[go: up one dir, main page]

JP5535958B2 - Liquid-filled vibration isolator - Google Patents

Liquid-filled vibration isolator Download PDF

Info

Publication number
JP5535958B2
JP5535958B2 JP2011038621A JP2011038621A JP5535958B2 JP 5535958 B2 JP5535958 B2 JP 5535958B2 JP 2011038621 A JP2011038621 A JP 2011038621A JP 2011038621 A JP2011038621 A JP 2011038621A JP 5535958 B2 JP5535958 B2 JP 5535958B2
Authority
JP
Japan
Prior art keywords
liquid chamber
main
valve body
flow path
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011038621A
Other languages
Japanese (ja)
Other versions
JP2012172832A (en
Inventor
健太郎 山本
辰典 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2011038621A priority Critical patent/JP5535958B2/en
Publication of JP2012172832A publication Critical patent/JP2012172832A/en
Application granted granted Critical
Publication of JP5535958B2 publication Critical patent/JP5535958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、液封入式防振装置に関するものである。   The present invention relates to a liquid-filled vibration isolator.

自動車エンジン等の振動源の振動を車体側に伝達しないように支承するエンジンマウント等の防振装置として、車体側に取り付けられる第1取付具と、振動源側に取り付けられる第2取付具と、これら取付具の間に介設されたゴム状弾性体からなる防振基体と、防振基体が室壁の一部をなす主液室と、ダイヤフラムが室壁の一部をなす副液室と、これら液室間を連通させるオリフィス流路とを備えた液封入式防振装置が知られている。   As an anti-vibration device such as an engine mount that supports the vibration of a vibration source such as an automobile engine so as not to be transmitted to the vehicle body side, a first attachment attached to the vehicle body side, a second attachment attached to the vibration source side, An anti-vibration base made of a rubber-like elastic body interposed between the fixtures, a main liquid chamber in which the anti-vibration base forms part of the chamber wall, and a sub-liquid chamber in which the diaphragm forms part of the chamber wall; A liquid-filled vibration isolator having an orifice channel for communicating between these liquid chambers is known.

かかる液封入式防振装置においては、通常の振動入力時には、オリフィス流路での液流動による液柱共振作用や防振基体の制振効果により、振動減衰機能と振動絶縁機能が果たされるが、大きな振動が入力したときに、防振装置自体が異音発生源となってこれが車室内に伝達されてしまうことがある。   In such a liquid-filled vibration isolator, during normal vibration input, the vibration damping function and the vibration insulation function are performed by the liquid column resonance action due to the liquid flow in the orifice channel and the vibration damping effect of the vibration isolating substrate. When a large vibration is input, the vibration isolator itself may be an abnormal sound source and transmitted to the passenger compartment.

この異音は、液室内でのキャビテーションにより発生するものである。キャビテーションは、防振装置に大きな振動が入力したときに、オリフィス流路が目詰まりし、これにより主液室内が過度な負圧状態(即ち、主液室の液圧が所定値よりも低下した状態)となって、封入された液体の飽和蒸気圧を下回ることで、多数の気泡が発生することにより生じる現象である。そして、このようにして発生した気泡が消滅するときの衝撃音が異音となって外部に伝達されるのである。   This abnormal noise is generated by cavitation in the liquid chamber. In cavitation, when a large vibration is input to the vibration isolator, the orifice flow path is clogged, and thereby the main liquid chamber is in an excessively negative pressure state (that is, the liquid pressure in the main liquid chamber drops below a predetermined value). This is a phenomenon that occurs when a large number of bubbles are generated by lowering the saturated vapor pressure of the sealed liquid. And the impact sound when the bubble generated in this way disappears becomes an abnormal sound and is transmitted to the outside.

従来、キャビテーションによる異音や振動の発生を防止するために、例えば、下記特許文献1,2には、オリフィス流路の主液室側開口に対して主液室側に板ばねからなる弁体を設け、主液室の液圧が上昇する方向の荷重が入力された場合に、弁体を主液室の半径方向に移動させて主液室側開口を閉塞もしくは狭窄するようにした構成が開示されている。また、下記特許文献3の図5,6に示す第2の実施形態には、主液室側開口を覆うように庇状の弁体を設けるとともに、該弁体と仕切り体との間に液体が流動する隙間を形成するための柱状の支持部を設け、主液室の液圧が上昇することで支持部が潰れて弁体が主液室側開口を塞ぐようにした構成が開示されている。   Conventionally, in order to prevent the occurrence of abnormal noise and vibration due to cavitation, for example, in Patent Documents 1 and 2 below, a valve body comprising a leaf spring on the main liquid chamber side with respect to the main liquid chamber side opening of the orifice channel When the load in the direction in which the liquid pressure in the main liquid chamber increases is input, the valve body is moved in the radial direction of the main liquid chamber to close or narrow the main liquid chamber side opening. It is disclosed. In the second embodiment shown in FIGS. 5 and 6 of Patent Document 3 below, a bowl-shaped valve body is provided so as to cover the main liquid chamber side opening, and a liquid is provided between the valve body and the partition body. A structure is disclosed in which a columnar support part is formed to form a gap through which the fluid flows, and the support part is crushed by the increase of the liquid pressure in the main liquid chamber so that the valve element closes the main liquid chamber side opening. Yes.

一方、特許文献3の図3,4に示された第1の実施形態では、オリフィス流路の流れ方向に直交する弁体と、該弁体に対するストッパ面としての当接部を、オリフィス流路内に突出させて設け、大振幅入力時に、オリフィス流路内を流動する液体により弁体を弾性変形させて当接部に当接させ、これによりオリフィス流路を閉塞するようにした構成が開示されている。   On the other hand, in the first embodiment shown in FIGS. 3 and 4 of Patent Document 3, a valve body orthogonal to the flow direction of the orifice flow path and a contact portion as a stopper surface with respect to the valve body are provided with an orifice flow path. Disclosed is a configuration in which the valve body is elastically deformed by the liquid flowing in the orifice flow path and brought into contact with the contact portion when the large amplitude is input, thereby closing the orifice flow path. Has been.

特開2009−192000号公報JP 2009-192000 A 特開2009−192001号公報JP 2009-192001 A 特開2008−248967号公報JP 2008-248967 A

上記特許文献に記載の構成によれば、キャビテーションが発生するような過大な振幅の振動が入力されて、主液室の液圧が上昇する際に、弁体が作動してオリフィス流路が閉塞もしくは狭窄されるので、弁体の作動後には主液室から副液室への液体の流れが制限され、これにより主液室の正圧が大きくなる。そのため、その後に主液室の液圧が下降する方向の荷重が入力されても、主液室の負圧は大きくならず、従って、キャビテーションの発生を抑えることができる。   According to the configuration described in the above-mentioned patent document, when an excessively large vibration that causes cavitation is input and the hydraulic pressure in the main liquid chamber rises, the valve body operates to block the orifice flow path. Or, since it is constricted, the flow of the liquid from the main liquid chamber to the sub liquid chamber is restricted after the valve element is actuated, thereby increasing the positive pressure of the main liquid chamber. Therefore, even if a load in the direction in which the liquid pressure in the main liquid chamber decreases thereafter is input, the negative pressure in the main liquid chamber does not increase, and therefore the occurrence of cavitation can be suppressed.

しかしながら、上記特許文献1,2及び特許文献3の第2の実施形態の構成では、主液室と副液室との圧力差により弁体が作動し、オリフィス流路での液流動を制限する。すなわち、主液室側開口付近の液体の流れが弁体を回避(迂回)した流れであるため、弁体を作動させる力(即ち、作動力)は圧力差のみとなる。そのため、弁体をより低振幅側から作動させる場合、弁体の剛性を下げる必要があり、弁体の信頼性を低下させるおそれがある。また、特許文献3の第1の実施形態の構成では、オリフィス流路内に弁体と当接部とによる縮流部を持つため、圧力損失の増大によりオリフィス流路本来の減衰性能の低下を招くおそれがある。   However, in the configuration of the second embodiment of Patent Documents 1 and 2 and Patent Document 3, the valve element is operated by the pressure difference between the main liquid chamber and the sub liquid chamber, and the liquid flow in the orifice channel is limited. . That is, since the liquid flow in the vicinity of the main liquid chamber side opening is a flow that avoids (bypasses) the valve body, the force that operates the valve body (that is, the operating force) is only the pressure difference. Therefore, when operating the valve body from the lower amplitude side, it is necessary to reduce the rigidity of the valve body, which may reduce the reliability of the valve body. Further, in the configuration of the first embodiment of Patent Document 3, since the orifice flow path has a contracted portion by the valve body and the abutting portion, the original attenuation performance of the orifice flow path is reduced by an increase in pressure loss. There is a risk of inviting.

本発明は、上記の点に鑑み、キャビテーションの発生を効果的に抑制することができる液封入式防振装置を提供することを目的とする。   An object of this invention is to provide the liquid sealing type vibration isolator which can suppress generation | occurrence | production of a cavitation effectively in view of said point.

本発明に係る液封入式防振装置は、振動源側と支持側の一方に取り付けられる筒状の第1取付具と、前記第1取付具の軸芯部に配されて振動源側と支持側の他方に取り付けられる第2取付具と、前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、前記第1取付具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性体からなるダイヤフラムと、前記第1取付具の内側に設けられて前記液体封入室を前記防振基体側の主液室と前記ダイヤフラム側の副液室とに仕切る仕切り体と、前記仕切り体の外周部において周方向に延びて前記主液室と副液室を連結するオリフィス流路と、を備える。前記仕切り体は、前記オリフィス流路の主液室側開口の開口方向に対して略直交する弁体を前記オリフィス流路内に備え、前記弁体は、前記オリフィス流路を前記主液室側開口の近傍において、前記周方向に延びる主流路と、前記主流路よりも主液室側において主流路とは周方向で逆向きに液体を流す副流路とに区画する隔壁状をなしており、前記主流路と副流路が前記弁体の先端側で折り返し状に接続されることで前記主液室側開口近傍のオリフィス流路部分が形成されており、前記弁体は、前記主液室側開口から前記副流路に流れ込む液体により前記主流路を塞ぐ方向に撓み変形可能に設けられている。   A liquid-filled vibration isolator according to the present invention includes a cylindrical first fixture that is attached to one of a vibration source side and a support side, and a vibration source side that supports the vibration source side that is disposed on the shaft core portion of the first fixture. A second fixture attached to the other of the side, a vibration-proof base made of a rubber-like elastic body interposed between the first fixture and the second fixture, and attached to the first fixture A diaphragm made of a rubber-like elastic body that forms a liquid sealing chamber between the anti-vibration base and the liquid sealing chamber provided inside the first fixture and the main liquid chamber on the side of the anti-vibration base A partition that partitions into a sub liquid chamber on the diaphragm side; and an orifice channel that extends in a circumferential direction at an outer peripheral portion of the partition and connects the main liquid chamber and the sub liquid chamber. The partition body includes a valve body in the orifice flow path that is substantially orthogonal to the opening direction of the main liquid chamber side opening of the orifice flow path, and the valve body includes the orifice flow path on the main liquid chamber side. In the vicinity of the opening, it has a partition shape that divides into a main flow path extending in the circumferential direction and a sub flow path for flowing liquid in the opposite direction in the circumferential direction on the main liquid chamber side of the main flow path. The main flow path and the sub flow path are connected in a folded manner at the tip end side of the valve body to form an orifice flow path portion in the vicinity of the opening on the main liquid chamber side. It is provided so as to be able to bend and deform in the direction of closing the main flow path by the liquid flowing into the sub flow path from the chamber side opening.

本発明の好ましい態様において、前記弁体は、前記主液室の液圧上昇に伴い前記主液室側開口から前記副流路に流れ込む液体の流速が所定以上になったときに、前記主流路を塞ぐ方向に撓み変形して、前記主液室から前記副液室への液体の流れを制限することが好ましい。また、他の好ましい態様において、前記主液室側開口が前記主液室の径方向内方に向けて開口し、前記副流路が前記弁体を介して前記主流路の内周側に設けられており、前記主液室側開口から前記副流路に流れ込む液体により前記弁体が外周側の前記主液室を塞ぐ方向に撓み変形可能に設けられてもよい。また、他の好ましい態様において、前記弁体が板ばねからなり、該弁体の撓み変形における支点が、前記主液室側開口の周方向位置に関し前記主流路の流れ方向で副液室側に設定されるとともに、前記弁体の前記仕切り体に対する固定端が、前記主液室側開口の周方向位置に関し前記主流路の流れ方向で前記支点とは反対側に設けられてもよい。また、この場合、前記弁体の支点において、前記弁体と該弁体が当接する仕切り体には、互いに嵌合することで位置ずれを防止するための凹凸嵌合部が設けられてもよい。なお、これらの好ましい各態様は適宜に組み合わせることができる。   In a preferred aspect of the present invention, the valve body is configured such that the flow rate of the liquid flowing from the main liquid chamber side opening into the sub flow path becomes greater than or equal to a predetermined level as the liquid pressure of the main liquid chamber increases. It is preferable that the flow of the liquid from the main liquid chamber to the sub liquid chamber is restricted by bending and deforming in a direction of closing. In another preferred embodiment, the main liquid chamber side opening opens toward the radially inner side of the main liquid chamber, and the sub flow path is provided on the inner peripheral side of the main flow path via the valve body. The valve body may be provided so as to be able to bend and deform in the direction of closing the main liquid chamber on the outer peripheral side by the liquid flowing into the sub-flow channel from the main liquid chamber side opening. In another preferred embodiment, the valve body is made of a leaf spring, and a fulcrum in bending deformation of the valve body is located on the sub liquid chamber side in the flow direction of the main flow path with respect to the circumferential position of the main liquid chamber side opening. The fixed end of the valve body with respect to the partition body may be provided on the side opposite to the fulcrum in the flow direction of the main flow path with respect to the circumferential position of the main liquid chamber side opening. Further, in this case, at the fulcrum of the valve body, the partition body on which the valve body and the valve body abut may be provided with an uneven fitting portion for preventing displacement by fitting to each other. . In addition, these preferable each aspects can be combined suitably.

本発明に係る液封入式防振装置であると、所定振幅以上の大振幅振動入力に対して、主液室の液圧上昇に伴い、主液室側開口からオリフィス流路に流れ込む液体の流速が所定以上になったときには、弁体が主流路を塞ぐ方向に撓み変形して、主液室から副液室への液体の流れが制限される。これにより、主液室内の正圧が大きくなるので、続けて主液室の液圧が下降する方向の荷重が入力されたときに、主液室内の過度な負圧状態を抑制して、キャビテーションの発生を抑えることができる。また、その際、上記構成の弁体であると、液室間の圧力差のみならず、オリフィス流路での液体の流れが噴流効果として弁体に作用するため、より大きい作動力を得ることができる。そのため、圧力差のみで弁体を作動させる場合に比べて、弁体の剛性を低下させることなく(従って、信頼性を損なうことなく)、より低振幅側から弁体を作動させることができる。   In the liquid-sealed vibration isolator according to the present invention, the flow velocity of the liquid flowing into the orifice channel from the main liquid chamber side opening with the increase in the liquid pressure of the main liquid chamber with respect to the large amplitude vibration input having a predetermined amplitude or more When the pressure exceeds a predetermined value, the valve body bends and deforms in the direction of closing the main flow path, and the flow of liquid from the main liquid chamber to the sub liquid chamber is restricted. As a result, the positive pressure in the main liquid chamber increases, and therefore, when a load in the direction in which the main liquid chamber pressure decreases continues, excessive negative pressure in the main liquid chamber is suppressed and cavitation is suppressed. Can be suppressed. Further, at that time, in the case of the valve body having the above configuration, not only the pressure difference between the liquid chambers but also the liquid flow in the orifice channel acts on the valve body as a jet effect, so that a larger operating force can be obtained. Can do. Therefore, it is possible to operate the valve body from the lower amplitude side without lowering the rigidity of the valve body (thus, without impairing the reliability) as compared with the case where the valve body is operated only by the pressure difference.

また、上記弁体であれば、内部に縮流部を形成せずにオリフィス流路を形成することが可能であるため、所定振幅未満の振動入力に対して、オリフィス流路本来の減衰性能を発揮することができる。また、本来のオリフィス流路である主流路に対して副流路を折り返し状に形成したことにより、副流路を設けない場合に比べて、その分オリフィス流路を長く設定することができ、そのため、減衰性能の向上を実現する設計も可能となる。   In addition, with the above valve body, it is possible to form an orifice flow path without forming a constricted portion therein, so that the original attenuation performance of the orifice flow path is reduced with respect to vibration input with a predetermined amplitude or less. It can be demonstrated. In addition, by forming the sub-flow path in a folded shape with respect to the main flow path that is the original orifice flow path, the orifice flow path can be set longer than that when the sub-flow path is not provided. Therefore, it is possible to design to improve the damping performance.

第1実施形態に係る液封入式防振装置の縦断面図である。It is a longitudinal cross-sectional view of the liquid filled type vibration isolator which concerns on 1st Embodiment. 第1実施形態の仕切り体の断面図である。It is sectional drawing of the partition body of 1st Embodiment. 第1実施形態の仕切り体の平面図である。It is a top view of the partition body of a 1st embodiment. 図3のIV方向から見た仕切り体の要部側面図である。It is a principal part side view of the partition body seen from the IV direction of FIG. 図4のV−V線に相当する液封入式防振装置の要部拡大断面図である。It is a principal part expanded sectional view of the liquid filled type vibration isolator equivalent to the VV line of FIG. 弁体の作動状態を示す液封入式防振装置の要部拡大断面図である。It is a principal part expanded sectional view of the liquid enclosure type vibration isolator which shows the operation state of a valve body. 第2実施形態に係る弁体を構成する板ばねの平面図である。It is a top view of the leaf | plate spring which comprises the valve body which concerns on 2nd Embodiment. 第2実施形態の液封入式防振装置の要部拡大断面図である。It is a principal part expanded sectional view of the liquid enclosure type vibration isolator of 2nd Embodiment. 第2実施形態における弁体の作動状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the operating state of the valve body in 2nd Embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1に示された実施形態に係る液封入式防振装置10は、自動車のエンジンを支承するエンジンマウントであり、支持側の車体に取り付けられる筒状をなす下側の第1取付具12と、振動源であるエンジン側に取り付けられる上側の第2取付具14と、これら両取付具12,14の間に介設されて両者を連結するゴム弾性体からなる防振基体16と、第1取付具12に取り付けられて防振基体16との間に液体封入室18を形成する可撓性ゴム膜からダイヤフラム20とを備えてなる。
[First Embodiment]
A liquid-filled vibration isolator 10 according to the embodiment shown in FIG. 1 is an engine mount for supporting an automobile engine, and includes a lower first mounting tool 12 having a cylindrical shape that is attached to a support-side vehicle body. An upper second fixture 14 attached to the engine side as a vibration source, a vibration isolating base 16 made of a rubber elastic body interposed between the two fixtures 12 and 14 and connecting the two, A diaphragm 20 is provided from a flexible rubber film which is attached to the fixture 12 and forms a liquid enclosure chamber 18 between the vibration isolator base 16.

第2取付具14は、第1取付具12の軸心部上方に配されたボス金具であり、上端面にはボルト穴22が設けられ、不図示のボルトを介してエンジン側に取り付けられるよう構成されている。第1取付具12は、上端部がやや大径とされた段付き円筒状の金具であり、不図示の筒状ホルダー内に圧入されて車体側に取り付けられるように構成されている。   The second fixture 14 is a boss fitting disposed above the axial center portion of the first fixture 12, and is provided with a bolt hole 22 on the upper end surface so that it can be attached to the engine side via a bolt (not shown). It is configured. The first fixture 12 is a stepped cylindrical metal fitting whose upper end portion has a slightly larger diameter, and is configured to be press-fitted into a cylindrical holder (not shown) and attached to the vehicle body side.

防振基体16は傘状に形成され、その上端部に第2取付具14が埋設された状態に加硫接着され、下端外周部が第1取付具12の上端開口部に加硫接着されている。防振基体16の下端部には、第1取付具12の内周面を覆うゴム膜状のシール壁部24が連なっている。   The anti-vibration base 16 is formed in an umbrella shape, and is vulcanized and bonded in a state where the second fixture 14 is embedded in the upper end thereof, and the lower end outer peripheral portion is vulcanized and bonded to the upper end opening of the first fixture 12. Yes. A rubber film-like seal wall portion 24 covering the inner peripheral surface of the first fixture 12 is connected to the lower end portion of the vibration isolation base 16.

ダイヤフラム20は、防振基体16の下面に対して軸方向Xに対向配置されて、当該下面との間に液体封入室18を形成する。ダイヤフラム20は、その外周部に環状の補強金具26が埋設一体化され、この補強金具26が第1取付具12の下端部12Aにかしめ固定されている。   The diaphragm 20 is disposed so as to face the lower surface of the vibration isolating base 16 in the axial direction X, and forms a liquid sealing chamber 18 between the lower surface and the diaphragm 20. The diaphragm 20 has an annular reinforcing metal fitting 26 embedded and integrated on the outer periphery thereof, and the reinforcing metal fitting 26 is caulked and fixed to the lower end portion 12 </ b> A of the first fixture 12.

液体封入室18は、第1取付具12の内側において、防振基体16の下面とダイヤフラム20との間に形成されており、水やエチレングリコール、シリコーンオイル等の液体が封入されている。液体封入室18は、仕切り体28によって、防振基体16側、即ち防振基体16が室壁の一部をなす上側の主液室30と、ダイヤフラム20側、即ちダイヤフラム20が室壁の一部をなす下側の副液室32とに仕切られている。主液室30と副液室32は、仕切り体28の外周部に設けられたオリフィス流路34により互いに連通されている。   The liquid enclosing chamber 18 is formed between the lower surface of the vibration isolation base 16 and the diaphragm 20 inside the first fixture 12 and encloses a liquid such as water, ethylene glycol, or silicone oil. The liquid sealing chamber 18 is divided by a partition 28 into the main liquid chamber 30 on the vibration-proof base 16 side, that is, the upper main liquid chamber 30 where the vibration-proof base 16 forms part of the chamber wall, and the diaphragm 20 side, that is, the diaphragm 20 on the chamber wall. It is divided into a lower auxiliary liquid chamber 32 forming a part. The main liquid chamber 30 and the sub liquid chamber 32 are communicated with each other by an orifice channel 34 provided on the outer peripheral portion of the partition body 28.

仕切り体28は、平面視円形状をなして第1取付具12の周壁部の内側にシール壁部24を介して嵌着されている。仕切り体28は、上記補強金具26のかしめ固定により、その外周部がシール壁部24の段部24Aと補強金具26との間で軸方向Xに挟まれた状態に保持されている。   The partition body 28 has a circular shape in plan view and is fitted inside the peripheral wall portion of the first fixture 12 via the seal wall portion 24. The partition body 28 is held in a state in which the outer peripheral portion thereof is sandwiched in the axial direction X between the stepped portion 24 </ b> A of the seal wall portion 24 and the reinforcing metal fitting 26 by caulking and fixing the reinforcing metal fitting 26.

この例では、仕切り体28は、図1,2に示すように、外周部を構成する環状のオリフィス形成部材36と、その内側で主液室30と副液室32を軸方向Xに区画するゴム膜からなる弾性壁38とで構成されている。オリフィス形成部材36は、金属や樹脂などの剛性材料からなり、外向きに開かれた凹溝部40を有し、シール壁部24を介して第1取付具12の内周面に嵌合されることにより、当該内周面と凹溝部40との間で周方向C(図3参照)に沿って延びる上記オリフィス流路34を形成する。弾性壁38は、オリフィス形成部材36の内周部に設けられた内向きのフランジ部41に一体に加硫成形された円板状のゴム膜部であり、オリフィス流路34のチューニング周波数よりも高周波数域の微振幅振動に対し、弾性変形することで両液室30,32間の液圧変動を吸収して、低動ばね特性を発揮する。   In this example, the partition 28 divides the main liquid chamber 30 and the sub liquid chamber 32 in the axial direction X inside the annular orifice forming member 36 constituting the outer peripheral portion as shown in FIGS. The elastic wall 38 is made of a rubber film. The orifice forming member 36 is made of a rigid material such as metal or resin, has a concave groove portion 40 opened outward, and is fitted to the inner peripheral surface of the first fixture 12 via the seal wall portion 24. Thereby, the said orifice flow path 34 extended along the circumferential direction C (refer FIG. 3) between the said internal peripheral surface and the recessed groove part 40 is formed. The elastic wall 38 is a disc-shaped rubber film part integrally vulcanized and formed on an inward flange part 41 provided on the inner peripheral part of the orifice forming member 36, and is higher than the tuning frequency of the orifice channel 34. By elastically deforming the micro-amplitude vibration in the high frequency range, the fluid pressure fluctuation between the fluid chambers 30 and 32 is absorbed to exhibit a low dynamic spring characteristic.

オリフィス流路34は、この例では車両走行時のシェイク振動を減衰するために、シェイク振動に対応した低周波数域(例えば、5〜15Hz程度)にチューニングされたシェイクオリフィスである。すなわち、オリフィス流路34を通じて流動する液体の共振作用に基づく減衰効果がシェイク振動の入力時に有効に発揮されるように、流路の断面積及び長さを調整することによってチューニングされている。オリフィス流路34は、図1,3に示されるように、周方向Cの一端に、主液室30に対して開口する主液室側開口42を備えるとともに、周方向Cの他端に、副液室32に対して開口する副液室側開口44を備える。主液室側開口42は、オリフィス形成部材36の周壁部に矩形状の貫通穴を設けることにより、主液室30の径方向内方に向けて開口して設けられており、この例では、図4に示すように開口形状が矩形状をなしている。   In this example, the orifice flow path 34 is a shake orifice tuned to a low frequency range (for example, about 5 to 15 Hz) corresponding to the shake vibration in order to attenuate the shake vibration when the vehicle travels. That is, tuning is performed by adjusting the cross-sectional area and the length of the flow path so that the damping effect based on the resonance action of the liquid flowing through the orifice flow path 34 is effectively exhibited when the shake vibration is input. As shown in FIGS. 1 and 3, the orifice channel 34 includes a main liquid chamber side opening 42 that opens to the main liquid chamber 30 at one end in the circumferential direction C, and the other end in the circumferential direction C. A secondary liquid chamber side opening 44 that opens to the secondary liquid chamber 32 is provided. The main liquid chamber side opening 42 is provided so as to open radially inward of the main liquid chamber 30 by providing a rectangular through hole in the peripheral wall portion of the orifice forming member 36. In this example, As shown in FIG. 4, the opening shape is rectangular.

図2,3に示すように、仕切り体28には、オリフィス流路34の主液室側開口42の開口方向Kに対して略直交する隔壁状の弁体46が、オリフィス流路34内に設けられている。すなわち、弁体46は、主液室側開口42の径方向外方側において、当該主液室側開口42に対して間隔をあけて対向して設けられており、この例では金属製の板ばねからなる。弁体46は、その板面が、主液室側開口42の開口方向K(即ち、開口面に垂直な方向であり、該開口42を通過する液体の流れ方向に等しい。)に対して直交する姿勢(即ち、開口面に対して平行な姿勢)にて、仕切り体28に取り付けられている。なお、上記開口方向Kに対して弁体46のなす角度は概ね直角であれば、必ずしも厳密に直角の場合には限定されず、例えば90度±30度の範囲内で傾斜していても、後述する噴流効果が得られることから、略直交していると言える。   As shown in FIGS. 2 and 3, the partition body 28 has a partition-like valve body 46 that is substantially orthogonal to the opening direction K of the main liquid chamber side opening 42 of the orifice channel 34 in the orifice channel 34. Is provided. That is, the valve body 46 is provided on the radially outer side of the main liquid chamber side opening 42 so as to face the main liquid chamber side opening 42 with a space therebetween. In this example, a metal plate is provided. It consists of a spring. The plate surface of the valve body 46 is orthogonal to the opening direction K of the main liquid chamber side opening 42 (that is, the direction perpendicular to the opening surface and equal to the flow direction of the liquid passing through the opening 42). It is attached to the partition body 28 in a posture (that is, a posture parallel to the opening surface). The angle formed by the valve body 46 with respect to the opening direction K is not limited to a strictly right angle as long as it is substantially a right angle. For example, even if it is inclined within a range of 90 ° ± 30 °, Since the jet effect described later is obtained, it can be said that they are substantially orthogonal.

弁体46は、オリフィス流路34を、主液室側開口42の近傍において、主流路48と副流路50とに区画する隔壁状をなしている。主流路48は、仕切り体28の外周部において略全周にわたって周方向Cに延びて設けられた本来の流路部分である。副流路50は、主流路48よりもオリフィス流路34の流れ方向における主液室30側で、該主流路48とは周方向Cで逆向きに液体を流す流路部分である。この例では、副流路50は、弁体46を介して主流路48の内周側に設けられている。詳細には、図3に示すように、仕切り体28は、主液室側開口42を含むその近傍において、オリフィス流路34が径方向内方に向けて張り出した形状に形成されている。すなわち、オリフィス形成部材36の周壁部が、径方向内方に張り出し形成されており、該張り出し部において、オリフィス流路34が外周側の主流路48と内周側の副流路50との内外二重に設けられており、両者を区切る仕切り壁として上記弁体46が設けられている。   The valve body 46 has a partition shape that divides the orifice channel 34 into a main channel 48 and a sub channel 50 in the vicinity of the main liquid chamber side opening 42. The main flow channel 48 is an original flow channel portion provided in the outer peripheral portion of the partition body 28 so as to extend in the circumferential direction C over substantially the entire circumference. The sub-flow channel 50 is a flow channel portion that allows the liquid to flow in a direction opposite to the main flow channel 48 in the circumferential direction C on the main liquid chamber 30 side in the flow direction of the orifice flow channel 34 relative to the main flow channel 48. In this example, the auxiliary flow path 50 is provided on the inner peripheral side of the main flow path 48 via the valve body 46. Specifically, as shown in FIG. 3, the partition body 28 is formed in a shape in which an orifice channel 34 projects radially inward in the vicinity including the main liquid chamber side opening 42. That is, the peripheral wall portion of the orifice forming member 36 is formed so as to project radially inward, and the orifice channel 34 is formed on the inner and outer sides of the main channel 48 on the outer peripheral side and the sub-channel 50 on the inner peripheral side. The valve body 46 is provided as a partition wall that separates the two.

図4,5に示すように、弁体46は、主液室側開口42の周方向位置に関して、主流路48の流れ方向で副液室32側に固定端46Aを有し、該固定端46Aにおいて固定手段52を介して仕切り体28に固定されている。ここでは、弁体46に設けた貫通穴に仕切り体28の取付け面に設けた凸部52を圧入することにより、弁体46は仕切り体28に固定されており、該貫通穴と凸部52との嵌合が固定手段となっている。かかる固定手段に代えて、リベットなどを用いることもできる。   4 and 5, the valve body 46 has a fixed end 46A on the side of the sub liquid chamber 32 in the flow direction of the main flow path 48 with respect to the circumferential position of the main liquid chamber side opening 42, and the fixed end 46A. In FIG. 5, the partition member 28 is fixed via a fixing means 52. Here, the valve body 46 is fixed to the partition body 28 by press-fitting the convex portion 52 provided on the mounting surface of the partition body 28 into the through hole provided in the valve body 46, and the through hole and the convex portion 52 are fixed. Is a fixing means. Instead of such fixing means, rivets or the like can be used.

このようにして固定された弁体46は、固定端46Aから主流路48の流れ方向で主液室30側に延びており、図5に示すように主流路48の内周面に沿う湾曲板状に形成されている。そして、内周側の副流路50と外周側の主流路48とが弁体46の先端46B側で折り返し状に接続されており、これにより主液室側開口42近傍のオリフィス流路部分が上記の通り内外二重に形成されている。主流路48と副流路50は、より詳細には、弁体46の先端(後述する撓み変形する部分の先端)46Bと主流路48の閉塞部54との間の空間部により、連結されている。ここで、閉塞部54は、主流路48を周方向Cにおいて塞いで、主液室側開口42と副液室側開口44との短絡を防止するために、オリフィス形成部材36に設けられた縦壁部である。   The valve body 46 fixed in this way extends from the fixed end 46A toward the main liquid chamber 30 in the flow direction of the main flow path 48, and is a curved plate along the inner peripheral surface of the main flow path 48 as shown in FIG. It is formed in a shape. The sub flow channel 50 on the inner peripheral side and the main flow channel 48 on the outer peripheral side are connected in a folded manner on the tip 46B side of the valve body 46, whereby the orifice flow channel portion in the vicinity of the main liquid chamber side opening 42 is formed. As described above, the inner and outer doubles are formed. More specifically, the main flow path 48 and the sub flow path 50 are connected by a space portion between the tip end of the valve body 46 (tip end of a portion to be bent and deformed later) 46B and the closed portion 54 of the main flow path 48. Yes. Here, the blocking portion 54 blocks the main flow path 48 in the circumferential direction C, and prevents the short circuit between the main liquid chamber side opening 42 and the sub liquid chamber side opening 44. It is a wall.

なお、主流路48と副流路50は断面積が同一に設定されている。この例では、図1に示すように、略矩形状の断面形状を持つ副流路50に対し、主流路48は軸方向Xに細長い矩形状の断面形状を有しており、副流路50は、主流路48の内周面における軸方向Xの一部(ここでは上部側)を径方向内方側に突出させることで、径方向外方側に開かれた窪み状に形成されている。そして、この窪み部を含む主流路48の軸方向Xの略全体を、窪み部の外周側から上記弁体46によって覆うことにより、副流路50と主流路48が内外に仕切られている。弁体46は、図5に示すように、主流路48の内周面に沿う湾曲面状となるように、オリフィス形成部材36の凹溝部40の底面に当接する方向に付勢されている。   The main channel 48 and the sub channel 50 have the same cross-sectional area. In this example, as shown in FIG. 1, the main flow channel 48 has a rectangular cross-sectional shape elongated in the axial direction X with respect to the sub-flow channel 50 having a substantially rectangular cross-sectional shape. Is formed in a hollow shape opened outward in the radial direction by projecting a part (in this case, the upper side) of the axial direction X on the inner peripheral surface of the main channel 48 toward the radially inward side. . Then, by covering substantially the entire axial direction X of the main flow path 48 including the recessed portion with the valve body 46 from the outer peripheral side of the recessed portion, the sub flow path 50 and the main flow path 48 are partitioned inside and outside. As shown in FIG. 5, the valve body 46 is urged in a direction in which the valve body 46 comes into contact with the bottom surface of the concave groove portion 40 of the orifice forming member 36 so as to have a curved surface shape along the inner peripheral surface of the main flow path 48.

このように配設することで、弁体46は、図6に示すように、主液室側開口42から副流路50に流れ込む液体により主流路48を塞ぐ方向に撓み変形可能に構成されている。詳細には、主液室30の液圧上昇に伴い、主液室側開口42から副流路50に流れ込む液体の流速が所定の流速以上になったときに、弁体46が径方向外方に撓み変形して、外周側の主流路48を塞ぐようになっている。これにより、主液室30から副液室32への液体の流れが制限される。ここで、弁体46は、必ずしも主流路48、即ちオリフィス流路34を完全に閉塞する必要はなく、狭窄することで流量を制限するものであってもよい。一方、該流速が所定未満の状態では、弁体46は、その剛性により、図5に示すように主流路48の内周面に沿った形状を維持し、オリフィス流路34における本来の液体の流れを許容する。   By arranging in this way, the valve body 46 is configured to be able to bend and deform in the direction of closing the main flow path 48 with the liquid flowing into the sub flow path 50 from the main liquid chamber side opening 42 as shown in FIG. Yes. Specifically, when the flow rate of the liquid flowing from the main liquid chamber side opening 42 into the sub-flow channel 50 becomes equal to or higher than a predetermined flow rate as the liquid pressure in the main liquid chamber 30 increases, the valve body 46 moves radially outward. The main flow path 48 on the outer peripheral side is blocked by bending. Thereby, the flow of the liquid from the main liquid chamber 30 to the sub liquid chamber 32 is restricted. Here, the valve body 46 does not necessarily need to completely close the main flow path 48, that is, the orifice flow path 34, and may restrict the flow rate by narrowing. On the other hand, in the state where the flow velocity is less than a predetermined value, the valve body 46 maintains its shape along the inner peripheral surface of the main flow path 48 as shown in FIG. Allow flow.

なお、上記のように弁体46が撓み変形する際の所定の流速については、主液室30内にキャビテーションが発生するような急激な圧力変動を生じるときの液体の流速値に基づいて設定することができ、例えば、弁体46の厚さや素材等を変更してその剛性を調整することにより設定可能である。   The predetermined flow rate when the valve body 46 bends and deforms as described above is set based on the flow rate value of the liquid when a sudden pressure fluctuation that causes cavitation in the main liquid chamber 30 occurs. For example, it can be set by changing the thickness or material of the valve body 46 and adjusting its rigidity.

また、この例では、弁体46の撓み変形における支点(即ち、弁体46が可動する際の支点)は、上記固定端46Aと共通しており、すなわち、支点は、主液室側開口42の周方向位置に関し、主流路48の流れ方向で副液室32側に設定されている。   Further, in this example, a fulcrum in bending deformation of the valve body 46 (that is, a fulcrum when the valve body 46 moves) is common to the fixed end 46A, that is, the fulcrum is the main liquid chamber side opening 42. Is set on the sub liquid chamber 32 side in the flow direction of the main flow path 48.

以上よりなる液封入式防振装置10であると、車両走行時においてシェイク振動のような所定振幅未満の振動入力に対しては、主液室側開口42からオリフィス流路34に流れ込む液体の流速が小さいので、弁体46は作動せず、図5に示すように、オリフィス流路34本来の液体の流れが可能であるため、オリフィス流路34内での液流動による本来の減衰性能を発揮することができる。   With the liquid-filled vibration isolator 10 configured as described above, the flow velocity of the liquid flowing into the orifice flow path 34 from the main liquid chamber side opening 42 with respect to vibration input with less than a predetermined amplitude such as shake vibration during vehicle travel. Therefore, the valve body 46 does not operate, and the original liquid flow of the orifice channel 34 is possible as shown in FIG. 5, so that the original damping performance due to the liquid flow in the orifice channel 34 is exhibited. can do.

一方、所定振幅以上の大荷重振動入力(例えば、路面の段差を乗り越えたとき等のような瞬間的に大きな荷重の入力)に対し、主液室30の液圧上昇に伴い、主液室側開口42からオリフィス流路34に流れ込む液体の流速が所定以上になったときには、図6に示すように、弁体46が主流路48を塞ぐように撓み変形して、主液室30から副液室32への液体の流れが制限される。これにより、主液室30内の正圧が大きくなる。その後、主液室30の液圧が下降する方向の荷重が入力されたときには、弁体46は、その弾性力により図5に示す元の状態に復帰して、副液室32側から主液室30側への液体の流れが許容される。このように大振幅振動入力時にオリフィス流路34の流れを制限することにより主液室30内の正圧を高めることができるので、続けて主液室30の液圧が下降する方向の荷重が入力されたときに主液室30内の過度な負圧状態を抑制して、キャビテーションの発生を抑えることができる。   On the other hand, in response to a large load vibration input with a predetermined amplitude or more (for example, an input of a momentary large load such as when overcoming a step on the road surface), as the liquid pressure in the main liquid chamber 30 increases, the main liquid chamber side When the flow velocity of the liquid flowing from the opening 42 into the orifice flow path 34 exceeds a predetermined value, the valve body 46 is bent and deformed so as to close the main flow path 48 as shown in FIG. The flow of liquid to the chamber 32 is restricted. Thereby, the positive pressure in the main liquid chamber 30 is increased. Thereafter, when a load in a direction in which the hydraulic pressure in the main liquid chamber 30 decreases is input, the valve body 46 returns to the original state shown in FIG. Liquid flow to the chamber 30 side is allowed. Since the positive pressure in the main liquid chamber 30 can be increased by restricting the flow of the orifice channel 34 at the time of large amplitude vibration input in this way, the load in the direction in which the liquid pressure in the main liquid chamber 30 decreases continues. When input, it is possible to suppress an excessive negative pressure state in the main liquid chamber 30 and suppress the occurrence of cavitation.

また、その際、上記構成の弁体46であると、主液室30と副液室32との圧力差のみならず、オリフィス流路34での液体の流れが噴流効果として弁体46に作用するため、より大きい作動力を得ることができる。そのため、圧力差のみで弁体を作動させる場合に比べて、弁体46の剛性を低下させることなく、従って信頼性を損なうことなく、より低振幅側から弁体46を作動させることができる。   At that time, in the valve body 46 having the above configuration, not only the pressure difference between the main liquid chamber 30 and the sub liquid chamber 32 but also the liquid flow in the orifice channel 34 acts on the valve body 46 as a jet effect. Therefore, a larger operating force can be obtained. Therefore, the valve body 46 can be operated from the lower amplitude side without lowering the rigidity of the valve body 46 and therefore without impairing the reliability as compared with the case where the valve body is operated only by the pressure difference.

また、本実施形態であると、弁体46を設けてもオリフィス流路34に縮流部が形成されていないので、圧力損失の増大を伴わず、そのため、シェイク振動に対してオリフィス流路34本来の減衰性能を発揮することができる。   Further, in the present embodiment, even if the valve body 46 is provided, the orifice channel 34 is not formed with a constricted flow portion, so that there is no increase in pressure loss. The original attenuation performance can be exhibited.

また、本実施形態であると、本来のオリフィス流路である主流路48に対して副流路50を折り返し状に形成したことにより、副流路を設けない場合に比べて、その分オリフィス流路34を長く設定することができる。そのため、減衰性能の向上を実現することができる。   Further, according to the present embodiment, the sub flow channel 50 is formed in a folded shape with respect to the main flow channel 48 which is the original orifice flow channel, so that the orifice flow is correspondingly smaller than the case where no sub flow channel is provided. The path 34 can be set longer. Therefore, improvement in attenuation performance can be realized.

また、本実施形態であると、図6に示すように、弁体46が半径方向外側に撓み変形して主流路48を塞ぐ際に、主流路48の外周面はゴム状弾性体からなるシール壁部24により形成されているので、弁体46が主流路48を塞ぐ際の衝撃を緩和して異音の発生を抑えることができる。   Further, in the present embodiment, as shown in FIG. 6, when the valve body 46 is bent and deformed radially outward to close the main flow path 48, the outer peripheral surface of the main flow path 48 is a seal made of a rubber-like elastic body. Since it is formed by the wall portion 24, it is possible to mitigate the impact when the valve body 46 closes the main flow path 48 and suppress the generation of abnormal noise.

[第2実施形態]
第2実施形態に係る液封入式防振装置は、弁体46の構成が上述した第1実施形態とは異なる。この実施形態では、弁体46は、図7に示す板ばね56により構成されている。板ばね56は、長手方向の一端部に弁体46の撓み変形における支点46Aが設けられるとともに、長手方向の他端部に仕切り体28に対する固定端60が設けられた比較的細長い矩形枠状をなし、主流路48と副流路50との隔壁をなす弁体46が、枠状部の内側において、支点46A側を付け根部として固定端60側に向かって延びる舌状に形成されている。そして、この弁体46の先端46Bと固定端60との間の開口部58が、主流路48と副流路50を連結する連通部となっている(図8参照)。
[Second Embodiment]
The liquid-filled vibration isolator according to the second embodiment is different from the first embodiment described above in the configuration of the valve body 46. In this embodiment, the valve body 46 is comprised by the leaf | plate spring 56 shown in FIG. The leaf spring 56 has a relatively elongated rectangular frame shape in which one end portion in the longitudinal direction is provided with a fulcrum 46A for bending deformation of the valve body 46 and the other end portion in the longitudinal direction is provided with a fixed end 60 for the partition body 28. None, the valve body 46 forming a partition wall between the main flow channel 48 and the sub flow channel 50 is formed in a tongue shape extending toward the fixed end 60 side with the fulcrum 46A side as a root portion inside the frame-shaped portion. And the opening part 58 between the front-end | tip 46B and this fixed end 60 of this valve body 46 becomes a communicating part which connects the main flow path 48 and the subchannel 50 (refer FIG. 8).

図8に示すように、板ばね56は、上記支点46Aが、主液室側開口42の周方向位置に関し、主流路48の流れ方向で副液室32側に設定されるとともに、上記固定端60が、主液室側開口42の周方向位置に関し、主流路48の流れ方向で上記支点46Aとは反対側に設定されるように、仕切り体28に設置されている。板ばね56は、該固定端60において固定手段62(第1実施形態と同様の貫通穴と凸部との嵌合)を介して仕切り体28に固定されている。また、支点46Aには、仕切り体28(ここではオリフィス形成部材36)に設けられた嵌合凹部64に嵌合する位置ずれ防止用の嵌合凸部66が設けられている。   As shown in FIG. 8, the leaf spring 56 is configured such that the fulcrum 46 </ b> A is set on the sub liquid chamber 32 side in the flow direction of the main flow path 48 with respect to the circumferential position of the main liquid chamber side opening 42. 60 is installed in the partition body 28 so as to be set on the opposite side of the fulcrum 46A in the flow direction of the main flow path 48 with respect to the circumferential position of the main liquid chamber side opening 42. The leaf spring 56 is fixed to the partition body 28 at the fixed end 60 via fixing means 62 (fitting the through hole and the convex portion similar to the first embodiment). Further, the fulcrum 46A is provided with a fitting convex portion 66 for preventing displacement from fitting into a fitting concave portion 64 provided in the partition body 28 (here, the orifice forming member 36).

第2実施形態でも、第1実施形態と同様、所定振幅以上の大荷重振動入力時に、主液室側開口42からオリフィス流路34に流れ込む液体の流速が所定以上になったときには、図9に示すように、弁体46が主流路48を塞ぐように撓み変形して、主液室30から副液室32への液体の流れが制限され、主液室30内の正圧を高くすることができる。そのため、続けて主液室30の液圧が下降する方向の荷重が入力されたときに主液室30内の過度な負圧状態を抑制して、キャビテーションの発生を抑えることができる。   Also in the second embodiment, as in the first embodiment, when a large load vibration having a predetermined amplitude or more is input, when the flow velocity of the liquid flowing from the main liquid chamber side opening 42 into the orifice channel 34 becomes a predetermined value or more, FIG. As shown, the valve body 46 is bent and deformed so as to block the main flow path 48, the flow of liquid from the main liquid chamber 30 to the sub liquid chamber 32 is restricted, and the positive pressure in the main liquid chamber 30 is increased. Can do. Therefore, when a load in a direction in which the hydraulic pressure in the main liquid chamber 30 is lowered is input continuously, an excessive negative pressure state in the main liquid chamber 30 can be suppressed, and cavitation can be suppressed.

第2実施形態では、特に、弁体46を構成する板ばね56の固定端60を、支点46Aに対して逆側に設けたので、板ばね56の撓み変形による歪み箇所と、板ばね56の仕切り体28への固定による組み付け歪み箇所とを、周方向Cで分離させることが可能となり、弁体46の信頼性を更に向上することができる。   In the second embodiment, in particular, the fixed end 60 of the leaf spring 56 constituting the valve body 46 is provided on the opposite side with respect to the fulcrum 46A. It is possible to separate the assembly distortion location by fixing to the partition body 28 in the circumferential direction C, and the reliability of the valve body 46 can be further improved.

また、固定されていない弁体46の支点46A側において、板ばね56と該板ばね56が当接する仕切り体28表面とに、互いに嵌合することで位置ずれを防止するための嵌合凸部66と嵌合凹部64(凹凸嵌合部に相当する。)を設けたので、弁体46の撓み変形により支点46Aがずれるおそれを排除することができ、非固定の支点46Aでありながら作動を確実なものにすることができる。   Further, on the fulcrum 46A side of the valve body 46 which is not fixed, a fitting convex portion for preventing displacement by fitting the leaf spring 56 and the surface of the partition body 28 with which the leaf spring 56 abuts with each other. 66 and the fitting concave portion 64 (corresponding to the concave-convex fitting portion), the possibility that the fulcrum 46A is displaced due to the bending deformation of the valve body 46 can be eliminated, and the operation is performed while the fulcrum 46A is not fixed. You can be sure.

第2実施形態について、その他の構成および作用効果については第1実施形態と同様であり、説明は省略する。   About 2nd Embodiment, about another structure and an effect, it is the same as that of 1st Embodiment, and description is abbreviate | omitted.

[その他の実施形態]
上記実施形態では、副流路50を主流路48の内周側に設けたが、副流路は主流路の上側に設けてもよい。すなわち、主流路と副流路は上下2層(軸方向Xにおいて二重)に設けてもよい。詳細には、オリフィス流路の主液室側開口が、上記実施形態のように主液室の半径方向内方に向けて設けられた場合に代えて、軸方向において上方(即ち、防振基体側)に向けて開口して設けられた場合、該主液室側開口に対して下方に弁体が対向配置されるので、主流路の上方に弁体を介して副流路が形成されることになる。このように主流路と副流路を上下2層に設ける場合についても、主液室側開口から流れ込む液体により弁体を下方に撓み変形させて主流路を塞ぐことにより、上記実施形態と同様の作用効果を奏することができる。
[Other Embodiments]
In the above embodiment, the sub flow channel 50 is provided on the inner peripheral side of the main flow channel 48, but the sub flow channel may be provided on the upper side of the main flow channel. That is, the main channel and the sub channel may be provided in two upper and lower layers (double in the axial direction X). Specifically, instead of the case where the opening of the orifice channel on the main liquid chamber side is provided inward in the radial direction of the main liquid chamber as in the above-described embodiment, the opening in the axial direction (that is, the vibration-proof base) When the opening is provided toward the side of the main liquid chamber, the valve body is disposed below the main liquid chamber side opening, so that a sub-flow path is formed above the main flow path via the valve body. It will be. In the case where the main flow path and the sub flow path are provided in the upper and lower layers as described above, the valve body is bent and deformed downward by the liquid flowing from the main liquid chamber side opening to close the main flow path. An effect can be produced.

また、上記実施形態では、液室として主液室30と単一の副液室32とからなる場合について説明したが、主液室とともに複数の副液室を持ち、これらの液室間がオリフィス流路を介して連結された様々な液封入式防振装置にも同様に適用することができる。その他、一々列挙しないが、本発明の趣旨を逸脱しない限り、種々の変更が可能である。   In the above embodiment, the case where the liquid chamber is composed of the main liquid chamber 30 and the single sub liquid chamber 32 has been described. However, the main liquid chamber has a plurality of sub liquid chambers, and an orifice is provided between these liquid chambers. The present invention can be similarly applied to various liquid-filled vibration isolators connected via a flow path. Although not enumerated one by one, various modifications can be made without departing from the spirit of the present invention.

本発明は、エンジンマウントの他、例えば、モータなど他のパワーユニットを支承するマウント、ボディマウント、デフマウントなど、種々の防振装置に利用することができる。   The present invention can be used for various vibration isolators such as a mount that supports other power units such as a motor, a body mount, and a differential mount, in addition to an engine mount.

10…液封入式防振装置 12…第1取付具 14…第2取付具
16…防振基体 18…液体封入室 20…ダイヤフラム
28…仕切り体 30…主液室 32…副液室
34…オリフィス流路 42…主液室側開口 46…弁体
48…主流路 50…副流路 56…板ばね
60…固定端 64…嵌合凹部 66…嵌合凸部
X…軸方向 C…周方向
DESCRIPTION OF SYMBOLS 10 ... Liquid enclosure type vibration isolator 12 ... 1st attachment 14 ... 2nd attachment 16 ... Anti-vibration base 18 ... Liquid enclosure chamber 20 ... Diaphragm 28 ... Partition body 30 ... Main liquid chamber 32 ... Sub-liquid chamber 34 ... Orifice Flow path 42 ... Main liquid chamber side opening 46 ... Valve body 48 ... Main flow path 50 ... Sub flow path 56 ... Leaf spring 60 ... Fixed end 64 ... Fitting concave part 66 ... Fitting convex part X ... Axial direction C ... Circumferential direction

Claims (5)

振動源側と支持側の一方に取り付けられる筒状の第1取付具と、
前記第1取付具の軸芯部に配されて振動源側と支持側の他方に取り付けられる第2取付具と、
前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、
前記第1取付具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性体からなるダイヤフラムと、
前記第1取付具の内側に設けられて前記液体封入室を前記防振基体側の主液室と前記ダイヤフラム側の副液室とに仕切る仕切り体と、
前記仕切り体の外周部において周方向に延びて前記主液室と副液室を連結するオリフィス流路と、
を備えた液封入式防振装置において、
前記仕切り体は、前記オリフィス流路の主液室側開口の開口方向に対して略直交する弁体を前記オリフィス流路内に備え、
前記弁体は、前記オリフィス流路を前記主液室側開口の近傍において、前記周方向に延びる主流路と、前記主流路よりも主液室側において主流路とは周方向で逆向きに液体を流す副流路とに区画する隔壁状をなしており、前記主流路と副流路が前記弁体の先端側で折り返し状に接続されることで前記主液室側開口近傍のオリフィス流路部分が形成されており、前記弁体は、前記主液室側開口から前記副流路に流れ込む液体により前記主流路を塞ぐ方向に撓み変形可能に設けられた
ことを特徴とする液封入式防振装置。
A cylindrical first fixture attached to one of the vibration source side and the support side;
A second fixture that is disposed on the shaft core portion of the first fixture and is attached to the other of the vibration source side and the support side;
An anti-vibration base made of a rubber-like elastic body interposed between the first fixture and the second fixture;
A diaphragm made of a rubber-like elastic body that is attached to the first fixture and forms a liquid sealed chamber between the anti-vibration base,
A partition that is provided inside the first fixture and divides the liquid sealing chamber into a main liquid chamber on the vibration-proof base side and a sub liquid chamber on the diaphragm side;
An orifice channel extending in the circumferential direction at the outer periphery of the partition and connecting the main liquid chamber and the sub liquid chamber;
In a liquid-filled vibration isolator equipped with
The partition body includes a valve body in the orifice channel that is substantially orthogonal to the opening direction of the main liquid chamber side opening of the orifice channel.
The valve body includes a main channel extending in the circumferential direction in the vicinity of the main liquid chamber side opening of the orifice channel, and a liquid in a direction opposite to the main channel on the main liquid chamber side of the main channel in the circumferential direction. An orifice channel in the vicinity of the main liquid chamber side opening by connecting the main channel and the sub channel in a folded manner on the tip side of the valve body. A liquid-filled type anti-proofing device, wherein the valve body is provided so as to be able to bend and deform in a direction to close the main flow path by the liquid flowing into the sub flow path from the main liquid chamber side opening. Shaker.
前記弁体は、前記主液室の液圧上昇に伴い前記主液室側開口から前記副流路に流れ込む液体の流速が所定以上になったときに、前記主流路を塞ぐ方向に撓み変形して、前記主液室から前記副液室への液体の流れを制限することを特徴とする請求項1記載の液封入式防振装置。   The valve body bends and deforms in a direction to close the main flow path when the flow rate of the liquid flowing into the sub flow path from the main liquid chamber side opening becomes greater than or equal to a predetermined level as the liquid pressure in the main liquid chamber increases. The liquid filled type vibration damping device according to claim 1, wherein a flow of liquid from the main liquid chamber to the sub liquid chamber is restricted. 前記主液室側開口が前記主液室の径方向内方に向けて開口し、前記副流路が前記弁体を介して前記主流路の内周側に設けられており、前記主液室側開口から前記副流路に流れ込む液体により前記弁体が外周側の前記主液室を塞ぐ方向に撓み変形可能に設けられたことを特徴とする請求項1又は2記載の液封入式防振装置。   The main liquid chamber side opening opens inward in the radial direction of the main liquid chamber, the sub flow path is provided on the inner peripheral side of the main flow path via the valve body, and the main liquid chamber 3. The liquid-filled vibration isolating device according to claim 1, wherein the valve body is provided so as to be able to bend and deform in a direction to close the main liquid chamber on the outer peripheral side by liquid flowing into the sub-flow path from a side opening. apparatus. 前記弁体が板ばねにより構成されており、該弁体の撓み変形における支点が、前記主液室側開口の周方向位置に関し前記主流路の流れ方向で副液室側に設定されるとともに、前記板ばねの前記仕切り体に対する固定端が、前記主液室側開口の周方向位置に関し前記主流路の流れ方向で前記支点とは反対側に設けられたことを特徴とする請求項1〜3のいずれか1項に記載の液封入式防振装置。   The valve body is configured by a leaf spring, and the fulcrum in the deformation of the valve body is set on the sub liquid chamber side in the flow direction of the main flow path with respect to the circumferential position of the main liquid chamber side opening, The fixed end of the leaf spring with respect to the partition body is provided on the opposite side of the fulcrum in the flow direction of the main flow path with respect to the circumferential position of the main liquid chamber side opening. The liquid-filled vibration isolator according to any one of the above. 前記弁体の支点において、前記板ばねと該板ばねが当接する仕切り体には、互いに嵌合することで位置ずれを防止するための凹凸嵌合部が設けられたことを特徴とする請求項4記載の液封入式防振装置。   The fulcrum of the valve body is characterized in that the leaf spring and the partition body with which the leaf spring abuts are provided with an uneven fitting portion for preventing displacement by fitting with each other. 4. Liquid-filled vibration isolator according to 4.
JP2011038621A 2011-02-24 2011-02-24 Liquid-filled vibration isolator Expired - Fee Related JP5535958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038621A JP5535958B2 (en) 2011-02-24 2011-02-24 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038621A JP5535958B2 (en) 2011-02-24 2011-02-24 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2012172832A JP2012172832A (en) 2012-09-10
JP5535958B2 true JP5535958B2 (en) 2014-07-02

Family

ID=46975917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038621A Expired - Fee Related JP5535958B2 (en) 2011-02-24 2011-02-24 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5535958B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642241B1 (en) 2013-09-20 2014-12-17 株式会社ブリヂストン Vibration isolator
JP6300407B2 (en) * 2014-04-30 2018-03-28 株式会社ブリヂストン Vibration isolator
EP3184851B1 (en) 2014-08-20 2019-02-27 Bridgestone Corporation Vibration-damping device
JP6450619B2 (en) 2015-03-19 2019-01-09 株式会社ブリヂストン Vibration isolator
JP6619702B2 (en) 2016-06-23 2019-12-11 株式会社ブリヂストン Vibration isolator
JP6674334B2 (en) 2016-06-23 2020-04-01 株式会社ブリヂストン Anti-vibration device
JP6577911B2 (en) 2016-06-23 2019-09-18 株式会社ブリヂストン Vibration isolator
CN110506168B (en) 2017-04-17 2021-06-25 株式会社普利司通 Vibration isolation device
JP6995113B2 (en) 2017-04-27 2022-01-14 株式会社ブリヂストン Anti-vibration device
JP7044479B2 (en) 2017-04-27 2022-03-30 株式会社ブリヂストン Anti-vibration device
JP6824818B2 (en) 2017-05-18 2021-02-03 株式会社ブリヂストン Anti-vibration device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974925B2 (en) * 2008-02-15 2012-07-11 株式会社ブリヂストン Vibration isolator
JP2009299772A (en) * 2008-06-12 2009-12-24 Bridgestone Corp Liquid-sealed vibration control device
JP2010169236A (en) * 2009-01-26 2010-08-05 Bridgestone Corp Vibration control device

Also Published As

Publication number Publication date
JP2012172832A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5535958B2 (en) Liquid-filled vibration isolator
JP5095763B2 (en) Liquid-filled vibration isolator
JP5248645B2 (en) Liquid-filled vibration isolator
JP5882125B2 (en) Liquid-filled vibration isolator
JP4671176B2 (en) Fluid filled vibration isolator
JP5542565B2 (en) Fluid filled vibration isolator
JP5882124B2 (en) Liquid-filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP4120510B2 (en) Fluid filled vibration isolator
CN101813155B (en) Fluid-filled vibration damping device
JP4922871B2 (en) Fluid filled vibration isolator
JP5060846B2 (en) Fluid filled vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP5431982B2 (en) Liquid-filled vibration isolator
JP6240482B2 (en) Fluid filled vibration isolator
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2007271004A (en) Fluid-sealed vibration isolating device
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP4075066B2 (en) Fluid filled engine mount
JP4871902B2 (en) Fluid filled vibration isolator
JP5510713B2 (en) Liquid-filled vibration isolator
JP5702250B2 (en) Liquid-filled vibration isolator
JP5668231B2 (en) Liquid-filled vibration isolator
JP2008215529A (en) Fluid filled vibration isolator
JP5893482B2 (en) Liquid-filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees