JP5755153B2 - High corrosion resistance austenitic steel - Google Patents
High corrosion resistance austenitic steel Download PDFInfo
- Publication number
- JP5755153B2 JP5755153B2 JP2011553279A JP2011553279A JP5755153B2 JP 5755153 B2 JP5755153 B2 JP 5755153B2 JP 2011553279 A JP2011553279 A JP 2011553279A JP 2011553279 A JP2011553279 A JP 2011553279A JP 5755153 B2 JP5755153 B2 JP 5755153B2
- Authority
- JP
- Japan
- Prior art keywords
- austenitic steel
- high corrosion
- resistant austenitic
- mass
- steel according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 38
- 239000010959 steel Substances 0.000 title claims description 38
- 230000007797 corrosion Effects 0.000 title claims description 24
- 238000005260 corrosion Methods 0.000 title claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 37
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000011651 chromium Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 239000011572 manganese Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000005482 strain hardening Methods 0.000 claims description 2
- 241000269435 Rana <genus> Species 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 229910000937 TWIP steel Inorganic materials 0.000 description 6
- 229910002065 alloy metal Inorganic materials 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、高耐食オーステナイト鋼、その製造方法及びこの鋼の使用に関する。 The present invention relates to a high corrosion resistant austenitic steel, its production method and the use of this steel.
オーステナイト鋼の強さは、特に炭素及び窒素の元素の格子間に溶解された原子により高められる。揮発性元素である窒素を溶融物中に溶解させるために、通例、クロム及びマンガンが合金化される。クロムが単独でフェライト形成を促進するのに対し、マンガンと共にいわゆる固溶化焼きなましによりオーステナイト構造が得られ、この構造は室温までの焼入れにより安定化される。 The strength of austenitic steels is enhanced by atoms dissolved in particular between the carbon and nitrogen elemental lattices. Chromium and manganese are typically alloyed to dissolve the volatile element nitrogen in the melt. Chromium alone promotes ferrite formation, while so-called solution annealing with manganese results in an austenitic structure, which is stabilized by quenching to room temperature.
オーステナイト鋼の一種は、塑性変形の際に集中的な双晶形成が行われる、いわゆるTWIP鋼(双晶誘起塑性、Twinning Induced Plasticity、ドイツ語ではZwillingsbildung induzierte Platistizitaet)である。この過程は通例既に僅かな負荷で行われ、かつ前記鋼を硬化させ、その際に破断伸びは60%を上回る。これらの特性により、前記鋼は卓越して自動車工業における薄板の製造に、特に車体の事故に関わる範囲に適している。TWIP鋼は通例約0.02〜0.5質量%の炭素含量を有し、合金元素として、マンガンが20〜30質量%の量で、並びに特定のTWIP鋼中ではアルミニウム及びケイ素がそれぞれ3質量%までを有して使用される。
One type of austenitic steel is the so-called TWIP steel (Twinning Induced Plasticity, Zwillingsbildung induzierte Platistizitaet in German) in which intensive twin formation occurs during plastic deformation. This process is usually already carried out with a slight load and the steel is hardened, with the elongation at break exceeding 60%. Due to these properties, the steel is outstandingly suitable for the production of thin plates in the automotive industry, especially in the areas involved in car body accidents. TWIP steels typically have a carbon content of about 0.02 to 0.5% by weight, as alloying elements in quantities of 20 to 30% by weight of manganese, and in
欧州特許(EP)第0 889 144号明細書には、いわゆるTWIP鋼、軽量構造鋼が開示されており、前記鋼は1,100MPaまでの引張強さを示し、かつSi 1〜6質量%、Al 1〜8質量%(ここでAl及びSiの全含量は12質量%以下である)並びにMn 10〜30質量%を含有する。開示された鋼は、400MPaのより高い流動応力並びに70%までの一様伸び値及び90%までの破断伸びにより特徴付けられる。この印刷物に開示された鋼に不利であるのは、僅かな耐食性である。 European Patent (EP) 0 889 144 discloses so-called TWIP steels, lightweight structural steels, which exhibit a tensile strength of up to 1,100 MPa and have a Si 1-6 mass%, Al 1-8 mass% (here the total content of Al and Si is 12 mass% or less) and Mn 10-30 mass% are contained. The disclosed steel is characterized by a higher flow stress of 400 MPa and a uniform elongation value of up to 70% and a breaking elongation of up to 90%. Disadvantageous to the steel disclosed in this print is the slight corrosion resistance.
DE 101には、高強度のオーステナイト系ステンレス鋼は、約1barの通常の大気圧下に溶融され、かつ鉄に加えてクロム 12〜15質量%、マンガン 17〜21質量%、ケイ素 <0.7質量%、炭素及び窒素 合計で0.4〜0.7質量%及び製造に関連した別の元素 合計で<1.0質量%を含有し、その際に炭素含量及び窒素含量の比は0.6〜1.0であることにより特徴付けられる。開示された鋼は、TWIP作用を示さず、かつ強い変形の際にマルテンサイトを形成しうるものであり、このことはとりわけより僅かな公称ひずみで現れる。 In DE 101, high-strength austenitic stainless steel is melted under normal atmospheric pressure of about 1 bar, and in addition to iron, 12-15% by mass of chromium, 17-21% by mass of manganese, silicon <0.7 % By weight, carbon and nitrogen in total 0.4-0.7% by weight and other elements related to production <1.0% by weight in total, the ratio of carbon content and nitrogen content being 0. It is characterized by being 6-1.0. The disclosed steels do not exhibit TWIP action and can form martensite upon strong deformation, which manifests itself in particularly less nominal strain.
国際公開(WO)第2006/025412号には、Fe、Al、Si、Mn、Cr及びNiを主要元素として含有する高耐食TWIP鋼が開示されている。得られた鋼は、50%を上回る一様伸び値及び600〜800MPaの引張強さを示す。機械的性質は、欧州特許(EP)第0 889 144号明細書に開示されたFe、Al、Si及びMnをベースとする鋼のそれと匹敵しうるものであるが、しかしながらニッケルの添加は製造コストを高め、かつ格子間原子の欠如は、より僅かな強さをまねく。C及びNを合金元素として含有する別のオーステナイト鋼は、国際公開(WO)第2006/027091号に開示されており、そこに記載された鋼は、それぞれ16〜21質量%の量のクロム及びマンガンの合金金属に加えて、モリブデン0.5〜2.0質量%並びに0.5〜1.1の炭素/窒素比を有する全部で0.8〜1.1質量%の炭素及び窒素も含有する。開示された鋼は、機械的な強さ、延性、耐摩耗性及び耐食性を示し、かつ強磁性を示さない。しかしながら不利であるのは、これらの合金の製造の際に、凝固する際に一次フェライト形成が行われることであり、このことは、溶融及び/又は溶接中に窒素の漏出をまねきうる。
International Publication (WO) No. 2006/025412 discloses a high corrosion resistant TWIP steel containing Fe, Al, Si, Mn, Cr and Ni as main elements. The resulting steel exhibits a uniform elongation value of over 50% and a tensile strength of 600-800 MPa. The mechanical properties are comparable to those of steels based on Fe, Al, Si and Mn disclosed in
本発明には、高い耐力及びまた高い引張強さ並びに90%を上回る破断伸びを有し、かつ同時に耐食性である、溶接可能な高耐食オーステナイト鋼を提供するという課題が基礎となっていた。 The present invention was based on the problem of providing a weldable, highly corrosion-resistant austenitic steel that has high yield strength and also high tensile strength and elongation at break exceeding 90% and at the same time is corrosion resistant.
本発明の対象は、それぞれ100質量%を基準とし、鉄に加えて、
マンガン 20〜32%、
クロム 10〜15%、
炭素及び窒素 全部で0.5〜1.3%、その際に窒素に対する炭素の比は0.5〜1.5であり、
並びに溶融に関連した(erschmelzungsbedingt)不純物を含有する、高耐食オーステナイト鋼である。
The subject of the present invention is based on 100% by mass, in addition to iron,
Manganese 20-32%,
10-15% chromium,
Carbon and nitrogen in total 0.5 to 1.3%, with the ratio of carbon to nitrogen being 0.5 to 1.5,
As well as high corrosion resistant austenitic steels which contain impurities related to melting (erschmelzungsbedingt).
本発明によるオーステナイト鋼は、TWIP特性(TWIP=Twinning Induced Plasticity)並びに良好な耐食性を示す。このTWIP鋼の本質的な性質は、良好な耐食性を有する双晶粒界の形成により塑性、すなわち、変形の際に多数の双晶粒界をそのミクロ構造中で形成し、それにより強力にかつ均一に硬化し、引張試験において高い公称ひずみを有し、並びにマルテンサイトを形成することなく完全にオーステナイトのままである鋼を得ることである。 The austenitic steel according to the invention exhibits TWIP properties (TWIP = Twinning Induced Plasticity) as well as good corrosion resistance. The essential property of this TWIP steel is that it is plastic due to the formation of twin grain boundaries with good corrosion resistance, i.e. a large number of twin grain boundaries are formed in the microstructure during deformation, thereby making it powerful and It is to obtain a steel that hardens uniformly, has a high nominal strain in tensile tests, and remains completely austenite without forming martensite.
本発明による鋼は、主要合金元素Fe、Mn及びCr並びに格子間元素C及びNの組合せにより形成される安定化されたオーステナイト構造を有する。本発明による鋼は、引張試験において90%を上回る破断伸び、400MPaを上回る耐力及び900MPaを上回る引張強さを示す。高い破断伸び及び耐力の組合せに基づいて、本発明による鋼は極度に変形可能である。さらにまた、本発明による合金は、意図的な変形後にX線回折を用いて検出可能なα−マルテンサイト又はε−マルテンサイトの形成を示さない。 The steel according to the invention has a stabilized austenitic structure formed by a combination of the main alloying elements Fe, Mn and Cr and the interstitial elements C and N. The steel according to the invention exhibits a breaking elongation of more than 90%, a yield strength of more than 400 MPa and a tensile strength of more than 900 MPa in the tensile test. Based on the combination of high elongation at break and yield strength, the steel according to the invention is extremely deformable. Furthermore, the alloys according to the invention show no α-martensite or ε-martensite formation detectable using X-ray diffraction after intentional deformation.
本発明による合金が、Cr、Mn、C及びNの前記の割合で一次オーステナイト凝固を可能にし、それにより溶融物が得られ、これから窒素が凝固及び/又は溶接中に漏出しないことが確認された。前記合金は、それゆえ、常圧下に製造され、かつまた加工されることができる。本発明による合金は、フェライトの形成を防止する安定なオーステナイト構造を示す。合金金属Cr及び存在しているNは、技術水準からのTWIP鋼と比べてより高い耐食性を生じさせる。 It has been confirmed that the alloys according to the invention enable primary austenite solidification at the stated proportions of Cr, Mn, C and N, thereby obtaining a melt from which nitrogen does not leak during solidification and / or welding. . Said alloys can therefore be produced and processed under normal pressure. The alloy according to the invention exhibits a stable austenite structure that prevents the formation of ferrite. The alloy metal Cr and the existing N give rise to a higher corrosion resistance compared to TWIP steel from the state of the art.
合金金属Cr及びMn並びに添加剤N及びCの個々の量比は、Crの量が溶融物へのNの溶解度を改善するだけでなく、溶融物の凝固の際に一次フェライトを形成することなく合金の耐食性にも有利な作用を及ぼすような比に調節されている。フェライトの形成は不利である、それというのも、このフェライトは、窒素についてより僅かな溶解度、ひいては細孔形成の結果となりうるからである。さらに、本発明による合金中で、沈殿物、例えば、炭化物及び窒化物の形成はより低い温度にシフトされた。これは、オーステナイト化温度からのよりゆっくりとした冷却並びにより大きな構成部材断面積の問題のない製造を可能にする。 The individual quantitative ratios of the alloy metals Cr and Mn and additives N and C are such that the amount of Cr not only improves the solubility of N in the melt, but also does not form primary ferrites during the solidification of the melt. The ratio is adjusted to have an advantageous effect on the corrosion resistance of the alloy. The formation of ferrite is disadvantageous because it can result in less solubility in nitrogen and thus pore formation. Furthermore, in the alloys according to the invention, the formation of precipitates, such as carbides and nitrides, has been shifted to lower temperatures. This allows for slower cooling from the austenitizing temperature as well as trouble-free production of larger component cross sections.
また、本発明による合金の溶接性は、融接後の凝固中の窒素ガス漏出を回避することにより並びに室温への溶接継目及び熱の影響を受けた帯域の固体材料のその後の冷却中の沈殿物の形成を回避することにより有利な影響を受ける。これはとりわけ技術的に重要である、それというのも、溶接後に前記材料は相対的にゆっくりと冷却され、かつ溶接継目で及び熱の影響を受けた帯域中の沈殿物の形成は望ましくないからである。 Also, the weldability of the alloy according to the invention is determined by avoiding nitrogen gas leakage during solidification after fusion welding and by precipitation during subsequent cooling of the solid material in the zone affected by the weld seam and heat to room temperature. It is advantageously influenced by avoiding the formation of objects. This is particularly technically important, since the material cools relatively slowly after welding, and the formation of precipitates at the weld seam and in the heat affected zone is undesirable. It is.
Mnの量は、変形性(塑性、変形能)を改善する。別の成分C及びNは、窒化物及び炭化物が形成されることなく、機械的性質及び耐食性を改善する。本発明によるC及びNの比は、溶融中にガスが漏出することなく又は炭化物もしくは窒化物が促進された冷却中に形成されることなく、完全オーステナイト凝固を可能にする。溶融物への所望の量の窒素の溶解度は、好ましくは1500℃及び圧力1barで与えられている。 The amount of Mn improves the deformability (plasticity, deformability). The other components C and N improve the mechanical properties and corrosion resistance without the formation of nitrides and carbides. The ratio of C and N according to the present invention allows complete austenite solidification without leakage of gas during melting or formation of carbides or nitrides during accelerated cooling. The solubility of the desired amount of nitrogen in the melt is preferably given at 1500 ° C. and a pressure of 1 bar.
好ましい一実施態様において、22.0〜30.0質量%の量のMn及び11.0〜13.0質量%、特に12.0〜13.0質量%の量のクロムの合金金属が存在する。0.5〜0.8の窒素に対する炭素の比を有する0.5〜0.8質量%の炭素及び窒素の全含量が特に好都合であることが判明している。この実施態様の合金は、有利な材料特性を示すので、これらは軽量構造建築における使用に適している。 In a preferred embodiment, there is an alloy metal of Mn in an amount of 22.0-30.0% by weight and chromium in an amount of 11.0-13.0% by weight, in particular 12.0-13.0% by weight. . A total content of carbon and nitrogen of 0.5 to 0.8% by weight with a ratio of carbon to nitrogen of 0.5 to 0.8 has been found to be particularly advantageous. Because the alloys of this embodiment exhibit advantageous material properties, they are suitable for use in lightweight construction.
さらなる一実施態様において、本発明による合金は、二次合金金属を含有し、前記合金を用いて機械的性質をさらに変えることができる。二次合金元素は、好ましくは、Mo、Si、Nb、Hf、V、Zr、Ti及びNdから選択されている。これらの合金金属のうち、Moは好ましくは1.0〜2.0質量%の量で、Siは0.1〜2質量%の量で含まれている。金属Nb、Hf、V、Zr、Ti及びNdは、より僅かな量で含まれていてよく、かつミクロ合金元素とも呼ばれる。ミクロ合金元素の中では、Nbは0.02〜0.1質量%の量で、金属Hf、V、Zr、Ti及びNdはそれぞれ互いに独立して0〜0.5質量%の量で存在していてよい。 In a further embodiment, the alloy according to the invention contains a secondary alloy metal, which can be used to further alter the mechanical properties. The secondary alloy element is preferably selected from Mo, Si, Nb, Hf, V, Zr, Ti and Nd. Among these alloy metals, Mo is preferably contained in an amount of 1.0 to 2.0% by mass, and Si is contained in an amount of 0.1 to 2% by mass. The metals Nb, Hf, V, Zr, Ti and Nd may be included in smaller amounts and are also referred to as microalloy elements. Among the microalloy elements, Nb is present in an amount of 0.02 to 0.1% by mass, and metals Hf, V, Zr, Ti and Nd are present independently of each other in an amount of 0 to 0.5% by mass. It may be.
本発明のさらなる対象は、TWIP特性を有する高耐食オーステナイト鋼の製造方法であり、前記方法において個々の合金金属が常圧下に溶融され、かつ拡散焼きなましが1,000〜1,250℃の温度範囲で1〜72時間の期間にわたって、その後の焼入れ及び熱間加工/冷間加工を伴い実施される。 A further object of the present invention is a method for producing a highly corrosion-resistant austenitic steel having TWIP properties, in which the individual alloy metals are melted under normal pressure and the diffusion annealing is in the temperature range from 1,000 to 1,250 ° C. Over a period of 1 to 72 hours with subsequent quenching and hot / cold working.
溶融過程は、800〜1000mbarの圧力で純窒素中で又は開放炉中で、約800mbarの窒素分圧に相当する周囲圧力で、実施されることができる。 The melting process can be carried out in pure nitrogen at a pressure of 800-1000 mbar or in an open furnace at an ambient pressure corresponding to a nitrogen partial pressure of about 800 mbar.
本発明のさらなる対象は、建造物における、特に自動車工業における構造部材の製造のための、本発明によるオーステナイト鋼の使用に関する。 A further subject of the invention relates to the use of the austenitic steel according to the invention for the manufacture of structural components in buildings, in particular in the automotive industry.
以下の第1表には、本発明による合金の例が示されている:
機械的性質は、第2表に示されている。 The mechanical properties are shown in Table 2.
以下の図中で、室温での負荷下での伸び曲線(図1)、衝撃強さ(図2)及び一次オーステナイト形成を読み取ることができる計算された状態図(図3)が、図示されている。 In the following figure, a calculated phase diagram (FIG. 3) is shown which can read the elongation curve under load at room temperature (FIG. 1), impact strength (FIG. 2) and primary austenite formation. Yes.
Claims (9)
マンガン 22〜30%、
クロム 12〜13%、
炭素及び窒素 全部で0.5〜0.8%、その際に窒素に対する炭素の比が0.5〜0.8であり、
並びに溶融に関連した不純物
からなる、TWIP特性、耐力>400MPa及び破断伸び>90%を有する高耐食オーステナイト鋼。 Based on 100% by mass, in addition to iron,
Manganese 22-30%,
12-13% chromium,
Carbon and nitrogen in total 0.5-0.8%, in which case the ratio of carbon to nitrogen is 0.5-0.8,
And Ru impurity <br/> or Rana related to melt, TWIP properties, yield strength> 400 MPa and a breaking elongation> High corrosion resistant austenitic steel having 90%.
a)請求項1から5のいずれか1項記載の化学組成を有するオーステナイト鋼を常圧下に溶融させ、
b)1,000〜1,250℃の温度範囲内で1〜72時間の期間にわたって焼きなましし、かつ
c)引き続き焼入れする
ことを特徴とする、請求項1から6のいずれか1項記載の高耐食オーステナイト鋼の製造方法。 A method for producing a highly corrosion-resistant austenitic steel according to any one of claims 1 to 6 ,
a) melting an austenitic steel having the chemical composition according to any one of claims 1 to 5 under normal pressure;
7. The high of any one of claims 1 to 6 , characterized in that b) annealing in the temperature range of 1,000 to 1,250 [deg.] C. for a period of 1 to 72 hours, and c) subsequent quenching. A method for producing corrosion-resistant austenitic steel.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102009003598.2 | 2009-03-10 | ||
| DE102009003598A DE102009003598A1 (en) | 2009-03-10 | 2009-03-10 | Corrosion-resistant austenitic steel |
| PCT/DE2010/000232 WO2010102601A1 (en) | 2009-03-10 | 2010-03-03 | Corrosion-resistant austenitic steel |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2012519780A JP2012519780A (en) | 2012-08-30 |
| JP5755153B2 true JP5755153B2 (en) | 2015-07-29 |
Family
ID=42313803
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011553279A Expired - Fee Related JP5755153B2 (en) | 2009-03-10 | 2010-03-03 | High corrosion resistance austenitic steel |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20120000580A1 (en) |
| EP (1) | EP2406405A1 (en) |
| JP (1) | JP5755153B2 (en) |
| KR (1) | KR20110136840A (en) |
| CN (1) | CN102365382A (en) |
| DE (1) | DE102009003598A1 (en) |
| WO (1) | WO2010102601A1 (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101353649B1 (en) * | 2011-12-23 | 2014-01-20 | 주식회사 포스코 | Wire rod and steel wire having high corrosion resistance, method of manufacturing spring and steel wire for spring |
| ITRM20120647A1 (en) | 2012-12-19 | 2014-06-20 | Ct Sviluppo Materiali Spa | AUSTENITIC STAINLESS STEEL WITH HIGH PLASTICITY INDUCED BY GEMINATION, PROCEDURE FOR ITS PRODUCTION, AND ITS USE IN THE MECHANICAL INDUSTRY. |
| DE102013003516A1 (en) * | 2013-03-04 | 2014-09-04 | Outokumpu Nirosta Gmbh | Process for the production of an ultra-high-strength material with high elongation |
| CN103667893B (en) * | 2013-12-06 | 2015-09-16 | 武汉钢铁(集团)公司 | The high-strength steel with anti-delayed fracture of yield tensile ratio≤0.5 and production method |
| EP2924131B1 (en) * | 2014-03-28 | 2019-08-21 | Outokumpu Oyj | Austenitic high-manganese stainless steel |
| CN104046909A (en) * | 2014-06-28 | 2014-09-17 | 张家港市华程异型钢管有限公司 | Austenite special-shaped steel tube |
| CN104046911A (en) * | 2014-06-30 | 2014-09-17 | 张家港华程机车精密制管有限公司 | Special-shaped steel tube with corrosion resistance |
| EP3095889A1 (en) * | 2015-05-22 | 2016-11-23 | Outokumpu Oyj | Method for manufacturing a component made of austenitic steel |
| US20170088910A1 (en) * | 2015-09-29 | 2017-03-30 | Exxonmobil Research And Engineering Company | Corrosion and cracking resistant high manganese austenitic steels containing passivating elements |
| CN106399854B (en) * | 2016-06-23 | 2018-10-02 | 宝山钢铁股份有限公司 | The excellent non magnetic steel plate of high manganese of stress corrosion dehiscence resistant and its manufacturing method |
| CN108642404B (en) * | 2018-07-05 | 2020-06-09 | 中国科学院合肥物质科学研究院 | Fatigue-resistant corrosion-resistant twinning-induced plastic steel and preparation method thereof |
| WO2022087548A1 (en) * | 2020-10-22 | 2022-04-28 | Exxonmobil Research And Engineering Company | High manganese alloyed steels with improved cracking resistance |
| US20230374636A1 (en) * | 2020-10-22 | 2023-11-23 | ExxonMobil Technology and Engineering Company | High Manganese Alloyed Steels For Amine Service |
| EP4316727A1 (en) | 2022-08-05 | 2024-02-07 | Outokumpu Oyj | Filler metal for welding of dissimilar welds |
| CN117127112B (en) * | 2023-08-31 | 2025-09-30 | 延安大学 | A lightweight, high-strength, high-energy-absorbing porous TWIP steel and its preparation method |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH202283A (en) * | 1936-10-07 | 1939-01-15 | Boehler & Co Ag Geb | Chromium-manganese steel. |
| AT152291B (en) * | 1936-10-07 | 1938-01-25 | Boehler & Co Ag Geb | Chromium-manganese steels with 0¨01 1¨5% carbon, 5 25% chromium, 10 35% manganese. |
| US3075839A (en) * | 1960-01-05 | 1963-01-29 | Crucible Steel Co America | Nickel-free austenitic corrosion resistant steels |
| JPS5659597A (en) * | 1979-10-19 | 1981-05-23 | Daido Steel Co Ltd | Filler metal for high-manganese, nonmagnetic steel |
| CA1205659A (en) * | 1981-03-20 | 1986-06-10 | Masao Yamamoto | Corrosion-resistant non-magnetic steel and retaining ring for a generator made of it |
| GB2115834B (en) * | 1982-03-02 | 1985-11-20 | British Steel Corp | Non-magnetic austenitic alloy steels |
| JPS6054374B2 (en) * | 1982-04-21 | 1985-11-29 | 新日本製鐵株式会社 | Method for manufacturing austenitic steel plates and steel strips |
| GB2173816B (en) * | 1985-03-28 | 1989-06-21 | Sumitomo Metal Ind | Superplastic ferrous duplex-phase alloy and a hot working method therefor |
| JPS62136557A (en) * | 1985-12-07 | 1987-06-19 | Kobe Steel Ltd | High strength nonmagnetic steel having rust resistance |
| IT1219414B (en) * | 1986-03-17 | 1990-05-11 | Centro Speriment Metallurg | AUSTENITIC STEEL WITH IMPROVED MECHANICAL RESISTANCE AND AGGRESSIVE AGENTS AT HIGH TEMPERATURES |
| US4818485A (en) * | 1987-02-11 | 1989-04-04 | The United States Of America As Represented By The United States Department Of Energy | Radiation resistant austenitic stainless steel alloys |
| JPH089113B2 (en) * | 1987-07-16 | 1996-01-31 | 三菱マテリアル株式会社 | Fe-based overlay alloy with excellent corrosion and wear resistance |
| AT401531B (en) * | 1992-06-24 | 1996-09-25 | Boehler Ybbstalwerke | Nonmagnetic component having high strength and toughness at temperatures below 5 degrees k and a process for producing it |
| AT397968B (en) * | 1992-07-07 | 1994-08-25 | Boehler Ybbstalwerke | CORROSION-RESISTANT ALLOY FOR USE AS A MATERIAL FOR PARTS IN CONTACT WITH LIFE |
| FR2764307B1 (en) * | 1997-06-04 | 1999-08-27 | Metallurg Avancee Soc Ind De | NICKEL FREE STAINLESS STEEL FOR BIOMEDICAL APPLICATIONS |
| DE19727759C2 (en) | 1997-07-01 | 2000-05-18 | Max Planck Inst Eisenforschung | Use of a lightweight steel |
| FR2796083B1 (en) * | 1999-07-07 | 2001-08-31 | Usinor | PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED |
| GB9922757D0 (en) * | 1999-09-27 | 1999-11-24 | Heymark Metals Ltd | Improved steel composition |
| JPWO2006025412A1 (en) | 2004-09-01 | 2008-05-08 | 株式会社アドバンテスト | Logic verification method, logic module data, device data, and logic verification apparatus |
| DE102004043134A1 (en) * | 2004-09-07 | 2006-03-09 | Hans Prof. Dr.-Ing. Berns | Highest strength austenitic stainless steel |
| US20090010793A1 (en) * | 2004-11-03 | 2009-01-08 | Thyssenkrupp Steel Ag | Method For Producing High Strength Steel Strips or Sheets With Twip Properties, Method For Producing a Component and High-Strength Steel Strip or Sheet |
-
2009
- 2009-03-10 DE DE102009003598A patent/DE102009003598A1/en not_active Withdrawn
-
2010
- 2010-03-03 EP EP10714561A patent/EP2406405A1/en not_active Withdrawn
- 2010-03-03 WO PCT/DE2010/000232 patent/WO2010102601A1/en active Application Filing
- 2010-03-03 KR KR1020117023775A patent/KR20110136840A/en not_active Ceased
- 2010-03-03 JP JP2011553279A patent/JP5755153B2/en not_active Expired - Fee Related
- 2010-03-03 US US13/255,269 patent/US20120000580A1/en not_active Abandoned
- 2010-03-03 CN CN2010800115984A patent/CN102365382A/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| KR20110136840A (en) | 2011-12-21 |
| EP2406405A1 (en) | 2012-01-18 |
| US20120000580A1 (en) | 2012-01-05 |
| DE102009003598A1 (en) | 2010-09-16 |
| CN102365382A (en) | 2012-02-29 |
| JP2012519780A (en) | 2012-08-30 |
| WO2010102601A1 (en) | 2010-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5755153B2 (en) | High corrosion resistance austenitic steel | |
| JP5988008B2 (en) | Austenitic stainless steel sheet | |
| EP1471158B1 (en) | Austenitic stainless steel | |
| JP5685198B2 (en) | Ferritic-austenitic stainless steel | |
| US7785426B2 (en) | Welded joint of tempered martensite based heat-resistant steel | |
| KR20180095640A (en) | Austenitic heat-resistant alloys and methods for making same | |
| US20190284666A1 (en) | NiCrFe Alloy | |
| CN104169450A (en) | Heat-resistant austenitic stainless steel sheet | |
| JP5838933B2 (en) | Austenitic heat resistant steel | |
| WO2007097939A2 (en) | Stainless steel weld overlays with enhanced wear resistance | |
| KR20180005713A (en) | Austenitic heat-resistant alloys and welded structures | |
| KR20200065067A (en) | Austenitic heat-resistant steel welded metal, welding joint, austenitic heat-resistant steel welding material, and method of manufacturing welded joint | |
| CN101565798B (en) | Ferritic heat-resistant steel and manufacturing method thereof | |
| JP6547599B2 (en) | Austenitic heat resistant steel | |
| JP2002146484A (en) | High-strength ferritic heat-resistant steel | |
| WO2019069998A1 (en) | Austenitic stainless steel | |
| JP6540111B2 (en) | Ferritic steel | |
| KR102258058B1 (en) | Welding filler material | |
| JP2017202495A (en) | Weld material for austenitic heat-resistant steel | |
| JP2017202493A (en) | Welding material for austenitic heat-resistant steel | |
| JP2017206717A (en) | Austenitic heat-resistant alloy members | |
| JP2004124188A (en) | HIGH Cr HEAT-RESISTANT STEEL AND METHOD FOR MANUFACTURING THE SAME | |
| JP5996403B2 (en) | Heat resistant steel and method for producing the same | |
| JP5375406B2 (en) | Precipitation hardening stainless steel for strain generating body | |
| KR100316340B1 (en) | HIGH Cr-Ferritic HEAT RESISTING STEEL WITH NITROGEN ELEMENT |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121219 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131226 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140114 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140414 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140421 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140514 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141027 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141127 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150511 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150526 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5755153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |