JP5906623B2 - Biological substance expression level evaluation system - Google Patents
Biological substance expression level evaluation system Download PDFInfo
- Publication number
- JP5906623B2 JP5906623B2 JP2011197341A JP2011197341A JP5906623B2 JP 5906623 B2 JP5906623 B2 JP 5906623B2 JP 2011197341 A JP2011197341 A JP 2011197341A JP 2011197341 A JP2011197341 A JP 2011197341A JP 5906623 B2 JP5906623 B2 JP 5906623B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- image
- image processing
- cell membrane
- fluorescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 title claims description 63
- 238000011156 evaluation Methods 0.000 title claims description 20
- 239000002105 nanoparticle Substances 0.000 claims description 92
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 75
- 210000000170 cell membrane Anatomy 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 53
- 238000012545 processing Methods 0.000 claims description 39
- 239000004065 semiconductor Substances 0.000 claims description 33
- 238000010186 staining Methods 0.000 claims description 19
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 16
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000012620 biological material Substances 0.000 claims description 14
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 238000002372 labelling Methods 0.000 claims description 10
- 102000018697 Membrane Proteins Human genes 0.000 claims description 6
- 108010052285 Membrane Proteins Proteins 0.000 claims description 6
- 238000002073 fluorescence micrograph Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 238000004020 luminiscence type Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 63
- 239000000975 dye Substances 0.000 description 38
- 210000001519 tissue Anatomy 0.000 description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- 239000000377 silicon dioxide Substances 0.000 description 31
- 210000004027 cell Anatomy 0.000 description 24
- 239000002953 phosphate buffered saline Substances 0.000 description 19
- 206010028980 Neoplasm Diseases 0.000 description 18
- 201000011510 cancer Diseases 0.000 description 18
- AQCDIIAORKRFCD-UHFFFAOYSA-N cadmium selenide Chemical compound [Cd]=[Se] AQCDIIAORKRFCD-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000005083 Zinc sulfide Substances 0.000 description 14
- 230000005284 excitation Effects 0.000 description 14
- 238000007654 immersion Methods 0.000 description 14
- 229910052984 zinc sulfide Inorganic materials 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 125000003277 amino group Chemical group 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- -1 5-carboxy- Rhodamine Chemical compound 0.000 description 8
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 8
- 239000004793 Polystyrene Substances 0.000 description 8
- 229920002223 polystyrene Polymers 0.000 description 8
- 239000008096 xylene Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000003364 immunohistochemistry Methods 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 229940125644 antibody drug Drugs 0.000 description 5
- 230000005907 cancer growth Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 238000010827 pathological analysis Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000007447 staining method Methods 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- 239000012112 Alexa Fluor 633 Substances 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 206010027476 Metastases Diseases 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 230000000877 morphologic effect Effects 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 229960000575 trastuzumab Drugs 0.000 description 4
- 239000012113 Alexa Fluor 635 Substances 0.000 description 3
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 3
- 102000013275 Somatomedins Human genes 0.000 description 3
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 3
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- IKYJCHYORFJFRR-UHFFFAOYSA-N Alexa Fluor 350 Chemical compound O=C1OC=2C=C(N)C(S(O)(=O)=O)=CC=2C(C)=C1CC(=O)ON1C(=O)CCC1=O IKYJCHYORFJFRR-UHFFFAOYSA-N 0.000 description 2
- JLDSMZIBHYTPPR-UHFFFAOYSA-N Alexa Fluor 405 Chemical compound CC[NH+](CC)CC.CC[NH+](CC)CC.CC[NH+](CC)CC.C12=C3C=4C=CC2=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C1=CC=C3C(S(=O)(=O)[O-])=CC=4OCC(=O)N(CC1)CCC1C(=O)ON1C(=O)CCC1=O JLDSMZIBHYTPPR-UHFFFAOYSA-N 0.000 description 2
- WEJVZSAYICGDCK-UHFFFAOYSA-N Alexa Fluor 430 Chemical compound CC[NH+](CC)CC.CC1(C)C=C(CS([O-])(=O)=O)C2=CC=3C(C(F)(F)F)=CC(=O)OC=3C=C2N1CCCCCC(=O)ON1C(=O)CCC1=O WEJVZSAYICGDCK-UHFFFAOYSA-N 0.000 description 2
- WHVNXSBKJGAXKU-UHFFFAOYSA-N Alexa Fluor 532 Chemical compound [H+].[H+].CC1(C)C(C)NC(C(=C2OC3=C(C=4C(C(C(C)N=4)(C)C)=CC3=3)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=C2C=3C(C=C1)=CC=C1C(=O)ON1C(=O)CCC1=O WHVNXSBKJGAXKU-UHFFFAOYSA-N 0.000 description 2
- ZAINTDRBUHCDPZ-UHFFFAOYSA-M Alexa Fluor 546 Chemical compound [H+].[Na+].CC1CC(C)(C)NC(C(=C2OC3=C(C4=NC(C)(C)CC(C)C4=CC3=3)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=C2C=3C(C(=C(Cl)C=1Cl)C(O)=O)=C(Cl)C=1SCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O ZAINTDRBUHCDPZ-UHFFFAOYSA-M 0.000 description 2
- IGAZHQIYONOHQN-UHFFFAOYSA-N Alexa Fluor 555 Chemical compound C=12C=CC(=N)C(S(O)(=O)=O)=C2OC2=C(S(O)(=O)=O)C(N)=CC=C2C=1C1=CC=C(C(O)=O)C=C1C(O)=O IGAZHQIYONOHQN-UHFFFAOYSA-N 0.000 description 2
- 239000012099 Alexa Fluor family Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 2
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 2
- 108020003215 DNA Probes Proteins 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- 108091008794 FGF receptors Proteins 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000044168 Fibroblast Growth Factor Receptor Human genes 0.000 description 2
- 108091008603 HGF receptors Proteins 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 102100022623 Hepatocyte growth factor receptor Human genes 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 2
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 description 2
- 108091008606 PDGF receptors Proteins 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 102100037136 Proteinase-activated receptor 1 Human genes 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- 108700020302 erbB-2 Genes Proteins 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000762 glandular Effects 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQCYVSPJIOJEGA-UHFFFAOYSA-N methoxycoumarin Chemical compound C1=CC=C2OC(=O)C(OC)=CC2=C1 HQCYVSPJIOJEGA-UHFFFAOYSA-N 0.000 description 2
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical class OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 1
- FPKVOQKZMBDBKP-UHFFFAOYSA-N 1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 FPKVOQKZMBDBKP-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- YMYNYVDHGPDOCK-UHFFFAOYSA-N 3',6'-dihydroxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-5,6-dicarboxylic acid Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=C1C=C(C(O)=O)C(C(=O)O)=C2 YMYNYVDHGPDOCK-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 1
- IDLISIVVYLGCKO-UHFFFAOYSA-N 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein Chemical compound O1C(=O)C2=CC=C(C(O)=O)C=C2C21C1=CC(OC)=C(O)C(Cl)=C1OC1=C2C=C(OC)C(O)=C1Cl IDLISIVVYLGCKO-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012104 Alexa Fluor 500 Substances 0.000 description 1
- 239000012109 Alexa Fluor 568 Substances 0.000 description 1
- 239000012110 Alexa Fluor 594 Substances 0.000 description 1
- 239000012111 Alexa Fluor 610 Substances 0.000 description 1
- 239000012118 Alexa Fluor 750 Substances 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000002554 Cyclin A Human genes 0.000 description 1
- 108010068192 Cyclin A Proteins 0.000 description 1
- 102000002427 Cyclin B Human genes 0.000 description 1
- 108010068150 Cyclin B Proteins 0.000 description 1
- 102000003910 Cyclin D Human genes 0.000 description 1
- 108090000259 Cyclin D Proteins 0.000 description 1
- 102000003909 Cyclin E Human genes 0.000 description 1
- 108090000257 Cyclin E Proteins 0.000 description 1
- 108010024986 Cyclin-Dependent Kinase 2 Proteins 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 108010025468 Cyclin-Dependent Kinase 6 Proteins 0.000 description 1
- 102100032857 Cyclin-dependent kinase 1 Human genes 0.000 description 1
- 101710106279 Cyclin-dependent kinase 1 Proteins 0.000 description 1
- 102100036239 Cyclin-dependent kinase 2 Human genes 0.000 description 1
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 1
- 102100026804 Cyclin-dependent kinase 6 Human genes 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 101150054472 HER2 gene Proteins 0.000 description 1
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101001098529 Homo sapiens Proteinase-activated receptor 1 Proteins 0.000 description 1
- 101000713169 Homo sapiens Solute carrier family 52, riboflavin transporter, member 2 Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- IXQIUDNVFVTQLJ-UHFFFAOYSA-N Naphthofluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C(C=CC=1C3=CC=C(O)C=1)=C3OC1=C2C=CC2=CC(O)=CC=C21 IXQIUDNVFVTQLJ-UHFFFAOYSA-N 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108010070519 PAR-1 Receptor Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- VYXSBFYARXAAKO-UHFFFAOYSA-N ethyl 2-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]benzoate;hydron;chloride Chemical compound [Cl-].C1=2C=C(C)C(NCC)=CC=2OC2=CC(=[NH+]CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-UHFFFAOYSA-N 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000012128 staining reagent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229940036185 synagis Drugs 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Description
本発明は、蛍光物質内包ナノ粒子を用いて染色した組織切片を用いた生体物質発現レベル評価システムに関する。さらに詳細には、本発明は、発光波長のピークが異なる二種の蛍光物質を用いて染色した組織切片において、細胞膜に発現した生体物質のみを計測できる評価方法、標本の製造方法および該製造方法によって得られた標本に関する。 The present invention relates to a biological substance expression level evaluation system using a tissue section stained with fluorescent substance-containing nanoparticles. More specifically, the present invention relates to an evaluation method capable of measuring only a biological substance expressed on a cell membrane in a tissue section stained with two kinds of fluorescent substances having different emission wavelength peaks, a method for producing a specimen, and the production method Concerning the specimen obtained by.
近年の抗体医薬を中心とした分子標的薬治療の広がりに伴い、分子標的薬をより効率的に使用するための正確な診断法への必要性が高まっている。具体的には、標的となる生体物質の発現量を定量的に評価することにより、患者ごとの分子標的薬の適用可否を効率的に行うことが求められている。 With the recent spread of molecular targeted drug therapies centering on antibody drugs, there is an increasing need for accurate diagnostic methods for using molecular targeted drugs more efficiently. Specifically, it is required to efficiently determine whether a molecular target drug can be applied for each patient by quantitatively evaluating the expression level of a target biological substance.
特に近年の抗体医薬の登場により、免疫組織化学の重要性は極めて高まっている。例えば、がんの増殖に関与する因子であるヒト上皮成長因子受容体2〔human epidermal growth factor receptor-2;HER2〕を標的とした抗体医薬であるハーセプチン〔Herceptin;商標登録〕として市販されているトラスツズマブ(Trastuzumab)は、乳がんの代表的な抗がん剤であることが知られている。この薬剤投与の有効性の判定方法として、HER2タンパク質等の発現を解析する免疫組織化学〔Immunohistochemistry;IHC〕法と、HER2遺伝子等の増幅を解析するFISH〔Fluorescence in situ hybridization〕法とが臨床の場で広く用いられている。IHC法により、HER2抗原部位に結合したHER2抗体をDAB〔Diaminobenzidine;ジアミノベンジジン〕を用いて染色し、可視化することでHER2の発現量を検出することができる。 In particular, with the advent of antibody drugs in recent years, the importance of immunohistochemistry has increased significantly. For example, it is marketed as Herceptin (registered trademark), an antibody drug targeting human epidermal growth factor receptor-2 (HER2), which is a factor involved in cancer growth. Trastuzumab is known to be a typical anticancer drug for breast cancer. Immunohistochemistry (IHC) method for analyzing the expression of HER2 protein and the like and FISH (Fluorescence in situ hybridization) method for analyzing the amplification of HER2 gene and the like are clinical methods for determining the effectiveness of this drug administration. Widely used in the field. The HER2 expression level can be detected by staining and visualizing the HER2 antibody bound to the HER2 antigen site using DAB [Diaminobenzidine] by the IHC method.
しかしながら、FISH法は、一般に煩雑であり病理医の負担は大きく、より簡便な方法が求められている。
現在は、患部より採取した組織を固定するために脱水し、パラフィンによるブロック化といった処理を行った後2〜8ミクロンの厚さの薄片に切り、パラフィンを取り除いた切片(以下「組織切片」ともいう。)に対し、標的とする生体物質を染色し、その顕微鏡観察を行っている。この顕微鏡画像の中で、細胞の核の大きさや形の変化、組織としてのパターンの変化などの形態学的な情報、染色情報をもとに診断を行っている。画像のデジタル化技術の発達は上述の病理診断に対して、顕微鏡やデジタルカメラなどを用いてデジタルカラー画像として入力された病理画像から、病理医が病理診断を行う際に必要となる情報を抽出および計測して表示する自動化された病理診断支援装置の提案を可能としており、例えば特許文献1に開示されている。
However, the FISH method is generally complicated and burdensome for pathologists, and a simpler method is required.
Currently, the tissue sampled from the affected area is dehydrated to fix it, and then treated with paraffin blocking, then cut into thin slices with a thickness of 2 to 8 microns and the paraffin removed (hereinafter also referred to as “tissue slice”). In contrast, the target biological material is stained and observed under a microscope. In this microscopic image, diagnosis is performed based on morphological information such as changes in the size and shape of cell nuclei and changes in pattern as tissue, and staining information. With the development of image digitization technology, in contrast to the above-mentioned pathological diagnosis, information necessary for pathologists to perform pathological diagnosis is extracted from pathological images input as digital color images using a microscope or digital camera. Further, it is possible to propose an automated pathological diagnosis support apparatus that measures and displays, and is disclosed in Patent Document 1, for example.
特許文献1に記載の病理診断支援装置は、病理画像から細胞核領域および細胞質領域をそれぞれ特定する核・細胞質分布推定手段と、病理画像から腺腔領域(細胞組織を殆ど含まない領域)を特定する腺腔分布抽出手段と、がん細胞が存在するか否か判定するがん部位推定手段と、がんの進行度を判定する進行度判定手段と、がん細胞の分布図や進行度などを表示する画像表示手段とを有する。 The pathological diagnosis support apparatus described in Patent Literature 1 specifies a nucleus / cytoplasm distribution estimation unit that specifies a cell nucleus region and a cytoplasm region from a pathological image, and specifies a glandular cavity region (a region that hardly includes cellular tissue) from the pathological image. Glandular cavity distribution extraction means, cancer site estimation means for determining whether cancer cells are present, progress determination means for determining cancer progress, cancer cell distribution map, progress, etc. Image display means for displaying.
また特許文献2には、正常部位とがん部位とをそれぞれ選択的に染色するような二種類の染料で病理標本を染色し、さらにスペクトル画像からランベルト・ベールの法則を用いて染色濃度を評価し、がん細胞の有無を判定している。 In Patent Document 2, a pathological specimen is stained with two types of dyes that selectively stain a normal site and a cancer site, and the staining density is evaluated from a spectral image using Lambert-Beer's law. The presence or absence of cancer cells is determined.
しかしながら、いずれの評価法を用いた場合でも、組織染色方法は従来の色素を用いるヘマトキシリン−エオジン〔HE〕染色、酵素を用いたDAB染色法であり、その染色濃度は温度、時間などの環境条件により大きく左右され、正確な定量測定は困難であると予想される。 However, in any of the evaluation methods, the tissue staining method is a conventional hematoxylin-eosin [HE] staining using a dye or a DAB staining method using an enzyme, and the staining concentration is an environmental condition such as temperature and time. Therefore, accurate quantitative measurement is expected to be difficult.
他方、色素に代わる標識試薬として定量性能高い蛍光色素を組織染色試薬として用いることが特許文献3に開示されている。
しかしながら、発明者らが特許文献3に開示されている方法を参考にして、蛍光有機色素であるFITCを用いて作製した病理切片の蛍光顕微鏡下観察を行い、HER2タンパク質を定量したところ、FITCの発光輝度が極めて弱く、極微量のHER2タンパク質を蛍光測定レベルによって自動判別することはできず、さらなる改善が必要であることがわかった。
On the other hand, Patent Document 3 discloses that a fluorescent dye having high quantitative performance is used as a tissue staining reagent as a labeling reagent instead of a dye.
However, referring to the method disclosed in Patent Document 3, the inventors observed a pathological section prepared using FITC, which is a fluorescent organic dye, under a fluorescence microscope, and quantified HER2 protein. It was found that the emission luminance was extremely weak, and a very small amount of HER2 protein could not be automatically discriminated based on the fluorescence measurement level, and further improvement was necessary.
ところで、HE染色およびIHC法は、いずれも、細胞サンプルにおけるがん細胞の所在を検出する方法として用いられている。例えば、細胞サンプルにおけるがん細胞の所在を確認する場合、従来、病理医は、細胞サンプルに含まれるがん細胞の有無を判断する上で、まず組織サンプルから複数の組織切片(以下、単に「切片」ともいう。)を作製し、形態情報を得るために第一切片でHE染色を行ってがん細胞の有無を判断し、第二切片で酵素反応による色素沈着切片を作製して標的分子の有無を判断していた。また、がん以外の病気について、細胞サンプル中における病巣の存在をHE染色およびIHC法により検出する場合にも、同様の手順が一般に用いられてきた。しかしながら、二枚の切片で同一の部位を観察するには膨大な手間と熟練性を有し、病理診断における診断のばらつきの要因ともなっている。こうした状況から蛍光色素や半導体ナノ粒子(量子ドット)等の蛍光体を抗体に結合し標的分子の有無を判断する方法もなされてきたが、このような蛍光体からの蛍光量が少ないという問題点がある。そのため、切片自体が発する自家蛍光をきちんと分離除去しないと、標的分子の所在を蛍光体からの蛍光に基づいて判断することができず、また、形態情報は依然として別切片でのHE染色により取得する必要があった。 By the way, HE staining and IHC method are both used as methods for detecting the location of cancer cells in a cell sample. For example, when confirming the location of cancer cells in a cell sample, conventionally, a pathologist first determines whether or not there are cancer cells contained in the cell sample, from a tissue sample to a plurality of tissue sections (hereinafter simply referred to as “ In order to obtain morphological information, HE staining is performed on the first section to determine the presence or absence of cancer cells, and a pigmented section by enzymatic reaction is prepared on the second section and the target is obtained. The presence or absence of molecules was judged. For diseases other than cancer, a similar procedure has generally been used when detecting the presence of a lesion in a cell sample by HE staining and the IHC method. However, observing the same part with two slices has a great deal of labor and skill, and is also a cause of diagnostic variation in pathological diagnosis. Under these circumstances, fluorescent dyes, semiconductor nanoparticles (quantum dots) and other fluorescent substances have been combined with antibodies to determine the presence of target molecules, but the problem is that the amount of fluorescence from such fluorescent substances is small. There is. Therefore, unless the autofluorescence emitted by the section itself is properly separated and removed, the location of the target molecule cannot be determined based on the fluorescence from the phosphor, and the morphological information is still obtained by HE staining in another section. There was a need.
本発明は、上記課題に鑑みなされたものであり、その解決課題は、細胞膜上にある生体物質の評価方法を提供することにある。 This invention is made | formed in view of the said subject, The solution subject is providing the evaluation method of the biological material which exists on a cell membrane.
本発明者らは、上記課題を解決し、本発明の目的を達成すべく鋭意検討した結果、1)蛍光物質を内包するナノ粒子(蛍光体(b))を用いて細胞膜上にある生体物質を染色する工程と、2)細胞膜を、1)工程とは別の蛍光波長を有する蛍光有機色素(蛍光体(a))で染色する工程により同時染色された組織切片に対し、細胞膜の位置を蛍光有機色素の蛍光により同定し、細胞膜上にある蛍光体(b)のみの蛍光レベルを計測することにより細胞膜上にある生体物質の発現レベルを精度良くかつ簡便に評価できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems and to achieve the object of the present invention, the present inventors have 1) a biological material on a cell membrane using a nanoparticle (phosphor (b)) encapsulating a fluorescent substance. And 2) the position of the cell membrane with respect to the tissue section co-stained by the step of staining the cell membrane with a fluorescent organic dye (phosphor (a)) having a fluorescence wavelength different from that in step 1) The present inventors have found that the expression level of a biological substance on a cell membrane can be accurately and simply evaluated by identifying the fluorescence of the fluorescent organic dye and measuring the fluorescence level of only the phosphor (b) on the cell membrane. It came to be completed.
すなわち、本発明の上記目的は、下記の構成により達成される。
1.細胞膜を染色する蛍光体(a)、および、少なくともその一部が細胞膜に存在する生体物質に結合し、かつ、該蛍光体(a)とは異なる発光波長のピークを有する蛍光体(b)を用いて同じ組織切片を染色し;染色された該切片中の細胞膜の位置を該蛍光体(a)の発光により同定し;同定された細胞膜上の該蛍光体(b)による輝点数および蛍光強度を計測することによって、細胞膜における該生体物質の発現レベルを評価することを特徴とする評価方法。
That is, the above object of the present invention is achieved by the following configuration.
1. A phosphor (a) that stains a cell membrane, and a phosphor (b) that binds to a biological material at least part of which is present in the cell membrane and has a peak of an emission wavelength different from that of the phosphor (a). Used to stain the same tissue section; the location of the cell membrane in the stained section is identified by the luminescence of the phosphor (a); the number of bright spots and fluorescence intensity by the phosphor (b) on the identified cell membrane By measuring the expression level of the biological material in the cell membrane.
2.上記の輝点数および蛍光強度を、演算手段による画像処理を行うことによって計測する、上記1に記載の評価方法。
3.上記画像処理が、下記(A-1)〜(A-4)の画像処理で得られた画像と下記(B-1)〜(B-4)の処理で得られた画像とを併せて、細胞膜の輝点をラベルする上記2に記載の評価方法;
(A-1) 顕微鏡の明視野で得られた切片画像に対してグレースケール変換を施す画像処理,
(A-2) (A-1)で得られた画像に対して2値化を施す画像処理,
(A-3) (A-2)で得られた画像に対して穴埋めを施す画像処理,および
(A-4) (A-3)で得られた画像に対してラベリングを施す画像処理;ならびに
(B-1) 顕微鏡の暗視野で得られた切片画像に対してグレースケール変換を施す画像処理,
(B-2) (B-1)で得られた画像に対して2値化を施す画像処理,
(B-3) (B-2)で得られた画像に対してノイズを除去する画像処理,および
(B-4) (A-3)で得られた画像に対してラベリングを施す画像処理。
2. 2. The evaluation method according to 1 above, wherein the number of bright spots and the fluorescence intensity are measured by performing image processing by a calculation means.
3. The image processing is combined with the image obtained by the following (A-1) to (A-4) image processing and the image obtained by the following (B-1) to (B-4) processing, The evaluation method according to 2 above, wherein the bright spot of the cell membrane is labeled;
(A-1) Image processing that performs grayscale conversion on the section image obtained in the bright field of the microscope,
(A-2) Image processing that binarizes the image obtained in (A-1),
(A-3) Image processing for filling a hole in the image obtained in (A-2), and
(A-4) Image processing for labeling the image obtained in (A-3); and
(B-1) Image processing that performs grayscale conversion on the section image obtained in the dark field of the microscope,
(B-2) Image processing that binarizes the image obtained in (B-1),
(B-3) Image processing to remove noise from the image obtained in (B-2), and
(B-4) Image processing for labeling the image obtained in (A-3).
4.上記蛍光体(b)が、半導体ナノ粒子、または、蛍光有機色素もしくは半導体ナノ粒子を内包した内包ナノ粒子である上記1〜3のいずれかに記載の評価方法。
5.上記蛍光体(a)が、エオジン(eosin)である上記1〜4のいずれかに記載の評価方法。
4). 4. The evaluation method according to any one of 1 to 3, wherein the phosphor (b) is a semiconductor nanoparticle or an encapsulated nanoparticle encapsulating a fluorescent organic dye or a semiconductor nanoparticle.
5. 5. The evaluation method according to any one of 1 to 4 above, wherein the phosphor (a) is eosin.
6.上記生体物質が、膜タンパク質である上記1〜5のいずれかに記載の評価方法。
7.上記膜タンパク質が、HER2である上記6に記載の評価方法。
6). The evaluation method according to any one of 1 to 5, wherein the biological material is a membrane protein.
7). 7. The evaluation method according to 6 above, wherein the membrane protein is HER2.
本発明は、細胞膜の位置を染色に用いる蛍光体(a)(蛍光有機色素等)の発光を基に同定し、細胞膜にある蛍光体(b)のみの蛍光輝点または蛍光輝度の計測を行うことで、細胞膜外部分に非特異的に吸着した蛍光体(b)の蛍光輝点または蛍光輝度を除くことが可能となり、従来法であるFISH法と高い相関を示す方法を提供できる。 In the present invention, the position of the cell membrane is identified on the basis of the light emission of the phosphor (a) (fluorescent organic dye or the like) used for staining, and the fluorescence luminescent spot or fluorescence intensity of only the phosphor (b) in the cell membrane is measured. Thus, it becomes possible to remove the fluorescent bright spot or fluorescent brightness of the phosphor (b) adsorbed nonspecifically on the outer part of the cell membrane, and can provide a method having a high correlation with the conventional FISH method.
また、蛍光体(b)として、半導体ナノ粒子、または、半導体ナノ粒子もしくは蛍光有機色素を内包した内包ナノ粒子を用いることで、従来の蛍光有機色素単独で用いた場合より高輝度での観察が可能となり、精度の向上に寄与する。 In addition, as phosphor (b), semiconductor nanoparticles, or encapsulated nanoparticles encapsulating semiconductor nanoparticles or fluorescent organic dyes, can be observed with higher luminance than when using conventional fluorescent organic dyes alone. It becomes possible and contributes to improvement of accuracy.
さらに、本発明の評価方法は、従来病理医の行っている組織染色と共通工程が多く、迅速な診断に寄与することができる。 Furthermore, the evaluation method of the present invention has many common processes with tissue staining performed by conventional pathologists, and can contribute to rapid diagnosis.
以下、本発明を実施するための形態について説明するが、本発明はこれらに限定されない。
<評価方法>
本発明の評価方法は、細胞膜を染色する蛍光体(a)、および、少なくともその一部が細胞膜に存在する生体物質に結合し、かつ、該蛍光体(a)とは異なる発光波長のピークを有する蛍光体(b)を用いて同じ組織切片を染色し、染色された該切片中の細胞膜の位置を該蛍光体(a)の発光により同定し、同定された細胞膜上の該蛍光体(b)による輝点数を計測することによって、細胞膜における該生体物質の発現レベルを評価することを特徴とする。
Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to these.
<Evaluation method>
The evaluation method of the present invention comprises a phosphor (a) that stains a cell membrane, and a peak of an emission wavelength that is at least partially bound to a biological substance existing in the cell membrane and is different from the phosphor (a). The same tissue section is stained with the phosphor (b) having, the position of the cell membrane in the stained section is identified by the light emission of the phosphor (a), and the phosphor (b) on the identified cell membrane ), The expression level of the biological substance in the cell membrane is evaluated by measuring the number of bright spots.
〔蛍光体(b)〕
本発明で用いられる蛍光体(b)は、少なくともその一部が細胞膜に存在する生体物質に結合し、かつ、細胞膜を染色する蛍光体(a)(後述)とは異なる発光波長のピークを有するものである。このような蛍光体(b)としては、半導体ナノ粒子、または、蛍光有機色素もしくは半導体ナノ粒子を内包した内包ナノ粒子が好ましい。このような蛍光体(b)は、例えば、半導体ナノ粒子内包ナノ粒子と、その表面に固定化された、生体物質と特異的に結合および/または反応する物質とからなる態様が好ましい。また、蛍光体(b)は、波長200〜700nmの紫外〜近赤外光により蛍光体(b)を励起した場合、波長400〜900nmの可視〜近赤外光の発光を示すものが好ましい。
(Phosphor (b))
The phosphor (b) used in the present invention has a peak of emission wavelength that is different from that of the phosphor (a) (described later) that binds to a biological substance existing at least in the cell membrane and stains the cell membrane. Is. As such a phosphor (b), semiconductor nanoparticles or encapsulated nanoparticles encapsulating a fluorescent organic dye or semiconductor nanoparticles are preferable. Such a phosphor (b) is preferably in the form of, for example, a semiconductor nanoparticle-encapsulating nanoparticle and a substance that is immobilized on the surface thereof and that specifically binds and / or reacts with a biological substance. The phosphor (b) preferably emits visible to near-infrared light having a wavelength of 400 to 900 nm when the phosphor (b) is excited by ultraviolet to near-infrared light having a wavelength of 200 to 700 nm.
(半導体ナノ粒子)
半導体ナノ粒子としては、II−VI族化合物、III−V族化合物またはIV族元素を成分として含有する半導体ナノ粒子(それぞれ、「II−VI族半導体ナノ粒子」、「III−V族半導体ナノ粒子」、「IV族半導体ナノ粒子」ともいう。)のいずれかを用いることができる。半導体ナノ粒子として1種単独で用いても2種以上の複数種を混合したものを用いてもよい。
(Semiconductor nanoparticles)
Semiconductor nanoparticles include semiconductor nanoparticles containing II-VI group compounds, III-V group compounds or IV group elements as components ("II-VI group semiconductor nanoparticles" and "III-V group semiconductor nanoparticles, respectively"). Or “Group IV semiconductor nanoparticles”) can be used. The semiconductor nanoparticles may be used alone or in combination of two or more.
半導体ナノ粒子として、具体的には、セレン化カドミウム〔CdSe〕,硫黄化カドミウム〔CdS〕,テルル化カドミウム〔CdTe〕,セレン化亜鉛〔ZnSe〕,硫黄化亜鉛〔ZnS〕,テルル化亜鉛〔ZnTe〕,リン化インジウム〔InP〕,窒化インジウム〔InN〕,ヒ素化インジウム〔InAs〕,インジウム−ガリウム−リン〔InGaP〕,リン化ガリウム〔GaP〕,ヒ素化ガリウム〔GaAs〕,ケイ素〔Si〕,ゲルマニウム〔Ge〕等が挙げられるが、本発明はこれらに限定されない。 Specific examples of semiconductor nanoparticles include cadmium selenide [CdSe], sulfurized cadmium [CdS], cadmium telluride [CdTe], zinc selenide [ZnSe], zinc sulfide [ZnS], and zinc telluride [ZnTe. ], Indium phosphide [InP], indium nitride [InN], indium arsenide [InAs], indium-gallium-phosphorus [InGaP], gallium phosphide [GaP], gallium arsenide [GaAs], silicon [Si], Although germanium [Ge] etc. are mentioned, this invention is not limited to these.
半導体ナノ粒子をコアとし、その上にシェルを設けた半導体ナノ粒子を用いることもできる。以下、本明細書中、コア/シェル構造を有する半導体ナノ粒子の表記法として、コアがCdSe、シェルがZnSの場合、CdSe/ZnSと表記する。コア/シェル構造を有する半導体ナノ粒子として、例えば、CdSe/ZnS,CdS/ZnS,InP/ZnS,InGaP/ZnS,Si/SiO2,Si/ZnS,Ge/GeO2,Ge/ZnSなどを用いることができるが、本発明はこれらに限定されない。 It is also possible to use semiconductor nanoparticles having semiconductor nanoparticles as a core and a shell provided thereon. Hereinafter, in the present specification, when the core is CdSe and the shell is ZnS, the semiconductor nanoparticles having a core / shell structure are expressed as CdSe / ZnS. As semiconductor nanoparticles having a core / shell structure, for example, CdSe / ZnS, CdS / ZnS , InP / ZnS, InGaP / ZnS, Si / SiO 2, Si / ZnS, Ge / GeO 2, Ge / ZnS be used as However, the present invention is not limited to these.
半導体ナノ粒子は必要に応じて、有機ポリマーなどにより表面処理が施されているものを用いてもよい。このような半導体ナノ粒子としては、例えば、表面カルボキシ基を有するCdSe/ZnS(インビトロジェン社製)や表面アミノ基を有するCdSe/ZnS(インビトロジェン社製)等が挙げられる。 As the semiconductor nanoparticles, those subjected to surface treatment with an organic polymer or the like may be used as necessary. Examples of such semiconductor nanoparticles include CdSe / ZnS having a surface carboxy group (manufactured by Invitrogen) and CdSe / ZnS having a surface amino group (manufactured by Invitrogen).
半導体ナノ粒子として、上記以外に、Qdot655(蛍光波長655nm;インビトロジェン社製),Qdot625(蛍光波長625nm;インビトロジェン社製),Qdot605(蛍光波長605nm;インビトロジェン社製)等の市販品も用いることができる。 Other than the above, commercially available products such as Qdot655 (fluorescence wavelength 655 nm; manufactured by Invitrogen), Qdot625 (fluorescence wavelength 625 nm; manufactured by Invitrogen), Qdot605 (fluorescence wavelength 605 nm; manufactured by Invitrogen) can be used as the semiconductor nanoparticles. .
(蛍光有機色素)
蛍光有機色素としては、例えば、フルオレセイン系色素分子,ローダミン系色素分子,Alexa Fluor(インビトロジェン社製)系色素分子,BODIPY(インビトロジェン社製)系色素分子,カスケード系色素分子,クマリン系色素分子,エオジン系色素分子,NBD系色素分子,ピレン系色素分子,TexasRed系色素分子,シアニン系色素分子等が挙げられる。
(Fluorescent organic dye)
Examples of fluorescent organic dyes include fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (Invitrogen) dye molecules, BODIPY (Invitrogen) dye molecules, cascade dye molecules, coumarin dye molecules, and eosin. System dye molecules, NBD dye molecules, pyrene dye molecules, Texas Red dye molecules, cyanine dye molecules, and the like.
蛍光有機色素として、具体的には、5−カルボキシ−フルオレセイン、6−カルボキシ−フルオレセイン、5,6−ジカルボキシ−フルオレセイン、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン、6−カルボキシ−4’,5’−ジクロロ−2’,7’−ジメトキシフルオレセイン、ナフトフルオレセイン、5−カルボキシ−ローダミン、6−カルボキシ−ローダミン、5,6−ジカルボキシ−ローダミン、ローダミン 6G、テトラメチルローダミン、X−ローダミン、およびAlexa Fluor 350、Alexa Fluor 405、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 500、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、メトキシクマリン、エオジン(またはエオシン[eosin];励起波長520nm/蛍光波長540nm)、NBD、ピレン、Cy5(蛍光波長680nm;GE Healthcare社製)、Cy5.5、Cy7、Texas Red(蛍光波長615nm;インビトロジェン社製)等が挙げられる。
このような有機蛍光色素は1種単独で用いても2種以上の複数種を混合したものを用いてもよい。
Specific examples of fluorescent organic dyes include 5-carboxy-fluorescein, 6-carboxy-fluorescein, 5,6-dicarboxy-fluorescein, 6-carboxy-2 ′, 4,4 ′, 5 ′, 7,7 ′. -Hexachlorofluorescein, 6-carboxy-2 ', 4,7,7'-tetrachlorofluorescein, 6-carboxy-4', 5'-dichloro-2 ', 7'-dimethoxyfluorescein, naphthofluorescein, 5-carboxy- Rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, and Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 5 4, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 635, Alexa Fluor 635, Alexa Fluor 633, Alexa Fluor 633, Alexa Fluor 633 Alexa Fluor 750, BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIP658 / 661, BODIPY581 / 591 More inviting Rogen), methoxycoumarin, eosin (or eosin [excitation wavelength 520 nm / fluorescence wavelength 540 nm), NBD, pyrene, Cy5 (fluorescence wavelength 680 nm; manufactured by GE Healthcare), Cy5.5, Cy7, Texas Red ( A fluorescence wavelength of 615 nm; manufactured by Invitrogen Corporation).
Such organic fluorescent dyes may be used singly or as a mixture of two or more.
(半導体ナノ粒子または蛍光有機色素を内包した内包ナノ粒子)
本発明において「半導体ナノ粒子または蛍光有機色素を内包した内包ナノ粒子」(以下、単に「蛍光物質を内包したナノ粒子」ともいう。)とは、蛍光物質がナノ粒子内部に分散されたものをいい、ナノ粒子自体と化学的に結合していても、していなくてもよい。
(Encapsulated nanoparticles containing semiconductor nanoparticles or fluorescent organic dyes)
In the present invention, “encapsulated nanoparticles encapsulating semiconductor nanoparticles or fluorescent organic dyes” (hereinafter also simply referred to as “nanoparticles encapsulating a fluorescent substance”) refers to those in which a fluorescent substance is dispersed inside the nanoparticles. Okay, it may or may not be chemically bonded to the nanoparticles themselves.
ナノ粒子を構成する素材は特に限定されるものではなく、例えば、ポリスチレン、ポリ乳酸、シリカ等が挙げられる。
半導体ナノ粒子を内包したシリカナノ粒子は、ニュー・ジャーナル・オブ・ケミストリー 33巻561ページ(2009)に記載されているCdTe内包シリカナノ粒子の合成を参考にして作製することができる。
The material constituting the nanoparticles is not particularly limited, and examples thereof include polystyrene, polylactic acid, and silica.
Silica nanoparticles encapsulating semiconductor nanoparticles can be prepared with reference to the synthesis of CdTe-encapsulated silica nanoparticles described in New Journal of Chemistry 33, 561 (2009).
半導体ナノ粒子を内包したポリマーナノ粒子は、ネイチャー バイオテクノロジー 19巻631ページ(2001)記載のポリスチレンナノ粒子への量子ドットの含浸法を用いて作製することができる。 Polymer nanoparticles encapsulating semiconductor nanoparticles can be produced by using a quantum dot impregnation method to polystyrene nanoparticles described in Nature Biotechnology, Vol. 19, p. 631 (2001).
本発明で用いられる蛍光物質を内包したナノ粒子は、公知の方法により作製することが可能である。例えば、蛍光有機色素を内包したシリカナノ粒子は、ラングミュア 8巻2921ページ(1992)に記載されているFITC内包シリカ粒子の合成を参考にして作製することができる。FITCの代わりに所望する蛍光有機色素を用いることで種々の蛍光有機色素内包シリカナノ粒子が作製できる。 The nanoparticles encapsulating the fluorescent material used in the present invention can be produced by a known method. For example, silica nanoparticles encapsulating a fluorescent organic dye can be produced with reference to the synthesis of FITC-encapsulated silica particles described in Langmuir 8, Vol. 2921 (1992). Various fluorescent organic dye-encapsulated silica nanoparticles can be produced by using a desired fluorescent organic dye instead of FITC.
蛍光有機色素を内包したポリスチレンナノ粒子は、米国特許第4326008号(1982)に記載されている重合性官能基をもつ有機色素を用いた共重合法や、米国特許第5326692号(1992)に記載されているポリスチレンナノ粒子への蛍光有機色素の含浸法を用いて作製することができる。 Polystyrene nanoparticles encapsulating a fluorescent organic dye are described in a copolymerization method using an organic dye having a polymerizable functional group described in US Pat. No. 4,326,008 (1982) or in US Pat. No. 5,326,692 (1992). It can be produced by using an impregnating method of fluorescent organic dye into polystyrene nanoparticles.
本発明で用いられる蛍光物質を内包したナノ粒子とは、平均粒径は特に限定されないが、30〜800nm程度のものを用いることができる。また粒径のばらつきを示す変動係数は特に限定されないが、20%のものを用いることができる。本発明において、平均粒径とは、走査型電子顕微鏡〔SEM〕を用いて電子顕微鏡写真を撮影し充分な数の粒子について断面積を計測し、その計測値を相当する円の面積としたときの直径を粒径として求めたものを意味する。特に、本発明では、1,000個の粒子の粒径の算術平均を平均粒径とした。変動係数も、1,000個の粒子の粒径分布から算出した値とした。 The average particle diameter of the nanoparticles encapsulating the fluorescent material used in the present invention is not particularly limited, but those having a size of about 30 to 800 nm can be used. Further, the coefficient of variation indicating the variation in the particle diameter is not particularly limited, but 20% can be used. In the present invention, the average particle diameter is obtained by taking an electron micrograph using a scanning electron microscope [SEM], measuring the cross-sectional area of a sufficient number of particles, and setting the measured value as the area of a corresponding circle. Is obtained as the particle diameter. In particular, in the present invention, the arithmetic average of the particle diameters of 1,000 particles is defined as the average particle diameter. The coefficient of variation was also a value calculated from the particle size distribution of 1,000 particles.
(生体物質と特異的に結合および/または反応する物質の固定化方法)
本発明に係る蛍光体(b)は、生体物質と特異的に結合および/または反応する物質を、蛍光物質を内包したナノ粒子に固定化させたものを用いるのが好ましい。固定化の態様としては特に限定されず、例えば、共有結合,イオン結合,水素結合,配位結合,物理吸着または化学吸着等が挙げられる。
(Method for immobilizing substances that specifically bind to and / or react with biological substances)
As the phosphor (b) according to the present invention, it is preferable to use a substance in which a substance that specifically binds to and / or reacts with a biological substance is immobilized on nanoparticles encapsulating the fluorescent substance. The immobilization mode is not particularly limited, and examples thereof include covalent bond, ionic bond, hydrogen bond, coordination bond, physical adsorption, and chemical adsorption.
蛍光体(b)として蛍光有機色素を用いる場合、カルボン酸またはその活性エステル基を有する蛍光有機色素を用いると、生体物質と特異的に結合および/または反応する物質中にあるアミノ基へ結合させることができる。また、マレイミド基を有する蛍光有機色素を用いると、生体物質と特異的に結合および/または反応する物質中にあるチオール基へ結合させることができる。 When a fluorescent organic dye is used as the phosphor (b), if a fluorescent organic dye having a carboxylic acid or an active ester group thereof is used, it is bonded to an amino group in a substance that specifically binds and / or reacts with a biological substance. be able to. When a fluorescent organic dye having a maleimide group is used, it can be bonded to a thiol group in a substance that specifically binds and / or reacts with a biological substance.
蛍光体(b)として、蛍光物質を内包したナノ粒子を用いる場合、蛍光物質が蛍光有機色素の場合であっても、半導体ナノ粒子の場合であっても、同様の手順を適用することができる。例えば、無機物と有機物とを結合させるために広く用いられている化合物であるシランカップリング剤を用いることができる。このシランカップリング剤は、分子の一端に加水分解でシラノール基を与えるアルコキシシリル基を有し、他端に、カルボキシル基,アミノ基,エポキシ基,アルデヒド基などの官能基を有する化合物であり、上記シラノール基の酸素原子を介して無機物と結合する。具体的には、メルカプトプロピルトリエトキシシラン,グリシドキシプロピルトリエトキシシラン,アミノプロピルトリエトキシシラン,ポリエチレングリコール鎖を有するシランカップリング剤(例えば、Gelest社製PEG−silane no.SIM6492.7)等が挙げられる。シランカップリング剤を用いる場合、2種以上を併用してもよい。 When using nanoparticles encapsulating a fluorescent material as the phosphor (b), the same procedure can be applied whether the fluorescent material is a fluorescent organic dye or a semiconductor nanoparticle. . For example, a silane coupling agent that is a compound widely used for bonding an inorganic substance and an organic substance can be used. This silane coupling agent is a compound having an alkoxysilyl group that gives a silanol group by hydrolysis at one end of the molecule and a functional group such as a carboxyl group, an amino group, an epoxy group, an aldehyde group at the other end, Bonding with an inorganic substance through an oxygen atom of the silanol group. Specifically, mercaptopropyltriethoxysilane, glycidoxypropyltriethoxysilane, aminopropyltriethoxysilane, a silane coupling agent having a polyethylene glycol chain (for example, PEG-silane no. SIM6492.7 manufactured by Gelest), etc. Is mentioned. When using a silane coupling agent, you may use 2 or more types together.
また、この場合、連結する有機分子があってもよい。例えば、生体物質との非特異的吸着を抑制するためポリエチレングリコール鎖を用いることができ、例えば、ThermoScientific社製 SM(PEG)12を用いることができる。 In this case, there may be an organic molecule to be linked. For example, a polyethylene glycol chain can be used to suppress non-specific adsorption with a biological substance, and for example, SM (PEG) 12 manufactured by Thermo Scientific can be used.
蛍光物質を内包したシリカナノ粒子とシランカップリング剤との反応手順は、公知の手法を用いることができる。例えば、得られた蛍光物質を内包したシリカナノ粒子を純水中に分散させ、アミノプロピルトリエトキシシランを添加し、室温で12時間反応させる。反応終了後、遠心分離またはろ過により表面がアミノプロピル基で修飾された蛍光物質を内包したシリカナノ粒子を得ることができる。続いてアミノ基と抗体中のカルボキシル基とを反応させることで、アミド結合を介し抗体を、蛍光物質を内包したシリカナノ粒子と結合させることができる。必要に応じて、EDC〔1−Ethyl−3−[3−Dimethylaminopropyl]carbodiimide Hydrochloride;Pierce社製〕のような縮合剤を用いることもできる。 A known procedure can be used for the reaction procedure between the silica nanoparticles encapsulating the fluorescent substance and the silane coupling agent. For example, silica nanoparticles containing the obtained fluorescent substance are dispersed in pure water, aminopropyltriethoxysilane is added, and the reaction is performed at room temperature for 12 hours. After completion of the reaction, silica nanoparticles encapsulating a fluorescent substance whose surface is modified with an aminopropyl group can be obtained by centrifugation or filtration. Subsequently, by reacting the amino group with the carboxyl group in the antibody, the antibody can be bound to the silica nanoparticles encapsulating the fluorescent substance via an amide bond. If necessary, a condensing agent such as EDC [1-Ethyl-3- [3-Dimethylaminopropyl] carbohydrate Hydrochloride; manufactured by Pierce) can be used.
必要により有機分子修飾された蛍光物質を内包したシリカナノ粒子と直接結合しうる部位と、分子標的物質と結合し得る部位とを有するリンカー化合物を用いることができる。具体例として、アミノ基に選択的に反応する部位とメルカプト基に選択的に反応する部位との両方を有するsulfo−SMCC〔Sulfosuccinimidyl 4[N−maleimidomethyl]−cyclohexane−1−carboxylate;Pierce社製〕を用いると、アミノプロピルトリエトキシシランで修飾した蛍光物質を内包したシリカナノ粒子のアミノ基と、抗体中のメルカプト基とを結合させることで、抗体結合した蛍光物質を内包したシリカナノ粒子が得られる。 If necessary, a linker compound having a site capable of directly binding to a silica nanoparticle encapsulating a fluorescent substance modified with an organic molecule and a site capable of binding to a molecular target substance can be used. As a specific example, sulfo-SMCC having both a site selectively reacting with an amino group and a site selectively reacting with a mercapto group [Sulfosuccinimidyl 4 [N-maleimidomethyl] -cyclohexane-1-carboxylate; manufactured by Pierce] Is used to bond the amino group of the silica nanoparticles encapsulating the fluorescent material modified with aminopropyltriethoxysilane and the mercapto group in the antibody, thereby obtaining silica nanoparticles encapsulating the antibody-bound fluorescent material.
蛍光物質を内包したポリスチレンナノ粒子に生体物質認識部位を結合させる場合、蛍光物質が蛍光有機色素の場合であっても、半導体ナノ粒子の場合であっても、同様の手順を適用することができる。すなわち、アミノ基など官能基を有するポリスチレンナノ粒子に半導体ナノ粒子または蛍光有機色素を含浸することにより、官能基を有する蛍光物質内包ポリスチレンナノ粒子を得ることができ、以降EDCまたはsulfo−SMCCを用いることで、抗体結合した蛍光物質内包ポリスチレンナノ粒子ができる。 When binding a biological substance recognition site to polystyrene nanoparticles encapsulating a fluorescent substance, the same procedure can be applied whether the fluorescent substance is a fluorescent organic dye or a semiconductor nanoparticle. . That is, by impregnating semiconductor nanoparticles or fluorescent organic dyes into polystyrene nanoparticles having a functional group such as an amino group, fluorescent substance-containing polystyrene nanoparticles having a functional group can be obtained. Hereinafter, EDC or sulfo-SMCC is used. In this way, antibody-bound fluorescent substance-encapsulated polystyrene nanoparticles can be produced.
また、化学吸着の例として、抗原抗体反応やストレプトアビジン・ビオチン間結合などが挙げられる。すなわち、生体物質と特異的に結合および/または反応する物質として抗体を用いた場合、その抗体を抗原として認識する物質を蛍光物質に結合させたものを用いることができる。また、生体物質と特異的に結合および/または反応する物質としてストレプトアビジン修飾した抗体を用いた場合、ビオチンを蛍光物質に結合したものを用いることができる。 Examples of chemisorption include antigen-antibody reaction and streptavidin / biotin binding. That is, when an antibody is used as a substance that specifically binds to and / or reacts with a biological substance, a substance obtained by binding a substance that recognizes the antibody as an antigen to a fluorescent substance can be used. In addition, when a streptavidin-modified antibody is used as a substance that specifically binds and / or reacts with a biological substance, a biotin bonded to a fluorescent substance can be used.
〔蛍光体(a)〕
本発明で用いられる蛍光体(a)としては、細胞膜を特異的に染色することのできる蛍光体が用いられる。
(Phosphor (a))
As the phosphor (a) used in the present invention, a phosphor capable of specifically staining a cell membrane is used.
例えば、細胞膜を構成するリン脂質(アニオン)に結合することによって細胞膜を染色することができる、細胞の形態観察用の染色剤として従来用いられているエオジン(励起波長520nm/蛍光波長540nm)をそのような蛍光体(a)として用いることができる。より具体的には、例えば、蛍光体(b)として、CdSe/ZnSやQdot655,Qdot625,Qdot605などの半導体ナノ粒子またはこれら半導体ナノ粒子を内包したナノ粒子を用いる場合、あるいは、蛍光有機色素Cy5もしくはTexas Redを内包したナノ粒子を用いる場合、蛍光体(a)としてエオジンを用いることができる。 For example, eosin (excitation wavelength: 520 nm / fluorescence wavelength: 540 nm), which is conventionally used as a staining agent for observing cell morphology, can stain cell membranes by binding to phospholipids (anions) that constitute cell membranes. Such a phosphor (a) can be used. More specifically, for example, when using phosphor nanoparticles (b), semiconductor nanoparticles such as CdSe / ZnS, Qdot655, Qdot625, and Qdot605, or nanoparticles encapsulating these semiconductor nanoparticles, or the fluorescent organic dye Cy5 or When nanoparticles containing Texas Red are used, eosin can be used as the phosphor (a).
また、蛍光体(a)として、例えば、CellVue Lavender(励起波長420nm/蛍光波長461nm),CellVue Maroon(励起波長647nm/蛍光波長667nm),CellVue Plum(励起波長652nm/蛍光波長671nm),CellVue Claret(励起波長655nm/蛍光波長675nm),CellVue Burgundy(励起波長683nm/蛍光波長707nm),CellVue NIR780(励起波長743nm/蛍光波長776nm),CellVue NIR815(励起波長786nm/蛍光波長814nm)(以上Polyscience社製)等も挙げられる。これらの蛍光体は、各種の蛍光色素と、これに結合した脂質親和性の長い尾部からなり、この尾部が細胞膜に侵入し、蛍光発色部位を細胞の外表面に露出させ留まることにより、細胞膜を染色することができる。なお、CellVueは登録商標である。
生体物質と特異的に結合および/または反応する物質の固定化方法は、蛍光体(b)の場合と同様である。
Examples of the phosphor (a) include CellVue Lavender (excitation wavelength 420 nm / fluorescence wavelength 461 nm), CellVue Maroon (excitation wavelength 647 nm / fluorescence wavelength 667 nm), CellVue Plum (excitation wavelength 652 nm / fluorescence wavelength 671 nm), CellVue Claret ( Excitation wavelength 655nm / fluorescence wavelength 675nm), CellVue Burgundy (excitation wavelength 683nm / fluorescence wavelength 707nm), CellVue NIR780 (excitation wavelength 743nm / fluorescence wavelength 776nm), CellVue NIR815 (excitation wavelength 786nm / fluorescence wavelength 814nm) (manufactured by Polyscience) And so on. These phosphors consist of various fluorescent dyes and a long lipid-affinity tail bound to this, and this tail penetrates into the cell membrane, leaving the fluorescent color development site exposed on the outer surface of the cell, thereby making the cell membrane Can be dyed. CellVue is a registered trademark.
The method for immobilizing a substance that specifically binds and / or reacts with a biological substance is the same as that for the phosphor (b).
〔生体物質〕
本発明において蛍光体(b)が結合する対象となる生体物質は、少なくともその一部が細胞膜に存在する(すなわち、実質的に細胞膜のみに存在していてもよいし、細胞膜とそれ以外の部位、例えば細胞質中との両方に存在していてもよい)生体由来の化合物であれば、本発明においては特に限定されるものではないが、代表例としては膜タンパク質が挙げられる。膜タンパク質としては、例えばがんの増殖制御因子または転移制御因子等が好適であり、特にその遺伝子の発現レベルの異常と乳がんとが関与しているHER2が好ましい。
[Biological substances]
In the present invention, the biological material to which the phosphor (b) binds is present at least in part in the cell membrane (that is, it may be present only in the cell membrane, or the cell membrane and other sites) For example, a membrane protein may be mentioned as a typical example, although it is not particularly limited in the present invention as long as it is a compound derived from a living body (which may be present both in the cytoplasm, for example). As the membrane protein, for example, a cancer growth control factor or a metastasis control factor is suitable, and HER2 in which an abnormal expression level of the gene and breast cancer are involved is particularly preferable.
他方、本発明に係る生体物質を認識する化合物としては、例えば、抗体,アビジン,ビオチン等が挙げられる。
特にがん患者に投与される、抗体を成分として含む医薬品における抗体としては、がんの増殖制御因子または転移制御因子等を標的抗原とし、該標的抗原に結合する抗体を有効成分とし、該抗体ががん細胞に結合することによってがん細胞の増殖を抑える、または、がん細胞を死滅させる抗体医薬品や、抗がん剤,抗ウィルス剤,抗生物質等を有効成分とし、がん細胞へのデリバリー手段として用いられる医薬品等を挙げることができる。
On the other hand, examples of the compound that recognizes the biological substance according to the present invention include antibodies, avidin, and biotin.
In particular, as an antibody in a pharmaceutical agent containing an antibody as a component administered to a cancer patient, a cancer growth regulator or metastasis regulator is a target antigen, and an antibody that binds to the target antigen is an active ingredient. Inhibits cancer cell growth by binding to cancer cells or kills cancer cells, and contains active ingredients such as antibody drugs, anticancer drugs, antiviral drugs, and antibiotics. And the like, which are used as delivery means.
上記抗体医薬品としては、例えば、シナジス(Synagis),レミケード(Remicade),リツキサン(Rituxan),トラスツズマブ(Trastuzumab)等が挙げられ、これら中でもトラスツズマブを好適に例示することができる。 Examples of the antibody drug include Synagis, Remicade, Rituxan, and Trastuzumab. Among these, trastuzumab can be preferably exemplified.
上記がんとしては、例えば、大腸がん,直腸がん,腎がん,乳がん,前立腺がん,子宮がん,卵巣がん,子宮内膜がん,食道がん,血液がん,肝がん,膵がん,皮膚がん,肺がん、乳がん等が挙げられる。 Examples of the cancer include colon cancer, rectal cancer, kidney cancer, breast cancer, prostate cancer, uterine cancer, ovarian cancer, endometrial cancer, esophageal cancer, blood cancer, and liver. Cancer, pancreatic cancer, skin cancer, lung cancer, breast cancer and the like.
また、がんの増殖制御因子または転移制御因子のうち、がんの増殖制御因子としては、例えば、表皮増殖因子〔EGF;epidermal growth factor〕,該EGF受容体〔EGFR〕,血小板由来増殖因子〔PDGF;platelet-derived growth factor〕,該PDGF受容体〔PDGFR〕,インスリン様増殖因子〔IGF;insulin-like growth factor〕,該IGF受容体〔IGFR〕,線維芽細胞増殖因子〔FGF;fibroblast growth factor〕,該FGF受容体〔FGFR〕,血管内皮増殖因子〔VEGF;vascular endotherial growthfactor〕,該VEGF受容体〔VEGFR〕,肝細胞増殖因子〔HGF;hepatocyte growth factor〕,該HGF受容体〔HGFR〕,神経栄養因子〔NT;neurotropin〕,形質転換増殖因子β〔TGFβ;transforming growth factor-β〕ファミリー,HER2等の細胞増殖因子、または、サイクリン(cyclin),サイクリン依存性キナーゼ〔CDK;cyclin-dependent kinase〕,サイクリンA,サイクリンB,サイクリンD,サイクリンE,CDK1,CDK2,CDK4,CDK6,p16INK,p15,p21,p27,RB〔retinoblastoma〕などの細胞周期を調節する因子などが挙げられる。 Among cancer growth control factors or metastasis control factors, examples of cancer growth control factors include epidermal growth factor [EGF; epidermal growth factor], the EGF receptor [EGFR], platelet-derived growth factor [ PDGF; platelet-derived growth factor], the PDGF receptor [PDGFR], insulin-like growth factor [IGF], the IGF receptor [IGFR], fibroblast growth factor [FGF; fibroblast growth factor] , The FGF receptor [FGFR], vascular endothelial growth factor [VEGF; vascular endotherial growth factor], the VEGF receptor [VEGFR], hepatocyte growth factor [HGF], the HGF receptor [HGFR], Cell growth of neurotrophic factor [NT; neurotropin], transforming growth factor β (TGFβ; transforming growth factor-β) family, HER2, etc. Factor, or cyclin, cyclin-dependent kinase [CDK; cyclin-dependent kinase], cyclin A, cyclin B, cyclin D, cyclin E, CDK1, CDK2, CDK4, CDK6, p16INK, p15, p21, p27, Examples include factors that regulate the cell cycle such as RB [retinoblastoma].
一方、がんの転移制御因子としては、例えば、マトリックスメタロプロテアーゼ1〔MMP1〕,マトリックスメタロプロテアーゼ2〔MMP2〕,PAR1〔protease activated receptor 1〕,CXCR4〔chemokine [C−X−C motif] receptor 4〕,CCR7〔chemokine [C−C motif] receptor 7〕等が挙げられる。 On the other hand, examples of cancer metastasis regulators include matrix metalloproteinase 1 [MMP1], matrix metalloprotease 2 [MMP2], PAR1 [protease activated receptor 1], CXCR4 [chemokine [C-X-C motif] receptor 4 ], CCR7 [chemokine [CC motif] receptor 7] and the like.
これらの中でも細胞膜上にあるHER2を標的とするトラスツズマブが広く用いられているため、HER2を好適に例示することができる。
また抗体の種類としてはモノクローナル抗体やポリクローナル抗体を例示することができる。また上記抗体のクラスやサブクラスは特に制限されず、クラスとしては、例えば、IgA,IgG,IgE,IgD,IgM等が挙げられ、サブクラスとしては、例えば、IgG1,IgG2,IgG3,IgG4,IgA1,IgA2等が挙げられる。また、ここでいう「抗体」という用語は、任意の抗体断片または誘導体を含む意味で用いられ、例えば、Fab,Fab'2,CDR,ヒト化抗体,多機能抗体、単鎖抗体(ScFv)などを含む。かかる抗体は、公知の方法で製造することができる(例えば、Harlow E. & Lane D., Antibody, Cold Spring Harbor Laboratory Press (1988) 等を参照)。
Among these, since trastuzumab that targets HER2 on the cell membrane is widely used, HER2 can be preferably exemplified.
Examples of antibody types include monoclonal antibodies and polyclonal antibodies. The class and subclass of the antibody are not particularly limited. Examples of the class include IgA, IgG, IgE, IgD, IgM, and the like. Examples of the subclass include IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. Etc. The term “antibody” used herein is used to include any antibody fragment or derivative. For example, Fab, Fab ′ 2 , CDR, humanized antibody, multifunctional antibody, single chain antibody (ScFv), etc. including. Such antibodies can be produced by known methods (see, for example, Harlow E. & Lane D., Antibody, Cold Spring Harbor Laboratory Press (1988)).
〔組織切片の染色方法〕
以下、本発明で用いる染色方法の一例について説明する。この染色方法が適用できる組織切片(本明細書において、単に「切片」ともいい、例えば病理切片等の切片も包含する用語として用いる。)の作製法は特に限定されず、公知の手順により作製されたものを用いることができる。
[Tissue section staining method]
Hereinafter, an example of the staining method used in the present invention will be described. There is no particular limitation on the method of preparing a tissue section to which this staining method can be applied (in this specification, it is also simply referred to as “section”, which is also used as a term including a section such as a pathological section), and is prepared by a known procedure. Can be used.
(1.脱パラフィン工程)
キシレンを入れた容器に、切片を浸漬させ、パラフィン除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でキシレンを交換してもよい。
(1. Deparaffinization process)
The section is immersed in a container containing xylene to remove paraffin. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, xylene may be exchanged during the immersion.
次いでエタノールを入れた容器に切片を浸漬させ、キシレン除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でエタノールを交換してもよい。 Next, the section is immersed in a container containing ethanol to remove xylene. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, ethanol may be exchanged during the immersion.
水を入れた容器に、切片を浸漬させ、エタノール除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中で水を交換してもよい。 Immerse the sections in a container containing water and remove the ethanol. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, water may be exchanged during the immersion.
(2.賦活化処理)
公知の方法に倣い、目的とする生体物質の賦活化処理を行う。賦活化条件に特に定めはないが、賦活液としては、0.01Mのクエン酸緩衝液(pH6.0)、1mMのEDTA溶液(pH8.0)、5%尿素、0.1Mのトリス塩酸緩衝液などを用いることができる。加熱機器はオートクレーブ、マイクロウェーブ、圧力鍋、ウォーターバスなどを用いることができる。温度は特に限定されるものではないが、室温で行うことができる。温度は50〜130℃、時間は5〜30分で行うことができる。
(2. Activation process)
In accordance with a known method, the target biological material is activated. The activation conditions are not particularly defined, but as the activation liquid, 0.01 M citrate buffer (pH 6.0), 1 mM EDTA solution (pH 8.0), 5% urea, 0.1 M Tris-HCl buffer A liquid etc. can be used. As the heating device, an autoclave, a microwave, a pressure cooker, a water bath, or the like can be used. The temperature is not particularly limited, but can be performed at room temperature. The temperature can be 50 to 130 ° C. and the time can be 5 to 30 minutes.
次いでPBSを入れた容器に、賦活処理後の切片を浸漬させ、洗浄を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でPBSを交換してもよい。 Next, the section after the activation treatment is immersed in a container containing PBS and washed. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, PBS may be replaced during the immersion.
(3.蛍光体(b)を用いて生体物質を染色する工程)
生体物質を染色するために、生体物質を認識する部位を有する蛍光体(b)のPBS分散液を調製し、切片に乗せ、目的とする生体物質との反応を行う。
(3. Staining biological material using phosphor (b))
In order to stain the biological material, a PBS dispersion of phosphor (b) having a site for recognizing the biological material is prepared, placed on a section, and reacted with the target biological material.
温度は特に限定されるものではないが、室温で行うことができる。反応時間は、30分以上24時間以下であることが好ましい。
蛍光体(b)による染色を行う前に、BSA含有PBSなど公知のブロッキング剤やTween20などの界面活性剤を滴下することが好ましい。
The temperature is not particularly limited, but can be performed at room temperature. The reaction time is preferably 30 minutes or more and 24 hours or less.
It is preferable to add a known blocking agent such as BSA-containing PBS or a surfactant such as Tween 20 before the staining with the phosphor (b).
次いでPBSを入れた容器に、染色後の切片を浸漬させ未反応の蛍光体(b)の除去を行う。温度は特に限定されるものではないが、室温で行うことができる。PBSに、Tween20などの界面活性剤を含有させてもよい。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でPBSを交換してもよい。 Next, the stained section is immersed in a container containing PBS to remove the unreacted phosphor (b). The temperature is not particularly limited, but can be performed at room temperature. A surfactant such as Tween 20 may be contained in PBS. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, PBS may be replaced during the immersion.
(4.蛍光体(a)を用いて細胞膜を染色する工程)
公知の方法に倣い、細胞膜の染色を行う。
蛍光体(a)であるエオジン含有溶液(和光純薬(株)製の1% EosinY Solution)を切片に乗せる。温度は特に限定されるものではないが、室温で行うことができる。反応時間は、5分以上24時間以下であることが好ましい。
(4. Staining of cell membrane using phosphor (a))
According to a known method, the cell membrane is stained.
An eosin-containing solution (1% EosinY Solution manufactured by Wako Pure Chemical Industries, Ltd.), which is a phosphor (a), is placed on the section. The temperature is not particularly limited, but can be performed at room temperature. The reaction time is preferably 5 minutes or more and 24 hours or less.
次いで脱水エタノールまたは市販の脱水溶液(和光純薬(株)製の組織脱水液)を入れた容器に、染色後の切片を浸漬させ未反応エオジンの除去および脱水を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。必要により浸漬途中でエタノールを交換してもよい。 Next, the stained sections are immersed in a container containing dehydrated ethanol or a commercially available dehydrated solution (tissue dehydrated solution manufactured by Wako Pure Chemical Industries, Ltd.) to remove and dehydrate unreacted eosin. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, ethanol may be exchanged during the immersion.
次いで、キシレンを入れた容器に染色後の切片を浸漬させ、エタノールの除去を行う。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でキシレンを交換してもよい。
カバーガラスを切片に乗せ、封入する。必要に応じて市販封入剤を使用してもよい。
Next, the stained section is immersed in a container containing xylene to remove ethanol. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, xylene may be exchanged during the immersion.
Place the cover glass on the section and enclose it. A commercially available mounting agent may be used as needed.
(5.蛍光顕微鏡下の観察)
染色した切片に対し蛍光顕微鏡を用いて、細胞膜染色に用いた蛍光色素(蛍光体(a))の蛍光から細胞膜の位置を同定し、細胞膜上にある蛍光体(b)の輝点数または蛍光輝度を基に目的とする細胞膜上の生体物質の発現レベルを計測することができる。
(5. Observation under a fluorescence microscope)
Using a fluorescent microscope on the stained section, the position of the cell membrane is identified from the fluorescence of the fluorescent dye (phosphor (a)) used for cell membrane staining, and the number of bright spots or fluorescence intensity of the phosphor (b) on the cell membrane The expression level of the biological substance on the target cell membrane can be measured based on the above.
用いた蛍光物質の吸収極大波長および蛍光波長に対応した励起光源および蛍光検出用光学フィルタを選択する。
輝点数または発光輝度の計測は、演算手段による画像処理を行うことによって計測することが好ましく、例えば、市販画像解析ソフトである「ImageJ」や(株)ジーオングストローム社製の全輝点自動計測ソフト「G−Count」などを用いて行うこともできる。
An excitation light source and an optical filter for fluorescence detection corresponding to the absorption maximum wavelength and fluorescence wavelength of the fluorescent substance used are selected.
The number of bright spots or emission luminance is preferably measured by performing image processing using a calculation means. For example, “ImageJ”, which is a commercially available image analysis software, or all bright spot automatic measurement software manufactured by J.A. It can also be performed using “G-Count” or the like.
本発明においては、図1に示すようなフローチャートに沿って、細胞膜ごとの蛍光粒子重畳数をカウントする方法が好適である。
すなわち、下記(A-1)〜(A-4)の画像処理で得られた画像と下記(B-1)〜(B-4)の処理で得られた画像とを併せて、細胞膜の輝点をラベルする画像処理する方法である。
In the present invention, a method of counting the number of superimposed fluorescent particles for each cell membrane along the flowchart as shown in FIG. 1 is suitable.
That is, the image obtained by the image processing of the following (A-1) to (A-4) and the image obtained by the processing of the following (B-1) to (B-4) This is an image processing method for labeling points.
(A-1) 顕微鏡の明視野で得られた切片画像(A)に対してグレースケール変換を施す画像処理,
(A-2) (A-1)で得られた画像に対して2値化を施す画像処理,
(A-3) (A-2)で得られた画像に対して穴埋めを施す画像処理,および
(A-4) (A-3)で得られた画像に対してラベリングを施す画像処理;ならびに
(B-1) 顕微鏡の暗視野で得られた切片画像(B)に対してグレースケール変換を施す画像処理,
(B-2) (B-1)で得られた画像に対して2値化を施す画像処理,
(B-3) (B-2)で得られた画像に対してノイズを除去する画像処理,および
(B-4) (B-3)で得られた画像に対してラベリングを施す画像処理。
この方法について、ステップを追いながら順に説明する。
(A-1) Image processing for performing gray scale conversion on the section image (A) obtained in the bright field of the microscope,
(A-2) Image processing that binarizes the image obtained in (A-1),
(A-3) Image processing for filling a hole in the image obtained in (A-2), and
(A-4) Image processing for labeling the image obtained in (A-3); and
(B-1) Image processing for performing gray scale conversion on the section image (B) obtained in the dark field of the microscope,
(B-2) Image processing that binarizes the image obtained in (B-1),
(B-3) Image processing to remove noise from the image obtained in (B-2), and
(B-4) Image processing for labeling the image obtained in ( B- 3).
This method will be described in order, following the steps.
《グレースケール変換;(A-1),(B-1)》
カラー画像(RGB)は切片ごとに輝度にバラツキがあるため、グレースケール変換する必要がある。図2には、その一例を示す。グレースケール変換の条件は、公知のものを使用することができ、本発明では特に限定されないが、例えば下記式により変換することができる。
Y=0.299×R+0.587×G+0.114×B
《Grayscale conversion; (A-1), (B-1)》
Since the color image (RGB) has a variation in luminance for each section, it is necessary to perform gray scale conversion. An example is shown in FIG. The conditions for gray scale conversion may be known ones and are not particularly limited in the present invention, but can be converted by, for example, the following formula.
Y = 0.299 × R + 0.587 × G + 0.114 × B
《2値化処理;(A-2),(B-2)》
グレースケール変換した画像から、予め設定された上限閾値および下限閾値に基づき2値化画像を作成する。この上限・下限閾値は、例えば、図3(C)に示す大津の判別分析法(大津展之; 判別及び最小2乗基準に基づく自動しきい値選定法, 電子通信学会論文誌, Vol.J63-D, No4, pp.349-356, 1980)による2値化などのような統計的閾値決定法を利用してもよい。
<< Binarization processing; (A-2), (B-2) >>
A binarized image is created from the grayscale converted image based on preset upper and lower thresholds. The upper and lower thresholds are, for example, Otsu's discriminant analysis method shown in FIG. 3C (Otsu Nobuyuki; automatic threshold selection method based on discriminant and least-squares criteria, IEICE Transactions, Vol. -D, No4, pp.349-356, 1980), a statistical threshold determination method such as binarization may be used.
この2値化処理によって、細胞膜に由来するもの(下限閾値以下)と生体物質に由来するもの(下限閾値以上上限閾値以下)とに分けることができる。(図3(A)を参照。)
具体的には、図3(B)に示すフローチャートに従って、抽出する画素を決定することができる。
By this binarization process, it can be divided into those derived from cell membranes (lower threshold or lower) and those derived from biological substances (lower threshold or higher upper threshold). (See FIG. 3A.)
Specifically, the pixel to be extracted can be determined according to the flowchart shown in FIG.
《Morphology処理による穴埋め処理;(A-3)》
図4(A)に示すように、細胞膜が寸断された細胞を、この穴埋め処理によって、細胞膜を一繋がりとすることができる。具体的な処理としては、ピクセル単位で表示した2値化画像において、「1」とラベルされたピクセルの周囲のピクセルをすべて「1」とラベル(膨張)した後、「1」とラベルされたピクセル一集団の最外周の「1」ピクセルのみを「0」とラベルする(収縮)ものである。(図4(B))
<< Clogging process by Morphology process; (A-3) >>
As shown in FIG. 4A, cells whose cell membranes are cut off can be connected to each other by this filling process. Specifically, in the binarized image displayed in units of pixels, all the pixels around the pixel labeled “1” are labeled (expanded) and then labeled “1”. Only the “1” pixel at the outermost periphery of a group of pixels is labeled as “0” (shrinkage). (Fig. 4 (B))
《ノイズ除去処理;(B-3)》
図5に示すように、対象オブジェクト(図(A)中のn1, n2, n4)以外のオブジェクト(図(A)中のn3)をノイズとして識別して除去する処理である。オブジェクトの面積(画素数)をカウントし、規定値(図5では、noise_valに相当する。)以下の面積を有するオブジェクトをノイズとして、背景色と同色に変換する。図5において(A)をノイズ除去処理したものを(B)として示す。
《Noise removal processing; (B-3)》
As shown in FIG. 5, the object (n3 in FIG. (A)) other than the target object (n1, n2, n4 in FIG. (A)) is identified and removed as noise. The area (number of pixels) of the object is counted, and an object having an area equal to or smaller than a specified value (corresponding to noise_val in FIG. 5) is converted to the same color as the background color as noise. In FIG. 5, (B) is obtained by removing noise from (A).
《ラベリング処理;(A-4),(B-4)》
ピクセル単位で表示された個々のオブジェクト、すなわち「1」ラベルされたピクセル一集団それぞれに順に番号を振る処理である。(図6)
《Labeling processing; (A-4), (B-4)》
This is a process of sequentially assigning numbers to individual objects displayed in pixel units, that is, to each group of pixels labeled “1”. (Fig. 6 )
《細胞膜ごとの蛍光ナノ粒子重畳数のカウント》
図7(B)に示すようなフローチャートに従って、細胞ごとに細胞膜上の輝点1個ずつラベル(図7(A))し、輝点数をカウントする。1輝点は、1生体物質にほぼ相当するものである。
<Counting the number of fluorescent nanoparticles superimposed per cell membrane>
According to the flowchart shown in FIG. 7 (B), the bright spot one by one label on the cell membrane per cell (FIG. 7 (A)), and counts the bright points. One bright spot substantially corresponds to one biological substance.
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。
[製造例1]抗HER2抗体が結合したTexasRed内包シリカナノ粒子の製造:
下記工程(i-1)〜(iv-1)によりTexasRed内包シリカナノ粒子を作製し;下記工程(v)〜(vii)により該粒子表面にアミノ基を導入し;そして、下記工程(viii)〜(xvi)により、蛍光体(b)として、抗HER2抗体が結合したTexasRed内包シリカナノ粒子を製造した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
[Production Example 1] Production of TexasRed-encapsulated silica nanoparticles bound with anti-HER2 antibody:
TexasRed-encapsulated silica nanoparticles are prepared by the following steps (i-1) to (iv-1); amino groups are introduced on the particle surfaces by the following steps (v) to (vii); and the following steps (viii) to (viii) to (xvi) produced TexasRed-encapsulated silica nanoparticles bound with anti-HER2 antibody as phosphor (b).
工程(i-1):蛍光波長615nmをピークとして有するTexasRedのN−ヒドロキシスクシンイミドエステル誘導体(インビトロジェン社製)1mg(0.00126mモル)とテトラエトキシシラン400μL(1.796mモル)とを混合した。
工程(ii-1):エタノール40mLと14%アンモニア水10mLとを混合した。
Step (i-1): 1 mg (0.00126 mmol) of TexasRed's N-hydroxysuccinimide ester derivative (manufactured by Invitrogen) having a fluorescence wavelength of 615 nm as a peak was mixed with 400 μL (1.796 mmol) of tetraethoxysilane.
Step (ii-1): Ethanol 40 mL and 14% aqueous ammonia 10 mL were mixed.
工程(iii-1):工程(ii-1)で得られた混合液を室温で撹拌しつつ、工程(i-1)で調製した混合液を添加した。添加した後12時間撹拌した。
工程(iv-1):この反応混合物を10,000×gで60分間遠心分離し、上澄みを除去した。その後、エタノールを加え沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行い、TexasRed内包シリカナノ粒子を得た。
このTexasRed内包シリカナノ粒子を走査型電子顕微鏡〔SEM;日立(株)製S−800型〕により観察したところ、平均粒径が110nm、変動係数が12%であった。
Step (iii-1): The mixture prepared in step (i-1) was added while stirring the mixture obtained in step (ii-1) at room temperature. After the addition, the mixture was stirred for 12 hours.
Step (iv-1): The reaction mixture was centrifuged at 10,000 × g for 60 minutes, and the supernatant was removed. Thereafter, ethanol was added to disperse the sediment, and centrifugation was performed again. In the same procedure, washing with ethanol and pure water was performed once to obtain Texas Red-encapsulated silica nanoparticles.
The Texas Red-encapsulated silica nanoparticles were observed with a scanning electron microscope (SEM; Model S-800, manufactured by Hitachi, Ltd.). The average particle size was 110 nm and the coefficient of variation was 12%.
工程(v):工程(iv)で得られたTexasRed内包シリカナノ粒子1mgを純水5mLに分散させた。そこにアミノプロピルトリエトキシシラン水分散液100μLを添加し、室温で12時間撹拌した。
工程(vi):この反応混合物を10,000×gで60分間遠心分離し、上澄みを除去した。
Step (v): 1 mg of Texas Red-encapsulated silica nanoparticles obtained in step (iv) was dispersed in 5 mL of pure water. Thereto was added 100 μL of an aminopropyltriethoxysilane aqueous dispersion, followed by stirring at room temperature for 12 hours.
Step (vi): The reaction mixture was centrifuged at 10,000 × g for 60 minutes, and the supernatant was removed.
工程(vii):これにエタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行い、TexasRed内包シリカナノ粒子表面にアミノ基を導入した。
このように得られたアミノ基修飾したTexasRed内包シリカナノ粒子のFT−IR測定を行ったところ、アミノ基に由来する吸収が観測でき、アミノ基修飾できたことを確認できた。
Step (vii): Ethanol was added thereto to disperse the precipitate, and then centrifuged again. In the same procedure, washing with ethanol and pure water was performed once to introduce amino groups on the surface of the TexasRed-encapsulated silica nanoparticles.
When the FT-IR measurement of the thus obtained amino group-modified TexasRed-encapsulated silica nanoparticles was performed, absorption derived from the amino group was observed, and it was confirmed that the amino group was modified.
工程(viii):工程(vii)で得られた粒子をEDTA〔エチレンジアミン四酢酸〕を2mM含有したPBS〔リン酸緩衝液生理的食塩水〕を用いて3nMに調整した。
工程(ix):工程(viii)で調整した溶液に、最終濃度が10mMとなるようSM(PEG)12(サーモサイエンティフィック社製;succinimidyl-[(N-maleomidopropionamid)-dodecaethyleneglycol]ester)を混合し1時間反応させた。
Step (viii): The particles obtained in step (vii) were adjusted to 3 nM using PBS [phosphate buffered saline] containing 2 mM of EDTA [ethylenediaminetetraacetic acid].
Step (ix): SM (PEG) 12 (manufactured by Thermo Scientific; succinimidyl-[(N-maleomidopropionamid) -dodecaethyleneglycol] ester) is mixed with the solution prepared in step (viii) to a final concentration of 10 mM. And allowed to react for 1 hour.
工程(x):この反応混合液を10,000×gで60分間遠心分離し、上澄みを除去した
工程(xi):これにEDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用い再分散させた。
工程(xii):抗HER2抗体100μgを、100μLのPBSに溶解させたところに、1Mジチオスレイトール〔DTT〕を添加した、30分間反応させた。
Step (x): The reaction mixture was centrifuged at 10,000 × g for 60 minutes, and the supernatant was removed. Step (xi): PBS containing 2 mM EDTA was added thereto, the precipitate was dispersed, and centrifuged again. went. Washing by the same procedure was performed 3 times. Finally, it was redispersed with 500 μL of PBS.
Step (xii): 100 μg of the anti-HER2 antibody was dissolved in 100 μL of PBS, and 1 M dithiothreitol [DTT] was added to react for 30 minutes.
工程(xiii):この反応混合物について、ゲルろ過カラムにより過剰のDTTを除去し、還元化抗HER2抗体溶液を得た。
工程(xiv):工程(xi)で得られたアミノ基修飾したTexasRed内包シリカナノ粒子の分散液と工程(xiii)で得られた還元化抗HER2抗体溶液とをPBS中で混合し、1時間反応させた。
Step (xiii): About this reaction mixture, excess DTT was removed by a gel filtration column to obtain a reduced anti-HER2 antibody solution.
Step (xiv): The dispersion of the amino group-modified TexasRed-encapsulated silica nanoparticles obtained in step (xi) and the reduced anti-HER2 antibody solution obtained in step (xiii) are mixed in PBS and reacted for 1 hour. I let you.
工程(xv):これに10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(xvi):この反応混合物を10,000×gで60分間遠心分離し上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用い再分散させて、蛍光体(b)として、抗HER2抗体が結合したTexasRed内包シリカナノ粒子を得た。
Step (xv): 4 μL of 10 mM mercaptoethanol was added thereto to stop the reaction.
Step (xvi): The reaction mixture was centrifuged at 10,000 × g for 60 minutes to remove the supernatant, PBS containing 2 mM EDTA was added, the precipitate was dispersed, and centrifuged again. Washing by the same procedure was performed 3 times. Finally, 500 μL of PBS was redispersed to obtain TexasRed-encapsulated silica nanoparticles bound with anti-HER2 antibody as phosphor (b).
[製造例2]抗HER2抗体が結合したCdSe/ZnS内包シリカナノ粒子の製造:
下記工程(i-2)〜(iv-2)に従いCdSe/ZnS内包シリカナノ粒子を作製した。製造例1の工程(v)〜(xvi)において、TexasRed内包シリカナノ粒子の代わりに、得られたCdSe/ZnS内包シリカナノ粒子を用いた以外は製造例1と同様にして、CdSe/ZnS内包シリカナノ粒子の表面にアミノ基を導入し、抗HER2抗体を固定化した。その結果、蛍光体(b)として、抗HER2抗体が結合したCdSe/ZnS内包シリカナノ粒子が製造できた。
[Production Example 2] Production of CdSe / ZnS-encapsulated silica nanoparticles bound with anti-HER2 antibody:
CdSe / ZnS-encapsulated silica nanoparticles were prepared according to the following steps (i-2) to (iv-2). CdSe / ZnS-encapsulated silica nanoparticles in the same manner as in Production Example 1 except that the obtained CdSe / ZnS-encapsulated silica nanoparticles were used in place of the TexasRed-encapsulated silica nanoparticles in the steps (v) to (xvi) of Production Example 1. An amino group was introduced on the surface of the anti-HER2 antibody to immobilize it. As a result, CdSe / ZnS-encapsulated silica nanoparticles bound with an anti-HER2 antibody could be produced as the phosphor (b).
工程(i-2):蛍光波長655nmにピークを有するCdSe/ZnSデカン分散液(インビトロジェン社製の「Qdot655」)10μLとテトラエトキシシラン40μLとを混合した。 Step (i-2): 10 μL of CdSe / ZnS decane dispersion having a peak at a fluorescence wavelength of 655 nm (“Qdot655” manufactured by Invitrogen) and 40 μL of tetraethoxysilane were mixed.
工程(ii-2):エタノール4mLと14%アンモニア水1mLとを混合した。
工程(iii-3):工程(ii-2)で得られた混合液を室温で撹拌しつつ、工程(i-2)で調製した混合液を添加した。添加した後12時間撹拌した。
Step (ii-2): 4 mL of ethanol and 1 mL of 14% aqueous ammonia were mixed.
Step (iii-3): While the mixture obtained in step (ii-2) was stirred at room temperature, the mixture prepared in step (i-2) was added. After the addition, the mixture was stirred for 12 hours.
工程(iv-2):この反応混合物を10,000×gで60分間遠心分離し、上澄みを除去した。これにエタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行うことによって、CdSe/ZnS内包シリカナノ粒子が作製できた。
得られたCdSe/ZnS内包シリカナノ粒子のSEM観察を行ったところ、平均粒径が130nm、変動係数が13%であった。
Step (iv-2): The reaction mixture was centrifuged at 10,000 × g for 60 minutes, and the supernatant was removed. Ethanol was added thereto to disperse the sediment, and centrifugation was performed again. CdSe / ZnS-encapsulated silica nanoparticles were prepared by performing washing with ethanol and pure water once in the same procedure.
When the obtained CdSe / ZnS-encapsulated silica nanoparticles were observed with an SEM, the average particle size was 130 nm and the variation coefficient was 13%.
[製造例3]抗HER2抗体が結合したTexasRedの製造:
TexasRedのN−ヒドロキシスクシンイミドエステル誘導体(インビトロジェン社製)を用い、公知の方法に従い抗HER2抗体への結合を行った。
[Production Example 3] Production of TexasRed conjugated with anti-HER2 antibody:
Using an N-hydroxysuccinimide ester derivative of TexasRed (manufactured by Invitrogen), binding to an anti-HER2 antibody was performed according to a known method.
[実施例1]
製造例1で得られた蛍光体(b)、すなわち抗HER2抗体が結合したTexasRed内包シリカナノ粒子を用いて、下記(1)〜(13)に従ってヒト乳房組織の免疫染色を行った。染色切片はコスモバイオ(株)製の組織アレイスライド(CB-A712)を用いた。
[Example 1]
Human breast tissue was immunostained according to the following (1) to (13) using the phosphor (b) obtained in Production Example 1, that is, Texas Red-encapsulated silica nanoparticles bound with an anti-HER2 antibody. As a stained section, a tissue array slide (CB-A712) manufactured by Cosmo Bio Co., Ltd. was used.
染色切片はあらかじめパスビジョンHER-2 DNAプローブキット(アボット社製)を用いて各スポット当りのFISHスコアを算出した。このFISHスコアは、アボットジャパン社製HER−2遺伝子キット パスビジョン&reg;HER−2 DNAプローブキットに添付されている文書に記載の手順に従って算出した。 For the stained sections, the FISH score for each spot was calculated in advance using a Pathvision HER-2 DNA probe kit (Abbott). The FISH score was calculated according to the procedure described in the document attached to the HER-2 gene kit Passvision ® HER-2 DNA probe kit manufactured by Abbott Japan.
(1) キシレンを入れた容器に組織切片を30分間浸漬させた。途中3回キシレンを交換した。
(2) エタノールを入れた容器に組織切片を30分間浸漬させた。途中3回エタノールを交換した。
(1) The tissue section was immersed for 30 minutes in a container containing xylene. The xylene was changed three times during the process.
(2) The tissue section was immersed in a container containing ethanol for 30 minutes. The ethanol was changed three times during the process.
(3) 水を入れた容器に、組織切片を30分間浸漬させた。途中3回水を交換した。
(4) 10mMクエン酸緩衝液(pH6.0)に組織切片を30分間浸漬させた。
(5) 121℃で10分間オートクレーブ処理を行った。
(3) The tissue section was immersed in a container containing water for 30 minutes. The water was changed three times along the way.
(4) The tissue section was immersed in 10 mM citrate buffer (pH 6.0) for 30 minutes.
(5) Autoclaved at 121 ° C. for 10 minutes.
(6) PBSを入れた容器に、オートクレーブ処理後の切片を30分間浸漬させた。
(7) 1%BSA含有PBSを組織に乗せて、1時間放置した。
(8) 1%BSA含有PBSで0.05nMに希釈した蛍光体(b)の分散液10μLを、組織に乗せて3時間放置した。
(6) The section after autoclaving was immersed in a container containing PBS for 30 minutes.
(7) 1% BSA-containing PBS was placed on the tissue and left for 1 hour.
(8) A 10 μL dispersion of phosphor ( b ) diluted to 0.05 nM with 1% BSA-containing PBS was placed on the tissue and allowed to stand for 3 hours.
(9) PBSを入れた容器に、染色後の切片をそれぞれ30分間浸漬させた。
(10) 蛍光体(a)であるエオジン含有溶液(和光純薬(株)製の1% EosinY Solution)10μLを組織に乗せて3時間放置した。
(9) Each stained section was immersed in a container containing PBS for 30 minutes.
(10) 10 μL of the eosin-containing solution (1% EosinY Solution manufactured by Wako Pure Chemical Industries, Ltd.) as the phosphor (a) was placed on the tissue and left for 3 hours.
(11) 脱水溶液(和光純薬(株)製の組織脱水液)を入れた容器に、染色後の切片を30分間浸漬させた。
(12) キシレンを入れた容器に染色後の切片を30分間浸漬させた
(13) 市販封入剤(メルク社製のエントランニュー)を乗せた後、カバーガラスを切片に乗せた。
(11) The stained sections were immersed for 30 minutes in a container containing a dewatered solution (tissue dehydrated solution manufactured by Wako Pure Chemical Industries, Ltd.).
(12) The stained sections were immersed for 30 minutes in a container containing xylene.
(13) After placing a commercially available mounting agent (Menck Entranu), a cover glass was placed on the slice.
組織切片はオリンパス(株)製のレーザ共焦点顕微鏡FV1000−Dを用いて画像を取得し、ジーオンオングストロング社製の輝点計測ソフト「G−count」を用いて輝点の計測を行った。 Tissue sections were imaged using a laser confocal microscope FV1000-D manufactured by Olympus Co., Ltd., and bright spots were measured using bright spot measuring software “G-count” manufactured by Zeon Angstrom.
蛍光体(b)の場合の、細胞膜同定法,輝点および蛍光強度の計測法について以下に説明する。なお、蛍光体(a)の場合も、励起波長・蛍光波長が蛍光体(b)と異なる以外は同様にして計測した。 The cell membrane identification method, the bright spot and the fluorescence intensity measurement method in the case of the phosphor (b) will be described below. In the case of the phosphor (a), measurement was performed in the same manner except that the excitation wavelength / fluorescence wavelength was different from that of the phosphor ( b ).
波長520nmの励起光下、蛍光体(a)であるエオジンに由来する波長540nmの蛍光画像Iを取得し、細胞膜の位置を同定した。次いで、励起波長605nmの励起光下、蛍光体(b)に由来する615nmの蛍光画像IIを取得した。蛍光画像Iと蛍光画像IIとを画像処理ソフトを用いて重ね合わせを行うことで、蛍光体(b)による蛍光の位置が細胞膜上にあるか否かの判別を行った。 Under excitation light with a wavelength of 520 nm, a fluorescence image I with a wavelength of 540 nm derived from eosin as the phosphor (a) was obtained, and the position of the cell membrane was identified. Next, a fluorescence image II of 615 nm derived from the phosphor (b) was obtained under excitation light having an excitation wavelength of 605 nm. By superimposing the fluorescence image I and the fluorescence image II using image processing software, it was determined whether or not the position of fluorescence by the phosphor (b) was on the cell membrane.
輝点数は、組織アレイスライド中の8スポットについて蛍光画像Iと蛍光画像IIとの重ね合わせを行い、各30細胞の視野全体の蛍光輝点数および細胞膜上にある蛍光輝点数のそれぞれ計測し、その平均値を求めた。 The number of bright spots is obtained by superimposing the fluorescent image I and the fluorescent image II on 8 spots in the tissue array slide, and measuring the number of fluorescent bright spots on the entire field of view of each 30 cells and the number of fluorescent bright spots on the cell membrane. The average value was obtained.
蛍光強度は8スポットそれぞれについて、視野全体の蛍光強度および細胞膜上の蛍光強度を計測し、その平均値を求めた。
その結果を表1に示す。
For each of the 8 spots, the fluorescence intensity of the entire visual field and the fluorescence intensity on the cell membrane were measured, and the average value was obtained.
The results are shown in Table 1.
[実施例2]
実施例1において、製造例1で得られた蛍光体(b)の代わりに、製造例2で得られた蛍光体(b)を用いた以外は、実施例1と同様にして組織切片を染色し、輝点数および蛍光強度を計測した。得られた結果を表1に示す。
[Example 2]
In Example 1, the tissue section was stained in the same manner as in Example 1 except that the phosphor (b) obtained in Production Example 2 was used instead of the phosphor (b) obtained in Production Example 1. Then, the number of bright spots and fluorescence intensity were measured. The obtained results are shown in Table 1.
[比較例1]
実施例1において、蛍光体(a)であるエオジンを用いない以外は実施例1と同様にして組織切片を染色し、輝点数および蛍光強度を計測した。得られた結果を表1に示す。
[Comparative Example 1]
In Example 1, a tissue section was stained in the same manner as in Example 1 except that eosin as the phosphor (a) was not used, and the number of bright spots and fluorescence intensity were measured. The obtained results are shown in Table 1.
[比較例2]
実施例2において、蛍光体(a)であるエオジンを用いない以外は実施例2と同様にして組織切片を染色し、輝点数および蛍光強度を計測した。得られた結果を表1に示す。
[Comparative Example 2]
In Example 2, a tissue section was stained in the same manner as in Example 2 except that eosin as the phosphor (a) was not used, and the number of bright spots and fluorescence intensity were measured. The obtained results are shown in Table 1.
[比較例3]
実施例1において、製造例1で得られた蛍光体(b)の代わりに、製造例3で得られた蛍光体(b)を用いた以外は、実施例1と同様にして組織切片を染色し、輝点数および蛍光強度を計測した。得られた結果を表1に示す。
[Comparative Example 3]
In Example 1, the tissue section was stained in the same manner as in Example 1 except that the phosphor (b) obtained in Production Example 3 was used instead of the phosphor (b) obtained in Production Example 1. Then, the number of bright spots and fluorescence intensity were measured. The obtained results are shown in Table 1.
従来の蛍光有機色素であるTexasRedを用いた場合(比較例3)は、輝点数・蛍光強度が弱く輝点観測ができなかった。 When Texas Red, which is a conventional fluorescent organic dye, was used (Comparative Example 3), the number of bright spots and fluorescent intensity were weak, and bright spot observation was not possible.
本発明の評価方法は、従来病理医が実施している組織染色と共通する工程が多く、迅速な診断に寄与することができる。 The evaluation method of the present invention has many steps in common with tissue staining conventionally performed by a pathologist, and can contribute to rapid diagnosis.
Claims (5)
少なくともその一部が細胞膜に存在する生体物質に結合し、かつ、該蛍光体(a)とは異なる発光波長のピークを有する、蛍光有機色素もしくは半導体ナノ粒子を内包した内包ナノ粒子である蛍光体(b)
を用いて組織切片を染色し;
染色された該切片中の細胞膜の位置を該蛍光体(a)の発光により同定し;
同定された細胞膜上の該蛍光体(b)による輝点数および蛍光強度を計測することによって、細胞膜における該生体物質の発現レベルを評価することを特徴とする評価方法。 Is eosin (eosin), phosphor used for staining of the cell membrane (a), and,
A phosphor that is an encapsulated nanoparticle encapsulating a fluorescent organic dye or a semiconductor nanoparticle, at least a part of which binds to a biological substance present in a cell membrane and has a peak of an emission wavelength different from that of the phosphor (a) (b)
Staining the tissue section with:
Identifying the location of the cell membrane in the stained section by luminescence of the phosphor (a);
An evaluation method comprising evaluating the expression level of the biological material in a cell membrane by measuring the number of bright spots and fluorescence intensity of the phosphor (b) on the identified cell membrane.
(A-1) 顕微鏡の明視野で得られた切片画像に対してグレースケール変換を施す画像処理,
(A-2) (A-1)で得られた画像に対して2値化を施す画像処理,
(A-3) (A-2)で得られた画像に対して穴埋めを施す画像処理,および
(A-4) (A-3)で得られた画像に対してラベリングを施す画像処理;ならびに
(B-1) 顕微鏡の暗視野で得られた切片画像に対してグレースケール変換を施す画像処理,
(B-2) (B-1)で得られた画像に対して2値化を施す画像処理,
(B-3) (B-2)で得られた画像に対してノイズを除去する画像処理,および
(B-4) (B-3)で得られた画像に対してラベリングを施す画像処理。 By combining the images obtained by the image processing (A-1) to (A-4) below and the images (B-1) to (B-4) below, performing image processing for the label, the evaluation method according to claim 1 or 2;
(A-1) Image processing that performs grayscale conversion on the section image obtained in the bright field of the microscope,
(A-2) Image processing that binarizes the image obtained in (A-1),
(A-3) Image processing for filling a hole in the image obtained in (A-2), and
(A-4) Image processing for labeling the image obtained in (A-3); and
(B-1) Image processing that performs grayscale conversion on the section image obtained in the dark field of the microscope,
(B-2) Image processing that binarizes the image obtained in (B-1),
(B-3) Image processing to remove noise from the image obtained in (B-2), and
(B-4) Image processing for labeling the image obtained in (B-3).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011197341A JP5906623B2 (en) | 2011-09-09 | 2011-09-09 | Biological substance expression level evaluation system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011197341A JP5906623B2 (en) | 2011-09-09 | 2011-09-09 | Biological substance expression level evaluation system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2013057631A JP2013057631A (en) | 2013-03-28 |
| JP5906623B2 true JP5906623B2 (en) | 2016-04-20 |
Family
ID=48133622
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011197341A Active JP5906623B2 (en) | 2011-09-09 | 2011-09-09 | Biological substance expression level evaluation system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5906623B2 (en) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10551378B2 (en) * | 2011-09-09 | 2020-02-04 | Konica Minolta, Inc. | Tissue staining method |
| US10352859B2 (en) | 2013-09-26 | 2019-07-16 | Konica Minolta, Inc. | Method for determining quantity of biological material in tissue section |
| JP5843054B1 (en) * | 2014-03-24 | 2016-01-13 | コニカミノルタ株式会社 | Biological substance quantification method based on multiple immunostaining |
| JP5768948B1 (en) * | 2014-03-27 | 2015-08-26 | コニカミノルタ株式会社 | Image processing apparatus and image processing program |
| JP2015203650A (en) * | 2014-04-15 | 2015-11-16 | ソニー株式会社 | Biomolecule density measurement device and biomolecule density measurement method |
| WO2015190225A1 (en) * | 2014-06-12 | 2015-12-17 | コニカミノルタ株式会社 | Diagnosis-assistance-information generation method, image processing device, diagnosis-assistance-information generation system, and image processing program |
| JP5768945B1 (en) * | 2014-07-11 | 2015-08-26 | コニカミノルタ株式会社 | Biological substance determination method, image processing apparatus, pathological diagnosis support system, and program |
| US10509023B2 (en) | 2014-12-09 | 2019-12-17 | Konica Minolta, Inc. | Image processing apparatus and computer readable medium for image processing |
| WO2016093268A1 (en) | 2014-12-12 | 2016-06-16 | コニカミノルタ株式会社 | Diluent for fluorescent nano particles, kit for immunofluorescent staining which utilizes same, solution for immunofluorescent staining, immunofluorescent staining method, and gene staining method |
| EP3258264B1 (en) | 2015-02-10 | 2020-12-02 | Konica Minolta, Inc. | Biological substance quantitation method |
| WO2016194338A1 (en) * | 2015-06-04 | 2016-12-08 | パナソニック株式会社 | Image processing method and image processing device |
| US10036751B2 (en) * | 2015-08-10 | 2018-07-31 | China Medical University Hospital | Method of evaluating glioblastoma multiforme patient applicable to immunotherapy treatment based on dendritic cell tumor vaccines and method of prognosticating survival rate in glioblastoma mulztiforme patient after treatment |
| US10572996B2 (en) * | 2016-06-28 | 2020-02-25 | Contextvision Ab | Method and system for detecting pathological anomalies in a digital pathology image and method for annotating a tissue slide |
| WO2019082788A1 (en) | 2017-10-26 | 2019-05-02 | コニカミノルタ株式会社 | Image processing device, in-focus position specifying method, and in-focus position specifying program |
| JPWO2020209217A1 (en) * | 2019-04-12 | 2020-10-15 | ||
| WO2021124866A1 (en) * | 2019-12-19 | 2021-06-24 | コニカミノルタ株式会社 | Image processing method, image processing system, and program |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3539581B2 (en) * | 1994-09-19 | 2004-07-07 | 株式会社日立製作所 | Particle image analysis method |
| WO1997047968A1 (en) * | 1996-06-10 | 1997-12-18 | Laboratory Of Molecular Biophotonics | Highly sensitive fluorescent immunoassay |
| US6385272B1 (en) * | 1998-12-28 | 2002-05-07 | Sapporo Breweries Ltd. | Method of counting microorganisms and device for accomplishing the counting |
| JPWO2003100086A1 (en) * | 2002-05-23 | 2005-09-22 | 富士電機ホールディングス株式会社 | Viable cell counting method and apparatus |
| JP2006194711A (en) * | 2005-01-13 | 2006-07-27 | Matsushita Electric Ind Co Ltd | Method and apparatus for evaluating the performance of fluorescent dyes |
| JP5040597B2 (en) * | 2007-11-06 | 2012-10-03 | 日本電気株式会社 | Evaluation system, evaluation method, and evaluation program |
| JP5361488B2 (en) * | 2009-03-24 | 2013-12-04 | オリンパス株式会社 | Fluorescence observation equipment |
-
2011
- 2011-09-09 JP JP2011197341A patent/JP5906623B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2013057631A (en) | 2013-03-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5906623B2 (en) | Biological substance expression level evaluation system | |
| JP6112173B2 (en) | Fluorescent label for tissue staining and biological material detection method | |
| US11435348B2 (en) | Tissue staining method | |
| JP5900489B2 (en) | Immunohistochemical staining method and method for determining the effectiveness of an antibody drug using the same | |
| JP6194882B2 (en) | Detection method of biological material | |
| US9970847B2 (en) | Method for staining tissue | |
| WO2016152244A1 (en) | Method and system for detecting target biological substance | |
| JP5887823B2 (en) | Organization evaluation method | |
| JP2012194013A (en) | Immunohistochemical staining method and reaction reagent | |
| JP5863057B2 (en) | Organization evaluation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130521 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140319 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141031 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141111 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150113 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20150527 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150602 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150714 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150904 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160307 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5906623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |