[go: up one dir, main page]

JP5619549B2 - Fluidized bed apparatus and filter removal method in fluidized bed apparatus - Google Patents

Fluidized bed apparatus and filter removal method in fluidized bed apparatus Download PDF

Info

Publication number
JP5619549B2
JP5619549B2 JP2010215413A JP2010215413A JP5619549B2 JP 5619549 B2 JP5619549 B2 JP 5619549B2 JP 2010215413 A JP2010215413 A JP 2010215413A JP 2010215413 A JP2010215413 A JP 2010215413A JP 5619549 B2 JP5619549 B2 JP 5619549B2
Authority
JP
Japan
Prior art keywords
filter
fluidized bed
gas
air supply
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010215413A
Other languages
Japanese (ja)
Other versions
JP2012066224A (en
Inventor
木下 直俊
直俊 木下
加納 良幸
良幸 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powrex KK
Original Assignee
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powrex KK filed Critical Powrex KK
Priority to JP2010215413A priority Critical patent/JP5619549B2/en
Publication of JP2012066224A publication Critical patent/JP2012066224A/en
Application granted granted Critical
Publication of JP5619549B2 publication Critical patent/JP5619549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • A23P1/08
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/04Cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Glanulating (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Drying Of Solid Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)

Description

本発明は、医薬品、農薬、食品等の細粒、顆粒等を製造する際に用いられる流動層装置に関する。   The present invention relates to a fluidized bed apparatus used when producing fine granules, granules and the like of pharmaceuticals, agricultural chemicals, foods and the like.

流動層装置は、一般に、流動層容器の底部から導入した気体(流動化気体)によって、流動層容器内で粉粒体を浮遊流動させて流動層を形成しつつ、造粒、コーティング、乾燥等の処理を行うものである。この種の流動層装置には、粉粒体粒子の転動、噴流、及び攪拌等を伴うものも含まれる(複合型流動層装置と呼ばれている。)。   A fluidized bed apparatus is generally granulated, coated, dried, etc. while forming a fluidized bed by floating and flowing a granular material in a fluidized bed container with a gas (fluidized gas) introduced from the bottom of the fluidized bed container. The process is performed. This type of fluidized bed apparatus includes those that involve rolling, jetting, stirring, and the like of powder particles (referred to as a combined fluidized bed apparatus).

この種の流動層装置では、粉粒体粒子を含む固気混合気体から粉粒体粒子を分離するためのフィルター部を流動層容器内の処理室の上方に配設している。フィルター部のフィルターとしては、バグフィルターと呼ばれる織布フィルターの他(下記の特許文献1、2)、通気性の樹脂濾材や金属製濾材を筒状にして保持部材に保持させたカートリッジ式フィルターが用いられている(下記の特許文献3〜7)。   In this type of fluidized bed apparatus, a filter unit for separating the particulate particles from the solid-gas mixed gas containing the particulate particles is disposed above the processing chamber in the fluidized bed container. As a filter of the filter section, in addition to a woven filter called a bag filter (Patent Documents 1 and 2 below), a cartridge type filter in which a breathable resin filter medium or a metal filter medium is formed in a cylindrical shape and held on a holding member is used. It is used (the following patent documents 3-7).

流動層装置を所定時間運転すると、フィルターの濾材表面に粉粒体粒子が付着滞留して濾過性能が低下する。そのため、所定時間ごとにフィルターの払い落とし操作を行い、濾材表面に付着した粉粒体粒子を払い落として濾過性能を回復している。この払い落とし操作は、通常、バグフィルターの場合、エアーシリンダや油圧シリンダ等のアクチュエータによってフィルターを上下方向に振るうことによって行い(シェイキング)、カートリッジ式フィルターの場合、フィルターの内部に圧縮空気を供給することによって行う(逆洗)。尚、バグフィルターの払い落とし機構には、シングルシェイキング方式とツインシェイキング方式の2種類があり、前者は、払い落とし時に流動層装置を停止させてバグフィルター全体をシェイキングするものであり、後者は、フィルター室を2分割し、流動層装置を停止させることなく、一方のフィルター室のフィルターを介して排気しているときに、他方のフィルター室のフィルターをシェイキングするものである。   When the fluidized bed apparatus is operated for a predetermined time, the granular particles adhere to and stay on the filter medium surface of the filter, and the filtration performance decreases. Therefore, the filter is removed every predetermined time, and the particulate matter adhered to the surface of the filter medium is removed to recover the filtration performance. This removal operation is usually performed by shaking the filter up and down with an actuator such as an air cylinder or hydraulic cylinder in the case of a bag filter (shaking). In the case of a cartridge type filter, compressed air is supplied to the inside of the filter. (Back washing). In addition, there are two types of bug filter payout mechanisms: single shaking method and twin shaking method. The former shakes the fluidized bed device at the time of payment and shakes the entire bug filter. The filter chamber is divided into two, and the filter of the other filter chamber is shaken when exhausting through the filter of one filter chamber without stopping the fluidized bed apparatus.

また、上記の流動層装置において、性状が均一で且つ比容積が小さい造粒物を容易且つ効率よく製造するために、流動層容器の底部から導入する流動化気体として空気脈動波を用いた造粒方法が提案されている(下記の特許文献8、9)。   Further, in the above fluidized bed apparatus, in order to easily and efficiently produce a granulated product having uniform properties and a small specific volume, a granulation using air pulsation waves as a fluidized gas introduced from the bottom of the fluidized bed container is used. A grain method has been proposed (Patent Documents 8 and 9 below).

特開平11−223458号公報Japanese Patent Laid-Open No. 11-223458 特開平7−148410号公報JP 7-148410 A 特開2001−817号公報JP 2001-817 A 特開2000−42336号公報JP 2000-42336 A 特開2005−152883号公報Japanese Patent Laying-Open No. 2005-152883 特開平9−187613号公報JP-A-9-187613 特開2000−185209号公報JP 2000-185209 A 特開平10−329136号公報Japanese Patent Laid-Open No. 10-329136 特開平7−19728号公報Japanese Unexamined Patent Publication No. 7-19728

例えば、粒子径の小さな微粒子を原料とする処理(例えば50μm以下の微粒子を原料とする造粒処理、150μm以下の微粒核粒子を対象とするコーティング処理)や、高含量油脂原料等の粘着性の高い粒子を原料とする造粒処理等では、流動層容器内での粉粒体粒子の良好な流動性を確保して、処理品質の良好な粉粒体製品を製造するために、流動層容器内に導入する流動化気体として気体脈動波を用いることが有効である。しかしながら、微粒子や粘着性の高い粒子を原料とする処理では、フィルターに付着滞留する粒子量が多くなり、フィルーの濾材が比較的短時間の運転で目詰まりを起こすことがある。このような場合、比較的短時間ごとにフィルターの払い落とし操作を行う必要があり、処理操作が煩雑になる。特にバグフィルターのシングルシェイキング方式の場合、払い落とし操作ごとに流動層装置を停止させなればならないので、払い落とし操作の回数が増えると、その分、処理効率が低下する原因となる。   For example, a treatment using fine particles having a small particle diameter as a raw material (for example, a granulation treatment using fine particles of 50 μm or less as a raw material, a coating treatment targeting fine core particles of 150 μm or less), or a high-content oil / fat raw material In granulation processing using high particles as a raw material, in order to ensure good fluidity of the granular particles in the fluidized bed container and to produce a granular product with good processing quality, It is effective to use a gas pulsation wave as the fluidizing gas introduced into the inside. However, in a process using fine particles or highly sticky particles as a raw material, the amount of particles adhering and staying on the filter increases, and the filter medium of the filter may be clogged in a relatively short operation. In such a case, it is necessary to perform a filter drop-out operation every relatively short time, and the processing operation becomes complicated. In particular, in the case of the single shaking method of the bug filter, the fluidized bed apparatus must be stopped for each payout operation. Therefore, if the number of payout operations increases, the processing efficiency decreases accordingly.

また、フィルターに付着滞留する粒子量が多くなると、製品中の成分含量にばらつきが生じと共に、フィルターに付着滞留した粒子が払い落とし操作によって団粒状態で落下して流動層に戻されることにより、製品の成分含量や粒度分布等の品質の均一性が低下することがある。   In addition, when the amount of particles staying attached to the filter increases, the content of components in the product varies, and the particles staying attached to the filter are dropped in a aggregated state by the dropping operation and returned to the fluidized bed, Quality uniformity such as product content and particle size distribution may be reduced.

本発明の課題は、流動層装置の運転中におけるフィルターへの粉粒体粒子の付着滞留を抑制し、処理工程でのシェイキングや逆洗による払い落とし操作の回数を減らして、処理操作の簡素化、処理効率の向上を図り、また、粉粒体製品の成分含量や粒度分布等の品質の均一性を向上させることである。   The problem of the present invention is to suppress the adhesion and retention of the granular particles on the filter during the operation of the fluidized bed apparatus, to reduce the number of shake-off operations by shaking and backwashing in the processing process, and to simplify the processing operation. It is intended to improve the processing efficiency and to improve the uniformity of the quality such as the component content and particle size distribution of the granular product.

上記課題を解決するため、本発明は、流動層容器内で粉粒体を流動化気体により浮遊流動させながら造粒、コーティング、及び乾燥のうち少なくとも一の処理を行う流動層装置において、流動層容器の内部に配置され、支持部材に支持された固気分離用のフィルターと、流動層容器内に導入される流動化気体を気体脈動波にする脈動波発生手段とを備え、フィルターは織布からなるバグフィルターであり、フィルターは支持部材に対して弾性手段上下方向に変位可能に支持され該フィルターに外力が作用していない状態において、弾性手段はフィルターの自重により自然状態から下方に所定寸法だけ伸び、フィルターは上下方向に弛みをもった状態になり、流動層容器内に導入される気体脈動波の脈動により、フィルターが支持部材に対して上下方向に変位することで、該フィルターに付着した粉粒体が払い落とされる構成を提供する。ここで、気体脈動波は、風速(及び圧力)が所定の周期で変化する気体の流れをいう。気体脈動波の周波数は、0.5〜5Hzであることが好ましい。また、フィルターを支持部材に対して支持する支持手段として、ばねやゴム等の弾性手段を用いることが好ましい。 In order to solve the above problems, the present invention provides a fluidized bed apparatus in which at least one of granulation, coating, and drying is performed while floating and flowing a granular material with a fluidized gas in a fluidized bed container. A solid-gas separation filter disposed inside a container and supported by a support member, and a pulsation wave generating means for converting a fluidized gas introduced into the fluidized bed container into a gas pulsation wave, the filter being a woven fabric a bag filter made of the filter is displaceably supported in the vertical direction by an elastic means relative to the support member, in a state where external force to the filter is not applied, the resilient means downward from the natural state by the weight of the filter elongation by a predetermined distance, the filter is ready with a slack in the vertical direction, the pulsation of gas pulsating introduced into the fluidized bed vessel, filter pairs to a support member By vertically displaced Te, it provides a configuration in which particulate material adhering to the filter is brushed off. Here, the gas pulsation wave refers to a gas flow in which the wind speed (and pressure) changes at a predetermined cycle. The frequency of the gas pulsation wave is preferably 0.5 to 5 Hz. Further, it is preferable to use an elastic means such as a spring or rubber as a support means for supporting the filter with respect to the support member.

流動化気体として気体脈動波を用いることにより、粒子径の小さな微粒子を原料とする処理(例えば50μm以下の微粒子を原料とする造粒処理、150μm以下の微粒核粒子を対象とするコーティング処理)や、高含量油脂原料等の粘着性の高い粒子を原料とする造粒処理等において、流動層容器内での粉粒体粒子の良好な流動性を確保して、処理品質の良好な粉粒体製品を製造することができる。   By using a gas pulsating wave as a fluidizing gas, a process using fine particles having a small particle diameter as a raw material (for example, a granulating process using fine particles of 50 μm or less as a raw material, a coating process targeting fine core particles of 150 μm or less), In the granulation process using highly sticky particles such as high content fats and oils as raw materials, it ensures the good fluidity of the powder particles in the fluidized bed container, and the powders with good processing quality The product can be manufactured.

また、フィルターを支持部材に対して弾性手段上下方向に変位可能に支持し、流動層容器内に導入される気体脈動波の脈動により、フィルターを支持部材に対して上下方向に変位させることで、該フィルターに付着した粉粒体を払い落とす構成とすることにより、流動層装置の運転中に、フィルターに付着した粉粒体粒子を継続的にフィルターから払い落として流動層に戻すことができるので、フィルターへの粉粒体粒子の付着滞留が抑制される。これにより、処理工程でのシェイキングや逆洗によるフィルターの払い落とし操作回数を減らして、処理操作の簡素化、処理効率の向上を図ることができる。また、運転中におけるフィルターへの粉粒体粒子の付着滞留が抑制されることにより、製品中の成分含量のばらつきが抑制されると共に、シェイキングや逆洗による払い落とし操作時にフィルターに付着滞留した粉粒体粒子が団粒状態で落下して流動層に戻されることもなくなるので、製品の成分含量や粒度分布等の品質の均一性が向上する。 Also, displaceably supported in the vertical direction by the elastic means with respect to the support member filters, the pulsation of gas pulsating introduced into the fluidized bed vessel, by vertically displaced filter with respect to the support member By adopting a configuration in which the powder particles adhering to the filter are removed, the powder particles adhering to the filter can be continuously removed from the filter and returned to the fluidized bed during operation of the fluidized bed apparatus. Therefore, adhesion and retention of the powder particles on the filter is suppressed. As a result, the number of filter removal operations due to shaking or backwashing in the processing step can be reduced, and the processing operation can be simplified and the processing efficiency can be improved. In addition, by suppressing the accumulation and retention of the granular particles on the filter during operation, the dispersion of the component content in the product is suppressed, and the powder that has adhered and stayed on the filter during the shake-off operation by shaking or backwashing Since the granular particles do not fall in the aggregated state and are not returned to the fluidized bed, the quality uniformity such as the component content of the product and the particle size distribution is improved.

また、本発明は上記課題を解決するため、流動層容器内で粉粒体を流動化気体により浮遊流動させながら造粒、コーティング、及び乾燥のうち少なくとも一の処理を行う流動層装置において、流動層容器の内部に配置された固気分離用のフィルターに付着した粉粒体を払い落とす方法であって、フィルターとして織布からなるバグフィルターを用い、フィルターを支持部材に対して弾性手段で上下方向に変位可能に懸吊支持し、該フィルターに外力が作用していない状態において、弾性手段はフィルターの自重により自然状態から下方に所定寸法だけ伸び、フィルターは上下方向に弛みをもった状態になるようにし、流動層容器内に導入される流動化気体を気体脈動波とし、該気体脈動波の脈動により、フィルターを支持部材に対して上下方向に変位させることで、該フィルターに付着した粉粒体を払い落とす方法を提供する。 Further, in order to solve the above problems, the present invention provides a fluidized bed apparatus that performs at least one of granulation, coating, and drying while floating and flowing a granular material with a fluidized gas in a fluidized bed container. This is a method to wipe off the powder particles adhering to the solid-gas separation filter placed inside the layer container, using a bag filter made of woven cloth as the filter, and moving the filter up and down with elastic means against the support member In a state where the filter is suspended so as to be displaced in the direction and no external force is applied to the filter, the elastic means extends downward from the natural state by a predetermined dimension due to its own weight, and the filter is in a state of slack in the vertical direction. so as to, a fluidizing gas introduced into the fluidized bed vessel was gas pulsating wave, the pulsation of the gas pulsating wave, the vertical direction relative to the support member filters By displacing the provides methods shake off granular material adhering to the filter.

本発明によれば、流動層装置の運転中におけるフィルターへの粉粒体粒子の付着滞留を抑制し、処理工程でのシェイキングや逆洗による払い落とし操作の回数を減らして、処理操作の簡素化、処理効率の向上を図り、また、粉粒体製品の成分含量や粒度分布等の品質の均一性を向上させることができる。   According to the present invention, it is possible to suppress adhering and staying of the granular particles on the filter during operation of the fluidized bed apparatus, and to reduce the number of shake-out operations by shaking and backwashing in the processing process, thereby simplifying the processing operation. In addition, the processing efficiency can be improved, and the uniformity of quality such as the component content and particle size distribution of the granular product can be improved.

第1の実施形態に係る流動層装置の一構成例を模式的に示す図である。It is a figure which shows typically the example of 1 structure of the fluidized-bed apparatus which concerns on 1st Embodiment. 脈動波発生装置の周辺部を示す図である。It is a figure which shows the peripheral part of a pulsation wave generator. フィルター部の周辺の拡大図である。It is an enlarged view of the periphery of a filter part. 第2の実施形態に係る流動層装置の一構成例を模式的に示す図である。It is a figure which shows typically the example of 1 structure of the fluidized-bed apparatus which concerns on 2nd Embodiment.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態に係る流動層装置の一構成例を模式的に示している。   FIG. 1 schematically shows a configuration example of a fluidized bed apparatus according to the first embodiment.

この実施形態の流動層装置は、底部に通気部1aを有する流動層容器1と、流動層容器1の下部に設けられた給気室2と、給気室2に接続された給気経路3と、給気経路3に介装された脈動波発生手段としての脈動波発生装置4と、流動層容器1の上部に接続された排気経路5と、排気経路5に接続された気体吸引手段としての吸引ブロアー6と、脈動波発生装置4と排気経路5とを接続するバイパス経路7と、流動層容器1内の上部空間に設置されたフィルター部8とを備えている。   The fluidized bed apparatus according to this embodiment includes a fluidized bed container 1 having a ventilation part 1 a at the bottom, an air supply chamber 2 provided at the lower part of the fluidized bed container 1, and an air supply path 3 connected to the air supply chamber 2. A pulsating wave generator 4 as a pulsating wave generating means interposed in the air supply path 3, an exhaust path 5 connected to the upper part of the fluidized bed container 1, and a gas suction means connected to the exhaust path 5 , A bypass path 7 connecting the pulsating wave generator 4 and the exhaust path 5, and a filter unit 8 installed in the upper space in the fluidized bed container 1.

流動層容器1の底部の通気部1aは、例えばパンチングメタル等の多孔板とメッシュからなる気体分散板で構成されている。また、流動層容器1内のフィルター部8より下部の空間にスプレー液、例えば結合剤液を噴霧するスプレーノズル9が設置されている。流動層容器1内のフィルター部8より上部の空間は、排気室15になっている。   The ventilation part 1a at the bottom of the fluidized bed container 1 is composed of a gas dispersion plate made of a perforated plate such as punching metal and a mesh, for example. Further, a spray nozzle 9 for spraying a spray liquid, for example, a binder liquid, is installed in a space below the filter unit 8 in the fluidized bed container 1. The space above the filter unit 8 in the fluidized bed container 1 is an exhaust chamber 15.

給気経路3は、脈動波発生装置4より上流側の上流側給気経路3aと、下流側の下流側給気経路3bとで構成される。上流側給気経路3aには、気体、例えば空気の温度を調整する空調機9と、空気の風量(流量)を測定する風量計10が介装されている。また、上流側給気経路3aの一端は、脈動波発生装置4の流入口4a(図2参照)に接続され、他端は図示されていないフィルターを介して大気に通じている。下流側給気経路3bには、給気ダンパ11が介装されている。また、下流側給気経路3bの一端は、脈動波発生装置4の第1吐出口4b(図2参照)に接続され、他端は給気室2に接続されている。   The air supply path 3 includes an upstream air supply path 3a upstream of the pulsation wave generator 4 and a downstream downstream air supply path 3b. An air conditioner 9 that adjusts the temperature of gas, for example, air, and an air flow meter 10 that measures the air volume (flow rate) of air are interposed in the upstream air supply path 3a. One end of the upstream air supply path 3a is connected to the inlet 4a (see FIG. 2) of the pulsating wave generator 4, and the other end communicates with the atmosphere via a filter (not shown). An air supply damper 11 is interposed in the downstream air supply path 3b. One end of the downstream air supply path 3 b is connected to the first discharge port 4 b (see FIG. 2) of the pulsating wave generator 4, and the other end is connected to the air supply chamber 2.

排気経路5は、流動層容器1内の排気室15に接続され、排気ダンパ12と集塵機13を介して吸引ブロアー6に接続されている。   The exhaust path 5 is connected to the exhaust chamber 15 in the fluidized bed container 1, and is connected to the suction blower 6 via the exhaust damper 12 and the dust collector 13.

バイパス経路7は、一端が脈動波発生装置4の第2吐出口4c(図2参照)に接続され、他端が排気ダンパ12より上流側の位置で排気経路5に接続されている。   One end of the bypass path 7 is connected to the second discharge port 4 c (see FIG. 2) of the pulsating wave generator 4, and the other end is connected to the exhaust path 5 at a position upstream of the exhaust damper 12.

図2に示すように、脈動波発生装置4は、周壁に流入口4a、第1吐出口4b、及び第2吐出口4cを有する断面円形のケーシング4dと、ケーシング4dの周壁内面に摺接して回転するロータリー弁4eとを備えている。上述のように、流入口4aに上流側給気経路3aが接続され、第1吐出口4bに下流側給気経路3bが接続され、第2吐出口4cにバイパス経路7が接続される。ロータリー弁4eは、図示されていない駆動手段により回転駆動される。   As shown in FIG. 2, the pulsating wave generator 4 is in sliding contact with a casing 4d having a circular cross section having an inlet 4a, a first outlet 4b, and a second outlet 4c on a peripheral wall, and an inner surface of the peripheral wall of the casing 4d. And a rotating rotary valve 4e. As described above, the upstream supply path 3a is connected to the inlet 4a, the downstream supply path 3b is connected to the first discharge port 4b, and the bypass path 7 is connected to the second discharge port 4c. The rotary valve 4e is rotationally driven by a driving means (not shown).

ロータリー弁4eの回転により、上流側給気経路3aが下流側給気経路3bにのみ連通した状態{図2(a)の状態}と、上流側給気経路3aがバイパス経路7にのみ連通した状態{図2(b)の状態}とに漸次に連続的に変化する。図2(a)の状態から図2(b)の状態に漸次に変化する間、上流側給気経路3aからの気体の流れは、下流側給気経路3bからバイパス経路7に漸次に分配されてゆく。すなわち、図2(a)の状態では、上流側給気経路3aからの気体の流れの全量が下流側給気経路3bに流れるが、この状態から、ロータリー弁4eの回転により、上流側給気経路3aからの気体の流れの一部が漸次に増量しながらバイパス経路7に分配されてゆき、ロータリー弁4eが図2(b)の位置に達した状態では、上流側給気経路3aからの気体の流れの全量がバイパス経路7に流れる。また、図2(b)の状態から図2(a)の状態に漸次に変化する間、上流側給気経路3aからの気体の流れは、バイパス経路7から下流側給気経路3bに漸次に分配されてゆく。すなわち、図2(b)の状態では、上流側給気経路3aからの気体の流れの全量がバイパス経路7に流れるが、この状態から、ロータリー弁4eの回転により、上流側給気経路3aからの気体の流れの一部が漸次に増量しながら下流側給気経路3bに分配されてゆき、ロータリー弁4eが図2(a)の位置に達した状態では、上流側給気経路3aからの気体の流れの全量が下流側給気経路3bに流れる。   By the rotation of the rotary valve 4e, the upstream air supply path 3a communicates only with the downstream air supply path 3b {state of FIG. 2 (a)}, and the upstream air supply path 3a communicates only with the bypass path 7. The state changes gradually and continuously to the state {state of FIG. 2 (b)}. While gradually changing from the state of FIG. 2A to the state of FIG. 2B, the gas flow from the upstream supply passage 3a is gradually distributed from the downstream supply passage 3b to the bypass passage 7. Go. That is, in the state of FIG. 2A, the entire amount of the gas flow from the upstream air supply path 3a flows to the downstream air supply path 3b, but from this state, the upstream side air supply is performed by the rotation of the rotary valve 4e. In a state where a part of the gas flow from the path 3a is gradually distributed and distributed to the bypass path 7, and the rotary valve 4e reaches the position of FIG. The entire amount of the gas flow flows to the bypass path 7. Further, during the gradual change from the state of FIG. 2B to the state of FIG. 2A, the gas flow from the upstream air supply path 3a is gradually changed from the bypass path 7 to the downstream air supply path 3b. It will be distributed. That is, in the state of FIG. 2B, the entire amount of gas flow from the upstream air supply path 3a flows to the bypass path 7, but from this state, the rotation of the rotary valve 4e causes the upstream air supply path 3a to return. In the state where a part of the gas flow is gradually increased and distributed to the downstream air supply path 3b and the rotary valve 4e reaches the position shown in FIG. 2 (a), the flow from the upstream air supply path 3a is increased. The entire amount of the gas flow flows to the downstream air supply path 3b.

上記のような脈動波発生装置4の作動により、上流側給気経路3aからの気体の流れは、周期的な風量変化を伴った気体脈動波となって下流側給気経路3bに流れる。すなわち、脈動波発生装置4を介して下流側給気経路3bに流れる気体の風速は、図2(a)の状態で最も大きく、図2(b)の状態で最も小さくなり、この最大風速と最小風速はロータリー弁4eの回転に応じて所定周期で連続的に現れる。また、下流側給気経路3bに流れる気体の流量は上記の最大風速と最小風速との間で漸次に変化し、この気体脈動波の風速変化に応じて、上流側給気経路3aからの気体の流れの一部又は全部が脈動波発生装置4を介してバイパス経路7に流れる。   By the operation of the pulsation wave generator 4 as described above, the gas flow from the upstream air supply path 3a flows into the downstream air supply path 3b as a gas pulsation wave accompanied by a periodic air volume change. That is, the wind speed of the gas flowing through the pulsating wave generator 4 to the downstream air supply path 3b is the highest in the state of FIG. 2 (a) and the lowest in the state of FIG. 2 (b). The minimum wind speed appears continuously in a predetermined cycle according to the rotation of the rotary valve 4e. Further, the flow rate of the gas flowing in the downstream side air supply path 3b changes gradually between the maximum wind speed and the minimum wind speed, and the gas from the upstream side air supply path 3a changes according to the change in the wind speed of the gas pulsation wave. A part or all of the flow flows to the bypass path 7 via the pulsating wave generator 4.

図3は、流動層容器1のフィルター部8の周辺を拡大して示している。この実施形態において、フィルター部8には、織布フィルターからなるバグフィルター8aが用いられている。バグフィルター8aは、濾過面積を大きくするために、複数の筒状(袋状)のフィルターエレメント8a1と、複数のフィルターエレメント8a1の下端開口部を繋ぐ平面部8a2とで構成されている。平面部8a2の周縁部はシール8a3を介して流動層容器1の壁部に保持されている。   FIG. 3 shows an enlarged view of the periphery of the filter unit 8 of the fluidized bed container 1. In this embodiment, a bag filter 8 a made of a woven fabric filter is used for the filter unit 8. The bag filter 8a is composed of a plurality of tubular (bag-shaped) filter elements 8a1 and a flat surface portion 8a2 connecting lower end openings of the plurality of filter elements 8a1 in order to increase the filtration area. The peripheral edge portion of the flat surface portion 8a2 is held on the wall portion of the fluidized bed container 1 through a seal 8a3.

バグフィルター8aのフィルターエレメント8a1の上端部はそれぞれ支持手段、この実施形態では弾性手段8b(例えばスプリング)を介して支持部材、この実施形態では支持リング8cに支持されている。支持リング8cは、アクチュエータ、例えば流体圧シリンダ8d(エアーシリンダ等)に連結されており、流体圧シリンダ8dの作動により上下方向に移動する。通常の払い落とし操作は、流体圧シリンダ8dの作動により行う。すなわち、流体圧シリンダ8dを作動させると、支持リング8cが上下方向に移動し、これによりバグフィルター8aにシェイキング動作が与えられ、バグフィルター8aの表面に付着した粉粒体が払い落とされる。なお、この実施形態におけるバグフィルター8aの払い落とし機構はシングルシェイキング方式であり、流体圧シリンダ8dによるバグフィルター8aのシェイキング動作時、流動層装置の運転は停止される。   The upper end portion of the filter element 8a1 of the bag filter 8a is supported by a support member, in this embodiment via an elastic means 8b (for example, a spring), and in this embodiment, is supported by a support ring 8c. The support ring 8c is connected to an actuator, for example, a fluid pressure cylinder 8d (air cylinder or the like), and moves up and down by the operation of the fluid pressure cylinder 8d. A normal pay-off operation is performed by operating the fluid pressure cylinder 8d. That is, when the fluid pressure cylinder 8d is operated, the support ring 8c is moved in the vertical direction, whereby a shaking operation is given to the bag filter 8a, and the granular material adhering to the surface of the bag filter 8a is wiped off. In this embodiment, the bag filter 8a has a single shaking method, and the operation of the fluidized bed apparatus is stopped when the bag filter 8a is shaken by the fluid pressure cylinder 8d.

上記のように、この実施形態において、バグフィルター8aの上端部(フィルターエレメント8a1の上端部)は、弾性手段8bを介して支持リング8cに懸吊支持されている。バグフィルター8aに外力が作用していない状態において、弾性手段8bはバグフィルター8aの自重により自然状態から所定寸法だけ伸び、バグフィルター8aの上端部は上限位置(バグフィルター8aの適正な形状を維持しつつ、上端部を最も上方に懸吊できる位置)から所定寸法だけ下方に位置する。そのため、バグフィルター8aは若干弛みをもった状態になる。バグフィルター8aの上端部は、この位置から弾性手段8bの伸縮の範囲内で支持リング8cに対して上下方向に変位可能であり、支持リング8cに対する上端部の上下方向への変位に伴い、バグフィルター8aに振るい動作が与えられる。   As described above, in this embodiment, the upper end portion of the bag filter 8a (the upper end portion of the filter element 8a1) is suspended and supported by the support ring 8c via the elastic means 8b. When no external force is applied to the bag filter 8a, the elastic means 8b extends by a predetermined dimension from the natural state due to the weight of the bag filter 8a, and the upper end of the bag filter 8a is at the upper limit position (maintaining the proper shape of the bag filter 8a). However, the upper end portion is positioned below a predetermined dimension from the position where the upper end portion can be suspended upward. For this reason, the bag filter 8a is slightly slackened. The upper end portion of the bag filter 8a can be displaced in the vertical direction with respect to the support ring 8c within the range of expansion and contraction of the elastic means 8b from this position, and along with the vertical displacement of the upper end portion with respect to the support ring 8c, the bug A shaking operation is given to the filter 8a.

以上の構成において、吸引ブロアー6及び脈動波発生装置4が作動すると、吸引ブロアー6による気体吸引力が、排気経路5、流動層容器1の内部、下流側給気経路3b及び脈動波発生装置4という経路を介して、また、排気経路5、バイパス経路7及び脈動波発生装置4という経路を介して上流側給気経路3aに作用する。そして、上記の脈動波発生装置4の機能により、上流側給気経路3a、脈動波発生装置4、及び下流側給気経路3bを介して給気室2に気体脈動波が供給される。この給気室2に供給される気体脈動波は、例えば、空調機9によって25〜200°Cの温度に調整され、給気ダンパ11と排気ダンパ12によって0.25〜1.5m/secの平均通過風速に調整され、脈動波発生装置4によって0.5〜5Hzの周波数に調整される。   In the above configuration, when the suction blower 6 and the pulsating wave generating device 4 are operated, the gas suction force by the suction blower 6 causes the exhaust path 5, the inside of the fluidized bed container 1, the downstream side air supply path 3 b, and the pulsating wave generating apparatus 4. And the upstream air supply path 3a via the exhaust path 5, the bypass path 7, and the pulsating wave generator 4. The function of the pulsation wave generator 4 supplies the gas pulsation wave to the air supply chamber 2 via the upstream air supply path 3a, the pulsation wave generator 4, and the downstream air supply path 3b. For example, the air pulsation wave supplied to the air supply chamber 2 is adjusted to a temperature of 25 to 200 ° C. by the air conditioner 9, and is adjusted to 0.25 to 1.5 m / sec by the air supply damper 11 and the exhaust damper 12. It is adjusted to the average passing wind speed and adjusted to a frequency of 0.5 to 5 Hz by the pulsating wave generator 4.

給気室2に供給された気体脈動波は通気部1aを介して流動層容器1の内部に噴出し、この気体脈動波の噴出によって粉粒体原料が流動層容器1内で浮遊流動して流動層が形成される。そして、この粉粒体原料の流動層に対してスプレーノズル9から結合剤液が噴霧される。結合剤液の噴霧を受けた粉粒体原料は粒子同士の結合によって粒子径が成長すると共に、気体脈動波による乾燥を受けて所定の粒子径をもった造粒製品になる。   The gas pulsation wave supplied to the air supply chamber 2 is ejected into the fluidized bed container 1 through the ventilation portion 1a, and the granular material is suspended and fluidized in the fluidized bed container 1 by the ejection of the gas pulsation wave. A fluidized bed is formed. And a binder liquid is sprayed from the spray nozzle 9 with respect to the fluidized bed of this granular material raw material. The granular raw material that has been sprayed with the binder liquid has a particle diameter that grows due to the bonding of the particles, and is dried by gas pulsation waves to become a granulated product having a predetermined particle diameter.

一方、流動層容器1内に導入される気体脈動波の風速変化に応じて、上流側給気経路3aからの気体の流れの一部又は全部が脈動波発生装置4を介してバイパス経路7に流れるので、脈動波発生装置4により上流側給気経路3aと下側給気経路3bとの連通状態が遮断又は縮小されたときに、吸引ブロアー6の気体吸引力に起因して流動層容器1の内部に過大な負圧が作用する現象を防止することができる。   On the other hand, part or all of the gas flow from the upstream air supply path 3 a is transferred to the bypass path 7 via the pulsation wave generator 4 in accordance with the change in the wind speed of the gas pulsation wave introduced into the fluidized bed container 1. Therefore, when the communication state between the upstream supply passage 3a and the lower supply passage 3b is blocked or reduced by the pulsation wave generator 4, the fluidized bed container 1 is caused by the gas suction force of the suction blower 6. It is possible to prevent a phenomenon in which an excessive negative pressure acts on the inside of the.

流動層容器1内に導入された気体脈動波は、粉粒体原料の流動層形成及び乾燥に寄与した後、バグフィルター8aを通過して排気経路5に流出する。その際、気体脈動波の上昇流に混じった微粉はバグフィルター8aによって捕捉される。また、バグフィルター8aは流動層容器1内を上昇する気体脈動波の風圧により上方向の力を受け、その上端部が弾性手段8bの収縮変位の範囲内で上方向に変位する。これにより、支持リング8cに若干弛みを持った状態で懸吊支持されていたバグフィルター8aが上方向に引っ張られて緊張状態になる。一方、バグフィルター8aに作用する気体脈動波の風圧がなくなり又は所定値よりも小さくなると、バグフィルター8aの上端部が下方向に変位し、バグフィルター8aが若干弛みを持った状態に戻る。このようにして、バグフィルター8aは流動層容器1内に導入される気体脈動波の脈動によって弛み状態と緊張状態とを周期的に繰り返し、この周期的な繰り返し動作によってバグフィルター8aの表面に付着した微粉が払い落とされて下方の流動層に戻される。   The gas pulsation wave introduced into the fluidized bed container 1 contributes to the fluidized bed formation and drying of the granular material, and then passes through the bag filter 8a and flows out to the exhaust path 5. At that time, the fine powder mixed in the upward flow of the gas pulsation wave is captured by the bag filter 8a. Further, the bag filter 8a receives an upward force due to the wind pressure of the gas pulsating wave rising in the fluidized bed container 1, and its upper end is displaced upward within the range of contraction displacement of the elastic means 8b. Thereby, the bag filter 8a suspended and supported with the support ring 8c slightly slackened is pulled upward to be in a tension state. On the other hand, when the wind pressure of the gas pulsation wave acting on the bag filter 8a disappears or becomes smaller than a predetermined value, the upper end of the bag filter 8a is displaced downward, and the bag filter 8a returns to a slightly slack state. In this manner, the bag filter 8a periodically repeats the slack state and the tension state by the pulsation of the gas pulsation wave introduced into the fluidized bed container 1, and adheres to the surface of the bag filter 8a by this periodic repetition operation. The fine powder is removed and returned to the lower fluidized bed.

図4は、第2の実施形態に係る流動層装置の一構成例を模式的に示している。この実施形態では、上流側給気経路3aと排気経路5とをバイパス経路7’で接続している。バイパス経路7’には排気ダンパ13を介装している。また、脈動波発生装置4’は、第1の実施形態における脈動波発生装置4と同様のケーシングとロータリー弁とで構成されるが、脈動波発生装置4とは異なり、ケーシングには、上流側給気経路3aに接続される流入口と、下流側給気経路3bに接続される吐出口4bとが設けられおり、ロータリー弁4eの回転により、上流側給気経路3aを下流側給気経路3bに断続的に連通させるように作動する。バグフィルター8aは、第1の実施形態と同様に、弾性手段8bbを介して支持リング8cに懸吊支持されている。   FIG. 4 schematically shows a configuration example of the fluidized bed apparatus according to the second embodiment. In this embodiment, the upstream air supply path 3a and the exhaust path 5 are connected by a bypass path 7 '. An exhaust damper 13 is interposed in the bypass path 7 '. Further, the pulsating wave generator 4 ′ includes a casing and a rotary valve similar to the pulsating wave generator 4 in the first embodiment, but unlike the pulsating wave generator 4, the casing has an upstream side. An inlet connected to the air supply path 3a and a discharge port 4b connected to the downstream air supply path 3b are provided. The rotation of the rotary valve 4e causes the upstream air supply path 3a to pass through the downstream air supply path. It operates so as to intermittently communicate with 3b. The bag filter 8a is suspended and supported by the support ring 8c via the elastic means 8bb as in the first embodiment.

吸引ブロアー6及び脈動波発生装置4’が作動すると、吸引ブロアー6による気体吸引力が、排気経路5、流動層容器1の内部、下流側給気経路3b及び脈動波発生装置4’という経路を介して、また、排気経路5、バイパス経路7’という経路を介して上流側給気経路3aに作用する。そして、脈動波発生装置4’の機能により、上流側給気経路3a、脈動波発生装置4’、及び下流側給気経路3bを介して給気室2に気体脈動波が供給されると共に、上流側給気経路3aからバイパス経路7’を介して排気経路5に気体の一部又は全部が流れる。脈動波発生装置4’により、上流側給気経路3aと下流側給気経路3bとの連通が遮断されたときは、上流側給気経路3aから気体の全部がバイパス経路7’を介して排気経路5に流れる。その他の事項は第1の実施形態に準じるので、重複する説明を省略する。   When the suction blower 6 and the pulsating wave generating device 4 ′ are operated, the gas suction force by the suction blower 6 passes through the exhaust path 5, the inside of the fluidized bed container 1, the downstream air supply path 3b, and the pulsating wave generating apparatus 4 ′. And the upstream air supply path 3a via the exhaust path 5 and the bypass path 7 '. And, by the function of the pulsation wave generator 4 ′, a gas pulsation wave is supplied to the air supply chamber 2 via the upstream air supply path 3a, the pulsation wave generator 4 ′, and the downstream air supply path 3b, Part or all of the gas flows from the upstream air supply path 3a to the exhaust path 5 via the bypass path 7 '. When the communication between the upstream air supply path 3a and the downstream air supply path 3b is blocked by the pulsation wave generator 4 ', all of the gas from the upstream air supply path 3a is exhausted via the bypass path 7'. Flows along path 5. Since other matters are the same as those in the first embodiment, a duplicate description is omitted.

尚、以上の実施形態では、バグフィルターの払い落とし機構としてシングルシェイキング方式を採用しているが、ツインシェイキング方式としても良い。   In the above embodiment, the single shaking method is adopted as the bag filter pay-off mechanism, but a twin shaking method may be used.

また、以上の実施形態では、バグフィルター8aを支持リング8cに支持する支持手段として弾性手段8bを用いているが、支持手段は弾性手段に限らず、バグフィルターの上端部の上下方向変位を所定範囲内で許容できるものであれば良い。例えば、支持手段として、入れ子式の伸縮部材やスライド部材を用いても良い。   In the above embodiment, the elastic means 8b is used as the support means for supporting the bag filter 8a on the support ring 8c. However, the support means is not limited to the elastic means, and the vertical displacement of the upper end portion of the bag filter is predetermined. Any material that is acceptable within the range is acceptable. For example, a telescopic member or a slide member may be used as the support means.

さらに、以上の実施形態では、脈動波発生手段4と吸引ブロアー6の作動により気体脈動波を発生させる機構を採用しているが、脈動波発生手段4の上流側に送風装置を接続し、送風装置からの気体流を脈動波発生手段4に供給して気体脈動波を発生させる機構としても良い。   Furthermore, in the above embodiment, a mechanism for generating a gas pulsation wave by the operation of the pulsation wave generation means 4 and the suction blower 6 is employed. It is good also as a mechanism which supplies the gas flow from an apparatus to the pulsation wave generation means 4, and generates a gas pulsation wave.

1 流動層容器
4、4’ 脈動波発生装置
8 フィルター部
8a バグフィルター
8b 弾性手段
8c 支持リング
DESCRIPTION OF SYMBOLS 1 Fluidized bed container 4, 4 'Pulsating wave generator 8 Filter part 8a Bag filter 8b Elastic means 8c Support ring

Claims (2)

流動層容器内で粉粒体を流動化気体により浮遊流動させながら造粒、コーティング、及び乾燥のうち少なくとも一の処理を行う流動層装置において、
前記流動層容器の内部に配置され、支持部材に支持された固気分離用のフィルターと、前記流動層容器内に導入される流動化気体を気体脈動波にする脈動波発生手段とを備え、
前記フィルターは織布からなるバグフィルターであり、前記フィルターは前記支持部材に対して弾性手段上下方向に変位可能に懸吊支持され該フィルターに外力が作用していない状態において、前記弾性手段は前記フィルターの自重により自然状態から下方に所定寸法だけ伸び、前記フィルターは上下方向に弛みをもった状態になり、前記流動層容器内に導入される気体脈動波の脈動により、前記フィルターが前記支持部材に対して上下方向に変位することで、該フィルターに付着した粉粒体が払い落とされることを特徴とする流動層装置。
In a fluidized bed apparatus that performs at least one of granulation, coating, and drying while suspending and flowing a granular material with a fluidized gas in a fluidized bed container,
A solid-gas separation filter disposed inside the fluidized bed container and supported by a support member; and a pulsating wave generating means for converting the fluidized gas introduced into the fluidized bed container into a gas pulsating wave,
The filter is a bag filter made of woven cloth, and the filter is suspended and supported by the support member so as to be vertically displaceable by an elastic means , and the elastic means is in a state where no external force is applied to the filter. Is extended by a predetermined dimension downward from the natural state due to the weight of the filter, the filter is slackened in the vertical direction, and the pulsation of the gas pulsation wave introduced into the fluidized bed container causes the filter to A fluidized bed apparatus characterized in that the granular material adhering to the filter is removed by displacing in a vertical direction with respect to the support member.
流動層容器内で粉粒体を流動化気体により浮遊流動させながら造粒、コーティング、及び乾燥のうち少なくとも一の処理を行う流動層装置において、前記流動層容器の内部に配置された固気分離用のフィルターに付着した粉粒体を払い落とす方法であって、
前記フィルターとして織布からなるバグフィルターを用い、前記フィルターを支持部材に対して弾性手段で上下方向に変位可能に懸吊支持し、該フィルターに外力が作用していない状態において、前記弾性手段は前記フィルターの自重により自然状態から下方に所定寸法だけ伸び、前記フィルターは上下方向に弛みをもった状態になるようにし、前記流動層容器内に導入される流動化気体を気体脈動波とし、該気体脈動波の脈動により、前記フィルターを前記支持部材に対して上下方向に変位させることで、該フィルターに付着した粉粒体を払い落とすことを特徴とする流動層装置におけるフィルターの払い落とし方法。
In a fluidized bed apparatus that performs at least one of granulation, coating, and drying while suspending and flowing a granular material with a fluidized gas in a fluidized bed container, the solid-gas separation disposed inside the fluidized bed container A method of removing particles adhering to a filter for use,
A bag filter made of woven cloth is used as the filter , the filter is suspended and supported by an elastic means in a vertical direction with respect to a support member, and in the state where no external force is acting on the filter, the elastic means is Due to the weight of the filter, the filter extends by a predetermined dimension downward from the natural state, the filter is slackened in the vertical direction, the fluidized gas introduced into the fluidized bed container is a gas pulsation wave, A method for removing a filter in a fluidized bed apparatus, wherein the particulate matter adhering to the filter is removed by displacing the filter in a vertical direction with respect to the support member by pulsation of a gas pulsation wave.
JP2010215413A 2010-09-27 2010-09-27 Fluidized bed apparatus and filter removal method in fluidized bed apparatus Expired - Fee Related JP5619549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215413A JP5619549B2 (en) 2010-09-27 2010-09-27 Fluidized bed apparatus and filter removal method in fluidized bed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215413A JP5619549B2 (en) 2010-09-27 2010-09-27 Fluidized bed apparatus and filter removal method in fluidized bed apparatus

Publications (2)

Publication Number Publication Date
JP2012066224A JP2012066224A (en) 2012-04-05
JP5619549B2 true JP5619549B2 (en) 2014-11-05

Family

ID=46164125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215413A Expired - Fee Related JP5619549B2 (en) 2010-09-27 2010-09-27 Fluidized bed apparatus and filter removal method in fluidized bed apparatus

Country Status (1)

Country Link
JP (1) JP5619549B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359446B2 (en) * 2014-12-26 2018-07-18 株式会社パウレック Powder processing equipment
CN111229124A (en) * 2020-03-12 2020-06-05 浙江圣博康药业有限公司 Boiling granulator entrapment bag shakes material mechanism
CN114588706B (en) * 2022-03-04 2023-08-11 扬州联通医药设备有限公司 High-efficient dust collector and coating machine
CN114392613B (en) * 2022-03-25 2022-06-17 河南环科环保技术有限公司 Gaseous environmental protection filtration equipment convenient to operation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043804Y1 (en) * 1974-04-18 1975-12-15
JPH0724292A (en) * 1993-07-06 1995-01-27 Kyowa Hakko Kogyo Co Ltd Fluidized bed granulation method and apparatus thereof
JP2008015090A (en) * 2006-07-04 2008-01-24 Fuji Xerox Co Ltd Dust collector

Also Published As

Publication number Publication date
JP2012066224A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5619549B2 (en) Fluidized bed apparatus and filter removal method in fluidized bed apparatus
US7273075B2 (en) Brush-sieve powder-fluidizing apparatus for feeding nano-size and ultra-fine powders
EP2175953B1 (en) A method and device for cleaning non-fixed media filters
JP4819008B2 (en) Fluidized bed equipment
JP2005530601A (en) Filtration device
JP4994709B2 (en) Fluidized bed equipment
AU764517B2 (en) Filter device
CN110121625B (en) Powder drying system with improved inlet device for filter unit and method for operating filter unit of such system
JP2017075712A (en) Spray drying apparatus and powder removal method
JP4734077B2 (en) Filter cleaning apparatus and filter cleaning method for powder processing apparatus
CN102601057B (en) Method for screening catalyst for Fischer Tropsch synthesis
JP4953535B2 (en) Filter cleaning apparatus and granulation apparatus provided with the same
JP5937161B2 (en) Fluidized bed equipment
JP2010240608A (en) Fluidized bed apparatus
JP2011056348A (en) Fluidized bed treating method and fluidized bed apparatus
JP5763041B2 (en) Fluidized bed equipment
JP2005313089A (en) Powder processing equipment
WO2017092758A1 (en) Powder drying system with improved filter unit cleaning arrangement and method for cleaning the system
JP2024158803A (en) Filters and powder processing equipment
EP3727633B1 (en) Scale collection device for downflow reactors
JP4761711B2 (en) Filter, filter device, and granular material processing device
JP2013188728A (en) Fluidized bed apparatus
JP6914016B2 (en) Fluidized bed device equipped with a filter and the same filter
CN222678777U (en) A multilayer filtration equipment for parylene monomer
JP2012006001A (en) Apparatus for treating granular substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees