[go: up one dir, main page]

JP6094599B2 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
JP6094599B2
JP6094599B2 JP2014559610A JP2014559610A JP6094599B2 JP 6094599 B2 JP6094599 B2 JP 6094599B2 JP 2014559610 A JP2014559610 A JP 2014559610A JP 2014559610 A JP2014559610 A JP 2014559610A JP 6094599 B2 JP6094599 B2 JP 6094599B2
Authority
JP
Japan
Prior art keywords
compression ratio
ignition timing
internal combustion
combustion engine
target compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014559610A
Other languages
Japanese (ja)
Other versions
JPWO2014119354A1 (en
Inventor
忠樹 間野
忠樹 間野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2014119354A1 publication Critical patent/JPWO2014119354A1/en
Application granted granted Critical
Publication of JP6094599B2 publication Critical patent/JP6094599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/047Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of variable crankshaft position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/05Fuel-injection apparatus having means for preventing corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、燃焼室内に燃料を直接に噴射し、生成された混合気に点火プラグによって点火を行う内燃機関に関し、特に、可変圧縮比機構を備えた内燃機関の制御装置および制御方法に関する。   The present invention relates to an internal combustion engine that directly injects fuel into a combustion chamber and ignites a generated air-fuel mixture with a spark plug, and more particularly to a control device and control method for an internal combustion engine having a variable compression ratio mechanism.

燃焼室内に臨んで燃料噴射弁を配置し、吸気行程や圧縮行程において筒内に燃料を直接に噴射するようにした筒内直接噴射式の火花点火内燃機関が公知である。   2. Description of the Related Art A cylinder direct injection type spark ignition internal combustion engine in which a fuel injection valve is disposed facing a combustion chamber so that fuel is directly injected into the cylinder during an intake stroke or a compression stroke is known.

また、内燃機関の機械的圧縮比を変更する可変圧縮比機構も、従来から種々の形式のものが知られている。例えば、複リンク式ピストンクランク機構のリンクジオメトリの変更によってピストン上死点位置を上下に変位させるようにした可変圧縮比機構が本出願人らによって多数提案されている。また、特許文献1には、クランクシャフトの中心位置に対しシリンダの位置を上下に変位させることで同様に機械的圧縮比を変化させるようにした可変圧縮比機構が記載されている。   Various types of variable compression ratio mechanisms for changing the mechanical compression ratio of an internal combustion engine have been known. For example, the applicants have proposed a number of variable compression ratio mechanisms in which the piston top dead center position is displaced up and down by changing the link geometry of a multi-link piston crank mechanism. Patent Document 1 describes a variable compression ratio mechanism that similarly changes the mechanical compression ratio by displacing the cylinder position up and down with respect to the center position of the crankshaft.

特許文献1は、可変圧縮比機構を備えた内燃機関における冷機始動時の制御を開示するものであって、内燃機関の暖機運転中に、可変圧縮比機構による機械的圧縮比を高く設定し、かつ排気弁の開弁タイミングが暖機後よりも進角して排気下死点から遠ざかるように可変動弁機構を制御する。これにより、冷機時の燃焼の安定化を図りつつ排気温度を上昇させ、触媒の早期暖機を図っている。   Patent Document 1 discloses control at the time of cold start in an internal combustion engine equipped with a variable compression ratio mechanism, and sets a high mechanical compression ratio by the variable compression ratio mechanism during warm-up operation of the internal combustion engine. In addition, the variable valve mechanism is controlled so that the opening timing of the exhaust valve is advanced more than after warming up and away from the exhaust bottom dead center. As a result, the exhaust temperature is raised while stabilizing the combustion during cold operation, and the catalyst is warmed up early.

燃焼室内に燃料噴射弁のノズル先端が露出している筒内直接噴射式の内燃機関にあっては、冷機始動の際の凝縮水によってノズル先端部分での粒界腐食が促進され易い。すなわち、比較的低い温度状態から始動してそのままアイドル運転として放置したような場合に、燃焼によって生じた水分が燃焼室内に露出しているノズル先端で凝縮し、この凝縮水と燃料に含まれる硫黄成分とから硫酸が生成されるため、ノズル先端が腐食するのである。燃料噴射弁のノズル先端の温度が高ければ、凝縮水が付着しても直ちに蒸発するので、腐食は生じない。従って、ノズル先端の粒界腐食は、ノズル先端がある温度範囲にあるときに、そのリスクが高くなる。   In an in-cylinder direct injection internal combustion engine in which the nozzle tip of the fuel injection valve is exposed in the combustion chamber, intergranular corrosion at the nozzle tip is easily promoted by condensed water at the time of cold start. That is, when starting from a relatively low temperature state and leaving it as idle operation as it is, moisture generated by combustion is condensed at the tip of the nozzle exposed in the combustion chamber, and the condensed water and sulfur contained in the fuel Since sulfuric acid is generated from the components, the nozzle tip corrodes. If the temperature of the nozzle tip of the fuel injection valve is high, even if condensed water adheres, it evaporates immediately, so that corrosion does not occur. Therefore, the risk of intergranular corrosion at the nozzle tip increases when the nozzle tip is in a certain temperature range.

特許文献1の技術は、排気温度の上昇により触媒の早期暖機は行えるものの、燃焼室内に露出しているノズル先端の温度上昇作用は得られず、上記のようなノズル先端の粒界腐食の抑制には寄与しない。   Although the technology of Patent Document 1 can warm up the catalyst early by raising the exhaust gas temperature, the temperature rise action of the nozzle tip exposed in the combustion chamber cannot be obtained, and the above-described intergranular corrosion of the nozzle tip is not achieved. Does not contribute to suppression.

特開2009−74513号公報JP 2009-74513 A

この発明は、機械的圧縮比を変更する可変圧縮比機構を備えるとともに、燃焼室内に燃料を直接に噴射する燃料噴射弁を備えてなる内燃機関の制御装置であって、
始動時に暖機再始動であるか冷機始動であるかを判定する第1の判定手段と、
始動時の冷却水温が、氷点下に設定された所定の閾値よりも低い極低温始動であるか否かを判定する第2の判定手段と、を備え、
極低温始動時には、内燃機関の始動直後から極低温始動時の所定時間経過するまでの間、点火時期を基本点火時期よりも進角させるとともに目標圧縮比を基本目標圧縮比よりも低下させ、
冷機始動であって極低温ではない通常低温始動時には、内燃機関の始動直後から通常低温始動時の所定時間が経過するまでの間、目標圧縮比を基本目標圧縮比よりも低下させるとともに点火時期を基本点火時期よりも遅角させた触媒暖機運転を行う。
The present invention is a control device for an internal combustion engine that includes a variable compression ratio mechanism that changes a mechanical compression ratio and a fuel injection valve that directly injects fuel into a combustion chamber,
First determination means for determining whether the engine is warm-up restart or cold-start when starting;
A second determination means for determining whether or not the cooling water temperature at the start is a cryogenic start lower than a predetermined threshold set below the freezing point,
At cryogenic startup, until the elapse of a predetermined time during cryogenic starting from immediately after the start of the internal combustion engine, it is lower than the basic target compression ratio the target compression ratio causes is advanced than the basic ignition timing of the ignition timing,
During a cold start and a normal low temperature start that is not a very low temperature, the target compression ratio is reduced below the basic target compression ratio and the ignition timing is set between the start of the internal combustion engine and the predetermined time at the normal low temperature start. Perform catalyst warm-up operation that is retarded from the basic ignition timing.

点火時期の進角に伴い燃焼が早期に開始するので、燃料噴射弁のノズル先端が燃焼ガスに晒される時間が長くなる。従って、ノズル先端の温度が早期に上昇し、粒界腐食が問題となる温度範囲を早期に脱することができる。ここで、点火時期を進角すると、ノッキングやプリイグニッションのような異常燃焼が誘起されるが、本発明では、同時に、可変圧縮比機構による機械的圧縮比の低下が行われるので、異常燃焼を招来することなく点火時期進角が可能であり、それだけ大幅な点火時期進角によるノズル先端温度の上昇が図れる。   Since combustion starts early with the advance of the ignition timing, the time during which the nozzle tip of the fuel injection valve is exposed to the combustion gas becomes longer. Accordingly, the temperature at the tip of the nozzle rises early, and the temperature range in which intergranular corrosion becomes a problem can be removed early. Here, when the ignition timing is advanced, abnormal combustion such as knocking or pre-ignition is induced. However, in the present invention, the mechanical compression ratio is lowered by the variable compression ratio mechanism at the same time, so abnormal combustion is prevented. It is possible to advance the ignition timing without inviting it, and the nozzle tip temperature can be increased by such a large ignition timing advance.

この発明によれば、内燃機関の冷機始動時に、燃料噴射弁のノズル先端の温度を効果的に上昇させることができ、ノズル先端での水分の凝縮による粒界腐食の進行を抑制することができる。   According to the present invention, the temperature of the nozzle tip of the fuel injection valve can be effectively increased at the time of cold start of the internal combustion engine, and the progress of intergranular corrosion due to moisture condensation at the nozzle tip can be suppressed. .

この発明に係る内燃機関の制御装置のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Configuration explanatory drawing which shows the system configuration | structure of the control apparatus of the internal combustion engine which concerns on this invention. この実施例における始動時制御の流れを示すフローチャート。The flowchart which shows the flow of the starting control in this Example. 点火時期進角に伴う燃焼圧の変化を示す特性図。The characteristic view which shows the change of the combustion pressure accompanying ignition timing advance. 極低温始動後のノズル先端の温度変化を示すタイムチャート。The time chart which shows the temperature change of the nozzle tip after a cryogenic start. 通常低温始動後のノズル先端の温度変化を示すタイムチャート。The time chart which shows the temperature change of the nozzle tip after a normal low temperature start.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用された自動車用内燃機関1のシステム構成を示している。この内燃機関1は、例えば複リンク式ピストンクランク機構を利用した可変圧縮比機構2を備えた4ストロークサイクルの筒内直接噴射式の火花点火内燃機関であって、燃焼室3の天井壁面に、一対の吸気弁4および一対の排気弁5が配置されているとともに、これらの吸気弁4および排気弁5に囲まれた中央部に点火プラグ6が配置されている。   FIG. 1 shows the system configuration of an automotive internal combustion engine 1 to which the present invention is applied. The internal combustion engine 1 is a four-stroke cycle direct injection type spark ignition internal combustion engine having a variable compression ratio mechanism 2 using, for example, a multi-link type piston crank mechanism, and is provided on the ceiling wall surface of the combustion chamber 3. A pair of intake valves 4 and a pair of exhaust valves 5 are arranged, and an ignition plug 6 is arranged in the center surrounded by the intake valves 4 and the exhaust valves 5.

上記吸気弁4によって開閉される吸気ポート7の下方には、燃焼室3内に燃料を直接に噴射する燃料噴射弁8が配置されている。この燃料噴射弁8のノズル先端は、燃焼室3内に露出している。上記吸気ポート7に接続される図示せぬ吸気通路には、エンジンコントローラ9からの制御信号によって開度が制御される電子制御型スロットルバルブ(図示せず)が介装されており、さらにその上流側に、吸入空気量を検出するエアフロメータ10が配設されている。   A fuel injection valve 8 that directly injects fuel into the combustion chamber 3 is disposed below the intake port 7 that is opened and closed by the intake valve 4. The nozzle tip of the fuel injection valve 8 is exposed in the combustion chamber 3. An intake passage (not shown) connected to the intake port 7 is provided with an electronically controlled throttle valve (not shown) whose opening degree is controlled by a control signal from the engine controller 9, and further upstream thereof. On the side, an air flow meter 10 for detecting the intake air amount is disposed.

また、排気ポート11に接続された排気通路12には、三元触媒からなる触媒装置13が介装されており、その上流側に、空燃比を検出する空燃比センサ14が配置されている。   In addition, a catalyst device 13 made of a three-way catalyst is interposed in the exhaust passage 12 connected to the exhaust port 11, and an air-fuel ratio sensor 14 for detecting the air-fuel ratio is disposed upstream thereof.

上記エンジンコントローラ9には、上記のエアフロメータ10、空燃比センサ14のほか、機関回転速度を検出するためのクランク角センサ15、冷却水温を検出する水温センサ16、運転者により操作されるアクセルペダルの踏込量を検出するアクセル開度センサ17、等のセンサ類の検出信号が入力されている。エンジンコントローラ9は、これらの検出信号に基づき、燃料噴射弁8による燃料噴射量および噴射時期、点火プラグ6による点火時期、図示せぬスロットルバルブの開度、等を最適に制御している。なお上記水温センサ16によって検出される冷却水温は、燃料噴射弁8のノズル先端の温度、とりわけ機関始動時のノズル先端の温度に相関している。   In addition to the air flow meter 10 and the air-fuel ratio sensor 14, the engine controller 9 includes a crank angle sensor 15 for detecting the engine speed, a water temperature sensor 16 for detecting the coolant temperature, and an accelerator pedal operated by the driver. Detection signals of sensors such as an accelerator opening sensor 17 that detects the amount of depression of the vehicle are input. Based on these detection signals, the engine controller 9 optimally controls the fuel injection amount and injection timing by the fuel injection valve 8, the ignition timing by the spark plug 6, the opening of a throttle valve (not shown), and the like. The cooling water temperature detected by the water temperature sensor 16 correlates with the temperature at the nozzle tip of the fuel injection valve 8, particularly the temperature at the nozzle tip at the time of engine start.

一方、可変圧縮比機構2は、特開2004−116434号公報等に記載の公知の複リンク式ピストンクランク機構を利用したものであって、クランクシャフト21のクランクピン21aに回転自在に支持されたロアリンク22と、このロアリンク22の一端部のアッパピン23とピストン24のピストンピン24aとを互いに連結するアッパリンク25と、ロアリンク22の他端部のコントロールピン26に一端が連結されたコントロールリンク27と、このコントロールリンク27の他端を揺動可能に支持するコントロールシャフト28と、を主体として構成されている。上記クランクシャフト21および上記コントロールシャフト28は、シリンダブロック29下部のクランクケース内で図示せぬ軸受構造を介して回転自在に支持されている。上記コントロールシャフト28は、該コントロールシャフト28の回動に伴って位置が変化する偏心軸部28aを有し、上記コントロールリンク27の端部は、詳しくは、この偏心軸部28aに回転可能に嵌合している。上記の可変圧縮比機構2においては、コントロールシャフト28の回動に伴ってピストン24の上死点位置が上下に変位し、従って、機械的な圧縮比が変化する。   On the other hand, the variable compression ratio mechanism 2 uses a known multi-link type piston crank mechanism described in Japanese Patent Application Laid-Open No. 2004-116434 and is rotatably supported by the crank pin 21a of the crankshaft 21. A lower link 22, an upper link 25 that connects the upper pin 23 at one end of the lower link 22 and the piston pin 24 a of the piston 24, and a control having one end connected to a control pin 26 at the other end of the lower link 22. The link 27 and a control shaft 28 that pivotally supports the other end of the control link 27 are mainly configured. The crankshaft 21 and the control shaft 28 are rotatably supported in a crankcase below the cylinder block 29 via a bearing structure (not shown). The control shaft 28 has an eccentric shaft portion 28a whose position changes with the rotation of the control shaft 28. Specifically, the end portion of the control link 27 is rotatably fitted to the eccentric shaft portion 28a. Match. In the variable compression ratio mechanism 2 described above, the top dead center position of the piston 24 is displaced up and down with the rotation of the control shaft 28, so that the mechanical compression ratio changes.

また、上記可変圧縮比機構2の圧縮比を可変制御する駆動機構として、クランクシャフト21と平行な回転中心軸を有する電動モータ31がシリンダブロック29下部に配置されており、この電動モータ31と軸方向に直列に並ぶように減速機32が接続されている。この減速機32としては、減速比の大きな例えば波動歯車機構が用いられており、その減速機出力軸32aは、電動モータ31の出力軸(図示せず)と同軸上に位置している。従って、減速機出力軸32aとコントロールシャフト28とは互いに平行に位置しており、両者が連動して回動するように、減速機出力軸32aに固定された第1アーム33とコントロールシャフト28に固定された第2アーム34とが中間リンク35によって互いに連結されている。   As a drive mechanism for variably controlling the compression ratio of the variable compression ratio mechanism 2, an electric motor 31 having a rotation center axis parallel to the crankshaft 21 is disposed below the cylinder block 29. A reduction gear 32 is connected so as to be arranged in series in the direction. As the speed reducer 32, for example, a wave gear mechanism having a large speed reduction ratio is used, and the speed reducer output shaft 32 a is positioned coaxially with the output shaft (not shown) of the electric motor 31. Accordingly, the speed reducer output shaft 32a and the control shaft 28 are positioned in parallel with each other, and the first arm 33 and the control shaft 28 fixed to the speed reducer output shaft 32a are connected to each other so that both of them rotate in conjunction with each other. The fixed second arm 34 is connected to each other by an intermediate link 35.

すなわち、電動モータ31が回転すると、減速機32により大きく減速された形で減速機出力軸32aの角度が変化する。この減速機出力軸32aの回動は第1アーム33から中間リンク35を介して第2アーム34へ伝達され、コントロールシャフト28が回動する。これにより、上述したように、内燃機関1の機械的な圧縮比が変化する。なお図示例では、第1アーム33および第2アーム34が互いに同方向に延びており、従って、例えば減速機出力軸32aが時計回り方向に回動するとコントロールシャフト28も時計回り方向に回動する関係となっているが、逆方向に回動するようにリンク機構を構成することも可能である。   That is, when the electric motor 31 rotates, the angle of the speed reducer output shaft 32a changes in a form greatly decelerated by the speed reducer 32. The rotation of the speed reducer output shaft 32a is transmitted from the first arm 33 to the second arm 34 via the intermediate link 35, and the control shaft 28 rotates. Thereby, as mentioned above, the mechanical compression ratio of the internal combustion engine 1 changes. In the illustrated example, the first arm 33 and the second arm 34 extend in the same direction. Therefore, for example, when the speed reducer output shaft 32a rotates in the clockwise direction, the control shaft 28 also rotates in the clockwise direction. Although it is related, the link mechanism can also be configured to rotate in the opposite direction.

上記可変圧縮比機構2の目標圧縮比は、エンジンコントローラ9において、機関運転条件(例えば要求負荷と機関回転速度)に基づいて設定され、この目標圧縮比を実現するように上記電動モータ31が駆動制御される。   The target compression ratio of the variable compression ratio mechanism 2 is set in the engine controller 9 based on engine operating conditions (for example, required load and engine speed), and the electric motor 31 is driven so as to realize this target compression ratio. Be controlled.

図2は、上記エンジンコントローラ9において内燃機関1の始動時に実行される始動時制御の流れを示すフローチャートである。ステップ1では、始動の際の冷却水温を所定の閾値TwHと比較して、暖機再始動であるか冷機始動であるかを判定する。暖機再始動であれば、燃料噴射弁8のノズル先端を暖める処理は不要であるため、ステップ4へ進み、通常の点火時期制御および圧縮比制御を行う。   FIG. 2 is a flowchart showing a start-up control flow executed by the engine controller 9 when the internal combustion engine 1 is started. In step 1, the temperature of the cooling water at the start is compared with a predetermined threshold value TwH, and it is determined whether it is a warm-up restart or a cold-start. If it is a warm-up restart, the process of warming the nozzle tip of the fuel injection valve 8 is not necessary, so the routine proceeds to step 4 where normal ignition timing control and compression ratio control are performed.

冷機始動であれば、ステップ2へ進み、同じく始動の際の冷却水温を所定の閾値TwLと比較して、極低温始動であるか通常の低温始動であるかを判定する。ステップ2における閾値TwLは、ステップ1における閾値TwHよりも低温側に設定されるものであり、例えば氷点下の適当な温度である。   If it is cold start, the process proceeds to step 2, and similarly, the coolant temperature at the start is compared with a predetermined threshold value TwL to determine whether it is a cryogenic start or a normal low temperature start. The threshold value TwL in step 2 is set at a lower temperature than the threshold value TwH in step 1, and is, for example, an appropriate temperature below the freezing point.

ステップ2で始動の際の冷却水温が閾値TwLよりも低い極低温始動であると判定した場合には、ステップ3へ進み、点火時期をそのときの基本点火時期よりも進角させるとともに、可変圧縮比機構2の目標圧縮比をそのときの基本目標圧縮比よりも低い圧縮比に設定する。このステップ3の処理つまり点火時期の進角および圧縮比の低下は、所定時間経過したことを条件として終了し、所定時間経過した段階でステップ4の通常制御へ移行する。上記の所定時間は、始動の際の冷却水温に基づいて可変的に設定され、上記冷却水温が低いほど長い時間に設定される。   If it is determined in step 2 that the coolant temperature at the start is a cryogenic start lower than the threshold value TwL, the process proceeds to step 3 where the ignition timing is advanced from the basic ignition timing and variable compression is performed. The target compression ratio of the ratio mechanism 2 is set to a compression ratio lower than the basic target compression ratio at that time. The processing of step 3, that is, the advance of the ignition timing and the reduction of the compression ratio, are terminated on the condition that a predetermined time has elapsed, and the routine proceeds to the normal control of step 4 when the predetermined time has elapsed. The predetermined time is variably set based on the cooling water temperature at the time of starting, and is set to a longer time as the cooling water temperature is lower.

一方、ステップ2で冷却水温が閾値TwL以上である場合は通常の低温始動と判定し、ステップ5へ進んで、先に触媒装置13における触媒の早期暖機に適した運転を行う。この触媒暖機運転としては、例えば、目標圧縮比を基本目標圧縮比よりも低下させると同時に、点火時期を基本点火時期よりも遅角させる。これにより、排気温度が上昇し、触媒が速やかに活性温度に近付く。この触媒暖機運転は、所定時間経過したことを条件として終了し、所定時間経過した段階でステップ6へ進む。上記の所定時間は、始動の際の冷却水温に基づいて可変的に設定され、上記冷却水温が低いほど長い時間に設定される。   On the other hand, when the cooling water temperature is equal to or higher than the threshold value TwL in step 2, it is determined that the engine is normally started at a low temperature, and the process proceeds to step 5 to perform an operation suitable for early catalyst warm-up in the catalyst device 13 first. In the catalyst warm-up operation, for example, the target compression ratio is lowered from the basic target compression ratio, and at the same time, the ignition timing is retarded from the basic ignition timing. As a result, the exhaust temperature rises, and the catalyst quickly approaches the activation temperature. The catalyst warm-up operation is terminated on the condition that a predetermined time has elapsed, and the process proceeds to step 6 when the predetermined time has elapsed. The predetermined time is variably set based on the cooling water temperature at the time of starting, and is set to a longer time as the cooling water temperature is lower.

ステップ6では、ステップ3と同様に、点火時期をそのときの基本点火時期よりも進角させるとともに、可変圧縮比機構2の目標圧縮比をそのときの基本目標圧縮比よりも低い圧縮比に設定する。このステップ6の処理つまり点火時期の進角および圧縮比の低下は、所定時間経過したことを条件として終了し、所定時間経過した段階でステップ4の通常制御へ移行する。上記の所定時間は、始動の際の冷却水温あるいはステップ6へ移行してきたときの冷却水温に基づいて可変的に設定され、基本的にこれらの冷却水温が低いほど長い時間に設定される。   In Step 6, as in Step 3, the ignition timing is advanced from the basic ignition timing at that time, and the target compression ratio of the variable compression ratio mechanism 2 is set to a compression ratio lower than the basic target compression ratio at that time. To do. The processing of step 6, that is, the advance of the ignition timing and the reduction of the compression ratio are terminated on the condition that a predetermined time has elapsed, and the routine proceeds to the normal control of step 4 when the predetermined time has elapsed. The predetermined time is variably set on the basis of the cooling water temperature at the time of start-up or the cooling water temperature at the time of shifting to Step 6, and is basically set to a longer time as these cooling water temperatures are lower.

上記のステップ3あるいはステップ6において点火時期の進角を行うことで、冷機状態にあった燃料噴射弁8のノズル先端は、より積極的に加熱される。図3は、燃焼に伴う筒内圧Piの変化を、点火時期が遅い(t1)場合と、点火時期が早い(t2)場合と、で対比して示したものである。図示するように点火に伴って燃焼が開始するので、例えば排気弁開時期がt3のように両者で同じであるとすると、点火時期を進角させた方が、燃料噴射弁8のノズル先端が高温の燃焼ガスに晒される時間が長くなり、ノズル先端が早期に温度上昇する。このとき、上記のように点火時期を進角すると、ノッキングやプリイグニッションのような異常燃焼が誘起されるが、本発明では、同時に、可変圧縮比機構2による機械的圧縮比の低下が行われるので、異常燃焼を招来することなく大幅な点火時期進角が可能であり、大幅な点火時期進角によるノズル先端温度の上昇が図れる。   By performing the advance of the ignition timing in step 3 or step 6 described above, the nozzle tip of the fuel injection valve 8 in the cold state is more actively heated. FIG. 3 shows a change in the in-cylinder pressure Pi accompanying combustion in a case where the ignition timing is late (t1) and a case where the ignition timing is early (t2). As shown in the figure, combustion starts with ignition. For example, if the opening timing of the exhaust valve is the same as in t3, the nozzle tip of the fuel injection valve 8 is more advanced when the ignition timing is advanced. The time of exposure to the high-temperature combustion gas becomes longer, and the temperature of the nozzle tip rises early. At this time, if the ignition timing is advanced as described above, abnormal combustion such as knocking or pre-ignition is induced. However, in the present invention, the mechanical compression ratio is simultaneously reduced by the variable compression ratio mechanism 2. Therefore, a large ignition timing advance is possible without causing abnormal combustion, and the nozzle tip temperature can be increased by a large ignition timing advance.

図4は、極低温例えば−30℃で内燃機関1を始動した後、アイドル運転のまま放置したときの燃料噴射弁8のノズル先端の温度変化を示している。ここで、前述した粒界腐食のリスクは、ノズル先端の温度がある上限温度T1とある下限温度T2との間にあるときに非常に高くなる。例えば、上限温度T1は、水の沸点である100℃よりも多少低い温度(例えば70℃)であり、下限温度T2は、水の凝固点である0℃よりも多少高い温度(例えば30℃)である。図中の比較例として示す特性は、始動後、基本点火時期および基本目標圧縮比でもってアイドル運転を継続した場合の特性であり、図示するようにノズル先端の温度上昇が比較的緩慢であるため、粒界腐食のリスクの高い温度範囲(T1〜T2)に比較的長く留まる。極端な場合、周囲の雰囲気温度が極低温であると、アイドル運転のままでは上限温度T1を越えないことも生じうる。従って、粒界腐食の抑制の上で好ましくない。これに対し実施例として示す特性は、極低温での始動後、前述したステップ3の処理により直ちに点火時期の進角および圧縮比の低下を行った場合の特性であり、図示するようにノズル先端の温度上昇率が高くなるため、粒界腐食のリスクの高い温度範囲(T1〜T2)を比較的短時間で通過する。従って、粒界腐食が抑制される。なお、ノズル先端の温度が上限温度T1に到達した時期にステップ3からステップ4へ移行するように、前述したステップ3の継続時間が冷却水温に応じて設定される。   FIG. 4 shows a change in the temperature of the nozzle tip of the fuel injection valve 8 when the internal combustion engine 1 is started at an extremely low temperature, for example, −30 ° C., and left in an idle operation. Here, the risk of intergranular corrosion described above becomes very high when the temperature at the nozzle tip is between a certain upper limit temperature T1 and a certain lower limit temperature T2. For example, the upper limit temperature T1 is a temperature slightly lower than 100 ° C. which is the boiling point of water (for example, 70 ° C.), and the lower limit temperature T2 is a temperature slightly higher than 0 ° C. which is the freezing point of water (for example, 30 ° C.). is there. The characteristic shown as a comparative example in the figure is a characteristic when the idling operation is continued with the basic ignition timing and the basic target compression ratio after starting, and the temperature rise at the nozzle tip is relatively slow as shown in the figure. It stays relatively long in the temperature range (T1 to T2) where the risk of intergranular corrosion is high. In an extreme case, if the ambient atmosphere temperature is extremely low, the upper limit temperature T1 may not be exceeded in idling operation. Therefore, it is not preferable in terms of suppressing intergranular corrosion. On the other hand, the characteristic shown as an example is a characteristic when the advance of the ignition timing and the compression ratio are reduced immediately after the start at the cryogenic temperature by the process of step 3 described above. Therefore, the temperature range (T1 to T2) having a high risk of intergranular corrosion is passed in a relatively short time. Therefore, intergranular corrosion is suppressed. The duration of Step 3 described above is set according to the cooling water temperature so that the process proceeds from Step 3 to Step 4 when the temperature of the nozzle tip reaches the upper limit temperature T1.

図5は、通常低温始動、つまり始動の際の冷却水温がステップ1における閾値TwHよりも低くかつステップ2における閾値TwL以上である場合のタイムチャートであり、例えば10℃で内燃機関1を始動した後、アイドル運転のまま放置したときの燃料噴射弁8のノズル先端の温度変化を示している。このような通常低温始動では、上記の極低温始動に比較して、比較的短い時間で上限温度T1に達するので、粒界腐食のリスクは相対的に低い。そのため、始動直後は、例えば点火時期を遅角して排気温度を上昇させ、触媒の早期暖機を行う。図中の比較例として示す特性は、触媒暖機完了後に、基本点火時期および基本目標圧縮比でもって運転を継続した場合の特性である。図示するように、触媒暖機完了時点ではノズル先端の温度は、粒界腐食のリスクの高い温度範囲(T1〜T2)内にあり、上限温度T1を越えるには多少の時間を要する。これに対し実施例として示す特性は、触媒暖機完了後、前述したステップ6の処理により、点火時期の進角および圧縮比の低下を行った場合の特性であり、図示するようにノズル先端の温度上昇率が高くなるため、粒界腐食のリスクの高い温度範囲(T1〜T2)を比較的短時間で通過する。従って、粒界腐食がさらに抑制される。なお、ノズル先端の温度が上限温度T1に到達した時期にステップ6からステップ4へ移行するように、前述したステップ6の継続時間が冷却水温に応じて設定される。   FIG. 5 is a time chart for normal low temperature starting, that is, when the coolant temperature at the time of starting is lower than the threshold value TwH in step 1 and above the threshold value TwL in step 2, for example, the internal combustion engine 1 is started at 10 ° C. Thereafter, the temperature change at the nozzle tip of the fuel injection valve 8 when the engine is left idle is shown. In such a normal low temperature start, the upper limit temperature T1 is reached in a relatively short time as compared with the above-mentioned cryogenic start, and therefore the risk of intergranular corrosion is relatively low. Therefore, immediately after startup, for example, the ignition timing is retarded to raise the exhaust gas temperature, and the catalyst is warmed up early. The characteristic shown as a comparative example in the figure is a characteristic when the operation is continued with the basic ignition timing and the basic target compression ratio after the catalyst warm-up is completed. As shown in the figure, when the catalyst warm-up is completed, the temperature at the nozzle tip is in the temperature range (T1 to T2) where the risk of intergranular corrosion is high, and it takes some time to exceed the upper limit temperature T1. On the other hand, the characteristic shown as an example is the characteristic when the advance of the ignition timing and the compression ratio are reduced by the process of step 6 described above after the catalyst warm-up is completed. Since the rate of temperature increase is high, the temperature range (T1 to T2) having a high risk of intergranular corrosion is passed in a relatively short time. Therefore, intergranular corrosion is further suppressed. The duration of step 6 described above is set according to the cooling water temperature so that the process proceeds from step 6 to step 4 when the temperature at the nozzle tip reaches the upper limit temperature T1.

以上、この発明の一実施例を説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、上記実施例では、燃料噴射弁8のノズル先端の温度に相関する温度として冷却水温を検出するようにしているが、外気温、吸気温度、潤滑油温、燃焼室温度、など、ノズル先端の温度に相関する他の温度パラメータを用いることも可能である。また上記実施例では、複リンク式ピストンクランク機構からなる可変圧縮比機構2を用いているが、本発明は、どのような形式の可変圧縮比機構であっても同様に適用が可能である。   As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, A various change is possible. For example, in the above embodiment, the coolant temperature is detected as a temperature that correlates with the temperature of the nozzle tip of the fuel injection valve 8, but the nozzle tip such as the outside air temperature, intake air temperature, lubricating oil temperature, combustion chamber temperature, etc. It is also possible to use other temperature parameters that correlate with the temperature of In the above embodiment, the variable compression ratio mechanism 2 including a multi-link type piston crank mechanism is used. However, the present invention can be similarly applied to any type of variable compression ratio mechanism.

Claims (4)

機械的圧縮比を変更する可変圧縮比機構を備えるとともに、燃焼室内に燃料を直接に噴射する燃料噴射弁を備えてなる内燃機関の制御装置であって、
始動時に暖機再始動であるか冷機始動であるかを判定する第1の判定手段と、
始動時の冷却水温が、氷点下に設定された所定の閾値よりも低い極低温始動であるか否かを判定する第2の判定手段と、を備え、
極低温始動時には、内燃機関の始動直後から極低温始動時の所定時間経過するまでの間、点火時期を基本点火時期よりも進角させるとともに目標圧縮比を基本目標圧縮比よりも低下させ、
冷機始動であって極低温ではない通常低温始動時には、内燃機関の始動直後から通常低温始動時の所定時間が経過するまでの間、目標圧縮比を基本目標圧縮比よりも低下させるとともに点火時期を基本点火時期よりも遅角させた触媒暖機運転を行う、内燃機関の制御装置。
A control device for an internal combustion engine comprising a variable compression ratio mechanism for changing a mechanical compression ratio and a fuel injection valve for directly injecting fuel into a combustion chamber,
First determination means for determining whether the engine is warm-up restart or cold-start when starting;
A second determination means for determining whether or not the cooling water temperature at the start is a cryogenic start lower than a predetermined threshold set below the freezing point,
At cryogenic startup, until the elapse of a predetermined time during cryogenic starting from immediately after the start of the internal combustion engine, it is lower than the basic target compression ratio the target compression ratio causes is advanced than the basic ignition timing of the ignition timing,
During a cold start and a normal low temperature start that is not a very low temperature, the target compression ratio is reduced below the basic target compression ratio and the ignition timing is set between the start of the internal combustion engine and the predetermined time at the normal low temperature start. A control device for an internal combustion engine that performs a catalyst warm-up operation delayed from a basic ignition timing.
上記通常低温始動時には、上記触媒暖機運転による触媒暖機完了後に、点火時期を基本点火時期よりも進角させるとともに目標圧縮比を基本目標圧縮比よりも低下させた運転に移行する、請求項1に記載の内燃機関の制御装置。   At the time of the normal low temperature start, after completion of catalyst warm-up by the catalyst warm-up operation, the ignition timing is advanced from the basic ignition timing, and the operation is shifted to an operation in which the target compression ratio is lower than the basic target compression ratio. The control apparatus for an internal combustion engine according to claim 1. 圧縮比を低下させるときの目標圧縮比は、点火時期の進角による異常燃焼を回避可能な圧縮比に設定される、請求項1または2に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1 or 2, wherein the target compression ratio when the compression ratio is lowered is set to a compression ratio that can avoid abnormal combustion due to the advance of the ignition timing. 機械的圧縮比を変更する可変圧縮比機構を備えるとともに、燃焼室内に燃料を直接に噴射する燃料噴射弁を備えてなる内燃機関において、
始動時に暖機再始動であるか冷機始動であるかを判定し、
始動時の冷却水温が、氷点下に設定された所定の閾値よりも低い極低温始動であるか否かを判定し、
極低温始動時には、内燃機関の始動直後から極低温始動時の所定時間経過するまでの間、点火時期を基本点火時期よりも進角させるとともに目標圧縮比を基本目標圧縮比よりも低下させ、
冷機始動であって極低温ではない通常低温始動時には、内燃機関の始動直後から通常低温始動時の所定時間が経過するまでの間、目標圧縮比を基本目標圧縮比よりも低下させるとともに点火時期を基本点火時期よりも遅角させた触媒暖機運転を行う、内燃機関の制御方法。
In an internal combustion engine that includes a variable compression ratio mechanism that changes a mechanical compression ratio and a fuel injection valve that directly injects fuel into a combustion chamber,
Determine whether it is warm-up restart or cold-start at the start,
It is determined whether or not the cooling water temperature at the start is a cryogenic start lower than a predetermined threshold set below the freezing point,
At cryogenic startup, until the elapse of a predetermined time during cryogenic starting from immediately after the start of the internal combustion engine, it is lower than the basic target compression ratio the target compression ratio causes is advanced than the basic ignition timing of the ignition timing,
During a cold start and a normal low temperature start that is not a very low temperature, the target compression ratio is reduced below the basic target compression ratio and the ignition timing is set between the start of the internal combustion engine and the predetermined time at the normal low temperature start. A control method for an internal combustion engine, in which a catalyst warm-up operation is performed with a retarded angle from a basic ignition timing.
JP2014559610A 2013-02-01 2014-01-10 Control device and control method for internal combustion engine Expired - Fee Related JP6094599B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013017987 2013-02-01
JP2013017987 2013-02-01
PCT/JP2014/050283 WO2014119354A1 (en) 2013-02-01 2014-01-10 Control device and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPWO2014119354A1 JPWO2014119354A1 (en) 2017-01-26
JP6094599B2 true JP6094599B2 (en) 2017-03-15

Family

ID=51262069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014559610A Expired - Fee Related JP6094599B2 (en) 2013-02-01 2014-01-10 Control device and control method for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6094599B2 (en)
WO (1) WO2014119354A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067375A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Control device for internal combustion engine
JP6413733B2 (en) * 2014-12-15 2018-10-31 日産自動車株式会社 Control device for internal combustion engine
JP6743973B2 (en) * 2017-05-01 2020-08-26 日産自動車株式会社 Internal combustion engine control method and internal combustion engine control device
EP3620637B1 (en) * 2017-05-01 2021-03-10 Nissan Motor Co., Ltd. Control method for internal combustion engine and control device for internal combustion engine
US10156219B1 (en) * 2017-11-27 2018-12-18 GM Global Technology Operations LLC Method for controlling spark timing in a cold start condition for an engine in a vehicle propulsion system and controller for executing the method
IT201800009373A1 (en) * 2018-10-11 2020-04-11 Fpt Motorenforschung Ag COLD START MANAGEMENT SYSTEM FOR A DIESEL INTERNAL COMBUSTION ENGINE
CN111561401B (en) * 2019-09-27 2021-06-11 长城汽车股份有限公司 Method and device for controlling variable compression ratio engine
JP7291656B2 (en) * 2020-03-30 2023-06-15 日立Astemo株式会社 Control device for internal combustion engine
CN114576029A (en) * 2020-11-30 2022-06-03 长城汽车股份有限公司 Engine starting method and device, electronic equipment and readable storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441627A (en) * 1987-08-04 1989-02-13 Toyota Motor Corp Compression ratio control device for internal combustion engine
JP4276401B2 (en) * 2002-02-08 2009-06-10 株式会社日本自動車部品総合研究所 Fuel injection control device for internal combustion engine
JP4483915B2 (en) * 2007-09-06 2010-06-16 トヨタ自動車株式会社 Idling control device for spark ignition type internal combustion engine
JP5177303B2 (en) * 2009-12-28 2013-04-03 トヨタ自動車株式会社 Spark ignition internal combustion engine

Also Published As

Publication number Publication date
WO2014119354A1 (en) 2014-08-07
JPWO2014119354A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6094599B2 (en) Control device and control method for internal combustion engine
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
CN100590309C (en) Internal combustion engine starting system and method
JP5310733B2 (en) Control device for internal combustion engine
JP5958416B2 (en) Start control device for premixed compression ignition type engine
JP4521426B2 (en) In-cylinder injection internal combustion engine control device
JP5028245B2 (en) Internal EGR control device for internal combustion engine
JP5742682B2 (en) Start control device for internal combustion engine
US10006390B2 (en) Engine starting system
JP4716053B2 (en) Internal combustion engine
JP2016109014A (en) Control device of engine
JP4998336B2 (en) Control device and control method for variable compression ratio engine
JP4792882B2 (en) Control device for internal combustion engine
JP5900701B2 (en) Control device and control method for internal combustion engine
JP6835235B2 (en) Internal combustion engine control method and internal combustion engine control device
JP5556387B2 (en) Control device for variable valve system
JP6264272B2 (en) Engine control device
JP6213486B2 (en) Engine starter
JP2016109015A (en) Control device of engine
JP2006170172A (en) Valve characteristic control device for internal combustion engine
JP6213379B2 (en) Engine fuel injection timing control device
JP2010270708A (en) Control device for internal combustion engine
JP7092519B2 (en) Internal combustion engine control device
JP2009127550A (en) Engine intake control device
CN105121820A (en) Control apparatus for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R151 Written notification of patent or utility model registration

Ref document number: 6094599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees