニア性窒素の濃度測定]
アンモニア性窒素の濃度測定は、蒸留−滴定法(JIS K 0102 42.1、42.3)により分析した。尚、振とう後の溶液は、吸引濾過器[オムニポアメンブレン(型番:JMWP04700)]にて濾過をした濾液で各窒素濃度を分析した。
[Ammonia nitrogen concentration measurement]
The concentration of ammoniacal nitrogen was analyzed by a distillation-titration method (JIS K 0102 42.1, 42.3). In addition, each nitrogen concentration was analyzed for the solution after shaking by the filtrate which filtered with the suction filter [Omnipore membrane (model number: JMWP04700)].
この結果から、次のように考察できる。実施例2のものでは、硝酸性窒素が20.3mg/Lから1.2mg/Lに低下し、アンモニア性窒素が18.0mg/Lとなっており、硝酸性窒素がアンモニア性窒素に還元されていることが分かる。 From this result, it can be considered as follows. In Example 2, nitrate nitrogen was reduced from 20.3 mg / L to 1.2 mg / L, ammonia nitrogen was 18.0 mg / L, and nitrate nitrogen was reduced to ammonia nitrogen. I understand that
一方、実施例3では、硝酸性窒素は7.2mg/Lに留まっているが、トータル窒素が20.3mg/Lから7.2mg/Lまで低下している。このトータル窒素濃度の差は、陽イオン吸着剤であるゼオライトに吸着したものと考えられる。この方法によって、トータル窒素濃度が低減できることが分かる。 On the other hand, in Example 3, nitrate nitrogen remained at 7.2 mg / L, but total nitrogen was reduced from 20.3 mg / L to 7.2 mg / L. This difference in the total nitrogen concentration is considered to be adsorbed on zeolite which is a cation adsorbent. It can be seen that this method can reduce the total nitrogen concentration.
このように、硫黄を含有する鉄粉と陽イオン交換能を有する吸着剤とを併用することによって、トータル窒素を効率的且つ簡便に低減することができることが分かる。 Thus, it turns out that total nitrogen can be reduced efficiently and simply by using together the iron powder containing sulfur, and the adsorbent which has cation exchange ability.
Claims (2)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010210850A JP5580704B2 (en) | 2010-04-01 | 2010-09-21 | Purification method of contaminated water |
| PCT/JP2011/054910 WO2011125398A1 (en) | 2010-04-01 | 2011-03-03 | Method for purifying polluted water |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010085533 | 2010-04-01 | ||
| JP2010085533 | 2010-04-01 | ||
| JP2010210850A JP5580704B2 (en) | 2010-04-01 | 2010-09-21 | Purification method of contaminated water |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2011224535A JP2011224535A (en) | 2011-11-10 |
| JP5580704B2 true JP5580704B2 (en) | 2014-08-27 |
Family
ID=44762360
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2010210850A Active JP5580704B2 (en) | 2010-04-01 | 2010-09-21 | Purification method of contaminated water |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP5580704B2 (en) |
| WO (1) | WO2011125398A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111482185B (en) * | 2019-01-29 | 2023-06-20 | 北京大学深圳研究生院 | A kind of self-supporting FeSx electrocatalyst and its preparation method and application |
| CN114149067B (en) * | 2021-12-06 | 2023-12-26 | 纬地资源环境科技江苏有限公司 | Method for recycling and fixing inorganic nitrogen in industrial wastewater |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3830850A1 (en) * | 1988-09-10 | 1990-03-22 | Gutec Gmbh | METHOD FOR REMOVING THE NITRITE AND / OR NITRATE CONTENT IN WATER |
| JPH038495A (en) * | 1989-06-05 | 1991-01-16 | Kanatsu Giken Kogyo Kk | Denitrifying and dephosphorizing composition and method for denitrification and dephosphorization |
| JPH0747372A (en) * | 1993-08-09 | 1995-02-21 | Meidensha Corp | Treatment of nitrate ion waste wafer |
| JPH10113678A (en) * | 1996-10-14 | 1998-05-06 | Nisshin Steel Co Ltd | Method for making nitrate ion-containing waste liquid harmless and device therefor |
| JPH10244279A (en) * | 1997-03-05 | 1998-09-14 | Nkk Corp | Method for removing nitrogen and phosphorus from water to be treated using iron |
| JPH10277567A (en) * | 1997-04-04 | 1998-10-20 | Nkk Corp | Wastewater treatment method using iron |
| JPH10309572A (en) * | 1997-05-14 | 1998-11-24 | Nkk Corp | Water treatment method |
| JP3403348B2 (en) * | 1998-11-20 | 2003-05-06 | 日本碍子株式会社 | Treatment method for nitrogen-containing wastewater |
| JP2000271575A (en) * | 1999-03-24 | 2000-10-03 | Kurita Water Ind Ltd | Treatment method for nitrate nitrogen-containing water |
| JP3931610B2 (en) * | 2000-11-15 | 2007-06-20 | Jfeスチール株式会社 | Method for purifying soil, water and / or gas and iron powder for dehalogenation of organic halogen compounds |
| JP3867562B2 (en) * | 2000-11-30 | 2007-01-10 | Jfeスチール株式会社 | Magnetite-iron composite powder mixture, production method thereof, and radio wave absorber |
| JP2004292806A (en) * | 2003-03-07 | 2004-10-21 | Nippon Steel Corp | Soil remediation agent and soil remediation method |
| JP2004331996A (en) * | 2003-04-30 | 2004-11-25 | Jfe Steel Kk | Sponge iron for reducing agent, its production method and its use |
| JP4363128B2 (en) * | 2003-09-02 | 2009-11-11 | 三浦工業株式会社 | Water treatment method |
| JP4706828B2 (en) * | 2005-02-25 | 2011-06-22 | 三菱マテリアル株式会社 | Method and apparatus for treating nitrate-containing water |
| JP4978222B2 (en) * | 2007-02-07 | 2012-07-18 | 信越化学工業株式会社 | Method for treating wastewater containing nitrate nitrogen |
| JP4755159B2 (en) * | 2007-09-28 | 2011-08-24 | 株式会社神戸製鋼所 | Treatment agent and treatment method for contaminated water containing heavy metals |
| JP5303263B2 (en) * | 2008-12-25 | 2013-10-02 | クラリアント触媒株式会社 | Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst |
-
2010
- 2010-09-21 JP JP2010210850A patent/JP5580704B2/en active Active
-
2011
- 2011-03-03 WO PCT/JP2011/054910 patent/WO2011125398A1/en active Application Filing
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011224535A (en) | 2011-11-10 |
| WO2011125398A1 (en) | 2011-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11987512B2 (en) | Methods for treating selenocyanate in wastewater | |
| US20200223716A1 (en) | Iron filings-based green environmental media for nutrient removal and methods of use | |
| Yunnen et al. | Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge. | |
| KR101406526B1 (en) | Zero valent iron based water treatment process and device for the removal of nitrate | |
| JP2013123655A (en) | Method for treating cyanide-containing wastewater | |
| CA2937456A1 (en) | Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system | |
| KR20130077739A (en) | Disposal method of water comprising organics | |
| Muhammad et al. | Coupled physicochemical and bacterial reduction mechanisms for passive remediation of sulfate-and metal-rich acid mine drainage | |
| JP5580704B2 (en) | Purification method of contaminated water | |
| JP2001179295A (en) | Method and apparatus for treating sewage | |
| EP3075711A1 (en) | System for decontamination of hazardous sulfur compounds in oilfield produced water | |
| JP2008093602A (en) | Waste water treatment method and waste water treatment equipment | |
| Li et al. | Assessment of calcium nitrate addition on the AVS removal, phosphorus locking, and Pb release in sediment | |
| Viraraghavan et al. | Adsorption of mercury from wastewater by peat | |
| Venot et al. | Comparing chitin and organic substrates on the national tunnel waters in Blackhawk, Colorado for manganese removal | |
| KR20110109914A (en) | Purifying Material of Acetic Nitrogen-Containing Water and Purification Method of Acetic Nitrogen-Containing Water | |
| EP3728114B1 (en) | Process for the removal of heavy metals from liquids | |
| US10526215B2 (en) | Selenium and other contaminants removal process | |
| Kumar | Phosphate recovery from wastewater via reversible adsorption | |
| KR101164214B1 (en) | Nitrate nitrogen treatment method using clay mineral and zero valent iron | |
| KR20040110352A (en) | Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule | |
| JP2004216367A (en) | Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same | |
| KR20040068831A (en) | Water treatment powder and treatment process in the form of fine spherical granules containing magnetite powder and organic substance adsorbent | |
| Eberle et al. | A Sequential Anammox Zeolite-Biofilter for the Removal of Nitrogen Compounds from Drinking Water. Water 2022, 14, 3512 | |
| JPH09122687A (en) | Selenium-containing water treatment method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120828 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140319 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140711 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5580704 Free format text: JAPANESE INTERMEDIATE CODE: R150 Country of ref document: JP |