[go: up one dir, main page]

JP5926072B2 - Helium liquefier - Google Patents

Helium liquefier Download PDF

Info

Publication number
JP5926072B2
JP5926072B2 JP2012038178A JP2012038178A JP5926072B2 JP 5926072 B2 JP5926072 B2 JP 5926072B2 JP 2012038178 A JP2012038178 A JP 2012038178A JP 2012038178 A JP2012038178 A JP 2012038178A JP 5926072 B2 JP5926072 B2 JP 5926072B2
Authority
JP
Japan
Prior art keywords
helium
pressure
storage tank
liquid
liquid helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012038178A
Other languages
Japanese (ja)
Other versions
JP2013174377A (en
Inventor
実 信時
実 信時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Holdings Corp
Original Assignee
Nippon Sanso Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Holdings Corp filed Critical Nippon Sanso Holdings Corp
Priority to JP2012038178A priority Critical patent/JP5926072B2/en
Publication of JP2013174377A publication Critical patent/JP2013174377A/en
Application granted granted Critical
Publication of JP5926072B2 publication Critical patent/JP5926072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、ヘリウム液化装置に関し、詳しくは、一つの液体ヘリウム貯槽に複数のヘリウム液化機を設置したヘリウム液化装置に関する。   The present invention relates to a helium liquefaction apparatus, and more particularly to a helium liquefaction apparatus in which a plurality of helium liquefiers are installed in one liquid helium storage tank.

ヘリウムを液化するためのヘリウム液化機は、一般に、圧縮機、熱交換器、膨張タービン、JT弁、液体ヘリウム貯槽などを備えており、圧縮機で高圧に圧縮したヘリウムを熱交換器で約6Kまで冷却した後、JT弁でJT膨張(ジュールトムソン膨張)させることによりヘリウムの一部を液化し、液化した液体ヘリウムを液体ヘリウム貯槽内に貯留している。このようなヘリウム液化機では、所定の経路内の温度や圧力を検出して所定の弁を開閉制御することことにより、ヘリウムの液化を効率よく行うようにしている(例えば、特許文献1参照。)。なお、本明細書(特許請求の範囲、要約書も含む)では、液体のヘリウムは液体ヘリウムと表すが、気体のヘリウムは単にヘリウムと表す。   A helium liquefier for liquefying helium generally includes a compressor, a heat exchanger, an expansion turbine, a JT valve, a liquid helium storage tank, etc., and helium compressed to a high pressure by the compressor is about 6K. After being cooled to a temperature, a part of helium is liquefied by JT expansion (Joule Thompson expansion) using a JT valve, and the liquefied liquid helium is stored in a liquid helium storage tank. In such a helium liquefier, helium liquefaction is efficiently performed by detecting the temperature and pressure in a predetermined path and controlling opening and closing of a predetermined valve (see, for example, Patent Document 1). ). In this specification (including claims and abstract), liquid helium is expressed as liquid helium, but gaseous helium is simply expressed as helium.

特開平11−148735号公報JP 11-148735 A

しかし、ヘリウムの液化における冗長化を図るために一つの貯槽に対して複数、例えば2基のヘリウム液化機を設置した場合、両ヘリウム液化機が同じ仕様であっても、計測器、制御器、操作器などの各機器の個性により、同じ条件であっても同じ結果を得られるとは限らず、一方のヘリウム液化機が所定の運転状態を保持していても、他方のヘリウム液化機が設計点から乖離した非効率な運転状態に陥るおそれがあった。   However, when multiple helium liquefiers, for example, two helium liquefiers are installed in one storage tank for redundancy in liquefaction of helium, the measuring instrument, controller, Due to the individuality of each device such as the controller, the same result may not be obtained even under the same conditions. Even if one helium liquefier maintains the specified operating state, the other helium liquefier is designed. There was a risk of falling into an inefficient driving state deviating from the point.

そこで本発明は、一つの貯槽に対して複数のヘリウム液化機を設置したときに、各ヘリウム液化機の運転状態をそれぞれ所定の安定した状態で継続させることができるヘリウム液化装置を提供することを目的としている。   Therefore, the present invention provides a helium liquefier that can maintain the operation state of each helium liquefier in a predetermined stable state when a plurality of helium liquefiers are installed in one storage tank. It is aimed.

上記目的を達成するため、本発明のヘリウム液化装置は、ヘリウムを圧縮して高圧経路に送出する圧縮機、高圧経路の高圧ヘリウムを低圧戻り経路を戻る低圧ヘリウムとの熱交換により冷却する熱交換器、高圧ヘリウムの一部を断熱膨張させて低温の低圧ヘリウムとする膨張タービン、前記熱交換器で冷却された高圧ヘリウムをJT膨張させるJT弁、JT膨張により一部が液化した液体ヘリウムを液体ヘリウム貯槽内に導入する液体ヘリウム導入経路、前記液体ヘリウム貯槽内のガス状のヘリウムを前記低圧ヘリウムとして前記熱交換器から前記圧縮機に循環させる低圧戻り経路及び前記液体ヘリウム貯槽内から前記低圧戻り経路に戻るヘリウムの量を液体ヘリウム貯槽内の圧力に応じて調節する戻り量調節手段とを備えたヘリウム液化機を、一つの前記液体ヘリウム貯槽に対して複数基設置したヘリウム液化装置において、前記液体ヘリウム貯槽内に、該液体ヘリウム貯槽内の気相を仕切る仕切板を設けて複数の気相室を区画形成するとともに、区画された一つの気相室には、一つの前記ヘリウム液化機における前記液体ヘリウム導入経路、前記低圧戻り経路及び前記戻り量調節手段を配置し、前記複数の気相室の気相を互いに連通可能な連通手段を備えていることを特徴としている。 In order to achieve the above object, the helium liquefier of the present invention is a compressor that compresses helium and sends it to a high-pressure path, and heat exchange that cools high-pressure helium in a high-pressure path by heat exchange with low-pressure helium returning in a low-pressure return path. A high temperature helium that is adiabatically expanded into a low-temperature low-pressure helium, a JT valve that JT-expands the high-pressure helium cooled by the heat exchanger, and liquid helium partially liquefied by JT expansion Liquid helium introduction path to be introduced into the helium storage tank, low pressure return path for circulating gaseous helium in the liquid helium storage tank from the heat exchanger to the compressor as the low pressure helium, and low pressure return from the liquid helium storage tank Helium liquefier equipped with return amount adjusting means for adjusting the amount of helium returning to the path according to the pressure in the liquid helium storage tank In the helium liquefaction apparatus in which a plurality of liquid helium storage tanks are installed in the liquid helium storage tank, a partition plate for partitioning the gas phase in the liquid helium storage tank is provided in the liquid helium storage tank to form a plurality of gas phase chambers. In addition, the one gas phase chamber divided is provided with the liquid helium introduction path, the low pressure return path, and the return amount adjusting means in one helium liquefier, and the gas phases of the plurality of gas phase chambers are arranged. It is characterized by providing communication means capable of communicating with each other .

さらに、本発明のヘリウム液化装置は、ヘリウムを圧縮して高圧経路に送出する圧縮機、高圧経路の高圧ヘリウムを低圧戻り経路を戻る低圧ヘリウムとの熱交換により冷却する熱交換器、高圧ヘリウムの一部を断熱膨張させて低温の低圧ヘリウムとする膨張タービン、前記熱交換器で冷却された高圧ヘリウムをJT膨張させるJT弁、JT膨張により一部が液化した液体ヘリウムを液体ヘリウム貯槽内に導入する液体ヘリウム導入経路、前記液体ヘリウム貯槽内のガス状のヘリウムを前記低圧ヘリウムとして前記熱交換器から前記圧縮機に循環させる低圧戻り経路及び前記液体ヘリウム貯槽内から前記低圧戻り経路に戻るヘリウムの量を液体ヘリウム貯槽内の圧力に応じて調節する戻り量調節手段とを備えたヘリウム液化機を、一つの前記液体ヘリウム貯槽に対して複数基設置したヘリウム液化装置において、前記液体ヘリウム貯槽内に、該液体ヘリウム貯槽内の気相を仕切る仕切板を設けて複数の気相室を区画形成するとともに、区画された一つの気相室には、一つの前記ヘリウム液化機における前記液体ヘリウム導入経路、前記低圧戻り経路及び前記戻り量調節手段を配置し、前記仕切板が液体ヘリウム貯槽内の全体を仕切る状態で形成され、該仕切り板の下部に液連通部が設けられていることを特徴としている。 Furthermore, the helium liquefaction apparatus of the present invention includes a compressor that compresses helium and sends it to a high-pressure path, a heat exchanger that cools high-pressure helium in a high-pressure path by heat exchange with low-pressure helium that returns in a low-pressure return path, An expansion turbine that partially expands adiabatically into low-temperature low-pressure helium, a JT valve that expands high-pressure helium cooled by the heat exchanger, and introduces liquid helium partially liquefied by JT expansion into the liquid helium storage tank Liquid helium introduction path, a low pressure return path for circulating gaseous helium in the liquid helium storage tank as the low pressure helium from the heat exchanger to the compressor, and helium returning from the liquid helium storage tank to the low pressure return path. A helium liquefier comprising return amount adjusting means for adjusting the amount in accordance with the pressure in the liquid helium storage tank. In the helium liquefaction apparatus installed in a plurality of helium storage tanks, a partition plate for partitioning the gas phase in the liquid helium storage tank is provided in the liquid helium storage tank, and a plurality of gas phase chambers are formed and partitioned. In one gas phase chamber, the liquid helium introduction path, the low pressure return path, and the return amount adjusting means in one helium liquefier are arranged, and the partition plate is formed so as to partition the entire liquid helium storage tank. The liquid communication part is provided in the lower part of the partition plate.

本発明のヘリウム液化装置によれば、液体ヘリウム貯槽内に各ヘリウム液化機毎に独立した気相室を形成しているので、各気相室それぞれの圧力を独立して制御することができ、JT弁で液化せずに低圧戻り経路に戻るヘリウムをそれぞれのヘリウム液化機内で循環させることができる。これにより、各ヘリウム液化機の運転状態に応じた量のヘリウムを低圧戻り経路に戻すことができ、他のヘリウム液化機の運転状態に影響されずに効率よくヘリウムを液化することができる。   According to the helium liquefaction apparatus of the present invention, since an independent gas phase chamber is formed for each helium liquefier in the liquid helium storage tank, the pressure of each gas phase chamber can be controlled independently, Helium returning to the low pressure return path without being liquefied by the JT valve can be circulated in each helium liquefier. Thereby, an amount of helium corresponding to the operating state of each helium liquefier can be returned to the low-pressure return path, and helium can be liquefied efficiently without being affected by the operating state of other helium liquefiers.

また、気相室を連通させる連通手段によって各気相を連通させることにより、液体ヘリウム貯槽内の液相及び気相が連通した状態になるので、1つのヘリウム液化機のみを運転しても液体ヘリウム貯槽の全体にヘリウムを貯留することができるとともに、液体ヘリウム貯槽内から液体ヘリウムを取り出す位置を1箇所にすることができる。さらに、液体ヘリウム貯槽内の全体を仕切る状態の仕切板の下部に液連通部を設けることにより、仕切板の製造や槽内への設置を容易に行うことができる。   Further, since the liquid phase and the vapor phase in the liquid helium storage tank are in communication with each other by communicating with the communicating means for communicating the gas phase chamber, the liquid can be obtained even if only one helium liquefier is operated. Helium can be stored in the entire helium storage tank, and liquid helium can be taken out from the liquid helium storage tank at one location. Furthermore, by providing a liquid communication part at the lower part of the partition plate in a state of partitioning the entire liquid helium storage tank, the partition plate can be easily manufactured and installed in the tank.

本発明のヘリウム液化装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of a helium liquefying apparatus of this invention.

本形態例に示すヘリウム液化装置は、一つの液体ヘリウム貯槽11に第1ヘリウム液化機21と第2ヘリウム液化機31とを設置したものであって、液体ヘリウム貯槽11の内部には、槽内を区画するための仕切板12が設けられている。槽内上部には、仕切板12により第1気相室13aと第2気相室13bとがそれぞれ独立した状態で区画形成されており、槽内下部には、仕切板12の下部に設けた液連通部14を介して連通した状態で第1液相室15aと第2液相室15bとが区画形成されている。また、槽上部には、第1気相室13aと第2気相室13bとを連通可能な連通管16が設けられ、該連通管16に設けた連通弁17を開くことにより、両気相室13a,13bを連通状態とすることができるように形成されている。   The helium liquefier shown in the present embodiment is an apparatus in which a first helium liquefier 21 and a second helium liquefier 31 are installed in one liquid helium storage tank 11. A partition plate 12 is provided for partitioning. In the upper part of the tank, the first gas phase chamber 13a and the second gas phase chamber 13b are divided and formed by the partition plate 12 in an independent state. The lower part of the tank is provided in the lower part of the partition plate 12. The first liquid phase chamber 15a and the second liquid phase chamber 15b are partitioned and formed in communication with each other via the liquid communication portion 14. In addition, a communication pipe 16 capable of communicating the first gas phase chamber 13a and the second gas phase chamber 13b is provided in the upper portion of the tank, and both the gas phases are opened by opening the communication valve 17 provided in the communication pipe 16. The chambers 13a and 13b are formed so as to be in a communication state.

両ヘリウム液化機21,31は、同一仕様で同一の液化能力を有するものであって、ヘリウムを圧縮して高圧経路22,32に高圧ヘリウムとして送出する圧縮機23,33と、高圧経路22,32の高圧ヘリウムを、低圧戻り経路24,34を圧縮機23,33に戻る低圧ヘリウムとの熱交換により冷却する複数の熱交換器25,35と、冷却途中の高圧ヘリウムの一部を調節弁26V,36Vにより流量調節して分岐した高圧ヘリウムの一部を断熱膨張させることで低温の低圧ヘリウムとする複数の膨張タービン26,36と、前記熱交換器25,35で冷却された高圧ヘリウムをJT膨張させるJT弁27,37と、該JT弁27,37でのJT膨張により一部が液化した液体ヘリウムを液体ヘリウム貯槽11内に導入する液体ヘリウム導入経路28,38と、液体ヘリウム貯槽11内のガス状のヘリウムを前記低圧ヘリウムとして前記熱交換器25,35から前記圧縮機23,33に循環させる前記低圧戻り経路24,34と、液体ヘリウム貯槽11内から低圧戻り経路24,34に戻るヘリウムの量を液体ヘリウム貯槽11内の各液相室15a,15bの圧力に応じてそれぞれ調節する戻り量調節手段29,39とをそれぞれ備えている。   Both helium liquefiers 21 and 31 have the same specifications and the same liquefaction capacity, and compress the helium and send it as high-pressure helium to the high-pressure paths 22 and 32; A plurality of heat exchangers 25 and 35 for cooling 32 high-pressure helium by heat exchange with low-pressure helium returning the low-pressure return paths 24 and 34 to the compressors 23 and 33, and a part of the high-pressure helium in the middle of cooling The high-pressure helium cooled by the heat exchangers 25 and 35, and a plurality of expansion turbines 26 and 36 that are low-temperature low-pressure helium by adiabatically expanding a part of the high-pressure helium branched by adjusting the flow rate by 26V and 36V. JT valves 27 and 37 for JT expansion, and liquid helium for introducing liquid helium partially liquefied by JT expansion in the JT valves 27 and 37 into the liquid helium storage tank 11 Introducing passages 28 and 38, the low-pressure return passages 24 and 34 for circulating gaseous helium in the liquid helium storage tank 11 as the low-pressure helium from the heat exchangers 25 and 35 to the compressors 23 and 33, and liquid helium Return amount adjusting means 29 and 39 for adjusting the amount of helium returning from the storage tank 11 to the low pressure return paths 24 and 34 according to the pressures of the liquid phase chambers 15a and 15b in the liquid helium storage tank 11, respectively. .

さらに、膨張タービン26,36の出口部には、膨張タービン26,36で断熱膨張した低圧ヘリウムの温度を検出して前記JT弁27,37の開度を調節する温度指示調節計(TIC)27a,37aがそれぞれ設けられている。また、圧縮機23,33の吸入側及び吐出側には、バッファタンク(図示せず)に接続したアンロード経路23a,33a及びロード経路23b,33bがそれぞれ設けられている。さらに、熱交換器25,35の温端側には、高圧ヘリウムを冷却する補助寒冷として液体窒素(LN2)が供給されている。   Further, at the outlets of the expansion turbines 26 and 36, a temperature indicating controller (TIC) 27a that detects the temperature of low-pressure helium adiabatically expanded by the expansion turbines 26 and 36 and adjusts the opening degree of the JT valves 27 and 37. , 37a are provided. On the suction side and the discharge side of the compressors 23 and 33, unload paths 23a and 33a and load paths 23b and 33b connected to a buffer tank (not shown) are provided, respectively. Furthermore, liquid nitrogen (LN2) is supplied to the warm end sides of the heat exchangers 25 and 35 as auxiliary cold for cooling high-pressure helium.

前記戻り量調節手段29,39は、各気相室13a,13b内の圧力を圧力検出手段29a,39aでそれぞれ検出して前記熱交換器25,35の冷端側にそれぞれ設けられた第1調節弁29b,第2調節弁39bの開度を調節するものであって、気相室内の圧力が上昇すると調節弁が開方向に調節され、気相室内の圧力が下降すると調節弁が閉方向に調節されることにより、気相室内の圧力があらかじめ設定された圧力に保持される。   The return amount adjusting means 29, 39 are respectively provided on the cold end side of the heat exchangers 25, 35 by detecting the pressure in the gas phase chambers 13a, 13b by the pressure detecting means 29a, 39a, respectively. The opening of the control valve 29b and the second control valve 39b is adjusted. When the pressure in the gas phase chamber increases, the control valve is adjusted in the opening direction, and when the pressure in the gas phase chamber decreases, the control valve closes. Thus, the pressure in the gas phase chamber is maintained at a preset pressure.

両ヘリウム液化機21,31が安定した状態で運転しているとき、何らかの原因で、一方のヘリウム液化機、例えば、第1ヘリウム液化機21に対応する第1気相室13aの圧力が僅かに上昇すると、圧力検出手段29aからの信号で第1調節弁29bが開方向に作動して第1気相室13aからのヘリウムの導出量を増加させることにより、第1気相室13aの圧力を下降させて第1気相室13a内を所定の圧力に保持する。   When both helium liquefiers 21 and 31 are operating in a stable state, for some reason, the pressure in the first gas phase chamber 13a corresponding to one helium liquefier, for example, the first helium liquefier 21, is slightly increased. When the pressure rises, the first control valve 29b is actuated in the opening direction by a signal from the pressure detecting means 29a to increase the amount of helium derived from the first gas phase chamber 13a, thereby reducing the pressure in the first gas phase chamber 13a. The first gas phase chamber 13a is lowered and held at a predetermined pressure.

このとき、第1気相室13aの圧力の僅かな上昇は、仕切板12が存在することによって第1液相室15aから液連通部14を介して第2液相室15bの液体ヘリウムに伝達され、第2液相室15bの液体ヘリウムから第2気相室13b内のヘリウムに伝達されることになるが、第1気相室13aの圧力上昇が第2気相室13b内に完全に伝達される前に第1調節弁29bが開いて第1気相室13aの圧力が降下するので、第2気相室13bの圧力はほとんど上昇せず、第2ヘリウム液化機31の第2調節弁39bは、そのときの開度を保持して安定した運転状態を継続する。   At this time, a slight increase in the pressure in the first gas phase chamber 13a is transmitted from the first liquid phase chamber 15a to the liquid helium in the second liquid phase chamber 15b through the liquid communication portion 14 due to the presence of the partition plate 12. Thus, the liquid helium in the second liquid phase chamber 15b is transmitted to the helium in the second gas phase chamber 13b, but the pressure increase in the first gas phase chamber 13a is completely transferred into the second gas phase chamber 13b. Before the transmission, the first control valve 29b opens and the pressure in the first gas phase chamber 13a decreases, so that the pressure in the second gas phase chamber 13b hardly increases and the second adjustment of the second helium liquefier 31 occurs. The valve 39b maintains the opening degree at that time and continues a stable operation state.

一方、仕切板12が無い場合は、液体ヘリウム貯槽11の気相全体の圧力が同時に上昇するため、第1気相室13aの圧力が僅かに上昇したときに第2ヘリウム液化機31の第2調節弁39bも、第1調節弁29bと同時に開方向に作動してしまい、第2ヘリウム液化機31の運転状態に乱れが生じてしまう。さらに、第2ヘリウム液化機31の運転状態の乱れが液体ヘリウム貯槽11の気相全体の圧力に影響を及ぼすと、両ヘリウム液化機21,31が共に不安定な状態になり、ヘリウムの液化効率が低下するおそれがある。   On the other hand, when the partition plate 12 is not provided, the pressure of the entire gas phase of the liquid helium storage tank 11 is increased at the same time. Therefore, when the pressure of the first gas phase chamber 13a is slightly increased, the second helium liquefier 31 second The control valve 39b also operates in the opening direction at the same time as the first control valve 29b, and the operation state of the second helium liquefier 31 is disturbed. Furthermore, when the operational state disturbance of the second helium liquefier 31 affects the pressure of the entire gas phase of the liquid helium storage tank 11, both the helium liquefiers 21 and 31 become unstable, and the liquefaction efficiency of helium is increased. May decrease.

したがって、液体ヘリウム貯槽11内に気相室13a、13bを区画し、各気相室13a、13b毎にヘリウム液化機21,31を配置することにより、各気相室13a、13bの一方の圧力が上昇したり、下降したりしても、他方に影響を与えることがなく、各ヘリウム液化機21,31をそれぞれ安定した運転状態として効率よくヘリウムを液化することができる。   Accordingly, by dividing the gas phase chambers 13a and 13b in the liquid helium storage tank 11 and arranging the helium liquefiers 21 and 31 for each of the gas phase chambers 13a and 13b, one pressure of each of the gas phase chambers 13a and 13b is obtained. Even if it rises or falls, it does not affect the other, and helium liquefiers 21 and 31 can be liquefied efficiently by making each helium liquefier 21 and 31 stable.

また、両気相室13a、13bを連通させる連通手段として連通弁17を有する連通管16を設けているので、連通弁17を開くことによって両気相室13a、13bを連通させることができる。両液相室15a,15bが液連通部14で連通していることから、連通弁17を開くことにより、液体ヘリウム貯槽11内の気相及び液相を相互に連通させた状態にすることができる。このようにして気相及び液相を連通させることにより、一方のヘリウム液化機、例えば、第1ヘリウム液化機21のみを運転しても、液化したヘリウムを液体ヘリウム貯槽11内に貯留することができ、液体ヘリウム貯槽11の全体の気相の圧力変化に応じて戻り量調節手段29が作動し、一つの第1ヘリウム液化機21のみで効率よくヘリウムを液化して貯留することができる。   Further, since the communication pipe 16 having the communication valve 17 is provided as a communication means for communicating the gas phase chambers 13a and 13b, the gas phase chambers 13a and 13b can be communicated by opening the communication valve 17. Since both the liquid phase chambers 15a and 15b communicate with each other through the liquid communication part 14, the gas phase and the liquid phase in the liquid helium storage tank 11 can be brought into communication with each other by opening the communication valve 17. it can. By communicating the gas phase and the liquid phase in this manner, the liquefied helium can be stored in the liquid helium storage tank 11 even if only one helium liquefier, for example, the first helium liquefier 21 is operated. The return amount adjusting means 29 is operated according to the pressure change in the gas phase of the entire liquid helium storage tank 11, and helium can be efficiently liquefied and stored by only one first helium liquefier 21.

さらに、両気相室13a、13bを連通させることにより、液体ヘリウム貯槽11の1箇所から液体ヘリウムを取り出しても、液体ヘリウム取出時の圧力変化や液面変化が液体ヘリウム貯槽11の全体で同時に生じるので、液体ヘリウムを取り出す経路を両液相室15a,15bの任意の位置に設定することができる。   Further, by connecting both the gas phase chambers 13a and 13b, even when liquid helium is taken out from one place of the liquid helium storage tank 11, the pressure change and the liquid level change at the time of liquid helium extraction are simultaneously performed in the entire liquid helium storage tank 11. Therefore, the path for taking out liquid helium can be set at an arbitrary position in both liquid phase chambers 15a and 15b.

仕切板12の形状及び液連通部14の構造は、液体ヘリウム貯槽11の形状や容量に応じて任意に設定することができ、配管にて液連通部14を形成することも可能であるが、液体ヘリウム貯槽11の内面形状に対応した外縁形状を有し、液体ヘリウム貯槽内の全体を仕切る状態の板材の下縁部を切り欠いたり、開口を形成したりして液連通部14を形成することにより、仕切板12を容易に製作することができるとともに、液体ヘリウム貯槽11内への取付も容易に行うことができる。   The shape of the partition plate 12 and the structure of the liquid communication portion 14 can be arbitrarily set according to the shape and capacity of the liquid helium storage tank 11, and the liquid communication portion 14 can be formed by piping. The liquid communication portion 14 is formed by notching the lower edge portion of the plate member having an outer edge shape corresponding to the inner shape of the liquid helium storage tank 11 and partitioning the entire inside of the liquid helium storage tank or forming an opening. Thus, the partition plate 12 can be easily manufactured, and can be easily mounted in the liquid helium storage tank 11.

なお、前記形態例では、一つの液体ヘリウム貯槽に、同一仕様の2基のヘリウム液化機を設置した例を挙げたが、3基以上のヘリウム液化機を、3室以上に気相室を区画した一つの液体ヘリウム貯槽に設置することも可能であり、異なる仕様のヘリウム液化機を設置することもできる。   In the above embodiment, two helium liquefiers with the same specifications are installed in one liquid helium storage tank. However, three or more helium liquefiers are divided into three or more chambers. It is also possible to install in one liquid helium storage tank, and it is also possible to install helium liquefiers with different specifications.

11…液体ヘリウム貯槽、12…仕切板、13a…第1気相室、13b…第2気相室、14…液連通部、15a…第1液相室、15b…第2液相室、16…連通管、17…連通弁、21…第1ヘリウム液化機、22…高圧経路、23…圧縮機、23a…アンロード経路、23b…ロード経路、24…低圧戻り経路、25…熱交換器、26…膨張タービン、26V…調節弁、27…JT弁、27a…温度指示調節計、28…液体ヘリウム導入経路、29…戻り量調節手段、29a…圧力検出手段、29b…第1調節弁、31…第2ヘリウム液化機、32…高圧経路、33…圧縮機、33a…アンロード経路、33b…ロード経路、34…低圧戻り経路、35…熱交換器、35V…調節弁、36…膨張タービン、37…JT弁、37a…温度指示調節計、38…液体ヘリウム導入経路、39…戻り量調節手段、39a…圧力検出手段、39b…第2調節弁   DESCRIPTION OF SYMBOLS 11 ... Liquid helium storage tank, 12 ... Partition plate, 13a ... 1st gas phase chamber, 13b ... 2nd gas phase chamber, 14 ... Liquid communication part, 15a ... 1st liquid phase chamber, 15b ... 2nd liquid phase chamber, 16 ... Communication pipe, 17 ... Communication valve, 21 ... First helium liquefier, 22 ... High pressure path, 23 ... Compressor, 23a ... Unload path, 23b ... Load path, 24 ... Low pressure return path, 25 ... Heat exchanger, 26 ... Expansion turbine, 26V ... Control valve, 27 ... JT valve, 27a ... Temperature indicating controller, 28 ... Liquid helium introduction path, 29 ... Return amount adjustment means, 29a ... Pressure detection means, 29b ... First control valve, 31 2nd helium liquefier, 32 ... High pressure path, 33 ... Compressor, 33a ... Unload path, 33b ... Load path, 34 ... Low pressure return path, 35 ... Heat exchanger, 35V ... Control valve, 36 ... Expansion turbine, 37 ... JT valve, 37a ... Temperature indication Section meter, 38 ... liquid helium introducing path, 39 ... return amount adjustment means, 39a ... pressure detecting means, 39 b ... second regulating valve

Claims (2)

ヘリウムを圧縮して高圧経路に送出する圧縮機、高圧経路の高圧ヘリウムを低圧戻り経路を戻る低圧ヘリウムとの熱交換により冷却する熱交換器、高圧ヘリウムの一部を断熱膨張させて低温の低圧ヘリウムとする膨張タービン、前記熱交換器で冷却された高圧ヘリウムをJT膨張させるJT弁、JT膨張により一部が液化した液体ヘリウムを液体ヘリウム貯槽内に導入する液体ヘリウム導入経路、前記液体ヘリウム貯槽内のガス状のヘリウムを前記低圧ヘリウムとして前記熱交換器から前記圧縮機に循環させる低圧戻り経路及び前記液体ヘリウム貯槽内から前記低圧戻り経路に戻るヘリウムの量を液体ヘリウム貯槽内の圧力に応じて調節する戻り量調節手段とを備えたヘリウム液化機を、一つの前記液体ヘリウム貯槽に対して複数基設置したヘリウム液化装置において、前記液体ヘリウム貯槽内に、該液体ヘリウム貯槽内の気相を仕切る仕切板を設けて複数の気相室を区画形成するとともに、区画された一つの気相室には、一つの前記ヘリウム液化機における前記液体ヘリウム導入経路、前記低圧戻り経路及び前記戻り量調節手段を配置し、前記複数の気相室の気相を互いに連通可能な連通手段を備えていることを特徴とするヘリウム液化装置。 A compressor that compresses helium and sends it to the high-pressure path, a heat exchanger that cools the high-pressure helium in the high-pressure path by heat exchange with the low-pressure helium returning to the low-pressure return path, and a low-temperature, low-pressure by adiabatically expanding part of the high-pressure helium An expansion turbine for helium, a JT valve for JT expansion of high-pressure helium cooled by the heat exchanger, a liquid helium introduction path for introducing liquid helium partially liquefied by JT expansion into the liquid helium storage tank, and the liquid helium storage tank The amount of helium returning from the liquid helium storage tank to the low pressure return path and the amount of helium returning from the liquid helium storage tank according to the pressure in the liquid helium storage tank And a plurality of helium liquefiers equipped with return amount adjusting means for adjusting the liquid helium storage tank. In the lithium liquefier, a partition plate for partitioning the gas phase in the liquid helium storage tank is provided in the liquid helium storage tank to partition and form a plurality of gas phase chambers. The liquid helium introduction path, the low-pressure return path, and the return amount adjusting means in the two helium liquefiers are arranged, and communication means capable of communicating the gas phases of the plurality of gas phase chambers with each other is provided. Helium liquefier. ヘリウムを圧縮して高圧経路に送出する圧縮機、高圧経路の高圧ヘリウムを低圧戻り経路を戻る低圧ヘリウムとの熱交換により冷却する熱交換器、高圧ヘリウムの一部を断熱膨張させて低温の低圧ヘリウムとする膨張タービン、前記熱交換器で冷却された高圧ヘリウムをJT膨張させるJT弁、JT膨張により一部が液化した液体ヘリウムを液体ヘリウム貯槽内に導入する液体ヘリウム導入経路、前記液体ヘリウム貯槽内のガス状のヘリウムを前記低圧ヘリウムとして前記熱交換器から前記圧縮機に循環させる低圧戻り経路及び前記液体ヘリウム貯槽内から前記低圧戻り経路に戻るヘリウムの量を液体ヘリウム貯槽内の圧力に応じて調節する戻り量調節手段とを備えたヘリウム液化機を、一つの前記液体ヘリウム貯槽に対して複数基設置したヘリウム液化装置において、前記液体ヘリウム貯槽内に、該液体ヘリウム貯槽内の気相を仕切る仕切板を設けて複数の気相室を区画形成するとともに、区画された一つの気相室には、一つの前記ヘリウム液化機における前記液体ヘリウム導入経路、前記低圧戻り経路及び前記戻り量調節手段を配置し、前記仕切板は、液体ヘリウム貯槽内の全体を仕切る状態で形成され、該仕切り板の下部に液連通部が設けられていることを特徴とするヘリウム液化装置。 A compressor that compresses helium and sends it to the high-pressure path, a heat exchanger that cools the high-pressure helium in the high-pressure path by heat exchange with the low-pressure helium returning to the low-pressure return path, and a low-temperature, low-pressure by adiabatically expanding part of the high-pressure helium An expansion turbine for helium, a JT valve for JT expansion of high-pressure helium cooled by the heat exchanger, a liquid helium introduction path for introducing liquid helium partially liquefied by JT expansion into the liquid helium storage tank, and the liquid helium storage tank The amount of helium returning from the liquid helium storage tank to the low pressure return path and the amount of helium returning from the liquid helium storage tank according to the pressure in the liquid helium storage tank And a plurality of helium liquefiers equipped with return amount adjusting means for adjusting the liquid helium storage tank. In the lithium liquefier, a partition plate for partitioning the gas phase in the liquid helium storage tank is provided in the liquid helium storage tank to partition and form a plurality of gas phase chambers. The liquid helium introduction path, the low pressure return path, and the return amount adjusting means in the two helium liquefiers are arranged, and the partition plate is formed in a state of partitioning the entire inside of the liquid helium storage tank, and is formed below the partition plate. features and to Ruhe potassium liquefier that Ekiren communicating portion is provided.
JP2012038178A 2012-02-24 2012-02-24 Helium liquefier Active JP5926072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038178A JP5926072B2 (en) 2012-02-24 2012-02-24 Helium liquefier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038178A JP5926072B2 (en) 2012-02-24 2012-02-24 Helium liquefier

Publications (2)

Publication Number Publication Date
JP2013174377A JP2013174377A (en) 2013-09-05
JP5926072B2 true JP5926072B2 (en) 2016-05-25

Family

ID=49267428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038178A Active JP5926072B2 (en) 2012-02-24 2012-02-24 Helium liquefier

Country Status (1)

Country Link
JP (1) JP5926072B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146748B1 (en) * 1970-02-17 1976-12-10
NL7304885A (en) * 1973-04-09 1974-10-11
JPS62167875U (en) * 1986-04-12 1987-10-24
JPH0729655Y2 (en) * 1988-12-23 1995-07-05 住友電気工業株式会社 Cryogenic refrigerant container
JPH04286304A (en) * 1991-03-15 1992-10-12 Hitachi Ltd Superconducting magnet device
JPH0964425A (en) * 1995-08-28 1997-03-07 Hitachi Ltd Cryostat for superconducting magnet
US7266954B2 (en) * 2002-12-16 2007-09-11 Sumitomo Heavy Industries, Ltd Method and device for installing refrigerator

Also Published As

Publication number Publication date
JP2013174377A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
US20100212350A1 (en) Medium- and Low-Temperature Integrated Refrigerating/Freezing System
EP1563233A2 (en) Refrigeration system
CN103282729B (en) Refrigeration system and method for operating a refrigeration system
US20160003527A1 (en) System and method for liquefying natural gas employing turbo expander
US10180269B2 (en) Refrigeration device
JPWO2014045394A1 (en) Refrigeration equipment
EP1856458B1 (en) Control of a refrigeration circuit with an internal heat exchanger
CN107905992B (en) Ultralow temperature cold compressor performance test system
JP2009030954A (en) Refrigeration equipment
JP6548890B2 (en) Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
US20180216876A1 (en) Apparatus and method for boil-off gas reliquefaction
JP5926072B2 (en) Helium liquefier
JP5783945B2 (en) Liquefaction device and starting method thereof
JP5195302B2 (en) Refrigeration air conditioner
CN102538269B (en) Compression Refrigerator
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
JP2011058650A (en) Ice heat storage type refrigerating device
JP3856538B2 (en) Refrigeration equipment
US20170276416A1 (en) Refrigeration apparatus
US20130061607A1 (en) Cooling system
KR101820683B1 (en) Cryogenic refrigeration system capable of capacity control by intermediate pressure control
KR20160149461A (en) Vessel Including Storage Tanks
WO2016026533A1 (en) Heat pump system
JP4910107B1 (en) Freezer cooling equipment
JP7477431B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5926072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250