JP5506215B2 - Method for manufacturing phosphor - Google Patents
Method for manufacturing phosphor Download PDFInfo
- Publication number
- JP5506215B2 JP5506215B2 JP2009061906A JP2009061906A JP5506215B2 JP 5506215 B2 JP5506215 B2 JP 5506215B2 JP 2009061906 A JP2009061906 A JP 2009061906A JP 2009061906 A JP2009061906 A JP 2009061906A JP 5506215 B2 JP5506215 B2 JP 5506215B2
- Authority
- JP
- Japan
- Prior art keywords
- sio
- phosphor
- uniformly dispersed
- added
- sis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、蛍光体の製造方法に関し、さらに詳しくは近紫外発光ダイオードの発光波長領域で高輝度の蛍光を発する紫外線励起型の青緑色蛍光体やFED(電解放射型ディスプレイ)や無機EL等の表示ディスプレイに用いる青緑色蛍光体として好適に使用できる高蛍光輝度の希土類元素添加バリウムチオシリケート(Ba2SiS4)蛍光体の製造方法に関するものである。 The present invention relates to a method for manufacturing a phosphor, and more specifically, an ultraviolet-excited blue-green phosphor, FED (electrolytic emission display), inorganic EL, or the like that emits high-luminance fluorescence in the emission wavelength region of a near-ultraviolet light-emitting diode. The present invention relates to a method for producing a rare earth element-added rare earth element-added barium thiosilicate (Ba 2 SiS 4 ) phosphor that can be suitably used as a blue-green phosphor used in a display.
近年、白色LEDの開発が進み、白熱電灯や蛍光灯に替る照明として期待されている。
従来の白色LEDは(Y,Gd)3(Al,Ga)5O12の組成式で知られるYAG系酸化物にCeを添加した蛍光体を、青色LEDの封止樹脂中に分散させたもの(特許文献1〜3参照)が知られている。これらは携帯電話のフロントライトや簡易照明器具に用いられているが、これらの白色LEDは色再現性や演色性が悪く、その改善が求められていた。
In recent years, the development of white LEDs has progressed, and it is expected as illumination replacing incandescent lamps and fluorescent lamps.
A conventional white LED is obtained by dispersing a phosphor in which Ce is added to a YAG-based oxide known from the composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 in a blue LED sealing resin. (See Patent Documents 1 to 3). Although these are used for the front light of a mobile phone or a simple lighting device, these white LEDs have poor color reproducibility and color rendering, and their improvement has been demanded.
これに対して青色LEDと緑色蛍光体と赤色蛍光体を組み合わせた青色励起白色LED(特許文献4参照)、紫外発光LEDと青色蛍光体と緑色蛍光体と赤色蛍光体を組み合わせた紫外線励起白色LED(特許文献5参照)が開発されている。
特に、紫外線励起白色LEDは青色の蛍光体を用いるため3色の波長を調整して色再現性が良く、また可視光の吸収が少ない紫外線励起型蛍光体を用いることで非発光時の蛍光体が白色を示す。このことは蛍光灯ランプへの応用を考えた場合、蛍光体が白色であることは非常な利点となっている。
On the other hand, blue excitation white LED (refer patent document 4) which combined blue LED, green fluorescent substance, and red fluorescent substance (refer patent document 4), ultraviolet excitation white LED which combined ultraviolet light emitting LED, blue fluorescent substance, green fluorescent substance, and red fluorescent substance (See Patent Document 5) has been developed.
In particular, since the UV-excited white LED uses a blue phosphor, the wavelength of the three colors is adjusted so that color reproducibility is good and the UV-excited phosphor that absorbs less visible light is used so that the phosphor does not emit light. Indicates white. In view of the application to fluorescent lamps, it is a great advantage that the phosphor is white.
このような紫外線励起白色LED用蛍光体としては、例えば、青色蛍光体としてBaMgAl10O17:Eu2+(BAM)や(Mg,Ca,Sr,Ba)10(PO4)5Cl2:Eu2+などが知られている。しかし、これらの蛍光体は近紫外励起での光変換効率が不十分であるとの指摘があり、Ba2SiS4:Ce3+系青色蛍光体が開発されている(特許文献6参照)。 As such a phosphor for ultraviolet-excited white LED, for example, BaMgAl 10 O 17 : Eu 2+ (BAM) or (Mg, Ca, Sr, Ba) 10 (PO 4 ) 5 Cl 2 : Eu 2+ is used as a blue phosphor. Etc. are known. However, it has been pointed out that these phosphors have insufficient light conversion efficiency under near-ultraviolet excitation, and Ba 2 SiS 4 : Ce 3+ blue phosphors have been developed (see Patent Document 6).
ところで、高演色蛍光灯では単純に青、緑、赤の3色の光ではなく、波長480から500nmの青緑色の発光を加えている。このような蛍光体として(Ba,Ca,Mg)10(PO4)6Cl2:Eu2+(ピーク波長483nm)やSr4Al14O25:Eu2+(ピーク波長493nm)などが知られている。 By the way, the high color rendering fluorescent lamp does not simply emit light of three colors of blue, green and red, but emits blue-green light having a wavelength of 480 to 500 nm. (Ba, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ (peak wavelength 483 nm) and Sr 4 Al 14 O 25 : Eu 2+ (peak wavelength 493 nm) are known as such phosphors. .
また、紫外線LED励起青緑蛍光体としてはJEM蛍光体、CexCayLa1−x―yAl(Si5Al)N9O(特許文献7参照)が知られている。
このような紫外線LEDは、発光波長390〜405nmでの発光効率が高いことが知られているが、これらの蛍光体は励起波長390〜405nmでの発光効率が良くない(非特許文献1、2参照)。一方、発光波長390〜405nmでの発光効率が高い青緑蛍光体として、最近Ba2SiS4:Eu2+が報告されている(非特許文献3参照)。
Further, as the ultraviolet LED excitation blue-green phosphor JEM phosphor, Ce x Ca y La 1- x-y Al (Si 5 Al) N 9 O ( refer to Patent Document 7) are known.
Such ultraviolet LEDs are known to have high emission efficiency at an emission wavelength of 390 to 405 nm, but these phosphors have poor emission efficiency at an excitation wavelength of 390 to 405 nm (Non-Patent Documents 1 and 2). reference). On the other hand, Ba 2 SiS 4 : Eu 2+ has recently been reported as a blue-green phosphor with high emission efficiency at an emission wavelength of 390 to 405 nm (see Non-Patent Document 3).
しかしながら、蛍光体の原料である硫化バリウム、硫化ユーロピウム等の硫化物を作製するには、通常硫化反応を行うために有毒で悪臭を発する硫化水素ガスを使用しなければならず、工業的にはその安全性の確保が大きな課題となっている。
また、Siの硫化物は、その合成が難しいため簡単には入手できず、吸湿性が強く不安定である。秤量や混合などはグローブボックスを利用し、焼成時にも分解しないように注意する必要がある。そのため、蛍光体のBa2SiS4の合成に際しては、Si源に金属Siの使用が考えられる。この金属Siと硫化物を混合、焼成することによりBa2SiS4の合成を行うが、硫化源として硫化バリウム、硫化ユーロピウム等の硫化物を作製するときと同じく有毒な硫化水素を必要とする。一方、この硫化水素は有毒なだけではなく、悪臭物質であり、不安定な物質でもあるために、微量であっても、厳しい管理が要求され、製造コストや生産効率などの低下を招いてしまうなどの問題が生じる。またこれらの方法ではEuが均一に添加されたBa2SiS4の合成が難しい。
However, in order to produce sulfides such as barium sulfide and europium sulfide, which are the raw materials for phosphors, it is usually necessary to use toxic and odor-prone hydrogen sulfide gas to perform the sulfurization reaction. Ensuring safety is a major issue.
In addition, Si sulfides are difficult to synthesize and cannot be easily obtained, and are highly hygroscopic and unstable. Weighing and mixing should be done using a glove box so that it does not decompose during firing. Therefore, in the synthesis of phosphor Ba 2 SiS 4 , it is conceivable to use metal Si as the Si source. Ba 2 SiS 4 is synthesized by mixing and baking this metal Si and sulfide, but toxic hydrogen sulfide is required as in the case of producing sulfides such as barium sulfide and europium sulfide as a sulfide source. On the other hand, this hydrogen sulfide is not only toxic, but also a malodorous substance and an unstable substance. Therefore, even in a trace amount, strict management is required, which leads to a decrease in manufacturing cost and production efficiency. Problems arise. Further, it is difficult to synthesize Ba 2 SiS 4 to which Eu is uniformly added by these methods.
本発明は、係る現状に鑑みてなされたもので、希土類添加Ba2SiO4又は希土類添加Ba2SiO4と希土類添加BaCO3、希土類添加Ba(NO3)2とSiO2の混合物を作製し、二硫化炭素を含む不活性ガス中で熱処理して還元硫化することにより、高蛍光輝度の希土類添加Ba2SiS4蛍光体を安全かつ効率的に製造する希土類元素添加バリウムチオシリケート蛍光体の製造方法を提供するものである。 The present invention has been made in view of the present situation, and a rare earth-added Ba 2 SiO 4 or a rare earth-added Ba 2 SiO 4 and a rare earth-added BaCO 3 , and a mixture of a rare earth-added Ba (NO 3 ) 2 and SiO 2 , Method for producing rare earth element-added barium thiosilicate phosphor, which safely and efficiently produces rare earth-added Ba 2 SiS 4 phosphor with high fluorescence brightness by heat treatment in an inert gas containing carbon disulfide and reducing sulfide Is to provide.
本発明に係る蛍光体の製造方法は、1)Eu元素が均一に分散したBa2SiO4 (請求項1)、又は、2)Eu元素が均一に分散したBa2SiO4、Eu希土類元素が均一に分散したBaCO3、Eu元素が均一に分散したBa(NO3)2及びSiO2からなる混合物(請求項2)を合成する第1の工程と、この第1の工程で得られたEu元素が均一に分散したBa2SiO4、又は、Eu元素が均一に分散したBa2SiO4、Eu元素が均一に分散したBaCO3、Eu元素が均一に分散したBa(NO3)2及びSiO2からなる混合物を、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程とからなることを特徴とするEu元素添加バリウムチオシリケート蛍光体の製造方法で、特に希土類元素にEuを用いると良好な蛍光体性能が得られるものである。
The phosphor manufacturing method according to the present invention includes: 1) Ba 2 SiO 4 in which Eu element is uniformly dispersed (Claim 1) , or 2) Ba 2 SiO 4 in which Eu element is uniformly dispersed, Eu rare earth element A first step of synthesizing a mixture ( Ba claim 2) comprising Ba (NO 3 ) 2 and SiO 2 in which uniformly dispersed BaCO 3 and Eu elements are uniformly dispersed, and Eu obtained in this
本発明の製造方法における第1の工程では、水溶性珪素又はフュームド(fumed)SiO2、硝酸Ba及び酢酸ユーロピウムを水に溶解して30分間攪拌した後、噴霧乾燥又は冷凍乾燥等の方法で乾燥させ、その乾燥物を700〜900℃の温度により焼成することで、1)希土類元素が均一に分散した希土類元素添加Ba2SiO4、又は、2)希土類元素が均一に分散したBa2SiO4、希土類元素が均一に分散したBaCO3、希土類元素が均一に分散したBa(NO3)2及びSiO2からなる混合物とすることを特徴とし、第2の工程では、第1の工程で得た、1)希土類元素が均一に分散したEu添加Ba2SiO4、又は、2)希土類元素が均一に分散したBa2SiO4、希土類元素が均一に分散したBaCO3、希土類元素が均一に分散したBa(NO3)2及びSiO2からなる混合物を、二硫化炭素を含んだ不活性ガス流通下で900〜1090℃の温度による熱処理によって、還元硫化することでBa2SiS4蛍光体を作製することを特徴とするものである。 In the first step in the production method of the present invention, water-soluble silicon or fumed SiO 2 , Ba nitrate and europium acetate are dissolved in water, stirred for 30 minutes, and then dried by a method such as spray drying or freeze drying. The dried product is fired at a temperature of 700 to 900 ° C., so that 1) a rare earth element-added Ba 2 SiO 4 in which rare earth elements are uniformly dispersed, or 2) Ba 2 SiO 4 in which rare earth elements are uniformly dispersed. , Characterized in that it is a mixture composed of BaCO 3 in which rare earth elements are uniformly dispersed, Ba (NO 3 ) 2 and SiO 2 in which rare earth elements are uniformly dispersed, and the second step is obtained in the first step. , 1) Eu added Ba 2 SiO 4 with a rare earth element is uniformly dispersed, or, 2) Ba 2 SiO 4 with a rare earth element is uniformly dispersed, the rare earth element is uniformly dispersed BaCO 3, Ba (NO 3) a rare earth element is uniformly dispersed 2 and mixture consisting SiO 2, the heat treatment temperature of 900-1090 ° C. in an inert gas flow under containing carbon disulfide, reducing sulfide A Ba 2 SiS 4 phosphor is produced.
本発明は、希土類元素添加Ba2SiS4蛍光体を製造する方法であって、特に希土類元素にEuを用いる場合、Euが均一に分散したEu添加Ba2SiO4、又は、Euが均一に分散したBa2SiO4、Euが均一に分散したBaCO3、Euが均一に分散したBa(NO3)2及びSiO2の混合物を合成する第1の工程と、第1の工程で得られたEuが均一に分散したEu添加Ba2SiO4、又は、Euが均一に分散したBa2SiO4、Euが均一に分散したBaCO3、Euが均一に分散したBa(NO3)2及びSiO2の混合物を、二硫化炭素を含む不活性ガス中での熱処理によって、還元硫化する第2の工程からなる蛍光体の製造方法で、原料に金属Siや硫化バリウム、硫化ユーロピウムなどの硫化物を使用せずに、高品質の結晶が得られると共に、有毒な硫化水素を用いることなく高輝度のEu添加Ba2SiS4蛍光体を製造することができるものである。 The present invention is a method for producing a rare earth element-added Ba 2 SiS 4 phosphor, and particularly when Eu is used as the rare earth element, Eu addition Ba 2 SiO 4 in which Eu is uniformly dispersed, or Eu is uniformly dispersed. First step of synthesizing a mixture of BaCO 3 , Ba (NO 3 ) 2 and SiO 2 in which Ba 2 SiO 4 and Eu are uniformly dispersed, and Eu (N 3 ) 2 and SiO 2 in which Eu is uniformly dispersed, and Eu obtained in the first step Of Eu-added Ba 2 SiO 4 in which Eu is uniformly dispersed, Ba 2 SiO 4 in which Eu is uniformly dispersed, BaCO 3 in which Eu is uniformly dispersed, Ba (NO 3 ) 2 and SiO 2 in which Eu is uniformly dispersed A phosphor manufacturing method comprising a second step in which a mixture is reduced and sulfided by heat treatment in an inert gas containing carbon disulfide. As a raw material, metal Si, barium sulfide, europium sulfide, etc. Thus, high-quality crystals can be obtained without using any sulfide, and a high-luminance Eu-added Ba 2 SiS 4 phosphor can be produced without using toxic hydrogen sulfide.
1.希土類元素のEuが均一に分散したEu添加Ba2SiO4を合成する第1の工程:
先ず、Eu添加Ba2SiO4を合成するには、添加するSi源を、水溶性珪素或いはフュームド(fumed)SiO2を用いるのが好ましい。
水溶性珪素は、以下に示す方法で作製される。原料にはテトラエトキシシラン(TEOS)とプロピレングリコールを同量秤量し、80℃で48時間混合し、この混合液に塩酸を少量(混合液の0.2%程度)加えて1時間攪拌する。この攪拌液に蒸留水を加え、濃度が1Mの水溶性珪素を作製する。また、Si源としてのフュームドSiO2は、その粒径が5〜10nm程度のものが好ましい。
1. First step of synthesizing Eu-added Ba 2 SiO 4 in which Eu of a rare earth element is uniformly dispersed:
First, in order to synthesize Eu-added Ba 2 SiO 4 , it is preferable to use water-soluble silicon or fumed SiO 2 as the Si source to be added.
Water-soluble silicon is produced by the following method. Tetraethoxysilane (TEOS) and propylene glycol are weighed in the same amount as raw materials, mixed at 80 ° C. for 48 hours, a small amount of hydrochloric acid (about 0.2% of the mixed solution) is added to this mixed solution, and the mixture is stirred for 1 hour. Distilled water is added to the stirring liquid to produce water-soluble silicon having a concentration of 1M. The fumed SiO 2 as the Si source preferably has a particle size of about 5 to 10 nm.
次に、上記Si源と硝酸Baと酢酸ユーロピウムを、Si源のSiと(Ba+Eu)のモル比が1:2になるように水に溶解する。その溶解液を室温で攪拌して前駆体を含む水溶液を作製する。ここで、水溶液の乾燥に噴霧乾燥を用いた場合は0.02〜0.4mol/Lの水溶液が好ましく、凍結乾燥を用いるときは0.2〜0.4mol/Lの水溶液が好ましい。
なお、加えるBa源としては硝酸Baや酢酸Baなどの水溶性のBa塩、ユーロピウム源には水溶性のEu塩などを用いることができる。
Next, the Si source, Ba nitrate and europium acetate are dissolved in water so that the molar ratio of Si of the Si source to (Ba + Eu) is 1: 2. The solution is stirred at room temperature to prepare an aqueous solution containing the precursor. Here, when spray drying is used for drying the aqueous solution, an aqueous solution of 0.02 to 0.4 mol / L is preferable, and when lyophilization is used, an aqueous solution of 0.2 to 0.4 mol / L is preferable.
In addition, as a Ba source to be added, a water-soluble Ba salt such as Ba nitrate or Ba acetate, and a water-soluble Eu salt as a europium source can be used.
次いで、この水溶液を乾燥させて乾燥物を得て、第一工程の酸化物前駆体を作製する。
水溶液の乾燥は、噴霧乾燥法或いは凍結乾燥法を用いて行う。先ず噴霧乾燥機を用いて乾燥させる場合には、水溶液を20〜40分攪拌し、その液をポンプで噴霧乾燥機に送って乾燥させる。その乾燥条件は乾燥機入り口温度を200℃、加圧空気圧を0.1MPaの条件が好ましい。
Next, this aqueous solution is dried to obtain a dried product, and the oxide precursor in the first step is prepared.
The aqueous solution is dried using a spray drying method or a freeze drying method. First, when drying using a spray dryer, the aqueous solution is stirred for 20 to 40 minutes, and the solution is sent to the spray dryer by a pump and dried. The drying conditions are preferably a dryer inlet temperature of 200 ° C. and a pressurized air pressure of 0.1 MPa.
凍結乾燥を行う場合には、水溶液を10分攪拌して、Euを均一に含んだゲルを作製し、このゲルを凍結乾燥機で−30℃、1時間保持の条件で凍結し、真空ポンプで排気して0.00603気圧以下にする。その後−25℃、3時間保持、−20℃、5時間保持、−15℃、8時間保持、30℃、5時間保持と条件を変化させて乾燥させる。 When lyophilization is performed, the aqueous solution is stirred for 10 minutes to prepare a gel containing Eu uniformly. The gel is frozen with a lyophilizer at −30 ° C. for 1 hour and then with a vacuum pump. Exhaust to 0.00603 atmospheres or less. Thereafter, the film is dried at -25 ° C, 3 hours, -20 ° C, 5 hours, -15 ° C, 8 hours, 30 ° C, 5 hours.
続いて、この乾燥物の酸化物前駆体を、700〜1100℃、より好ましくは750〜1000℃の温度に1〜3時間保持する熱処理を施すことで、Euが均一に分散したEu添加Ba2SiO4を作製する。なお、酸化物前駆体のTG−DTAの分析から、200℃から水の脱離が開始し、400℃以上で残留有機物、600℃で硝酸の脱離し、700℃以上で重量が一定になり、従って700℃以上の温度で焼成することで酸化物が合成できる。 Subsequently, Eu-added Ba 2 in which Eu is uniformly dispersed by subjecting the oxide precursor of the dried product to a temperature of 70 to 1100 ° C., more preferably 750 to 1000 ° C., for 1 to 3 hours. SiO 4 is produced. From the analysis of TG-DTA of the oxide precursor, desorption of water starts from 200 ° C., residual organic substances are desorbed at 400 ° C. or higher, nitric acid is desorbed at 600 ° C., and the weight becomes constant at 700 ° C. or higher. Therefore, an oxide can be synthesized by firing at a temperature of 700 ° C. or higher.
水溶性珪素を用いた場合の噴霧乾燥後の乾燥物のXRDからは、硝酸Baのピークしかないが、その乾燥物を800℃で焼成するとBa2SiO4の回折パターンが得られる。また、フュームド(fumed)SiO2を用いた場合の噴霧乾燥後の乾燥物を800℃で焼成するとBa2SiO4と炭酸Baの混合物の回折パターンが得られる。
焼成温度の上限は、1100℃以下とするが、1000℃を超えると第2工程のCS2還元硫化が難しくなるので1000℃以下がより好ましい。
From the XRD of the dried product after spray drying when water-soluble silicon is used, there is only a peak of Ba nitrate, but when the dried product is baked at 800 ° C., a diffraction pattern of Ba 2 SiO 4 is obtained. Further, when the dried product after spray drying when fumed SiO 2 is used is baked at 800 ° C., a diffraction pattern of a mixture of Ba 2 SiO 4 and carbonic acid Ba is obtained.
The upper limit of the firing temperature is 1100 ° C. or less, but if it exceeds 1000 ° C., CS 2 reductive sulfidation in the second step becomes difficult, so 1000 ° C. or less is more preferable.
なお、第一の工程としては硝酸Euを水に溶解し、オキシカルボン酸、グリコール又は水、炭酸バリウム、フュームド(fumed)SiO2を順次加え、更に120〜250℃に加熱してゲルを得た後に、このゲルを400〜500℃で熱処理して炭酸塩前駆体を作製し、得られた炭酸塩前駆体を700〜1090℃で熱処理してEuが均一に分散したEu添加Ba2SiO4を作製することも可能である。
また、炭酸バリウム、Eu2O3粉末とSiO2粉末を混合し、大気中または還元雰囲気中、700から1000℃で焼成することでEu添加Ba2SiO4、又はEu添加BaCO3とSiO2粉末の混合粉末を作製することも可能である。
In the first step, Eu nitrate was dissolved in water, oxycarboxylic acid, glycol or water, barium carbonate, fumed SiO 2 were sequentially added, and further heated to 120 to 250 ° C. to obtain a gel. Later, this gel was heat-treated at 400 to 500 ° C. to prepare a carbonate precursor, and the obtained carbonate precursor was heat-treated at 700 to 1090 ° C. to obtain Eu-added Ba 2 SiO 4 in which Eu was uniformly dispersed. It is also possible to produce it.
Also, barium carbonate, Eu 2 O 3 powder and SiO 2 powder are mixed and fired in the air or in a reducing atmosphere at 700 to 1000 ° C., whereby Eu added Ba 2 SiO 4 , or Eu added BaCO 3 and SiO 2 powder. It is also possible to produce a mixed powder.
2.Eu添加Ba2SiO4を、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化してEu添加Ba2SiS4蛍光体を製造する第2の工程:
この第2の工程では、第1の工程で得られたEu添加Ba2SiO4粉末を、二硫化炭素(CS2)を含む不活性ガス中で加熱、900〜1090℃で2〜8時間の熱処理を施し、Eu添加Ba2SiS4蛍光体粉末の焼成物を得る。
2. Second step of producing Eu-added Ba 2 SiS 4 phosphor by heat-treating Eu-added Ba 2 SiO 4 in an inert gas containing carbon disulfide and reducing and sulfidizing the same:
In this second step, the Eu-added Ba 2 SiO 4 powder obtained in the first step is heated in an inert gas containing carbon disulfide (CS 2 ) at 900 to 1090 ° C. for 2 to 8 hours. Heat treatment is performed to obtain a fired product of Eu-added Ba 2 SiS 4 phosphor powder.
この熱処理の温度は、900〜1090℃であることが好ましく、900℃未満では還元硫化が不充分となるため好ましくなく、硫化珪素の融点である1090℃を超えると、部分的な融解が発生する可能性があり、融解した液体が移動することによって焼成物が不均一になるため好ましくない。一般に高温では硫黄蒸気圧が高くなり硫化物表面から硫黄が揮発すると言われており低温で合成することが好ましい。
なお、合成に使用する容器は、グラファイト、ジルコニア、アルミナ等の酸化物やBN等の耐熱容器を用いることが出来るが、高温ではアルミナが還元され、不純物が多くなるのでグラファイトやジルコニアが好ましい。
The temperature of this heat treatment is preferably 900 to 1090 ° C., and if it is less than 900 ° C., reductive sulfidation is insufficient, which is not preferable, and if it exceeds 1090 ° C., which is the melting point of silicon sulfide, partial melting occurs. There is a possibility that the fired product becomes non-uniform due to the movement of the melted liquid, which is not preferable. In general, it is said that sulfur vapor pressure becomes high at high temperatures, and sulfur is volatilized from the sulfide surface.
As the container used for the synthesis, an oxide such as graphite, zirconia, or alumina, or a heat-resistant container such as BN can be used, but graphite and zirconia are preferable because alumina is reduced at a high temperature and impurities are increased.
ここで用いる不活性ガスとしては、Arガス等の不活性ガスが好ましく、不活性ガス中に二硫化炭素(CS2)を含ませる方法としては、図1に示すような、不活性ガスを液体の二硫化炭素中に通す方法が利用できる。二硫化炭素や不活性ガスの温度は15℃以上46℃未満、特に20℃〜25℃が良く、15℃以下では不活性ガスに含まれる二硫化炭素の濃度が低くなり還元硫化が進まないため好ましくなく、46℃以上では二硫化炭素の沸点以上となって蒸発量の制御が難しく、均一な還元硫化が難しくなるため好ましくない。尚、不活性ガスとしてはArガスのほか窒素を用いることが出来る。ただし高温で窒素を用いることは、窒化物が形成されることがあるため好ましくない。 As the inert gas used here, an inert gas such as Ar gas is preferable, and as a method of including carbon disulfide (CS 2 ) in the inert gas, an inert gas as shown in FIG. A method of passing through carbon disulfide can be used. The temperature of carbon disulfide and inert gas is 15 ° C. or higher and lower than 46 ° C., especially 20 ° C. to 25 ° C. Undesirably, a temperature of 46 ° C. or higher is not preferable because it becomes higher than the boiling point of carbon disulfide, making it difficult to control the amount of evaporation and making uniform reduction sulfurization difficult. In addition to Ar gas, nitrogen can be used as the inert gas. However, using nitrogen at a high temperature is not preferable because nitride may be formed.
この得られた粉末の焼成物の同定は、X線回折を用いて行った。
原料として水溶性珪素を用いて噴霧乾燥を行った酸化物を1010℃で還元硫化したものからはBa2SiS4単相が得られた。第一工程の焼成物に炭酸塩を含んでいるものや還元硫化温度が低い場合は、BaSと思われる少量の異相を含むX線回折パターンが観察されたが、還元硫化の温度を1000℃〜1090℃とすることでBa2SiS4単相が得られることが分かった。
Identification of the fired product of the obtained powder was performed using X-ray diffraction.
A Ba 2 SiS 4 single phase was obtained from the oxide obtained by spray drying using water-soluble silicon as a raw material and reduced and sulfided at 1010 ° C. When the baked product of the first step contains carbonate or when the reduced sulfidation temperature is low, an X-ray diffraction pattern including a small amount of a different phase that seems to be BaS was observed. it was found that Ba 2 SiS 4 single phase is obtained by a 1090 ° C..
第1の工程:Eu添加Ba2SiO4の合成
[第1の工程の酸化物前駆体作製]
水溶性珪素を次のように作製した。テトラエトキシシラン:TEOS(関東化学株式会社製)とプロピレングリコール(関東化学株式会社製99%)を22.4ml秤量し、80℃で48時間混合した。更に混合液に塩酸を100μl加えて室温で1時間攪拌した。この攪拌液に蒸留水を加えて100mlに定溶して1Mの水溶性珪素を作製した。
First step: Synthesis of Eu-added Ba 2 SiO 4 [Preparation of oxide precursor in first step]
Water-soluble silicon was produced as follows. Tetraethoxysilane: 22.4 ml of TEOS (manufactured by Kanto Chemical Co., Ltd.) and propylene glycol (99% manufactured by Kanto Chemical Co., Ltd.) were weighed and mixed at 80 ° C. for 48 hours. Further, 100 μl of hydrochloric acid was added to the mixed solution and stirred at room temperature for 1 hour. Distilled water was added to this stirring solution and dissolved in 100 ml to prepare 1M water-soluble silicon.
この水溶性珪素15mmol、硝酸Ba28.5mmol及び酢酸ユーロピウム(フルウチ化学株式会社製)1.5mmolを純水に加えて500mlに定溶し、この水溶液を室温で30分間攪拌した。 15 mmol of this water-soluble silicon, 28.5 mmol of Ba nitrate and 1.5 mmol of europium acetate (manufactured by Furuuchi Chemical Co., Ltd.) were added to pure water and dissolved in 500 ml, and this aqueous solution was stirred at room temperature for 30 minutes.
次に、水溶液を噴霧乾燥機(YAMATO製 ADL310)に入れて噴霧乾燥を行い、乾燥物を作製した。その乾燥条件は、入り口温度200℃、風量を0.55立方メータ/min、ポンプ速度5ml/min、加圧空気圧力0.1MPaとした。
乾燥物は直ちにアルミナの容器に入れて、ボックス炉で水分を除去するため100℃で予備加熱し、800℃2時間焼成を行った。
Next, the aqueous solution was put into a spray dryer (ADL310 manufactured by YAMATO) and spray-dried to prepare a dried product. The drying conditions were an inlet temperature of 200 ° C., an air volume of 0.55 cubic meters / min, a pump speed of 5 ml / min, and a pressurized air pressure of 0.1 MPa.
The dried product was immediately put in an alumina container, preheated at 100 ° C. to remove moisture in a box furnace, and calcined at 800 ° C. for 2 hours.
[第2の工程の還元硫化]
その後、焼成物をアルミナのボートに入れて図1に示す方法で液体の二硫化炭素(和光製99%)中を通したAr流通下で1010℃、2時間熱処理し、還元硫化を行い、Eu添加Ba2SiS4を作製した。Ar流量は、50ml/minで流量の制御はデジタルフローメータ(Kofloc製 Model8300)で行った。
[Reduction sulfidation in the second step]
Thereafter, the fired product is put into an alumina boat and heat treated at 1010 ° C. for 2 hours under an Ar flow through a liquid carbon disulfide (99% manufactured by Wako) by the method shown in FIG. Added Ba 2 SiS 4 was produced. The Ar flow rate was 50 ml / min, and the flow rate was controlled with a digital flow meter (Model 8300 manufactured by Kofloc).
噴霧乾燥後の乾燥物、それを800℃で焼成した焼成物、還元硫化後硫化物のX線回折パターンの測定結果を図2の(a)、(b)、(c)に示す。図2(a)から乾燥物は硝酸Baであること、(b)から800℃で焼成した焼成物がBa2SiO4であること、(c)から還元硫化によってBa2SiS4が合成されたことが分かる。 The measurement results of the X-ray diffraction patterns of the dried product after spray drying, the calcined product calcined at 800 ° C., and the sulfide after reduced sulfidation are shown in FIGS. 2 (a), (b) and (c). From FIG. 2 (a), the dried product is Ba nitrate, from (b) the calcined product calcined at 800 ° C. is Ba 2 SiO 4 and from (c), Ba 2 SiS 4 was synthesized by reductive sulfidation. I understand that.
実施例1と同じ方法で、第二工程の還元硫化の熱処理時間だけを2時間から4時間に変更しそのほかは同条件でEu添加Ba2SiS4蛍光体を作製した。 In the same manner as in Example 1, only the heat treatment time for the reduction sulfidation in the second step was changed from 2 hours to 4 hours, and the Eu-added Ba 2 SiS 4 phosphor was produced under the same conditions.
実施例1と同じ方法で、Si源として水溶性珪素をフュームド(fumed)SiO2(Sigma Aldrich製、粒径7nm)とし、Ba源として硝酸Baを酢酸Ba(和光製 99%)に変更した以外は同じ方法で、Eu添加Ba2SiS4蛍光体を作製した。 In the same manner as in Example 1, water-soluble silicon was changed to fumed SiO 2 (manufactured by Sigma Aldrich, particle size: 7 nm) as the Si source, and Ba nitrate was changed to Ba acetate (99%, manufactured by Wako) as the Ba source. Produced an Eu-added Ba 2 SiS 4 phosphor by the same method.
実施例3と同じ方法で、第二工程の還元硫化温度(熱処理温度)1010℃を950℃にした以外は同じ方法で、Eu添加Ba2SiS4蛍光体を作製した。 An Eu-added Ba 2 SiS 4 phosphor was produced in the same manner as in Example 3 except that the reduced sulfurization temperature (heat treatment temperature) 1010 ° C. in the second step was changed to 950 ° C.
ここで、実施例3の800℃で焼成した焼成物と実施例3と4で作製した硫化物のX線回折パターンの測定結果を図3に示す。
図3(a)から実施例3の800℃で焼成した焼成物はBa2SiO4とBaCO3の混合物であること、図3(b)及び(c)からは、950℃で還元硫化するとBa2SiS4とBaSの混合物が合成されることが分かる。
Here, the measurement result of the X-ray-diffraction pattern of the baked product baked at 800 ° C. in Example 3 and the sulfide produced in Examples 3 and 4 is shown in FIG.
From FIG. 3 (a), the fired product fired at 800 ° C. in Example 3 is a mixture of Ba 2 SiO 4 and BaCO 3. From FIGS. 3 (b) and 3 (c), when reduced and sulfurized at 950 ° C., Ba It can be seen that a mixture of 2 SiS 4 and BaS is synthesized.
実施例1で作製した水溶性珪素を10mmolと酢酸バリウム20mmolと酢酸ユーロピウム1mmolを純水30mlに定溶し、この水溶液を10分間室温で攪拌しEuを均一に含んだゲルを作製した。
次に、このゲルを凍結乾燥機で−30℃、1時間凍結し、真空ポンプで排気して0.00603気圧以下にする。その後−25℃、3時間保持、−20℃、5時間保持、−15℃、8時間保持、30℃、5時間保持と条件を変化させて乾燥させた。
10 mmol of water-soluble silicon prepared in Example 1, 20 mmol of barium acetate and 1 mmol of europium acetate were dissolved in 30 ml of pure water, and this aqueous solution was stirred at room temperature for 10 minutes to prepare a gel containing Eu uniformly.
Next, this gel is frozen at −30 ° C. for 1 hour with a freeze dryer and evacuated with a vacuum pump to 0.00603 atmospheres or less. Thereafter, it was dried by changing the conditions such as -25 ° C, 3 hours, -20 ° C, 5 hours, -15 ° C, 8 hours, 30 ° C, 5 hours.
乾燥後直ちに乾燥物は、アルミナの容器に入れて、ボックス炉で水分を除去するため100℃で予備加熱し、800℃、2時間の条件にて焼成を行った。
その後、この焼成物を実施例1と同様にアルミナのボートに入れて図1に示す方法で液体の二硫化炭素(和光製99%)中を通したAr流通下で1010℃、2時間の熱処理し、還元硫化を行い、Eu添加Ba2SiS4を作製した。Ar流量は、50ml/minで流量の制御はデジタルフローメータ(Kofloc製 Model8300)で行った。
Immediately after drying, the dried product was put in an alumina container, preheated at 100 ° C. to remove moisture in a box furnace, and fired at 800 ° C. for 2 hours.
Thereafter, the fired product was placed in an alumina boat in the same manner as in Example 1 and heat treated at 1010 ° C. for 2 hours under an Ar flow through a liquid carbon disulfide (99% manufactured by Wako) as shown in FIG. Then, reduction sulfurization was performed to produce Eu-added Ba 2 SiS 4 . The Ar flow rate was 50 ml / min, and the flow rate was controlled with a digital flow meter (Model 8300 manufactured by Kofloc).
第1の工程の焼成温度を1000℃にした以外は、実施例5と同様の方法で硫化物を作製した。 A sulfide was produced in the same manner as in Example 5 except that the firing temperature in the first step was 1000 ° C.
第2の工程の還元硫化温度を1050℃にした以外は、実施例5と同様の方法で硫化物を作製した。 A sulfide was produced in the same manner as in Example 5 except that the reduced sulfurization temperature in the second step was 1050 ° C.
第1の工程の焼成温度を1000℃、第2の工程の還元硫化温度を1050℃にした以外は、実施例5と同様の方法で硫化物を作製した。 A sulfide was produced in the same manner as in Example 5 except that the firing temperature in the first step was 1000 ° C. and the reduced sulfurization temperature in the second step was 1050 ° C.
実施例5、6、7、8で作製した硫化物のX線回折パターンの測定結果を図4に示す。
図4(a)は実施例5、(b)は実施例6、(c)は実施例7、(d)は実施例8の結果である。
図4(a)、(c)、(d)からは、Ba2SiS4相のみが出来ていることが分かる。一方、実施例6を示す図4(b)からは、Ba2SiS4とBaSの混合物であることが分かる。
The measurement results of the X-ray diffraction patterns of the sulfides produced in Examples 5, 6, 7, and 8 are shown in FIG.
4A shows the results of Example 5, FIG. 4B shows the results of Example 6, FIG. 4C shows the results of Example 7, and FIG.
4A, 4C, and 4D show that only the Ba 2 SiS 4 phase is formed. On the other hand, FIG. 4B showing Example 6 shows that it is a mixture of Ba 2 SiS 4 and BaS.
次に、これらの硫化物の蛍光を測定し、実施例1の硫化物の測定結果を代表として、図5に示す。
図5で、左側のスペクトルが発光波長500nmにして励起光の波長を変えて測定した励起スペクトル、右側は励起波長340nmとした場合の発光スペクトルである。励起のピークは340nmであるが400nmにもサブピークが見られるために、励起波長400nm前後でも強度低下が少ない。
Next, the fluorescence of these sulfides was measured, and the measurement result of the sulfide of Example 1 is shown in FIG. 5 as a representative.
In FIG. 5, the left spectrum is an excitation spectrum measured by changing the wavelength of the excitation light with an emission wavelength of 500 nm, and the right side is an emission spectrum when the excitation wavelength is 340 nm. The excitation peak is 340 nm, but a sub-peak is also observed at 400 nm, so that there is little decrease in intensity even at an excitation wavelength of around 400 nm.
[輝度の評価]
輝度を比較するため、実施例1〜4及び実施例7、実施例8の蛍光測定の結果を、青色蛍光体BaMgAl10O17:Eu(BAM蛍光体:化成オプト製)と比較した。
BAM蛍光体では、波長340nmと420nmの励起光で励起し、発光波長450nmの蛍光強度を測定した。同様にEu添加Ba2SiS4蛍光体も340nmと420nmの励起光で励起し、蛍光スペクトルの500nmの蛍光強度を求めた。その求めた強度をBAM蛍光体の強度で除した値を強度比として比較した。その結果を表1に示す。
[Evaluation of brightness]
In order to compare the luminance, the fluorescence measurement results of Examples 1 to 4, Example 7, and Example 8 were compared with the blue phosphor BaMgAl 10 O 17 : Eu (BAM phosphor: manufactured by Kasei Opto).
The BAM phosphor was excited by excitation light having wavelengths of 340 nm and 420 nm, and the fluorescence intensity at an emission wavelength of 450 nm was measured. Similarly, the Eu-added Ba 2 SiS 4 phosphor was also excited with excitation light at 340 nm and 420 nm, and the fluorescence intensity at 500 nm in the fluorescence spectrum was obtained. A value obtained by dividing the obtained intensity by the intensity of the BAM phosphor was compared as an intensity ratio. The results are shown in Table 1.
表1から明らかなように、硫化水素を用いることなく高輝度の希土類添加バリウムチオシリケート(Ba2SiS4)蛍光体が作製でき、波長340nmの励起光において、BAMの積分強度の13%から64%の強度を有し、波長420nmの励起光において、BAMの積分強度の63%から325%の強度をもち十分な強度を有していることが分かる。 As is clear from Table 1, a high-intensity rare earth-added barium thiosilicate (Ba 2 SiS 4 ) phosphor can be produced without using hydrogen sulfide, and 13% to 64% of the integrated intensity of BAM in excitation light having a wavelength of 340 nm. It can be seen that excitation light with a wavelength of 420 nm has a sufficient intensity with an intensity of 63% to 325% of the integrated intensity of BAM.
本発明の方法によれば、励起光が400nm程度の波長においては、実用的に十分な輝度を有しているため、波長400nm近傍の近紫外LEDで青色発光する蛍光体として利用可能である。 According to the method of the present invention, since the excitation light has a practically sufficient luminance at a wavelength of about 400 nm, it can be used as a phosphor emitting blue light with a near-ultraviolet LED in the vicinity of a wavelength of 400 nm.
Claims (3)
Eu元素が均一に分散したBa2SiO4を合成する第1の工程と、
前記第1の工程で得られたEu元素が均一に分散したBa2SiO4を、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程と、
からなることを特徴とするEu元素添加バリウムチオシリケート蛍光体の製造方法。 A method for producing an Eu element-added barium thiosilicate phosphor comprising an alkaline earth metal, silicon, sulfur, and Eu element imparting fluorescence,
A first step of synthesizing Ba 2 SiO 4 in which Eu elements are uniformly dispersed;
A second step in which Ba 2 SiO 4 in which the Eu element obtained in the first step is uniformly dispersed is heat-treated in an inert gas containing carbon disulfide and then reduced and sulfided;
A process for producing a Eu element-added barium thiosilicate phosphor, comprising:
Eu元素が均一に分散したBa2SiO4、Eu元素が均一に分散したBaCO3、Eu元素が均一に分散したBa(NO3)2及びSiO2からなる混合物を合成する第1の工程と、
前記混合物を、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程とからなることを特徴とするEu元素添加バリウムチオシリケート蛍光体の製造方法。 A method for producing an Eu element-added barium thiosilicate phosphor comprising an alkaline earth metal, silicon, sulfur, and Eu element imparting fluorescence,
A first step of synthesizing a mixture of Ba 2 SiO 4 in which Eu element is uniformly dispersed, BaCO 3 in which Eu element is uniformly dispersed, Ba (NO 3 ) 2 and SiO 2 in which Eu element is uniformly dispersed;
A method for producing an Eu element-added barium thiosilicate phosphor, comprising: a second step of heat-treating the mixture in an inert gas containing carbon disulfide and reducing and sulfidizing the mixture.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009061906A JP5506215B2 (en) | 2009-03-13 | 2009-03-13 | Method for manufacturing phosphor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009061906A JP5506215B2 (en) | 2009-03-13 | 2009-03-13 | Method for manufacturing phosphor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2010215729A JP2010215729A (en) | 2010-09-30 |
| JP5506215B2 true JP5506215B2 (en) | 2014-05-28 |
Family
ID=42974901
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009061906A Active JP5506215B2 (en) | 2009-03-13 | 2009-03-13 | Method for manufacturing phosphor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5506215B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5528320B2 (en) * | 2010-12-24 | 2014-06-25 | 住友金属鉱山株式会社 | Method for producing alkaline earth metal silicate phosphor |
| JP5763509B2 (en) * | 2011-11-29 | 2015-08-12 | 住友金属鉱山株式会社 | Method for producing rare earth-added sulfide phosphor |
| CN104919606A (en) * | 2012-12-28 | 2015-09-16 | 信越化学工业株式会社 | Wavelength conversion member and light emitting device |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS52140488A (en) * | 1976-05-19 | 1977-11-24 | Matsushita Electric Ind Co Ltd | Fluorescent membrane and production thereof |
| FR2826016B1 (en) * | 2001-06-13 | 2004-07-23 | Rhodia Elect & Catalysis | COMPOUND BASED ON AN ALKALINE EARTH, SULFUR AND ALUMINUM, GALLIUM OR INDIUM, METHOD FOR PREPARING SAME AND USE THEREOF AS LUMINOPHORE |
| JP2006104413A (en) * | 2004-10-08 | 2006-04-20 | Nec Lighting Ltd | Phosphor and white light emitting device using the same |
| JP4632835B2 (en) * | 2005-03-25 | 2011-02-16 | 国立大学法人鳥取大学 | Method for producing blue phosphor |
| JP2006335967A (en) * | 2005-06-03 | 2006-12-14 | Toshiba Corp | Phosphor for display device and field emission display device |
| JP5164618B2 (en) * | 2008-03-13 | 2013-03-21 | 住友金属鉱山株式会社 | Method for manufacturing phosphor for inorganic EL |
-
2009
- 2009-03-13 JP JP2009061906A patent/JP5506215B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2010215729A (en) | 2010-09-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5586499B2 (en) | Method for manufacturing phosphor | |
| JP4782079B2 (en) | Alkaline earth metal silicate phosphor and white light emitting device | |
| JP4521227B2 (en) | Method for producing phosphor containing nitrogen | |
| JP6610739B2 (en) | Oxynitride phosphor powder and light emitting device using the same | |
| JP5578739B2 (en) | Alkaline earth metal silicate phosphor and method for producing the same | |
| JP2006063323A (en) | Phosphor, production method thereof, and light source | |
| JP5565046B2 (en) | Method for producing Li-containing α-sialon phosphor | |
| JP7507150B2 (en) | Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device | |
| JP5506215B2 (en) | Method for manufacturing phosphor | |
| JP5849961B2 (en) | Method for producing nitride phosphor using co-precipitation raw material, nitride phosphor, and raw material thereof | |
| JP5339976B2 (en) | Orange phosphor and method for producing the same | |
| JP5164618B2 (en) | Method for manufacturing phosphor for inorganic EL | |
| JP5111181B2 (en) | Phosphor and light emitting device | |
| JP4849498B2 (en) | Silicate phosphor and method for producing silicate phosphor | |
| JP5355441B2 (en) | Orange phosphor and method for producing the same | |
| JP5331021B2 (en) | Yellow phosphor and method for producing the same | |
| JP2011032416A (en) | Phosphor, and method for producing the same | |
| JP2013175548A (en) | White led and white light-emitting device provided with the same | |
| JP2007039591A (en) | Phosphor and method for producing the same and light emitting device using the same | |
| CN108841383B (en) | Blue sodium rubidium magnesium phosphate fluorescent material with high luminous efficiency and preparation method and application thereof | |
| JP2017043686A (en) | Fluophor, light source containing fluophor and manufacturing method of fluophor | |
| JP2007210831A (en) | Nitridosilicate compound, method for producing the same, and nitridosilicate phosphor | |
| JP5528320B2 (en) | Method for producing alkaline earth metal silicate phosphor | |
| CN101701155A (en) | Chlorosilicate fluorescent powder and preparation method thereof | |
| JP5252988B2 (en) | Yellow phosphor and method for producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110623 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110623 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121212 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130220 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130418 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140122 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140129 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140306 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140318 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5506215 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |