JP5822352B2 - Transparent flexible laminate and laminate roll - Google Patents
Transparent flexible laminate and laminate roll Download PDFInfo
- Publication number
- JP5822352B2 JP5822352B2 JP2012027068A JP2012027068A JP5822352B2 JP 5822352 B2 JP5822352 B2 JP 5822352B2 JP 2012027068 A JP2012027068 A JP 2012027068A JP 2012027068 A JP2012027068 A JP 2012027068A JP 5822352 B2 JP5822352 B2 JP 5822352B2
- Authority
- JP
- Japan
- Prior art keywords
- polyimide resin
- transparent flexible
- resin layer
- general formula
- laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/10—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Laminated Bodies (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
本発明は、薄膜状のガラスフィルムとポリイミド樹脂層とを有する透明可撓性積層体、及び積層体ロールに関するものである。 The present invention relates to a transparent flexible laminate having a thin film glass film and a polyimide resin layer, and a laminate roll.
近年、ディスプレイや太陽電池は高機能化が進展し、その部材の一つである基板材料には従来の要求特性であるガスバリア性や耐熱性に加え、軽量化、柔軟化の要求が高まっている。既存の基板材料はガラスが用いられることが多いが、これらの要求特性の高まりに応じて、樹脂でガラスを置き換えようとする試みが進み、ガラス基板材料の樹脂代替が行なわれている。 In recent years, displays and solar cells have become highly functional, and substrate materials, which are one of the components, are increasingly required to be lightweight and flexible, in addition to gas barrier properties and heat resistance, which are conventionally required characteristics. . Although glass is often used as an existing substrate material, attempts to replace glass with a resin have progressed in response to the increase in these required characteristics, and replacement of the glass substrate material with a resin has been performed.
ところが、樹脂はガラスと比較して耐熱性が低く、ガスバリア性も劣るため、ディスプレイや太陽電池の製造方法に制約を与え、その性能を十分に発揮できないことや、コストが上昇するといった問題点が指摘されている。そのため、樹脂を基板材料に用いた当該用途への実用化はフレキシブル太陽電池等、限定的な用途及び規模に留まっているのが現状である。 However, since resin has lower heat resistance and inferior gas barrier properties compared to glass, there are problems such as restricting the manufacturing method of displays and solar cells, failing to fully demonstrate its performance, and increasing costs. It has been pointed out. Therefore, at present, the practical application to the application using the resin as the substrate material has been limited to a limited application and scale such as a flexible solar cell.
ガラスから樹脂への代替例として、例えば特許文献1には、ガスバリア性に優れた基板材料として、樹脂とガラスの積層体が提案されている。しかしながら、ここに開示された技術は、耐熱性に劣る樹脂をガラスと積層させているため、積層体全体として見たとき、耐熱性が低下してしまうという問題がある。また、耐熱性の高い樹脂の適用例として、特許文献1にはポリイミド樹脂も示されてはいるが、一般的なポリイミド樹脂は黄色を示すことから、これを単に適用しても透明が求められる用途に用いるには十分ではない。 As an alternative example of glass to resin, for example, Patent Document 1 proposes a laminate of a resin and glass as a substrate material having excellent gas barrier properties. However, since the technique disclosed here has laminated | stacked resin inferior to heat resistance with glass, when it sees as the whole laminated body, there exists a problem that heat resistance will fall. Moreover, although the polyimide resin is also shown by patent document 1 as an application example of resin with high heat resistance, since a general polyimide resin shows yellow, transparency is calculated | required even if this is applied simply. Not enough for use in applications.
また、特許文献2では、耐熱性の高いポリイミド樹脂をガラスに積層させる方法を提案している。ところが、当該発明では基板に剛性を持たせ、かつ、熱膨張を押さえる目的で一部にガラスが使用されている。そして、特許文献2において具体的に示された実験例では、可撓性が無いか或いは極めて可撓性の低い、比較的厚いガラスを用いたものしかなく、ここに示されたもので基板材料自体に可撓性(フレキシブル性)を持たせることは困難である。そのため、最終製品であるディスプレイや太陽電池において柔軟性を付与することは難しい。 Patent Document 2 proposes a method of laminating a highly heat-resistant polyimide resin on glass. However, in the present invention, glass is partially used for the purpose of imparting rigidity to the substrate and suppressing thermal expansion. In the experimental example specifically shown in Patent Document 2, there is only one using a relatively thick glass that is not flexible or very low in flexibility. It is difficult to impart flexibility (flexibility) to itself. Therefore, it is difficult to impart flexibility to the display or solar cell that is the final product.
本発明は、上記実情に鑑みて成されたものであり、可撓性(フレキシブル性)及び透明性に優れて、ディスプレイや太陽電池等の用途に適用可能であり、しかも、積層体自体の反りが抑制され、尚且つ、耐熱性とガスバリア性に優れた積層体、及び積層体ロールを提供することを目的とする。 The present invention has been made in view of the above circumstances, is excellent in flexibility (flexibility) and transparency, and can be applied to uses such as displays and solar cells, and the warpage of the laminate itself. It is an object of the present invention to provide a laminate and a laminate roll excellent in heat resistance and gas barrier properties.
本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、ガラス基材として極薄状のガラスフィルムを用い、このガラスフィルム上に所定の特性を充足するポリイミド樹脂が積層されたものであれば、上記のようないずれの性能を備えた積層体が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors used an ultrathin glass film as a glass substrate, and a polyimide resin satisfying predetermined characteristics was laminated on the glass film. If it is a thing, it discovered that the laminated body provided with any of the above performances was obtained, and came to complete this invention.
すなわち、本発明は、厚さ20〜200μmのガラスフィルムとポリイミド樹脂層とを有し、前記ポリイミド樹脂層は、熱膨張係数が10ppm/K以下であって、かつ、波長500nmにおける光透過率が80%以上であることを特徴とする透明可撓性積層体である。 That is, the present invention has a glass film having a thickness of 20 to 200 μm and a polyimide resin layer, and the polyimide resin layer has a thermal expansion coefficient of 10 ppm / K or less and has a light transmittance at a wavelength of 500 nm. It is a transparent flexible laminated body characterized by being 80% or more.
また、本発明は、上記透明可撓性積層体がロール状に巻き取られた積層体ロールである。 Moreover, this invention is a laminated body roll by which the said transparent flexible laminated body was wound up in roll shape.
本発明における透明可撓性積層体では、厚さ20〜200μmのガラスフィルムを用いる。このガラスフィルム自体は、ガラスに由来して透明であり、かつ、可撓性を有している。ガラスフィルムの厚さが20μmに満たないと、ガラスフィルム自体の製造が困難であるため入手できない。一方、ガラスフィルムの厚さが200μmを超えると、可撓性が低下し、ガラスフィルムの割れが生じやすくなる。可撓性とハンドリング性との両立の観点から、ガラスフィルムの厚さは、30〜100μmの範囲が好ましく、50〜100μmの範囲がより好ましい。 In the transparent flexible laminate in the present invention, a glass film having a thickness of 20 to 200 μm is used. This glass film itself originates from glass, is transparent, and has flexibility. If the thickness of the glass film is less than 20 μm, it cannot be obtained because it is difficult to produce the glass film itself. On the other hand, when the thickness of the glass film exceeds 200 μm, the flexibility is lowered and the glass film is easily cracked. From the viewpoint of achieving both flexibility and handling properties, the thickness of the glass film is preferably in the range of 30 to 100 μm, and more preferably in the range of 50 to 100 μm.
このようなガラスフィルムは、市販しているものを用いることができ、例えば、日本電気硝子株式会社製のOA−10GやショットAG社製のAF32を用いることができる。 Such a glass film can use what is marketed, for example, can use OA-10G by Nippon Electric Glass Co., Ltd., and AF32 by Schott AG.
通常、上記のような薄膜状のガラスフィルムに樹脂層を設けると、樹脂自体の特性に起因して耐熱性や透明性が低下する問題がある。また、ガラスフィルムに対して異種材料を貼り合わせることから、両者の特性差に起因した反りが問題となる。そこで、本発明では、特定の特性を有するポリイミド樹脂を積層することで、これらの問題を解決する。 Usually, when a resin layer is provided on a thin film glass film as described above, there is a problem that heat resistance and transparency are lowered due to characteristics of the resin itself. Further, since different materials are bonded to the glass film, warping due to the difference in characteristics between the two becomes a problem. Therefore, in the present invention, these problems are solved by laminating polyimide resins having specific characteristics.
すなわち、本発明でガラスフィルムに積層されるポリイミド樹脂層は、その構造単位中にイミド結合を有して熱膨張係数が10ppm/K以下であり、かつ、波長500nmにおける光透過率が80%以上のポリイミド樹脂を用いるようにする。なかでも、ガラスフィルムとの積層化後の積層体の耐熱性を維持するためには、耐熱性が高いものが好ましい。そのような観点から、ポリイミド樹脂のガラス転移温度は、300℃以上であることが好ましく、350℃以上であることがより好ましい。 That is, the polyimide resin layer laminated on the glass film in the present invention has an imide bond in its structural unit, a thermal expansion coefficient of 10 ppm / K or less, and a light transmittance at a wavelength of 500 nm of 80% or more. The polyimide resin is used. Especially, in order to maintain the heat resistance of the laminated body after lamination | stacking with a glass film, a thing with high heat resistance is preferable. From such a viewpoint, the glass transition temperature of the polyimide resin is preferably 300 ° C. or higher, and more preferably 350 ° C. or higher.
上記特性を充足するポリイミド樹脂は、具体的には、以下のようにして形成することができる。すなわち、ガラスフィルムを基材として使用した場合を例にとって説明すると、まず所定のガラスフィルムを準備し、このガラスフィルム上にポリイミド樹脂の前駆体であるポリイミド前駆体樹脂溶液(以下、ポリアミド酸溶液という。)を塗布し、加熱処理により溶剤を乾燥させ、更に高い温度で加熱することでポリイミド前駆体をイミド化させ、ガラスフィルム上にポリイミド樹脂が積層された可撓性積層体を得ることができる。 Specifically, the polyimide resin satisfying the above characteristics can be formed as follows. That is, a case where a glass film is used as a base material will be described as an example. First, a predetermined glass film is prepared, and a polyimide precursor resin solution (hereinafter referred to as a polyamic acid solution) which is a polyimide resin precursor is prepared on the glass film. .) Is dried, the solvent is dried by heat treatment, and the polyimide precursor is imidized by heating at a higher temperature to obtain a flexible laminate in which a polyimide resin is laminated on a glass film. .
そして、ガラスフィルム上に形成される好ましいポリイミド樹脂としては、下記一般式(1)で表される構造単位を有するものが挙げられ、より好ましくは、この一般式(1)で表される構造単位を80〜100モル%含有したポリイミド樹脂であるのがよい。
一般式(1)に係るポリイミド樹脂以外に最大20モル%で添加されてもよいその他のポリイミド樹脂については、特に限定されるものではなく、一般的な酸無水物とジアミンを使用することができるが、なかでも、好ましく使用される酸無水物としては、ピロメリット酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸ニ無水物、1,4-シクロヘキサンジカルボン酸、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,2'−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物等が挙げられ、また、ジアミンとして4,4'−ジアミノジフェニルサルフォン、トランス−1,4−ジアミノシクロヘキサン、4,4'−ジアミノシクロヘキシルメタン、2,2'−ビス(4−アミノシクロヘキシル)−ヘキサフルオロプロパン、2,2'−ビス(トリフルオロメチル)−4,4'−ジアミノビシクロヘキサン等が挙げられる。 Other polyimide resins that may be added at a maximum of 20 mol% in addition to the polyimide resin according to the general formula (1) are not particularly limited, and general acid anhydrides and diamines can be used. However, among the acid anhydrides preferably used, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,4-cyclohexanedicarboxylic acid, 1, 2,3,4-cyclobutanetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, etc., and 4,4′-diamino as diamine Diphenylsulfone, trans-1,4-diaminocyclohexane, 4,4′-diaminocyclohexylmethane, 2,2′-bis (4-aminocyclohexyl) -hexafluoropropane, 2,2′-bis (trif Oromechiru) -4,4'-diamino-bi cyclohexane.
上記のとおり、ポリイミド樹脂層に用いるポリイミド樹脂は、その化学構造中の一部にフッ素原子又はフッ素置換炭化水素基を有していることが好ましい。そのためには、フッ素原子又はフッ素置換炭化水素基が、一般式(1)中のAr1に含まれてもよく、Ar2に含まれてもよく、両者に含まれるようにしてもよい。より好ましい形態としては、上記一般式(2)又は(3)において、R1〜R4の少なくとも一つがフッ素原子又はフッ素置換炭化水素基であるのがよい。 As described above, the polyimide resin used for the polyimide resin layer preferably has a fluorine atom or a fluorine-substituted hydrocarbon group in part of its chemical structure. For that purpose, a fluorine atom or a fluorine-substituted hydrocarbon group may be contained in Ar 1 in the general formula (1), may be contained in Ar 2 , or may be contained in both. As a more preferable embodiment, in the general formula (2) or (3), at least one of R 1 to R 4 may be a fluorine atom or a fluorine-substituted hydrocarbon group.
R1〜R4の好適な具体的としては、−H、−CH3、−OCH3、−F、−CF3などが挙げられ、より好適には、R1〜R4の少なくとも一つが−F、又は−CF3の何れかであるのがよい。 Preferable specific examples of R 1 to R 4 include —H, —CH 3 , —OCH 3 , —F, —CF 3 and the like. More preferably, at least one of R 1 to R 4 is — F, or may be from either -CF 3.
また、一般式(1)中のAr1の具体例としては、例えば、以下のような4価の酸無水物残基が挙げられる。
また、一般式(1)におけるAr2を与える具体的なジアミン残基としては、例えば、以下のものが挙げられる。
上記で例示したポリイミド樹脂の中でも、下記式(4)又は(5)で表される構造単位を80モル%以上の割合で有するものが、熱膨張係数の低減化、耐熱性の観点から好ましい。
上記で説明したような各種のポリイミド樹脂は、ポリアミド酸をイミド化して得られるが、ここで、ポリアミド酸の樹脂溶液は、原料である芳香族ジアミンと芳香族酸二無水物とを実質的に等モル使用し、有機溶媒中で反応させることによって得ることができる。より具体的には、窒素気流下にN,N−ジメチルアセトアミドなどの有機極性溶媒に芳香族ジアミンを溶解させた後、芳香族テトラカルボン酸二無水物を加えて、室温で5時間程度反応させることにより得ることができる。塗工時の膜厚均一化と得られるポリイミドフィルムの機械強度の観点から、得られたポリアミド酸の重量平均分子量は1万から30万が好ましい。なお、ポリイミド樹脂層の好ましい分子量範囲もポリアミド酸と同じ分子量範囲である。 Various polyimide resins as described above can be obtained by imidizing polyamic acid. Here, the polyamic acid resin solution is substantially composed of aromatic diamine and aromatic dianhydride as raw materials. It can be obtained by using equimolar amounts and reacting in an organic solvent. More specifically, after dissolving an aromatic diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, an aromatic tetracarboxylic dianhydride is added and allowed to react at room temperature for about 5 hours. Can be obtained. The weight average molecular weight of the obtained polyamic acid is preferably 10,000 to 300,000 from the viewpoint of uniform film thickness during coating and mechanical strength of the resulting polyimide film. In addition, the preferable molecular weight range of a polyimide resin layer is also the same molecular weight range as a polyamic acid.
また、ガラスフィルムとポリイミド樹脂層とを積層させるには、ガラスフィルム上にポリアミド酸溶液を塗布した後、乾燥・硬化する所謂キャスト法のほか、所定の基材上にポリアミド酸溶液を塗布した後、溶剤を乾燥して未硬化のフィルムを引き剥がし、熱処理により硬化してポリイミドフィルムとし、このポリイミドフィルムとガラスフィルムとを加熱圧着してポリイミド樹脂層を形成する方法や、あるいは所定の基材上にポリアミド酸溶液を塗布した後、乾燥させ、硬化まで行なってポリイミドフィルムとした上で、基材から引き剥がし、このポリイミドフィルムとガラスフィルムとを加熱圧着する方法などが挙げられる。 In addition, in order to laminate the glass film and the polyimide resin layer, after applying the polyamic acid solution on the glass film, after applying the polyamic acid solution on a predetermined substrate in addition to the so-called casting method of drying and curing , The solvent is dried and the uncured film is peeled off, cured by heat treatment to form a polyimide film, and this polyimide film and glass film are heat-pressed to form a polyimide resin layer, or on a predetermined substrate After the polyamic acid solution is applied to the substrate, it is dried and cured to form a polyimide film, which is then peeled off from the substrate, and the polyimide film and the glass film are heat-bonded.
本発明では、これらのいずれの方法を用いてもよく、また、これらの方法に限定されるものではないが、本発明を構成するガラスフィルム上にポリアミド酸溶液を直接塗布した後、乾燥・硬化するキャスト法が、ガラスフィルムとの接着性や熱膨張係数の制御のしやすさ、更には、表面粗さ、リタデーションの低減、製造工程の簡便さなどから最も適する。ここで、ポリイミド樹脂の表面粗さRaが5nmを超え、また、リタデーションが10nmを超えると、基板上のディスプレイや太陽電池といった素子の厚みや光学特性が不均一になり、性能が低下するおそれがある。そのため、ポリイミド樹脂層の表面粗さRaは5nm以下となるようにし、また、得られた積層体のポリイミド樹脂層における面方向のリタデーションが10nm以下となるようにするのがそれぞれ好適である。更には、乾燥、硬化における製造工程の簡便さの観点から、キャスト法によって形成されるポリイミド樹脂層は厚さ1〜50μmであるのが好ましい。なお、表面粗さRaは、算術平均粗さ(JIS B 0601-1994)を表す。 In the present invention, any of these methods may be used, and although not limited to these methods, the polyamic acid solution is directly applied on the glass film constituting the present invention, and then dried and cured. The casting method is most suitable from the viewpoint of easy control of the adhesiveness to the glass film and the thermal expansion coefficient, surface roughness, retardation reduction, and the simplicity of the manufacturing process. Here, when the surface roughness Ra of the polyimide resin exceeds 5 nm and the retardation exceeds 10 nm, the thickness and optical characteristics of elements such as a display and a solar cell on the substrate are not uniform, and the performance may be deteriorated. is there. Therefore, it is preferable that the surface roughness Ra of the polyimide resin layer is 5 nm or less, and that the retardation in the surface direction of the polyimide resin layer of the obtained laminate is 10 nm or less. Furthermore, it is preferable that the polyimide resin layer formed by the cast method is 1-50 micrometers in thickness from a viewpoint of the simplicity of the manufacturing process in drying and hardening. The surface roughness Ra represents the arithmetic average roughness (JIS B 0601-1994).
本発明の積層体の製造例をより具体的に示せば、例えば、上記反応により得られたポリアミド酸溶液を、支持体となるガラスフィルム上にアプリケーターなどを用いて塗布し、150℃以下の温度で2〜20分予備乾燥した後、通常130〜360℃程度の温度で2〜30分程度熱処理して溶剤を除去し、イミド化することにより得ることができる。 If the production example of the laminate of the present invention is more specifically shown, for example, the polyamic acid solution obtained by the above reaction is applied on a glass film serving as a support using an applicator or the like, and the temperature is 150 ° C. or lower. And for 2 to 20 minutes, followed by heat treatment at a temperature of about 130 to 360 ° C. for about 2 to 30 minutes to remove the solvent and imidization.
本発明において、ポリイミド樹脂層の厚さは特に限定されるものではないが、1〜100μmの範囲が好ましく、1〜50μmの範囲がより好ましい。ポリイミド樹脂層の厚みが1μmに満たないと、アプリケーターでの制御が困難であって厚みが不均一となりやすく、反対に100μmを超えると、耐熱性や光透過率の低下を招くおそれがある。特には、ガラスフィルムの厚さをGt、ポリイミド樹脂層の厚さをPtとしたとき、2≦Pt≦Gt/10の関係にあることが好ましい。この関係を満たすことで厚みが均一な透明可撓性積層体を与えることができる。 In the present invention, the thickness of the polyimide resin layer is not particularly limited, but is preferably in the range of 1 to 100 μm, and more preferably in the range of 1 to 50 μm. If the thickness of the polyimide resin layer is less than 1 μm, it is difficult to control with an applicator and the thickness tends to be non-uniform. Conversely, if the thickness exceeds 100 μm, heat resistance and light transmittance may be reduced. In particular, when the thickness of the glass film is Gt and the thickness of the polyimide resin layer is Pt, a relationship of 2 ≦ Pt ≦ Gt / 10 is preferable. By satisfying this relationship, a transparent flexible laminate having a uniform thickness can be provided.
ところで、上述したように、本発明の透明可撓性積層体は、そのポリイミド樹脂層の波長500nmにおける光透過率が80%以上であることが必要である。光透過率をこの範囲とするには、ポリイミド樹脂の化学構造を選択し、透過率の高いポリイミド樹脂層とすることが重要である。また、曲率半径が150mm以下でも湾曲可能な透明可撓性積層体とするには、ガラスフィルムの厚みを20μmから200μmのものを選択して、可撓性を有するガラス層を形成することが重要である。 Incidentally, as described above, the transparent flexible laminate of the present invention requires that the polyimide resin layer has a light transmittance of 80% or more at a wavelength of 500 nm. In order to make the light transmittance within this range, it is important to select a chemical structure of the polyimide resin to obtain a polyimide resin layer having a high transmittance. In order to obtain a transparent flexible laminate that can be bent even when the radius of curvature is 150 mm or less, it is important to select a glass film having a thickness of 20 μm to 200 μm to form a flexible glass layer. It is.
すなわち、適当な化学構造単位のポリイミド樹脂を選択し、所定の製造条件を採用して、所定のガラスフィルムと積層することで、上記のように光透過率を高めながら、ポリイミド樹脂層の熱膨張係数を10ppm/K以下にすることができ、また、ガラスフィルムとポリイミド樹脂層との熱膨張係数差を0〜3ppm/Kの範囲にして、積層体の反りをより一層低減することができる。更には、ガラスフィルムの厚みを0.2mm以下にすることよって、より可撓性を向上させることができ、透明可撓性積層体を長尺状のものとすることで、これをロール状に巻き取ることができ、積層体ロールとして提供することが可能になる。 That is, by selecting a polyimide resin with an appropriate chemical structural unit, adopting predetermined manufacturing conditions, and laminating it with a predetermined glass film, the thermal expansion of the polyimide resin layer is enhanced while increasing the light transmittance as described above. The coefficient can be 10 ppm / K or less, and the difference in thermal expansion coefficient between the glass film and the polyimide resin layer can be set in the range of 0 to 3 ppm / K, and the warpage of the laminate can be further reduced. Furthermore, by making the thickness of the glass film 0.2 mm or less, the flexibility can be further improved. By making the transparent flexible laminate into a long shape, this can be made into a roll shape. It can be wound up and can be provided as a laminate roll.
そこで、これらの特性を充足する透明可撓性積層体は、好適には、上記一般式(4)の構造単位を構成するポリイミド原料を用いて、ポリアミド酸溶液を製造し、このポリアミド酸溶液をガラスフィルム上に所定の厚みで塗布して、150℃以下で2〜20分程度かけて乾燥させた後、130〜360℃程度の温度で2〜30分程度熱処理することで製造することができる。 Therefore, a transparent flexible laminate satisfying these characteristics is preferably produced by using a polyimide raw material constituting the structural unit of the general formula (4) to produce a polyamic acid solution. It can be manufactured by applying a predetermined thickness on a glass film and drying it at 150 ° C. or lower for 2 to 20 minutes, followed by heat treatment at a temperature of about 130 to 360 ° C. for about 2 to 30 minutes. .
ここで、アプリケーター等を使用して塗工を行う際の膜厚を均一に制御する観点から、ポリイミド樹脂層を形成するために使用するポリアミド酸及びポリイミドの重合度は、ポリアミド酸溶液の粘度範囲で表したとき、溶液粘度が500〜200,000cPの範囲にあることが好ましい。溶液粘度の測定は、恒温水槽付のコーンプレート式粘度計によって行うことができる。 Here, from the viewpoint of uniformly controlling the film thickness when coating using an applicator or the like, the degree of polymerization of the polyamic acid and the polyimide used to form the polyimide resin layer is the viscosity range of the polyamic acid solution. The solution viscosity is preferably in the range of 500 to 200,000 cP. The solution viscosity can be measured with a cone plate viscometer with a thermostatic water bath.
本発明の透明可撓性積層体は、透明性に優れ、反りがなく、しかも、耐熱性及びガスバリア性を併せ持つことから、可撓性の基板材料として有用である。例えば、有機EL、電子ペーパー等のように画像を表示するディスプレイ装置におけるフレキシブル基板として利用したり、太陽電池における透明基板として利用するのに好適である、また、これら以外にも、例えば照明やリチウムイオン電池等に利用することも可能である。そのため、これまで主に用いられていたガラス基板の代替材料として本発明の透明可撓性積層体を利用するなど、幅広い分野で使用でき、その産業に寄与すること大である。 The transparent flexible laminate of the present invention is useful as a flexible substrate material because it is excellent in transparency, has no warpage, and has both heat resistance and gas barrier properties. For example, it is suitable for use as a flexible substrate in a display device that displays an image such as organic EL or electronic paper, or as a transparent substrate in a solar cell. It can also be used for an ion battery or the like. Therefore, it can be used in a wide range of fields, such as using the transparent flexible laminate of the present invention as an alternative material for a glass substrate that has been mainly used so far, and contributes greatly to the industry.
以下、実施例等に基づいて本発明の内容をより具体的に説明するが、本発明はこれら実施例の範囲に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically based on examples and the like, but the present invention is not limited to the scope of these examples.
実施例等に用いたポリイミド原料の略号を下記に示す。
TFMB:2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル
PMDA:ピロメリット酸二無水物
6FDA:2,2-ビス(3,4-ジカルボキシフェニル)-ヘキサフルオロプロパン二無水物
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
BAPP:2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン
m-TB:2,2'-ジメチル−4,4'-ジアミノビフェニル
DMAc:N,N-ジメチルアセトアミド
Abbreviations for the polyimide raw materials used in the examples and the like are shown below.
TFMB: 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
PMDA: pyromellitic dianhydride
6FDA: 2,2-bis (3,4-dicarboxyphenyl) -hexafluoropropane dianhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
BAPP: 2,2-bis (4- (4-aminophenoxy) phenyl) propane
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
DMAc: N, N-dimethylacetamide
また、実施例中の各種物性の測定方法と条件を以下に示す。 In addition, measurement methods and conditions for various physical properties in the examples are shown below.
[粘度]
粘度は、恒温水槽付のコーンプレート式粘度計(トキメック社製)にて、合成例で得られたポリアミド酸溶液について25℃で測定した。
[viscosity]
The viscosity was measured at 25 ° C. for the polyamic acid solution obtained in the synthesis example with a cone plate viscometer (manufactured by Tokimec Co., Ltd.) equipped with a constant temperature water bath.
[熱膨張係数(CTE)]
3mm×15mmのサイズのポリイミドフィルムを、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度(20℃/min)で30℃から260℃の温度範囲で引張り試験を行い、温度に対するポリイミドフィルムの伸び量から熱膨張係数(ppm/K)を測定した。
[Coefficient of thermal expansion (CTE)]
Tensile test of polyimide film with a size of 3mm x 15mm in a temperature range from 30 ° C to 260 ° C at a constant heating rate (20 ° C / min) while applying a 5.0g load with a thermomechanical analysis (TMA) device The coefficient of thermal expansion (ppm / K) was measured from the amount of elongation of the polyimide film with respect to temperature.
[光透過率]
ポリイミドフィルム(50mm×50mm)をU4000形自記分光光度計にて、500nmにおける光透過率を求めた。
[Light transmittance]
The light transmittance at 500 nm was determined for a polyimide film (50 mm × 50 mm) with a U4000 self-recording spectrophotometer.
[反り]
透明可撓性積層体を平坦な板の上に置き、板と積層体の4つの角の距離を計測した。なお、透明可撓性積層体が一方にカールしている場合は、カールしている内側を上部に向けて置いた。
[warp]
The transparent flexible laminate was placed on a flat plate, and the distance between the four corners of the plate and the laminate was measured. When the transparent flexible laminate was curled to one side, the curled inner side was placed facing upward.
[表面粗さ]
透明可撓性積層体におけるポリイミド樹脂層の表面粗さRaについて、ブルカー社製の原子間力顕微鏡(AFM)である「Multi Mode8」を用いて表面観察を行い、10μm角の視野内で4点測定し、それらの平均値を求めた。
[Surface roughness]
The surface roughness Ra of the polyimide resin layer in the transparent flexible laminate was observed using a “Multi Mode 8”, an atomic force microscope (AFM) manufactured by Bruker, and 4 points within a 10 μm square field of view. Measurements were made and their average values were determined.
[リタデーション]
東京インスツルメント社製の分光ポラリメーター「Poxi-spectra」を用いて、透明可撓性積層体のポリイミド樹脂層における面内方向のリタデーションを求めた。
[Retardation]
Using a spectropolarimeter “Poxi-spectra” manufactured by Tokyo Instruments, retardation in the in-plane direction of the polyimide resin layer of the transparent flexible laminate was determined.
[可撓性]
透明可撓性積層体を10cm四方に切り出し、半径150mmのロールに密着させた場合の、クラック等の欠陥の発生有無を目視にて確認した。
[Flexibility]
The transparent flexible laminate was cut into a 10 cm square and visually confirmed for the presence or absence of defects such as cracks when adhered to a roll having a radius of 150 mm.
(合成例1〜4)
先ず、ポリアミド酸Aを合成するため、窒素気流下で、表1に示したジアミンを、200mlのセパラブルフラスコの中で攪拌しながら溶剤DMAcに溶解させた。次いで、表1に示した酸二無水物を加えた。その後、溶液を室温で5時間攪拌を続けて重合反応を行い、一昼夜保持した。粘稠なポリアミド酸溶液が得られ、高重合度のポリアミド酸が生成されていることが確認された。得られたポリアミド酸Aの溶液(以下、ポリアミド酸溶液Aという)の固形分と溶液粘度を表1に示した。ここで、固形分はポリアミド酸濃度である。結果をまとめて表1に示す。
(Synthesis Examples 1-4)
First, in order to synthesize the polyamic acid A, the diamine shown in Table 1 was dissolved in the solvent DMAc while stirring in a 200 ml separable flask under a nitrogen stream. Then, the acid dianhydride shown in Table 1 was added. Thereafter, the solution was stirred at room temperature for 5 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous polyamic acid solution was obtained, and it was confirmed that a polyamic acid having a high degree of polymerization was produced. Table 1 shows the solid content and solution viscosity of the obtained polyamic acid A solution (hereinafter referred to as polyamic acid solution A). Here, the solid content is the polyamic acid concentration. The results are summarized in Table 1.
また、ポリアミド酸Aを使用した例を合成例1とし、以下、表1に示した合成例2〜4の成分比に従う以外はポリアミド酸Aの場合と同様にして、ポリアミド酸B〜Dの合成を行った。これらの固形分及び溶液粘度について、表1にまとめて示す。 An example using polyamic acid A was used as synthesis example 1, and synthesis of polyamic acids B to D was performed in the same manner as in the case of polyamic acid A except that the composition ratios of synthesis examples 2 to 4 shown in Table 1 were followed. Went. These solid contents and solution viscosities are summarized in Table 1.
(実施例1)
表1に示したポリアミド酸溶液Aを、厚さ50μmの市販のガラスフィルム上にアプリケーターを用いて熱処理後の膜厚が約5μmとなるように塗布し、1分間に22℃の速度で90℃から360℃まで昇温させ、ガラスフィルム上に単層のポリイミド層を有する積層体を得た。ここで用いたガラスフィルムは、熱膨張係数が3.8ppm/Kであり、500nmでの透過率は90%、弾性率が30GPa/g・cm-3であった。
Example 1
The polyamic acid solution A shown in Table 1 was applied onto a commercially available glass film having a thickness of 50 μm using an applicator so that the film thickness after heat treatment was about 5 μm, and 90 ° C. at a rate of 22 ° C. per minute. To 360 ° C. to obtain a laminate having a single-layer polyimide layer on a glass film. The glass film used here had a thermal expansion coefficient of 3.8 ppm / K, a transmittance at 500 nm of 90%, and an elastic modulus of 30 GPa / g · cm −3 .
上記で得られた実施例1に係る積層体について、反り、表面粗さ、及び可撓性を測定した。また、得られた積層体のガラスフィルムからポリイミドフィルムを引き剥がし、得られたポリイミドフィルムの光透過率、リタデーション、及び熱膨張係数(CTE)を測定した。結果を表2にまとめて示す。 About the laminated body which concerns on Example 1 obtained above, curvature, surface roughness, and flexibility were measured. Moreover, the polyimide film was peeled off from the glass film of the obtained laminate, and the light transmittance, retardation, and thermal expansion coefficient (CTE) of the obtained polyimide film were measured. The results are summarized in Table 2.
(実施例2)
表1に示したポリアミド酸溶液Bを用いた以外は実施例1と同様にして、実施例2に係る積層体を得た。得られた積層体について、実施例1と同様に各種評価を行った。結果を表2に示す。
(Example 2)
A laminate according to Example 2 was obtained in the same manner as in Example 1 except that the polyamic acid solution B shown in Table 1 was used. Various evaluations were performed on the obtained laminate in the same manner as in Example 1. The results are shown in Table 2.
(比較例1)
表1に示したポリアミド酸溶液Cを用いた以外は実施例1と同様にして、比較例1に係る積層体を得た。得られた積層体について、実施例1と同様に各種評価を行った。結果を表2に示す。
(Comparative Example 1)
A laminate according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the polyamic acid solution C shown in Table 1 was used. Various evaluations were performed on the obtained laminate in the same manner as in Example 1. The results are shown in Table 2.
(比較例2)
表1に示したポリアミド酸溶液Dを用いた以外は実施例1と同様にして、比較例2に係る積層体を得た。得られた積層体について、実施例1と同様に各種評価を行った。結果を表2に示す。
(Comparative Example 2)
A laminate according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the polyamic acid solution D shown in Table 1 was used. Various evaluations were performed on the obtained laminate in the same manner as in Example 1. The results are shown in Table 2.
上記実施例1〜2、及び比較例1〜2から得られた結果より明らかなように、本発明の条件を満たしたガラスフィルムとポリイミド樹脂層とからなる透明可撓性積層体は、透明性にも優れ、反りも無く、ポリイミド樹脂層表面の表面粗さやリタデーションの値は低いものであった。一方、本発明の条件を満たさないポリイミド樹脂層からなるものは、透明性が低く(比較例1)、また、薄いガラスフィルムと積層した場合には反りが大きく生じるものであった(比較例1、比較例2)。 As is clear from the results obtained from Examples 1 and 2 and Comparative Examples 1 and 2, the transparent flexible laminate comprising the glass film and the polyimide resin layer satisfying the conditions of the present invention is transparent. Further, there was no warp, and the surface roughness and retardation of the polyimide resin layer surface were low. On the other hand, what consists of the polyimide resin layer which does not satisfy | fill the conditions of this invention has low transparency (comparative example 1), and when it laminated | stacks with a thin glass film, curvature generate | occur | produced largely (comparative example 1). Comparative Example 2).
Claims (7)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012027068A JP5822352B2 (en) | 2012-02-10 | 2012-02-10 | Transparent flexible laminate and laminate roll |
| TW102103679A TWI560052B (en) | 2012-02-10 | 2013-01-31 | Transparent flexible laminate and laminate roll |
| CN201310049356.XA CN103240936B (en) | 2012-02-10 | 2013-02-07 | Clear flexible duplexer and duplexer volume |
| KR1020130014223A KR102066280B1 (en) | 2012-02-10 | 2013-02-08 | Transparent flexible laminate and laminate roll |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012027068A JP5822352B2 (en) | 2012-02-10 | 2012-02-10 | Transparent flexible laminate and laminate roll |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2013163304A JP2013163304A (en) | 2013-08-22 |
| JP5822352B2 true JP5822352B2 (en) | 2015-11-24 |
Family
ID=48920966
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2012027068A Active JP5822352B2 (en) | 2012-02-10 | 2012-02-10 | Transparent flexible laminate and laminate roll |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP5822352B2 (en) |
| KR (1) | KR102066280B1 (en) |
| CN (1) | CN103240936B (en) |
| TW (1) | TWI560052B (en) |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101928598B1 (en) * | 2013-09-30 | 2018-12-12 | 주식회사 엘지화학 | Polyimide film and process for preparing same |
| KR101640289B1 (en) * | 2013-09-30 | 2016-07-15 | 주식회사 엘지화학 | Laminate structure for manufacturing substrate and device comprising substrate manufactured by using same |
| JP6256679B2 (en) * | 2013-10-22 | 2018-01-10 | 日産化学工業株式会社 | Resin composition for display substrate |
| CN105848886B (en) * | 2013-12-26 | 2017-11-03 | 旭硝子株式会社 | Glass laminate, and method of manufacturing electronic device |
| KR102367682B1 (en) | 2014-03-12 | 2022-02-25 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Display device and method for manufacturing the same, and polyimide film for display device |
| KR102292101B1 (en) * | 2014-03-18 | 2021-08-24 | 삼성디스플레이 주식회사 | Flexible display device and method for fabricating the same |
| JP6394046B2 (en) * | 2014-04-25 | 2018-09-26 | 日本ゼオン株式会社 | Varnish, laminate, and method for producing laminate |
| JP6627317B2 (en) * | 2014-08-06 | 2020-01-08 | 三菱ケミカル株式会社 | Glass film laminate |
| CN104507263B (en) * | 2014-09-15 | 2018-07-24 | 横店集团东磁股份有限公司 | A kind of preparation method of double-layer flexible cover copper plate |
| JP6350163B2 (en) * | 2014-09-18 | 2018-07-04 | 三菱ケミカル株式会社 | Glass laminate |
| CN104211963B (en) * | 2014-09-18 | 2016-09-28 | 吉林奥来德光电材料股份有限公司 | The manufacture method of polyimide resin and utilize its manufactured Kapton |
| DK3231777T3 (en) * | 2014-12-10 | 2020-11-09 | Panasonic Ip Man Co Ltd | GLASS PANEL UNIT |
| JP6503183B2 (en) * | 2014-12-24 | 2019-04-17 | 株式会社カネカ | Polyimide laminate, electronic device, and method of manufacturing electronic device |
| EP3279237A4 (en) | 2015-03-31 | 2018-04-04 | Asahi Kasei Kabushiki Kaisha | Polyimide film, polyimide varnish, product using polyimide film, and laminate |
| JP6620428B2 (en) * | 2015-05-29 | 2019-12-18 | 三菱瓦斯化学株式会社 | Polyimide resin |
| CN105118963B (en) * | 2015-07-21 | 2018-03-02 | 广东省新材料研究所 | A kind of transparent positive electrode of lithium ion battery and preparation method thereof |
| CN106554507A (en) * | 2015-09-29 | 2017-04-05 | 新日铁住金化学株式会社 | The manufacture method of polyimide film |
| WO2017056421A1 (en) | 2015-09-29 | 2017-04-06 | パナソニックIpマネジメント株式会社 | Glass panel unit and glass window |
| CN108137397A (en) | 2015-09-29 | 2018-06-08 | 松下知识产权经营株式会社 | Glass panel unit, the windowpane with the glass panel unit and the method for manufacturing glass panel unit |
| CN112976725B (en) * | 2016-01-15 | 2023-02-03 | 康宁股份有限公司 | Foldable electronic device assembly and cover element therefor |
| KR102500026B1 (en) * | 2017-05-11 | 2023-02-15 | 가부시키가이샤 가네카 | Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and manufacturing method of polyimide film |
| JP7102191B2 (en) * | 2018-03-30 | 2022-07-19 | 日鉄ケミカル&マテリアル株式会社 | Method of manufacturing polyimide film |
| JP7120819B2 (en) * | 2018-06-12 | 2022-08-17 | 旭化成株式会社 | Laminate of polyimide film and flexible glass |
| CN109734907B (en) * | 2018-12-04 | 2021-08-17 | 株洲时代华鑫新材料技术有限公司 | Polyimide precursor, precursor composition, polyimide, high-temperature-resistant transparent polyimide film and preparation method thereof |
| CN118962988A (en) * | 2019-02-05 | 2024-11-15 | 三菱化学株式会社 | Light guide plate for image display |
| CN109896753B (en) * | 2019-04-08 | 2022-10-25 | 成都拓米双都光电有限公司 | Foldable ultrathin glass cover plate and modified CPI coating preparation method thereof |
| CN110014707B (en) * | 2019-04-30 | 2021-01-15 | 拓米(成都)应用技术研究院有限公司 | Foldable ultrathin glass cover plate and preparation method thereof |
| CN110426877B (en) * | 2019-07-08 | 2020-10-27 | 深圳市华星光电技术有限公司 | A narrow-frame display panel and its manufacturing method, and a narrow-frame display device |
| CN111261040A (en) * | 2019-08-02 | 2020-06-09 | 拓米(成都)应用技术研究院有限公司 | Foldable flexible cover plate and manufacturing method thereof |
| CN110922623B (en) * | 2019-12-19 | 2021-06-15 | 浙江道明光电科技有限公司 | Colorless transparent polyimide composite film and preparation method thereof |
| KR102272752B1 (en) * | 2020-09-03 | 2021-07-05 | 에스케이이노베이션 주식회사 | Glass substrate laminate, manufacturing method thereof, and flexibel display panel including the same |
| JP2022096910A (en) | 2020-12-18 | 2022-06-30 | 住友化学株式会社 | Laminated body and display device including it |
| JP2022096909A (en) | 2020-12-18 | 2022-06-30 | 住友化学株式会社 | Front plate for display device |
| JPWO2023286685A1 (en) * | 2021-07-16 | 2023-01-19 |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09160049A (en) * | 1995-12-13 | 1997-06-20 | Casio Comput Co Ltd | Liquid crystal display device and method for forming alignment film thereof |
| EP1048628A1 (en) | 1999-04-30 | 2000-11-02 | Schott Glas | Polymer coated glassfoil substrate |
| HK1042684B (en) * | 1999-01-11 | 2004-07-23 | Schott Spezialglas Gmbh | Polymer-coated thin-glass film substrates |
| JP2002297054A (en) * | 2001-03-29 | 2002-10-09 | Sumitomo Bakelite Co Ltd | Substrate for display device |
| JP4213616B2 (en) * | 2004-03-31 | 2009-01-21 | 大日本印刷株式会社 | Base film for liquid crystal panel, functional film for liquid crystal panel, method for producing functional film, and apparatus for producing functional film |
| US20080020217A1 (en) * | 2004-06-21 | 2008-01-24 | Takashi Makinoshima | Colorless Transparent Polyimide Composite Film and Method for Producing Same |
| CN101107291A (en) * | 2005-01-21 | 2008-01-16 | 三菱瓦斯化学株式会社 | Polyimide resin, polyimide film, and polyimide laminate |
| KR101238967B1 (en) * | 2005-04-14 | 2013-03-04 | 미츠비시 가스 가가쿠 가부시키가이샤 | Process for producing polyimide film |
| KR20070017001A (en) * | 2005-08-03 | 2007-02-08 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Low Color Polyimide Compositions Useful in the Optical Type Field and Related Methods and Compositions |
| DE102006046961A1 (en) * | 2006-10-04 | 2008-04-10 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Production of a flexible, gastight and transparent composite film |
| JP5338469B2 (en) * | 2008-05-14 | 2013-11-13 | 三菱瓦斯化学株式会社 | Polyimide and polyamic acid |
| JP5788134B2 (en) * | 2008-10-01 | 2015-09-30 | 日本電気硝子株式会社 | GLASS ROLL AND GLASS ROLL MANUFACTURING METHOD |
| JP5166233B2 (en) * | 2008-12-26 | 2013-03-21 | 新日鉄住金化学株式会社 | Laminate for wiring board having transparent insulating resin layer |
| JP5567283B2 (en) * | 2009-02-27 | 2014-08-06 | 新日鉄住金化学株式会社 | Polyimide film |
| KR101127230B1 (en) * | 2009-04-09 | 2012-04-12 | 웅진케미칼 주식회사 | flexible display substrate |
| JP2011121320A (en) * | 2009-12-11 | 2011-06-23 | Nippon Electric Glass Co Ltd | Glass film laminate, glass roll thereof, and method for manufacturing glass roll |
| JP2011140187A (en) * | 2010-01-08 | 2011-07-21 | Teijin Chem Ltd | Laminated film, transparent conductive laminated film, and electronic component |
| WO2011152380A1 (en) * | 2010-06-02 | 2011-12-08 | 日本電気硝子株式会社 | Glass film laminate |
-
2012
- 2012-02-10 JP JP2012027068A patent/JP5822352B2/en active Active
-
2013
- 2013-01-31 TW TW102103679A patent/TWI560052B/en not_active IP Right Cessation
- 2013-02-07 CN CN201310049356.XA patent/CN103240936B/en not_active Expired - Fee Related
- 2013-02-08 KR KR1020130014223A patent/KR102066280B1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| KR20130092487A (en) | 2013-08-20 |
| CN103240936B (en) | 2016-08-24 |
| CN103240936A (en) | 2013-08-14 |
| TWI560052B (en) | 2016-12-01 |
| KR102066280B1 (en) | 2020-01-14 |
| TW201336679A (en) | 2013-09-16 |
| JP2013163304A (en) | 2013-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5822352B2 (en) | Transparent flexible laminate and laminate roll | |
| JP5650458B2 (en) | LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD | |
| JP7304338B2 (en) | Method for producing polyimide film and method for producing electronic device | |
| JP6607193B2 (en) | Polyimide precursor, polyimide, and polyimide film | |
| JP2012102155A (en) | Polyimide film, laminate, and flexible device | |
| KR20150007335A (en) | Thermally stable, flexible substrates for electronic devices | |
| JPWO2016063993A1 (en) | Polyimide film, polyimide precursor, and polyimide | |
| JP5946348B2 (en) | Transparent conductive film and polyimide film for production thereof | |
| WO2014123045A1 (en) | Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate | |
| JP2014061685A (en) | Polyimide laminate and production method of the same | |
| JP6503183B2 (en) | Polyimide laminate, electronic device, and method of manufacturing electronic device | |
| JP2014070139A (en) | Polyimide precursor and resin composition including the same, polyimide film and method for manufacturing the same, and laminate and method for manufacturing the same | |
| TW202108664A (en) | Resin film, metal-clad laminate and method for producing same | |
| CN111770949B (en) | Polyimide, polyimide solution composition, polyimide film, and substrate | |
| JP6974956B2 (en) | Polyimide precursor and polyimide | |
| JP2020164704A (en) | Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for manufacturing polyimide film | |
| TWI405792B (en) | A polyimide film having a high adhesion property and a method for producing the same | |
| JP2025113284A (en) | Laminate of inorganic substrate and cured polyamic acid | |
| JP2017197631A (en) | Polyimide precursor, polyimide, polyimide film, polyimide laminate, and polyimide/hard coat laminate | |
| JP6461860B2 (en) | Method for producing transparent conductive film | |
| JP7589156B2 (en) | Metal-clad laminate for flexible electronic devices and flexible electronic devices using same | |
| JP4852287B2 (en) | Aromatic polyimide film | |
| JPWO2021049556A5 (en) | ||
| KR101284397B1 (en) | Polyamic acid and display device | |
| JP2019065265A (en) | Polyimide film and metal-clad laminate |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140919 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150608 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150817 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151002 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5822352 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |