[go: up one dir, main page]

JP5953734B2 - Heatsinks, stacked electronic devices, and electronic equipment. - Google Patents

Heatsinks, stacked electronic devices, and electronic equipment. Download PDF

Info

Publication number
JP5953734B2
JP5953734B2 JP2011278755A JP2011278755A JP5953734B2 JP 5953734 B2 JP5953734 B2 JP 5953734B2 JP 2011278755 A JP2011278755 A JP 2011278755A JP 2011278755 A JP2011278755 A JP 2011278755A JP 5953734 B2 JP5953734 B2 JP 5953734B2
Authority
JP
Japan
Prior art keywords
heat
thickness direction
substrate
rigid
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011278755A
Other languages
Japanese (ja)
Other versions
JP2013131561A (en
Inventor
岡田 晃
晃 岡田
金崎 克己
克己 金崎
雄英 宮▲崎▼
雄英 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011278755A priority Critical patent/JP5953734B2/en
Publication of JP2013131561A publication Critical patent/JP2013131561A/en
Application granted granted Critical
Publication of JP5953734B2 publication Critical patent/JP5953734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本願の開示する技術は、放熱器、積層型電子デバイス、及び電子機器に関する。   The technology disclosed in the present application relates to a radiator, a stacked electronic device, and an electronic apparatus.

基板上に複数の集積回路を上下に重ねて実装する構造において、少なくともソケット本体と多層化した集積回路の層間放熱体とを一体に組み込んだ電子部品の実装構造が知られている。   2. Description of the Related Art In a structure in which a plurality of integrated circuits are stacked one above the other on a substrate, an electronic component mounting structure is known in which at least a socket body and a multilayer integrated circuit heat sink are integrated.

また、複数の集積回路を有し且つ該集積回路の上に別の集積回路が配置されているダイスタックアッセンブリの側面に熱結合された放熱装置を備える集積回路アッセンブリが知られている。   An integrated circuit assembly is also known that includes a heat dissipation device that is thermally coupled to a side surface of a die stack assembly that includes a plurality of integrated circuits and on which another integrated circuit is disposed.

ここで、近年、LSIの実装個数が増加傾向にあり、これに伴いメモリの実装個数が増加傾向にある。また、LSIの低電圧大電流化に伴い供給電圧種類が増えているためPOL(Point Of Load)の実装個数も増加傾向にある。また、このようにメモリやPOLの増加に伴い、これらが高密度実装される傾向にある。そして、このように発熱量の大きいメモリやPOLの増加及び高密度実装に伴い発熱量が増加する傾向にある。   Here, in recent years, the number of mounted LSIs is increasing, and the number of mounted memories is increasing accordingly. In addition, the number of POLs (Point Of Load) mounted is on an increasing trend because the types of supply voltages are increasing as LSIs have lower voltages and larger currents. In addition, as memory and POL increase in this way, they tend to be mounted at high density. In addition, the amount of heat generation tends to increase with the increase in memory and POL that generate a large amount of heat and high-density mounting.

特開平8−241954号公報Japanese Patent Application Laid-Open No. H8-241954 特開2008―91879号公報JP 2008-91879 A

よって、メモリやPOL等の半導体デバイスを冷却する放熱器の放熱効果を向上させて、半導体デバイスをより効果的に冷却させることが望まれている。   Therefore, it is desired to cool the semiconductor device more effectively by improving the heat radiation effect of the radiator that cools the semiconductor device such as the memory and POL.

本願の開示する技術は、上記課題に鑑みて成されたものであり、半導体デバイスを冷却する放熱器の放熱効果を向上させることが目的である。   The technology disclosed in the present application has been made in view of the above problems, and an object thereof is to improve the heat dissipation effect of a radiator that cools a semiconductor device.

上記目的を達成するために、本願の開示する技術は、半導体デバイスが実装された基板に放熱器の複数の熱伝導板部が積層されている。熱伝導板部には半導体デバイスが接触する。各熱伝導板部の板厚方向と直交する幅方向の端部には熱伝導性を有する取付部が取り付けられている。そして、取付部の間を、熱伝導性を有する連結部が板厚方向に連結する。   In order to achieve the above object, in the technology disclosed in the present application, a plurality of heat conductive plate portions of a radiator are stacked on a substrate on which a semiconductor device is mounted. The semiconductor device is in contact with the heat conducting plate. An attachment portion having thermal conductivity is attached to an end portion in the width direction orthogonal to the plate thickness direction of each heat conduction plate portion. And the connection part which has heat conductivity connects between attachment parts in a plate | board thickness direction.

或いは、半導体デバイスが実装された複数の基板の各々における板厚方向と直交する幅方向の端部に、基板に設けられた熱伝導層に接触するように放熱器の取付部が取り付けられている。そして、取付部の間を、熱伝導性を有する連結部が板厚方向に連結する。   Alternatively, an attachment portion of the radiator is attached to the end portion in the width direction orthogonal to the plate thickness direction of each of the plurality of substrates on which the semiconductor devices are mounted so as to contact the heat conduction layer provided on the substrate. . And the connection part which has heat conductivity connects between attachment parts in a plate | board thickness direction.

本願の開示する放熱器によれば、放熱面積が広くなるので、放熱効果が向上する。   According to the radiator disclosed in the present application, the heat radiation area is widened, so that the heat radiation effect is improved.

(A)はサーバー装置を示す斜視図であり、(B)は積層型電子デバイスが設けられたメイン基板を板厚方向に見た図である。(A) is the perspective view which shows a server apparatus, (B) is the figure which looked at the main board | substrate with which the multilayer electronic device was provided in the plate | board thickness direction. 積層型電子デバイスが設けられたメイン基板を示す斜視図である。It is a perspective view which shows the main board | substrate with which the multilayer electronic device was provided. (A)は積層型電子デバイスを示す斜視図であり、(B)は積層型電子デバイスを送風方向に見た図である。(A) is the perspective view which shows a multilayer electronic device, (B) is the figure which looked at the multilayer electronic device in the ventilation direction. 放熱器の固定部を示す斜視図である。It is a perspective view which shows the fixing | fixed part of a heat radiator. 放熱器の固定部を装着していない状態の積層型電子デバイスを、(A)は送風方向と直交する方向から見た図であり、(B)は送風方向に見た図である。(A) is the figure which looked at the laminated | stacked electronic device of the state which is not mounting | wearing with the fixing | fixed part of a heat radiator from the direction orthogonal to a ventilation direction, (B) is the figure seen in the ventilation direction. 放熱器の固定部の着脱を説明するための、(A)は固定部を装着していない状態の積層型電子デバイスを送風方向と直交する方向から見た図であり、(B)は固定部を装着した状態の図である。(A) for demonstrating attachment / detachment of the fixing | fixed part of a heat radiator is the figure which looked at the laminated | stacked electronic device of the state which is not mounting | wearing with the fixing | fixed part from the direction orthogonal to a ventilation direction, (B) is a fixing | fixed part. It is a figure of the state which mounted | wore. (A)は放熱器の固定部を装着していない状態の積層型電子デバイスを示す図であり、(B)は固定部が着脱された積層型電子デバイスの斜視図である。(A) is a figure which shows the multilayer electronic device of the state which is not mounting | wearing with the fixing | fixed part of a heat radiator, (B) is a perspective view of the multilayer electronic device with which the fixing | fixed part was attached or detached. (A)は放熱器の固定部を装着していない状態の第一変形例の積層型電子デバイスを示す図であり、(B)は固定部が着脱された第一変形例の積層型電子デバイスの斜視図である。(A) is a figure which shows the multilayer electronic device of the 1st modification of the state which is not mounting | wearing with the fixing | fixed part of a heat radiator, (B) is the multilayer electronic device of the 1st modification with which the fixing | fixed part was attached or detached. FIG. (A)は放熱器の固定部を装着していない状態の第二変形例の積層型電子デバイスを示す図であり、(B)は固定部が着脱された第二変形例の積層型電子デバイスの斜視図であり、(C)は熱伝導板部を示す斜視図である。(A) is a figure which shows the multilayer electronic device of the 2nd modification of the state which is not mounting | wearing with the fixing | fixed part of a heat radiator, (B) is the multilayer electronic device of the 2nd modification with which the fixing | fixed part was attached or detached. (C) is a perspective view which shows a heat conductive board part. 第三変形例の積層型電子デバイスを送風方向から見た図である。It is the figure which looked at the lamination type electronic device of the 3rd modification from the blowing direction. 分解して測定装置のプローブをリジッドフレキシブル基板のリジッド部に当てた状態を示す説明する説明図である。It is explanatory drawing which shows the state which decomposed | disassembled and applied the probe of the measuring apparatus to the rigid part of the rigid flexible substrate.

以下に、本願の開示する技術の一実施形態を図面に基づいて詳細に説明する。なお、本実施形態では、ネットワークシステムやサーバーシステム等に用いるサーバー装置に本願の開示する技術を適用した例を説明する。   Hereinafter, an embodiment of the technology disclosed in the present application will be described in detail with reference to the drawings. In the present embodiment, an example in which the technology disclosed in the present application is applied to a server device used in a network system, a server system, or the like will be described.

まず、サーバー装置の全体構造について、図1と図2とを用いて説明する。   First, the overall structure of the server device will be described with reference to FIGS.

図1(A)に示すように、電子機器の一例としてのサーバー装置10は、筐体14を備える装置本体12と、装置本体12に着脱可能に装着された複数のメイン基板(マザーボード)50(図2も参照)と、を有している。   As shown in FIG. 1A, a server apparatus 10 as an example of an electronic device includes an apparatus main body 12 including a housing 14 and a plurality of main boards (motherboards) 50 (removably attached to the apparatus main body 12). (See also FIG. 2).

図1(B)及び図2に示すように、メイン基板50には、CPU(Central Processing Unit)等の各種電子部品52(図2参照)や後述する積層型電子デバイス100等が実装されている。また、メイン基板50の端部には、基板側信号接続コネクタ54や基板側電源接続コネクタ56等が設けられている。   As shown in FIGS. 1B and 2, various electronic components 52 (see FIG. 2) such as a CPU (Central Processing Unit), a laminated electronic device 100 described later, and the like are mounted on the main board 50. . Further, at the end of the main board 50, a board-side signal connection connector 54, a board-side power connection connector 56, and the like are provided.

図1(A)に示すように、複数のメイン基板50は、装置本体12に着脱可能に装着されている。複数のメイン基板50は、装置本体12の横方向を板厚方向(面外方向)とした状態で横方向に間隔をあけて配置されている。また、装置本体12に設けられた図示が省略されている本体側接続部や本体側コネクタに、メイン基板50の基板側信号接続コネクタ54や基板側電源接続コネクタ56が接続されることで、メイン基板50と装置本体12とが電気的に接続される。   As shown in FIG. 1A, the plurality of main boards 50 are detachably attached to the apparatus main body 12. The plurality of main boards 50 are arranged at intervals in the horizontal direction with the horizontal direction of the apparatus main body 12 being the plate thickness direction (out-of-plane direction). Further, the board-side signal connection connector 54 and the board-side power connection connector 56 of the main board 50 are connected to the body-side connection part and the body-side connector, which are not shown in the figure, provided in the apparatus body 12. The substrate 50 and the apparatus main body 12 are electrically connected.

装置本体12の筐体14の背面における下端部分には、吸気口60が横方向に間隔をあけて複数設けられている。各吸気口60には送風装置62が設けられており、これにより空気(外気)が装置本体12の内部に吸気される。吸気された空気は、矢印Fで示すように、横方向に並んだメイン基板50の間を下から上に流れる。そして、装置本体12の正面における上端部に設けられた図示が省略された排気口から排気される。   A plurality of air inlets 60 are provided in the lower end portion of the back surface of the housing 14 of the apparatus main body 12 at intervals in the horizontal direction. Each intake port 60 is provided with a blower 62, whereby air (outside air) is sucked into the apparatus main body 12. As shown by the arrow F, the sucked air flows between the main boards 50 arranged in the horizontal direction from the bottom to the top. And it exhausts from the exhaust port with which illustration was abbreviate | omitted provided in the upper end part in the front of the apparatus main body 12. FIG.

つぎに、積層型電子デバイス100について、図3〜図6を用いて説明する。なお、矢印Tは後述する板厚方向を示す。また、詳細は後述するが、図6(A)では固定部160は左右に二つずつ合計四つ図示されている。しかし、図の左右外側に図示されている固定部160は連結部164を伸ばす前の状態を示し、その内側に図示されている固定部160は熱伝導板部152の端部152Aに装着するために連結部164を伸ばした状態を図示したものである。   Next, the multilayer electronic device 100 will be described with reference to FIGS. The arrow T indicates the plate thickness direction to be described later. Although details will be described later, in FIG. 6A, a total of four fixing portions 160 are shown on the left and right. However, the fixing portion 160 shown on the left and right outer sides of the drawing shows a state before the connecting portion 164 is extended, and the fixing portion 160 shown on the inner side is attached to the end portion 152A of the heat conducting plate portion 152. The state which extended the connection part 164 to FIG.

図3に示すように、積層型電子デバイス100は、リジッドフレキシブル基板110と放熱器150とを有している。   As shown in FIG. 3, the multilayer electronic device 100 includes a rigid flexible substrate 110 and a radiator 150.

図3及び図5に示すように、リジッドフレキシブル基板110は、フレキシブル部(フレキシブル基板)112と、基板の一例としてのリジッド部(リジッド基板)120と、を一体化したプリント基板である。なお、フレキシブル部112はポリイミド等の曲がる材料から作られ、リジッド部120はガラスエポキシ等の硬い材料から作られている。   As shown in FIGS. 3 and 5, the rigid flexible substrate 110 is a printed board in which a flexible portion (flexible substrate) 112 and a rigid portion (rigid substrate) 120 as an example of a substrate are integrated. The flexible portion 112 is made of a bending material such as polyimide, and the rigid portion 120 is made of a hard material such as glass epoxy.

リジッド部120は平面視における(板厚方向に見た)形状が略矩形状の板状とされ、板厚方向と直交する面120Dに半導体デバイスの一例としてのメモリ122が、ボールグリッドアレイ(BGA)等によって実装されている。   The rigid portion 120 is a plate having a substantially rectangular shape in plan view (viewed in the plate thickness direction), and a memory 122 as an example of a semiconductor device is mounted on a surface 120D orthogonal to the plate thickness direction on a ball grid array (BGA). ) Etc.

なお、本実施形態におけるメモリ122は、半導体メモリであり、主記憶装置として用いられている。   Note that the memory 122 in the present embodiment is a semiconductor memory and is used as a main storage device.

図3に示すように、放熱器150は、熱伝導板部152と対を成す固定部160(図4、図6(A)も参照)とを有している。そして、リジッド部120と放熱器150の熱伝導板部152とが交互に積層されている。また、リジッド部120のメモリ122の外面122Dが熱伝導板部152の板面152Dに面接触している(図5も参照)。フレキシブル部112は湾曲されて熱伝導板部152の外側に配置される(図5(B)も参照)。   As shown in FIG. 3, the heat radiator 150 includes a fixing portion 160 (see also FIGS. 4 and 6A) that forms a pair with the heat conducting plate portion 152. The rigid portions 120 and the heat conduction plate portions 152 of the radiator 150 are alternately stacked. Further, the outer surface 122D of the memory 122 of the rigid portion 120 is in surface contact with the plate surface 152D of the heat conducting plate portion 152 (see also FIG. 5). The flexible portion 112 is curved and disposed outside the heat conducting plate portion 152 (see also FIG. 5B).

なお、リジッドフレキシブル基板110のリジッド部120と放熱器150の熱伝導板部152とが積層された状態におけるリジッド部120及び熱伝導板部152の板厚方向(積層方向)は矢印Tとして示されている。また、この板厚方向Tは、メイン基板50の板厚方向(面外方向)とも一致すると共に、図2で示すように、メイン基板50が装置本体12に装着された状態では水平方向となる。   Note that the thickness direction (stacking direction) of the rigid portion 120 and the heat conductive plate portion 152 in a state where the rigid portion 120 of the rigid flexible substrate 110 and the heat conductive plate portion 152 of the radiator 150 are stacked is indicated by an arrow T. ing. The plate thickness direction T also coincides with the plate thickness direction (out-of-plane direction) of the main substrate 50, and is horizontal when the main substrate 50 is mounted on the apparatus main body 12, as shown in FIG. .

なお、板厚方向と直交するリジッド部120及び熱伝導板部152の辺部に沿った方向を幅方向W1,W2とする。なお、図7(A)、図8(A)、図9(A)の斜視図における幅方向W2は、二図又は三図を一枚に図示した関係から、図2及び図3と比べると短く見えるが、実際は図2及び図3と同じ長さである。   In addition, let the direction along the side part of the rigid part 120 and the heat conductive board part 152 orthogonal to a plate | board thickness direction be width direction W1, W2. Note that the width direction W2 in the perspective views of FIGS. 7A, 8A, and 9A is compared with FIGS. 2 and 3 from the relationship shown in FIG. Although it looks short, it is actually the same length as FIGS.

また、熱伝導板部152は、リジッド部120よりも熱伝導率が高く、熱伝導性に優れた金属材料、例えば、アルミや銅を主成分とする金属材料から作られている。そして、熱伝導板部152は、平面視における(板厚方向Tに見た)形状が略矩形状の板状とされ、またリジッド部120よりも大きい。よって、熱伝導板部152は、リジッド部120よりも外側に張り出している。   Further, the heat conductive plate portion 152 is made of a metal material having higher heat conductivity than the rigid portion 120 and having excellent heat conductivity, for example, a metal material mainly composed of aluminum or copper. The shape of the heat conductive plate portion 152 in plan view (seen in the plate thickness direction T) is a substantially rectangular plate shape, and is larger than the rigid portion 120. Therefore, the heat conductive plate portion 152 projects outward from the rigid portion 120.

図3及び図4に示すように、固定部160は、装着部162と、装着部162を連結する連結部164と、を有している。装着部162は、断面が略U字形状とされ、二つの腕部161A,161Bを有している。そして、二つの腕部161A,161Bの間に熱伝導板部152の端部152Aが差し込まれ挟持する構造となっている。なお、腕部161A,161の幅方向W2の長さは、熱伝導板部152の端部152Aの幅方向W2の長さと同じである。また、連結部164は、複数の板状部166が蛇腹状に配置され、板厚方向Tに伸縮して弾性変形する板バネ構造となっている。また、連結部164の蛇腹状の屈曲部165の山の稜線に沿った方向(折筋方向)を稜線方向Lとする。   As shown in FIGS. 3 and 4, the fixing portion 160 includes a mounting portion 162 and a connecting portion 164 that connects the mounting portion 162. The mounting portion 162 is substantially U-shaped in cross section and has two arm portions 161A and 161B. And it has the structure where 152 A of edge parts of the heat conductive board part 152 are inserted between the two arm parts 161A and 161B, and are clamped. Note that the length of the arm portions 161A and 161 in the width direction W2 is the same as the length of the end portion 152A of the heat conducting plate portion 152 in the width direction W2. Further, the connecting portion 164 has a plate spring structure in which a plurality of plate-like portions 166 are arranged in a bellows shape and elastically deforms by expanding and contracting in the plate thickness direction T. The direction along the ridge line of the mountain of the bellows-like bent part 165 of the connecting part 164 (folding line direction) is defined as a ridge line direction L.

なお、本実施形態では、連結部164の端部が装着部162にロウ付け半田等によって接合されている。また、装着部162及び連結部164は、リジッド部120よりも熱伝導率が高く熱伝導性に優れたバネ性を有する金属材料、例えば、バネ用ベリリウム銅等で作られている。   In the present embodiment, the end of the connecting portion 164 is joined to the mounting portion 162 by brazing solder or the like. Further, the mounting portion 162 and the connecting portion 164 are made of a metal material having a spring property that is higher in thermal conductivity and superior in thermal conductivity than the rigid portion 120, for example, beryllium copper for springs.

そして、図3に示すように、熱伝導板部152におけるフレキシブル部112が配置されていない幅方向W1の両方の端部152Aにそれぞれ固定部160の装着部162が差し込まれ装着されている。   And as shown in FIG. 3, the mounting part 162 of the fixing | fixed part 160 is each inserted and mounted | worn at both edge part 152A of the width direction W1 in which the flexible part 112 in the heat conductive board part 152 is not arrange | positioned.

図6(A)に示されている左右両外側に図示された(熱伝導板部152の端部152A差し込む前の)固定部160の装着部162の板厚方向Tの間隔は、熱伝導板部152の板厚方向Tの間隔よりも狭い。よって、熱伝導板部152の端部152Aに固定部160の装着部162が差し込まれた状態では、連結部164の弾性力によって装着部162は互いの側に付勢され、これにより熱伝導板部152が互いの側に付勢される。そして、このように熱伝導板部152が互いの側に付勢されることによって、熱伝導板部152とリジッド部120とが固定(圧接)され一体化される。   The interval in the plate thickness direction T of the mounting portion 162 of the fixing portion 160 (before inserting the end portion 152A of the heat conductive plate portion 152) illustrated on the left and right outer sides shown in FIG. It is narrower than the interval in the plate thickness direction T of the portion 152. Therefore, in a state where the mounting portion 162 of the fixed portion 160 is inserted into the end portion 152A of the heat conducting plate portion 152, the mounting portions 162 are urged toward each other by the elastic force of the connecting portion 164. The parts 152 are biased toward each other. Then, the heat conduction plate portion 152 is urged toward each other in this manner, whereby the heat conduction plate portion 152 and the rigid portion 120 are fixed (pressure contact) and integrated.

図3、図5、図6に示すように、メイン基板50に対向する位置に配置されたリジッド部120には、スタックコネクタ130が設けられている。また、メイン基板50にはスタックコネクタ132が設けられている。そして、スタックコネクタ130をスタックコネクタ132に接続することで、積層型電子デバイス100とメイン基板50とが電気的に接続されると共に、積層型電子デバイス100がメイン基板50に固定される。   As shown in FIGS. 3, 5, and 6, the rigid connector 120 disposed at a position facing the main board 50 is provided with a stack connector 130. The main board 50 is provided with a stack connector 132. Then, by connecting the stack connector 130 to the stack connector 132, the multilayer electronic device 100 and the main substrate 50 are electrically connected, and the multilayer electronic device 100 is fixed to the main substrate 50.

図2に示すように、メイン基板50が装置本体12に装着された状態では、積層型電子デバイス100のリジッド部120及び熱伝導板部152の板厚方向T(積層方向)は水平方向となる。よって、メイン基板50が装置本体12に装着された状態では、積層型電子デバイス100のリジッド部120及び熱伝導板部152の板厚方向Tは、送風装置62(図1(A)参照)によって下から上に流れる送風方向Fに対して直交となる。つまり、送風方向Fに沿って熱伝導板部152の板面152D及びリジッド部120の面120Dが配置される。また、メイン基板50が装置本体12に装着された状態では、図4に示すように、放熱器150の連結部164の蛇腹の屈曲部165の稜線方向Lは、送風方向Fに沿っている。   As shown in FIG. 2, when the main board 50 is mounted on the apparatus main body 12, the plate thickness direction T (stacking direction) of the rigid portion 120 and the heat conducting plate portion 152 of the stacked electronic device 100 is the horizontal direction. . Therefore, in the state where the main board 50 is mounted on the apparatus main body 12, the plate thickness direction T of the rigid part 120 and the heat conduction plate part 152 of the multilayer electronic device 100 is determined by the blower 62 (see FIG. 1A). It is orthogonal to the blowing direction F flowing from the bottom to the top. That is, the plate surface 152D of the heat conducting plate portion 152 and the surface 120D of the rigid portion 120 are arranged along the blowing direction F. Further, in a state where the main board 50 is mounted on the apparatus main body 12, the ridge line direction L of the bellows bent portion 165 of the connecting portion 164 of the radiator 150 is along the blowing direction F, as shown in FIG. 4.

つぎに、積層型電子デバイス100の組付方法及び分解方法の一例について、図5〜図7を用いて説明する。但し、分解方法は、組付方法と逆の手順で行えばよいので詳しい説明は省略する。なお、積層型電子デバイス100のメイン基板50への着脱は、メイン基板50が装置本体12から取り外した状態で行われる。また、本組付方法及び本分解方法は、一例であって、これに限定されない。   Next, an example of a method for assembling and disassembling the multilayer electronic device 100 will be described with reference to FIGS. However, since the disassembling method may be performed in the reverse order of the assembling method, detailed description thereof is omitted. The multilayer electronic device 100 is attached to and detached from the main board 50 with the main board 50 removed from the apparatus main body 12. Further, the assembling method and the disassembling method are examples, and the present invention is not limited thereto.

図5に示すように、リジッドフレキシブル基板110のリジッド部120と放熱器150の熱伝導板部152とを板厚方向Tに間隔をあけて交互に配置する。また、リジッドフレキシブル基板110のフレキシブル部112は、湾曲させて熱伝導板部152の外側に配置する。   As shown in FIG. 5, the rigid portions 120 of the rigid flexible substrate 110 and the heat conductive plate portions 152 of the radiator 150 are alternately arranged in the plate thickness direction T with an interval therebetween. Further, the flexible portion 112 of the rigid flexible substrate 110 is curved and disposed outside the heat conducting plate portion 152.

図6(A)及び図7(A)に示すように、リジッド部120と熱伝導板部152とを積層させる。これによりリジッド部120に実装されたメモリ122の外面122Dが熱伝導板部152の板面152D(図5も参照)に接触する。また、リジッド部120に設けられたスタックコネクタ130をメイン基板50のスタックコネクタ132に接続する。   As shown in FIGS. 6A and 7A, the rigid portion 120 and the heat conductive plate portion 152 are stacked. As a result, the outer surface 122D of the memory 122 mounted on the rigid portion 120 contacts the plate surface 152D (see also FIG. 5) of the heat conducting plate portion 152. Further, the stack connector 130 provided in the rigid part 120 is connected to the stack connector 132 of the main board 50.

図6と図7とに示すように、熱伝導板部152におけるフレキシブル部112が配置されていない両端部152Aに、固定部160の装着部162を差し込む。なお、図6(A)の左右両外側に図示されているように固定部160の装着部162の板厚方向Tの間隔は、積層された状態の熱伝導板部152の間隔よりも狭い。よって、これらの左右内側に図示されている固定部160のように、差し込む際は、板厚方向Tに連結部164を伸ばして装着部162の間隔を広げて、熱伝導板部152の端部152Aに差し込む。   As shown in FIGS. 6 and 7, the mounting portion 162 of the fixing portion 160 is inserted into both end portions 152 </ b> A where the flexible portion 112 is not disposed in the heat conducting plate portion 152. 6A, the interval in the plate thickness direction T of the mounting portion 162 of the fixing portion 160 is narrower than the interval between the heat conduction plate portions 152 in the stacked state. Therefore, like the fixing part 160 illustrated on the left and right inner sides, when inserting, the connecting part 164 is extended in the plate thickness direction T to widen the interval between the mounting parts 162, and the end of the heat conducting plate part 152. Plug into 152A.

このようにして固定部160が装着されることによって、熱伝導板部152が互いの側に付勢され、これにより熱伝導板部152とリジッド部120とが固定(圧接)され一体化される。   By mounting the fixing portion 160 in this manner, the heat conducting plate portions 152 are biased toward each other, whereby the heat conducting plate portion 152 and the rigid portion 120 are fixed (pressure contact) and integrated. .

なお、本取付方法では、リジッド部120に設けられたスタックコネクタ130をメイン基板50のスタックコネクタ132に接続した後に、放熱器150の固定部160を装着したが、これに限定されない。放熱器150の固定部160を装着した後に、リジッド部120に設けられたスタックコネクタ130をメイン基板50のスタックコネクタ132に接続してもよい。   In this attachment method, the stack connector 130 provided in the rigid portion 120 is connected to the stack connector 132 of the main board 50 and then the fixing portion 160 of the heat radiator 150 is mounted. However, the present invention is not limited to this. After mounting the fixing part 160 of the radiator 150, the stack connector 130 provided on the rigid part 120 may be connected to the stack connector 132 of the main board 50.

また、前述したように、分解方法は組付方法と逆の手順で行えばよい。つまり、放熱器150の装着部162を熱伝導板部152の端部152Aから引き抜くことで、分解することができる。   Further, as described above, the disassembling method may be performed in the reverse order of the assembling method. That is, it can be disassembled by pulling out the mounting portion 162 of the radiator 150 from the end portion 152A of the heat conducting plate portion 152.

つぎに、本実施形態の作用及び効果について説明する。   Next, functions and effects of the present embodiment will be described.

図1(A)に示すように、送風装置62によってメイン基板50の間を下から上に空気が流れる。また、図1(B)及び図2に示すメイン基板50に設けられた積層型電子デバイス100のメモリ122(図3等参照)が動作時に発熱する。しかし、積層型電子デバイス100におけるリジッド部120及び熱伝導板部152の板厚方向Tと送風方向Fとは直交している。すなわち、送風方向Fに沿って熱伝導板部152の板面152D及びリジッド部120の120D面が配置されている。よって、空気の流れが阻害されないで、リジッド部120及び熱伝導板部152との間を、リジッド部120の板面及び熱伝導板部152の板面152Dに沿って空気がスムーズに流れる。これによりメモリ122に空気が当たりメモリ122が冷却される。   As shown in FIG. 1A, air flows from the bottom to the top between the main boards 50 by the blower 62. In addition, the memory 122 (see FIG. 3 and the like) of the stacked electronic device 100 provided on the main board 50 shown in FIGS. 1B and 2 generates heat during operation. However, the thickness direction T of the rigid part 120 and the heat conduction plate part 152 in the multilayer electronic device 100 and the blowing direction F are orthogonal to each other. That is, the plate surface 152D of the heat conductive plate portion 152 and the 120D surface of the rigid portion 120 are arranged along the blowing direction F. Therefore, air flows smoothly between the rigid portion 120 and the heat conducting plate portion 152 along the plate surface of the rigid portion 120 and the plate surface 152D of the heat conducting plate portion 152 without being obstructed. As a result, air hits the memory 122 and the memory 122 is cooled.

また、メモリ122の熱は、放熱器150の熱伝導板部152に伝達され、更に熱伝導板部152から装着部162及び連結部164に伝達される。そして、放熱器150の熱伝導板部152から放熱されると共に装着部162及び連結部164から放熱されることで、熱伝導板部152が冷却され、これによりメモリ122が冷却される。   Further, the heat of the memory 122 is transmitted to the heat conduction plate portion 152 of the radiator 150, and is further transmitted from the heat conduction plate portion 152 to the mounting portion 162 and the connecting portion 164. Then, heat is radiated from the heat conduction plate portion 152 of the radiator 150 and is radiated from the mounting portion 162 and the connecting portion 164, thereby cooling the heat conduction plate portion 152, thereby cooling the memory 122.

放熱器150の熱伝導板部152は、空気と接触する接触面積、つまり放熱面積が広いので効果的に放熱される。更に、熱伝導板部152の板面152Dに沿って空気がスムーズに流れるので、効果的に放熱される。   The heat conduction plate portion 152 of the radiator 150 radiates heat effectively because it has a large contact area in contact with air, that is, a heat radiation area. Furthermore, since air flows smoothly along the plate surface 152D of the heat conducting plate portion 152, heat is radiated effectively.

また、連結部164は蛇腹状とされ板状部166が冷却フィンのように機能するので、連結部164は、空気と接触する接触面積、つまり放熱面積が広くなり、効果的に放熱される。また、図4に示すように、連結部164は、蛇腹の稜線方向Lが送風方向Fに沿っているので、空気の流れが阻害されないで板状部166に沿って空気がスムーズに流れる。よって、このように連結部164を配置することで、高い放熱効果が発揮される。   Further, since the connecting portion 164 has a bellows shape and the plate-like portion 166 functions like a cooling fin, the connecting portion 164 has a large contact area in contact with air, that is, a heat dissipation area, and is effectively dissipated. Further, as shown in FIG. 4, since the ridge line direction L of the bellows is along the air blowing direction F in the connecting portion 164, the air smoothly flows along the plate-like portion 166 without being obstructed by the air flow. Therefore, a high heat dissipation effect is exhibited by arranging the connecting portion 164 in this way.

また、図3及び図6等に示すように、放熱器150の連結部164の弾性力で熱伝導板部152が付勢され、これにより熱伝導板部152とリジッド部120とが固定され一体化される。つまり、放熱器150は、放熱機能と固定機能との両方の機能を有する。特に、連結部164を蛇腹状にして稜線方向Lが送風方向Fに沿うように連結部164を配置することで、弾性力を得ると共に高い放熱効果を発揮する構造となっている。   Further, as shown in FIGS. 3 and 6 and the like, the heat conduction plate portion 152 is urged by the elastic force of the connecting portion 164 of the radiator 150, whereby the heat conduction plate portion 152 and the rigid portion 120 are fixed and integrated. It becomes. That is, the radiator 150 has both a heat radiation function and a fixing function. In particular, by arranging the connecting part 164 so that the connecting part 164 has a bellows shape and the ridge line direction L is along the blowing direction F, the structure has a structure that obtains an elastic force and exhibits a high heat dissipation effect.

なお、リジッドフレキシブル基板110のフレキシブル部112に空気が通過するスリットや孔などを設けて空気がよりスムーズに流れるようにし、冷却効率を向上させてもよい。   In addition, a slit or a hole through which air passes may be provided in the flexible portion 112 of the rigid flexible substrate 110 so that the air flows more smoothly, thereby improving the cooling efficiency.

また、図6と図7とに示すように、放熱器150の装着部162を熱伝導板部152の端部152Aに差し込むことで固定すると共に、端部152Aから引き抜くことで分解される。よって、樹脂やはんだを利用して、熱伝導板部と固定部とを固定する方法と比較し、容易に積層型電子デバイス100を分解することができる。   As shown in FIGS. 6 and 7, the mounting portion 162 of the radiator 150 is fixed by being inserted into the end portion 152 </ b> A of the heat conduction plate portion 152, and is disassembled by being pulled out from the end portion 152 </ b> A. Therefore, the multilayer electronic device 100 can be easily disassembled as compared with the method of fixing the heat conducting plate portion and the fixing portion using resin or solder.

このように分解が容易であるので、例えば、図11に示すように、分解して測定装置900のプローブ902をリジッドフレキシブル基板110のリジッド部120に当てることが容易に可能であり、このため検査や測定が容易となる。また、故障等によってリジッドフレキシブル基板110を交換する際も容易である。   Since disassembly is easy in this manner, for example, as shown in FIG. 11, it is possible to easily disassemble and apply the probe 902 of the measuring apparatus 900 to the rigid portion 120 of the rigid flexible substrate 110, and thus inspection is possible. And measurement becomes easy. It is also easy to replace the rigid flexible substrate 110 due to a failure or the like.

ここで、リジッド部120に実装されたメモリ122の外面122Dと熱伝導板部152の板面152Dとの間には、面の平滑性の精度等によっては僅かな(例えば、ミクロンレベル)の空気層が存在することがある。よって、メモリ122から熱伝導板部152への熱伝導を向上させるために、空気層を埋めるシリコングリス等を、メモリ122の外面122D及び熱伝導板部152の板面152Dの少なくとも一方に塗布してもよい。   Here, between the outer surface 122D of the memory 122 mounted on the rigid portion 120 and the plate surface 152D of the heat conduction plate portion 152, a slight amount of air (for example, a micron level) depending on the smoothness accuracy of the surface. There may be layers. Therefore, in order to improve heat conduction from the memory 122 to the heat conduction plate portion 152, silicon grease or the like that fills the air layer is applied to at least one of the outer surface 122D of the memory 122 and the plate surface 152D of the heat conduction plate portion 152. May be.

つぎに、本実施形態の積層型電子デバイスの変形例について説明する。なお、上記実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。   Next, a modification of the multilayer electronic device of this embodiment will be described. In addition, the same code | symbol is attached | subjected to the member same as the said embodiment, and the overlapping description is abbreviate | omitted.

図8に示すように、第一変形例の積層型電子デバイス200は、ガラスエポキシ等の硬い材質から作られる基板の一例としてのリジッド基板220と放熱器150とを有している。放熱器150は、上記実施形態と同様の構成であるので、説明を省略する。なお、放熱器150は、リジッド基板220よりも熱伝導率が高い。   As shown in FIG. 8, the multilayer electronic device 200 according to the first modification includes a rigid substrate 220 and a radiator 150 as an example of a substrate made of a hard material such as glass epoxy. Since the heat radiator 150 has the same configuration as that of the above embodiment, the description thereof is omitted. The heat radiator 150 has a higher thermal conductivity than the rigid substrate 220.

リジッド基板220には、メモリ122が実装されている。そして、各リジッド基板1220間はケーブル212によって電気的に接続されている。   A memory 122 is mounted on the rigid board 220. The rigid boards 1220 are electrically connected by cables 212.

まず、第一変形例について説明する。
第一変形例の積層型電子デバイス200では、ケーブル212は、例えば、上記実施形態のフレキシブル部112(図7参照)よりも小さいので、よりスムーズに空気が流れる(図8と図7とを比較参照)。よって、メモリ122の冷却効率が更に向上する。
First, the first modification will be described.
In the multilayer electronic device 200 of the first modified example, the cable 212 is smaller than, for example, the flexible portion 112 (see FIG. 7) of the above embodiment, so that air flows more smoothly (compare FIGS. 8 and 7). reference). Therefore, the cooling efficiency of the memory 122 is further improved.

つぎに、第二変形例について説明する。
図9に示す第二変形例の積層型電子デバイス300は、リジッド基板220と放熱器350とを有している。
Next, a second modification will be described.
A stacked electronic device 300 of the second modification shown in FIG. 9 has a rigid substrate 220 and a radiator 350.

各リジッド基板220にはメモリ122が実装されている。また、各リジッド基板220には、スタックコネクタ312が設けられ、スタックコネクタ312によって電気的に接続されると共に固定される。   A memory 122 is mounted on each rigid board 220. Each rigid board 220 is provided with a stack connector 312, and is electrically connected and fixed by the stack connector 312.

図9(C)に示すように、放熱器350の熱伝導板部352は、スタックコネクタ312に対応する部位に切欠部354が形成されている。なお、熱伝導板部352は切欠部354が形成されている以外は、熱伝導板部152とは同様の構造である(同じ金属材料で作られている)。また、放熱器350の固定部160の装着部162と連結部164は、上記実施形態と同様であるので説明を省略する。   As shown in FIG. 9C, the heat conducting plate portion 352 of the radiator 350 has a notch 354 formed at a portion corresponding to the stack connector 312. The heat conduction plate portion 352 has the same structure as that of the heat conduction plate portion 152 (made of the same metal material) except that the notch portion 354 is formed. In addition, the mounting portion 162 and the connecting portion 164 of the fixing portion 160 of the radiator 350 are the same as those in the above embodiment, and thus description thereof is omitted.

第二変形例の積層型電子デバイス300では、スタックコネクタ312は、例えば、上記実施形態のフレキシブル部112(図7参照)よりも小さいので、よりスムーズに空気が流れる(図9と図7とを比較参照)。よって、メモリ122の冷却効率が更に向上する。   In the multilayer electronic device 300 of the second modification, the stack connector 312 is smaller than, for example, the flexible portion 112 (see FIG. 7) of the above embodiment, so that air flows more smoothly (see FIGS. 9 and 7). Comparison). Therefore, the cooling efficiency of the memory 122 is further improved.

また、リジッド基板220同士は、スタックコネクタ312によって電気的に接続されると共に固定される。よって、リジッド基板220に挟まれた熱伝導板部352も固定される。つまり、一番外側の熱伝導板部152以外は、固定する必要が少ない。よって、一番外側の熱伝導板部152を設けない構造とすると、連結部164の弾性力による固定を不要とすることも可能であり、連結部164は弾性力を有しない構造とすることも可能である。   The rigid boards 220 are electrically connected and fixed by the stack connector 312. Therefore, the heat conductive plate portion 352 sandwiched between the rigid substrates 220 is also fixed. That is, there is little need to fix other than the outermost heat conduction plate portion 152. Therefore, if the outermost heat conduction plate portion 152 is not provided, it is possible to eliminate the need to fix the connecting portion 164 by the elastic force, and the connecting portion 164 may have a structure having no elastic force. Is possible.

つぎに、第三変形例について説明する。
図10に示す第三変形例の積層型電子デバイス400は、基板の一例としてのリジッド基板420と放熱器450とを有している。なお、放熱器450は、上記実施形態の放熱器150(図3等を参照)の固定部160(図4参照)と同様の構造である。言い換えると本変形例の放熱器450は、放熱器150の熱伝導板部152を有しない構造と同様である。よって放熱器450の説明は省略する。
Next, a third modification will be described.
A multilayer electronic device 400 of the third modification shown in FIG. 10 includes a rigid substrate 420 and a radiator 450 as an example of a substrate. The radiator 450 has the same structure as the fixing portion 160 (see FIG. 4) of the radiator 150 (see FIG. 3 and the like) of the above embodiment. In other words, the radiator 450 of this modification is the same as the structure of the radiator 150 that does not include the heat conduction plate portion 152. Therefore, the description of the radiator 450 is omitted.

リジッド基板420は、基板本体424と、基板本体424よりも熱伝導率が高い熱伝導層の一例としてのシグナルグランド層(SG層)422と、を有する。なお、シグナルグランド層(SG層)422は、リジッド基板420の裏面に設けられている。また、放熱器150は基板本体424よりも熱伝導率が高い。   The rigid substrate 420 includes a substrate body 424 and a signal ground layer (SG layer) 422 as an example of a heat conductive layer having a higher thermal conductivity than the substrate body 424. The signal ground layer (SG layer) 422 is provided on the back surface of the rigid substrate 420. Further, the heat radiator 150 has a higher thermal conductivity than the substrate body 424.

リジッド基板420には、メモリ122が実装されている。また、リジッド基板420には、スタックコネクタ312が設けられ、スタックコネクタ312によって、リジッド基板420同士が電気的に接続されると共に固定されている。   A memory 122 is mounted on the rigid board 420. Further, the rigid board 420 is provided with a stack connector 312, and the rigid boards 420 are electrically connected and fixed by the stack connector 312.

対を成す放熱器450(固定部160)の装着部162がリジッド基板420の幅方向W1の両方の端部に差し込まれ、装着されている。そして、装着部162の腕部161Bが上述したリジッド基板420のシグナルグランド層422に接触している。リジッド基板420のシグナルグランド層422は熱伝導率が高いので、メモリ122の熱がシグナルグランド層422に伝達され、更にシグナルグランド層422から装着部162及び連結部164に伝達される。そして、装着部162及び連結部164から放熱されることで、メモリ122が冷却される。つまり、リジッド基板420のシグナルグランド層422が、熱伝導板部152(図3等を参照)と同様の機能を果たす。   The mounting portions 162 of the pair of radiators 450 (fixing portions 160) are inserted and attached to both ends of the rigid substrate 420 in the width direction W1. The arm portion 161B of the mounting portion 162 is in contact with the signal ground layer 422 of the rigid substrate 420 described above. Since the signal ground layer 422 of the rigid substrate 420 has high thermal conductivity, the heat of the memory 122 is transmitted to the signal ground layer 422, and is further transmitted from the signal ground layer 422 to the mounting portion 162 and the connecting portion 164. Then, the memory 122 is cooled by radiating heat from the mounting portion 162 and the connecting portion 164. That is, the signal ground layer 422 of the rigid substrate 420 performs the same function as the heat conductive plate portion 152 (see FIG. 3 and the like).

リジッド基板420間をスタックコネクタ312で固定しているので、連結部164の弾性力による固定を不要とすることも可能であり、連結部164は弾性力を有しない構造とすることも可能である。なお、第二変形例のようにリジッド基板420間をケーブル212で電気的に接続してもよい。   Since the rigid boards 420 are fixed by the stack connector 312, it is possible to eliminate the need for fixing by the elastic force of the connecting portion 164, and the connecting portion 164 may have a structure having no elastic force. . In addition, you may electrically connect between the rigid boards 420 with the cable 212 like a 2nd modification.

また、シグナルグランド層422を有するリジッド基板420であっても、熱伝導板部152、352をリジッド基板420の間に挟み、熱伝導板部152、352の端部152A、352Aに固定部160を装着する構成としてもよい。   Further, even in the rigid substrate 420 having the signal ground layer 422, the heat conductive plate portions 152 and 352 are sandwiched between the rigid substrates 420, and the fixing portions 160 are provided on the end portions 152A and 352A of the heat conductive plate portions 152 and 352. It is good also as a structure to mount.

尚、本願の開示する技術は、上記実施形態に限定されない。   In addition, the technique which this application discloses is not limited to the said embodiment.

上記実施形態では、発熱する半導体デバイス(発熱デバイス)はメモリ(半導体メモリ)122であったが、これに限定されない。例えば、POL(Point Of Load)であってもよい。   In the above embodiment, the semiconductor device (heat generating device) that generates heat is the memory (semiconductor memory) 122, but is not limited thereto. For example, POL (Point Of Load) may be used.

また、上記実施形態では、電子機器は、サーバー装置10であったが、これに限定されない。例えば、パーソナルコンピュータや大型の汎用コンピュータであってもよい。さらに、パソコン以外の電子機器に適用されてもよい。   Moreover, in the said embodiment, although the electronic device was the server apparatus 10, it is not limited to this. For example, a personal computer or a large general-purpose computer may be used. Furthermore, the present invention may be applied to electronic devices other than personal computers.

また、例えは、上記実施形態では、装着部162と連結部164とは、ロウ付け半田で接合したが、他の方法で接合してもよい。或いは、例えば、装着部と連結部とを一枚の板からプレス加工等によって形成されていてもよい。   For example, in the above embodiment, the mounting portion 162 and the connecting portion 164 are joined by brazing solder, but may be joined by other methods. Alternatively, for example, the mounting portion and the connecting portion may be formed from a single plate by pressing or the like.

また、例えば、上記実施形態では、装着部162を熱伝導板部152の端部に差し込んで装着したが、これに限定されない。装着部162と熱伝導板部152とをネジや半田等で固定してもよい。或いは、連結部164と装着部162とが一体となった構造であってもよい。   For example, in the said embodiment, although the mounting part 162 was inserted and attached to the edge part of the heat conductive board part 152, it is not limited to this. The mounting portion 162 and the heat conducting plate portion 152 may be fixed with screws, solder, or the like. Alternatively, the connecting portion 164 and the mounting portion 162 may be integrated.

また、例えば、上記実施形態では、連結部164は、複数の板状部166の蛇腹状に配置され、板厚方向Tに伸張し弾性変形する板バネ構造となっていたが、これに限定されない。例えば、連結部はコイルばね構造であってもよい。なお、コイルばね構造の場合は、放熱効果を高めるため(放熱面積を大きくするため)に、コイルばねを複数設けてもよい。更に、連結部は板厚方向Tに伸縮しない構造であってもよい。   Further, for example, in the above-described embodiment, the connecting portion 164 is arranged in a bellows shape of the plurality of plate-like portions 166 and has a leaf spring structure that stretches in the plate thickness direction T and elastically deforms, but is not limited thereto. . For example, the connecting portion may have a coil spring structure. In the case of the coil spring structure, a plurality of coil springs may be provided in order to increase the heat dissipation effect (in order to increase the heat dissipation area). Further, the connecting portion may have a structure that does not expand and contract in the plate thickness direction T.

また、上記実施形態では、送風方向Fは、上下方向であったが、これに限定されない。例えば、送風方向は水平方向であってもよい。また、送風方向に対応して放熱器や固定部を適宜配置すればよい。例えば、送風方向が水平方向の場合は、板厚方向Tが鉛直方向となるように配置すればよい。   Moreover, in the said embodiment, although the ventilation direction F was the up-down direction, it is not limited to this. For example, the blowing direction may be a horizontal direction. Moreover, what is necessary is just to arrange | position a heat radiator and a fixing | fixed part suitably according to a ventilation direction. For example, when the blowing direction is the horizontal direction, the plate thickness direction T may be arranged in the vertical direction.

なお、上述の実施形態及び複数の変形例は、適宜、組み合わされて実施されていてもよい。   In addition, the above-mentioned embodiment and a some modification may be combined suitably and may be implemented.

さらに、本願の開示する技術は、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。   Furthermore, it goes without saying that the technology disclosed in the present application can be implemented with various modifications within a range not departing from the gist thereof.

10 サーバー装置(電子機器の一例)
62 送風装置
100 積層型電子デバイス
120 リジッド部(基板の一例)
122 メモリ(半導体デバイスの一例)
150 放熱器
152 熱伝導板部
162 装着部(取付部の一例)
164 連結部
165 屈曲部
160 固定部
200 積層型電子デバイス
220 リジッド基板(基板の一例)
300 積層型電子デバイス
350 放熱器
352 熱伝導板部
400 積層型電子デバイス
420 リジッド基板(基板の一例)
422 シグナルグランド層(熱伝導層の一例)
450 放熱器
L 稜線方向
T 板厚方向
F 送風方向
W1 幅方向
10 Server device (an example of electronic equipment)
62 Blower 100 Stacked Electronic Device 120 Rigid Part (Example of Substrate)
122 Memory (an example of a semiconductor device)
150 radiator 152 heat conduction plate part 162 mounting part (an example of attachment part)
164 Connecting portion 165 Bending portion 160 Fixed portion 200 Multilayer electronic device 220 Rigid substrate (an example of substrate)
300 Laminated Electronic Device 350 Radiator 352 Heat Conducting Plate 400 Laminated Electronic Device 420 Rigid Substrate (Example of Substrate)
422 Signal ground layer (an example of a heat conduction layer)
450 radiator
L Ridge direction
T thickness direction
F Blowing direction
W1 width direction

Claims (8)

半導体デバイスが実装された基板に積層され、前記半導体デバイスが接触する複数の熱伝導板部と、
前記熱伝導板部における板厚方向と直交する幅方向の端部に取り付けられた熱伝導性を有する取付部と、
熱伝導性を有し、前記板厚方向に弾性変形可能な蛇腹状で前記取付部の間を前記板厚方向に連結する連結部と、
を備える放熱器。
A plurality of heat conductive plate portions that are stacked on a substrate on which a semiconductor device is mounted, and the semiconductor device contacts;
A mounting portion having an attached thermally conductive end in the width direction perpendicular to the thickness direction that put on the thermal conductive plate,
A connecting portion that has thermal conductivity and connects between the mounting portions in the plate thickness direction in a bellows shape that is elastically deformable in the plate thickness direction;
A heatsink.
前記取付部は、前記熱伝導板部の前記端部を挟持する二つの腕部を有する、
請求項1に記載の放熱器。
The attachment portion has two arm portions that sandwich the end portion of the heat conducting plate portion.
The heat radiator according to claim 1.
板厚方向に積層された半導体デバイスが実装された複数の基板の各々における前記板厚方向と直交する幅方向の端部に、前記基板に設けられた熱伝導層に接触するように取り付けられた熱伝導性を有する取付部と、
前記板厚方向に弾性変形可能な蛇腹状で前記取付部の間を前記板厚方向に連結する連結部と、
を備える放熱器。
At the end in the width direction perpendicular to the plate thickness direction of each of the plurality of substrates on which the semiconductor devices stacked in the plate thickness direction are mounted, the semiconductor devices are attached so as to be in contact with the heat conductive layer provided on the substrate. A mounting portion having thermal conductivity;
A connecting portion that connects the attachment portions in the plate thickness direction in a bellows shape that is elastically deformable in the plate thickness direction;
A heatsink.
前記取付部は、前記基板の前記端部を挟持する二つの腕部を有する、
請求項3に記載の放熱器。
The mounting portion has two arm portions that sandwich the end portion of the substrate.
The heat radiator according to claim 3.
半導体デバイスが実装された基板と、
請求項1〜請求項4のいずれか1項に記載の放熱器と、
を備える積層型電子デバイス。
A substrate on which a semiconductor device is mounted;
The heat radiator according to any one of claims 1 to 4 ,
A multilayer electronic device comprising:
前記連結部は、前記板厚方向に弾性変形可能とされ、引張状態で取り付けられている、
請求項5に記載の積層型電子デバイス。
The connecting portion is elastically deformable in the plate thickness direction and is attached in a tensile state.
The multilayer electronic device according to claim 5 .
空気を送風する送風装置と、
半導体デバイスが実装され、前記送風装置によって送風された空気の送風方向に沿うように配置された基板と、
請求項1〜請求項4のいずれか1項に記載の放熱器と、
を備える電子機器。
A blower for blowing air;
A substrate on which a semiconductor device is mounted and arranged along the air blowing direction of the air blown by the blower, and
The heat radiator according to any one of claims 1 to 4 ,
Electronic equipment comprising.
前記連結部の蛇腹の屈曲部の稜線方向が前記送風方向に沿うように配置された請求項7に記載の電子機器。The electronic device of Claim 7 arrange | positioned so that the ridgeline direction of the bending part of the bellows of the said connection part may follow the said ventilation direction.
JP2011278755A 2011-12-20 2011-12-20 Heatsinks, stacked electronic devices, and electronic equipment. Expired - Fee Related JP5953734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278755A JP5953734B2 (en) 2011-12-20 2011-12-20 Heatsinks, stacked electronic devices, and electronic equipment.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278755A JP5953734B2 (en) 2011-12-20 2011-12-20 Heatsinks, stacked electronic devices, and electronic equipment.

Publications (2)

Publication Number Publication Date
JP2013131561A JP2013131561A (en) 2013-07-04
JP5953734B2 true JP5953734B2 (en) 2016-07-20

Family

ID=48908912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278755A Expired - Fee Related JP5953734B2 (en) 2011-12-20 2011-12-20 Heatsinks, stacked electronic devices, and electronic equipment.

Country Status (1)

Country Link
JP (1) JP5953734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582644B1 (en) 2018-11-05 2020-03-03 Samsung Electronics Co., Ltd. Solid state drive device and computer server system including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201316146D0 (en) * 2013-09-11 2013-10-23 Gew Ec Ltd Apparatus for housing one or more power supplies
JP2016048722A (en) * 2014-08-27 2016-04-07 イビデン株式会社 Flex rigid wiring board and semiconductor module
CN111033724B (en) 2017-09-07 2023-04-18 株式会社村田制作所 Circuit block assembly
CN112466823B (en) * 2019-09-06 2025-02-21 河南森源电气股份有限公司 A heat sink assembly for fixing electronic components
JP2023086175A (en) * 2021-12-10 2023-06-22 株式会社レゾナック Cooling device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771366A (en) * 1987-07-06 1988-09-13 International Business Machines Corporation Ceramic card assembly having enhanced power distribution and cooling
JPH0767021B2 (en) * 1988-04-20 1995-07-19 日本電気株式会社 Semiconductor element cooling structure
DE4310446C1 (en) * 1993-03-31 1994-05-05 Export Contor Ausenhandelsgese Power semiconductor circuit module - has mirror symmetrical configuration of power semiconductor carrier plates and heat sink elements
JPH0714684U (en) * 1993-07-30 1995-03-10 松下電工株式会社 Mounting structure for heat-generating electronic components
JP2001217361A (en) * 2000-02-03 2001-08-10 Hitachi Cable Ltd Heat radiating material, semiconductor device and electronic device using the same
JP2002093988A (en) * 2000-09-20 2002-03-29 Nippon Avionics Co Ltd Semiconductor integrated circuit package
JP2004079940A (en) * 2002-08-22 2004-03-11 Elpida Memory Inc Memory module heat dissipation device
JP3845408B2 (en) * 2003-10-06 2006-11-15 エルピーダメモリ株式会社 Memory module heat dissipation device
KR100586698B1 (en) * 2003-12-23 2006-06-08 삼성전자주식회사 Semiconductor Module with Vertically Mounted Semiconductor Chip Package
US7400505B2 (en) * 2006-10-10 2008-07-15 International Business Machines Corporation Hybrid cooling system and method for a multi-component electronics system
JP2008205081A (en) * 2007-02-19 2008-09-04 Shinko Electric Ind Co Ltd Semiconductor module and heat sink therefor
JP5135420B2 (en) * 2010-12-10 2013-02-06 株式会社日立産機システム Power converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582644B1 (en) 2018-11-05 2020-03-03 Samsung Electronics Co., Ltd. Solid state drive device and computer server system including the same
US11272640B2 (en) 2018-11-05 2022-03-08 Samsung Electronics Co., Ltd. Solid state drive device and computer server system including the same
US11558980B2 (en) 2018-11-05 2023-01-17 Samsung Electronics Co., Ltd. Solid state drive device and computer server system including the same

Also Published As

Publication number Publication date
JP2013131561A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US8004846B2 (en) Heat radiator
JP5953734B2 (en) Heatsinks, stacked electronic devices, and electronic equipment.
JP3294785B2 (en) Heat dissipation structure of circuit element
JP7339075B2 (en) Electrical equipment, electronic controller
JP3834023B2 (en) LSI package with interface module and heat sink used therefor
CN108697030B (en) Electronic device for a motor vehicle
TWI439190B (en) Circuit board and cooling device thereof
JP2006178967A (en) Electronic module arranged in system board
US20130206367A1 (en) Heat dissipating module
JP2006173603A (en) Processor module with heat dissipation device
TWI548327B (en) Wedge lock for use with a single board computer and method of assembling a computer system
TW201218931A (en) Mainboard and electronic device employ the sam
JP6060872B2 (en) Transmission module mounting structure
JP2008192657A (en) Electronic equipment
JP2020174116A (en) Heat sink fixing member and electronic device
CN111031767B (en) Electronic equipment and heat dissipation module
CN209767906U (en) Printed circuit boards and electronic equipment
US20090056925A1 (en) Heat dissipation module
JP2002359448A (en) Electronic circuit mounting structure and manufacturing method therefor
TW200911099A (en) Heat dissipation module
JP2012160533A (en) Cooling mechanism and electronic apparatus
US6399877B1 (en) Heat sink
JP2009295626A (en) Heat radiation structure of electronic device
CN101384155A (en) Heat radiation assembly
TWI742608B (en) Electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5953734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees