JP6258756B2 - Method for producing fuel oil base material - Google Patents
Method for producing fuel oil base material Download PDFInfo
- Publication number
- JP6258756B2 JP6258756B2 JP2014078158A JP2014078158A JP6258756B2 JP 6258756 B2 JP6258756 B2 JP 6258756B2 JP 2014078158 A JP2014078158 A JP 2014078158A JP 2014078158 A JP2014078158 A JP 2014078158A JP 6258756 B2 JP6258756 B2 JP 6258756B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- base material
- fraction
- fuel oil
- heavy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、流動接触分解装置を用いて得られる燃料油基材に関する。 The present invention relates to a fuel oil base material obtained using a fluid catalytic cracking apparatus.
石油精製プロセスにおいて、熱分解は、触媒を用いること無く高温下で炭化水素分子を分解し、軽質炭化水素を得る方法である。石油精製の分野では、ガソリン需要の高まりとともに、多くの熱分解プロセスが提案されてきた。しかし、熱分解で得られるガソリンはオクタン価が低いため、ガソリン製造は、接触分解プロセスに置き換えられている。
現在、熱分解はナフサからエチレン等の基礎化学原料を得る方法として利用されている。ナフサの熱分解によって得られる熱分解油を分留して得られるC9留分を主成分とする重質留分は、密度が高く、この重質留分を蒸留して得られる蒸留性状がガソリン基材相当の留分は、オクタン価が非常に高くなることが予想される。また、この重質留分は、引火点及び沸点範囲では、灯油或いは軽油に分類できる。それにもかかわらず、この重質留分は、特有の臭気を有するため、ガソリンや灯軽油等に用いる燃料油基材として利用することが困難であり、主にボイラー燃料として利用されていた。
一方、原料油を流動接触分解装置(以下、FCC装置という)で分解処理する方法では、燃料油を増産するために、廃プラスチックや石油化学製品の製造装置からの副生品などの炭化水素系重合体をFCC装置に供給して効率よく分解処理する方法が提案されてきた(特許文献1及び2参照。)
このように、高付加価値化という観点から、これまでボイラー燃料として使用されてきた上述の重質留分についても、ボイラー燃料用途以外への適用が望まれている。
In the petroleum refining process, thermal cracking is a method for cracking hydrocarbon molecules at high temperatures without using a catalyst to obtain light hydrocarbons. In the field of oil refining, a number of pyrolysis processes have been proposed with increasing gasoline demand. However, because gasoline obtained by pyrolysis has a low octane number, gasoline production has been replaced by a catalytic cracking process.
Currently, pyrolysis is used as a method for obtaining basic chemical raw materials such as ethylene from naphtha. The heavy fraction mainly composed of C9 fraction obtained by fractionating pyrolyzed oil obtained by thermal decomposition of naphtha has a high density, and the distillation property obtained by distilling this heavy fraction has gasoline. The fraction corresponding to the base material is expected to have a very high octane number. Moreover, this heavy fraction can be classified into kerosene or light oil in the flash point and boiling range. Nevertheless, this heavy fraction has a characteristic odor, so it is difficult to use it as a fuel oil base material used for gasoline, kerosene, etc., and it was mainly used as boiler fuel.
On the other hand, in the method of cracking raw oil with a fluid catalytic cracking unit (hereinafter referred to as FCC unit), in order to increase the production of fuel oil, hydrocarbons such as by-products from waste plastics and petrochemical product manufacturing equipment A method of efficiently decomposing by supplying a polymer to an FCC apparatus has been proposed (see Patent Documents 1 and 2).
Thus, from the viewpoint of high added value, application of the above-described heavy fraction, which has been used as boiler fuel so far, to applications other than boiler fuel applications is also desired.
本発明は、熱分解油を分留して得られる重質留分から得られる燃料油基材の提供を目的とする。 An object of this invention is to provide the fuel-oil base material obtained from the heavy fraction obtained by fractionating pyrolysis oil.
発明者らは、ナフサの熱分解によって得られる熱分解油を分留して得られる重質留分を流動接触分解装置の原料油として用いて、得られる分解油を分留することにより、高リサーチ法オクタン価のガソリン基材等の燃料油基材が得られることを見出し、この知見に基づいて本発明を完成するに至った。 The inventors used a heavy fraction obtained by fractionating a pyrolyzed oil obtained by thermal decomposition of naphtha as a raw material oil for a fluid catalytic cracker, and fractionating the obtained cracked oil to obtain a high fraction. The present inventors have found that a fuel oil base material such as a gasoline base material having a research octane number can be obtained, and based on this finding, the present invention has been completed.
すなわち、本発明は、下記に示す燃料油基材を提供する。
[1]ナフサの熱分解によって得られた熱分解油を分留して得られる重質留分を含む原料油を流動接触分解装置により分解して得られる分解油を分留して得られる燃料油基材。
[2]前記燃料油基材が、リサーチ法オクタン価91.5以上のガソリン基材である前記[1]に記載の燃料油基材。
[3]前記重質留分の15℃の密度が0.900g/cm3以上である前記[1]又は[2]に記載の燃料油基材。
[4]前記重質留分に含まれる硫黄分が0.5質量%以下である前記[1]又は[2]に記載の燃料油基材。
[5]前記重質留分に含まれる硫黄分が0.1質量%以下である前記[4]に記載の燃料油基材。
[6]前記重質留分のASTM D86に準拠した蒸留方法による10容量%留出温度が140℃以上190℃以下であり、50容量%留出温度が150℃以上200℃以下である前記[1]〜[5]のいずれかに記載の燃料油基材。
[7]前記原料油が脱硫装置によって処理された脱硫油と前記重質留分とを含み、前記重質留分が該原料油全量基準で1容量%以上10容量%以下含まれる前記[1]〜[6]のいずれかに記載の燃料油基材。
[8]前記重質留分の留出温度が100℃以上350℃以下である前記[1]〜[7]のいずれかに記載の燃料油基材。
That is, this invention provides the fuel oil base material shown below.
[1] Fuel obtained by fractionating cracked oil obtained by cracking raw oil containing heavy fraction obtained by fractionating pyrolyzed oil obtained by pyrolysis of naphtha using a fluid catalytic cracking device Oil base.
[2] The fuel oil base material according to [1], wherein the fuel oil base material is a gasoline base material having a research octane number of 91.5 or more.
[3] The fuel oil base material according to [1] or [2], wherein the density of the heavy fraction at 15 ° C. is 0.900 g / cm 3 or more.
[4] The fuel oil base material according to [1] or [2], wherein a sulfur content in the heavy fraction is 0.5% by mass or less.
[5] The fuel oil base material according to [4], wherein a sulfur content in the heavy fraction is 0.1% by mass or less.
[6] The 10 volume% distillation temperature by the distillation method based on ASTM D86 of the heavy fraction is 140 ° C. or higher and 190 ° C. or lower, and the 50 volume% distillation temperature is 150 ° C. or higher and 200 ° C. or lower. The fuel oil base material according to any one of [1] to [5].
[7] The raw material oil includes desulfurized oil processed by a desulfurization apparatus and the heavy fraction, and the heavy fraction is contained in an amount of 1% by volume to 10% by volume based on the total amount of the raw material oil. ] The fuel oil base material in any one of [6].
[8] The fuel oil base material according to any one of [1] to [7], wherein a distillation temperature of the heavy fraction is 100 ° C. or higher and 350 ° C. or lower.
本発明によれば、熱分解油を分留して得られる重質留分から得られる燃料油基材を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the fuel oil base material obtained from the heavy fraction obtained by fractionating pyrolysis oil can be provided.
[燃料油基材]
本実施形態に係る燃料油基材は、ナフサの熱分解によって得られた熱分解油を分留して得られる重質留分を含む原料油を流動接触分解装置(以下、FCC装置という)により分解して得られた分解油を、さらに分留することにより得られるガス分、PP留分、BB留分、FCCガソリン(FG)留分、分解軽油(LCO)留分等の燃料油基材である。
本実施形態に係る燃料油基材の一種としては、熱分解油を分留して得られる重質留分を、例えば、脱硫重油に所定量混合したものをFCC原料油として用い、これをFCC装置で流動接触分解させて得られた分解油を分留することにより得られた、リサーチ法オクタン価が高いガソリン基材が挙げられる。
[Fuel oil base material]
The fuel oil base material according to the present embodiment uses a fluid catalytic cracking device (hereinafter referred to as an FCC device) to feed a raw material oil containing a heavy fraction obtained by fractionating a pyrolyzed oil obtained by naphtha pyrolysis. Fuel oil base materials such as gas fraction, PP fraction, BB fraction, FCC gasoline (FG) fraction, cracked light oil (LCO) fraction obtained by further fractionating the cracked oil obtained by cracking It is.
As one type of fuel oil base material according to the present embodiment, a heavy fraction obtained by fractionating pyrolysis oil is mixed with a predetermined amount of desulfurized heavy oil, for example, as FCC feedstock, and this is used as FCC feedstock. Examples include gasoline bases having a high research octane number obtained by fractionating the cracked oil obtained by fluid catalytic cracking with an apparatus.
本発明に係る各燃料油基材の性状は下記のとおりであることが好ましい。
<ガス分>
C1とC2の組成が合わせて40mol%以上であることが好ましい。
水素は20mol%以下であることが好ましい。
<PP留分>
C3の組成が95mol%以上であることが好ましい。
<BB留分>
C4の組成が95mol%以上であることが好ましい。
<FCCガソリン留分(ガソリン基材)>
15℃の密度が0.7200g/cm3以上であることが好ましい。硫黄分は70ppm以下であることが好ましい。リサーチ法オクタン価(RON)が91.5以上であることが好ましい。オクタン価が高い程アンチノック性が良くなることから、リサーチ法オクタン価はより好ましくは92.0以上であり、さらに好ましくは93.0以上である。
<分解軽油(LCO)留分>
15℃の密度が0.9000g/cm3以上であることが好ましい。硫黄分は0.30wt%以下であることが好ましい。
<残渣油留分>
15℃の密度が1.1000g/cm3以下であることが好ましい。硫黄分は1.25wt%以下であることが好ましい。
The properties of each fuel oil base according to the present invention are preferably as follows.
<Gas content>
The total composition of C1 and C2 is preferably 40 mol% or more.
It is preferable that hydrogen is 20 mol% or less.
<PP fraction>
The composition of C3 is preferably 95 mol% or more.
<BB fraction>
The composition of C4 is preferably 95 mol% or more.
<FCC gasoline fraction (gasoline base material)>
It is preferable that the density at 15 ° C. is 0.7200 g / cm 3 or more. The sulfur content is preferably 70 ppm or less. The research octane number (RON) is preferably 91.5 or more. The higher the octane number, the better the anti-knock property. Therefore, the research octane number is more preferably 92.0 or more, and further preferably 93.0 or more.
<Decomposed light oil (LCO) fraction>
The density at 15 ° C. is preferably 0.9000 g / cm 3 or more. The sulfur content is preferably 0.30 wt% or less.
<Residual oil fraction>
The density at 15 ° C. is preferably 1.1000 g / cm 3 or less. The sulfur content is preferably 1.25 wt% or less.
なお、C1、C2、水素の組成はJIS K 2301「燃料ガス及び天然ガス−分析・試験方法」に準拠して測定される値である。
上記C3、C4の組成はJIS K 2240「液化石油ガス−組成分析方法」に準拠して測定される値である。
上記15℃における密度はJIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」に準拠して測定される値である。
上記硫黄分はJIS K 2541「原油及び石油製品−硫黄分試験方法」に準拠して測定される値である。
上記リサーチ法オクタン価はJIS K 2280に準拠して測定される値である。
The compositions of C1, C2, and hydrogen are values measured in accordance with JIS K 2301 “Fuel gas and natural gas—analysis and test method”.
The compositions of C3 and C4 are values measured in accordance with JIS K 2240 “Liquefied petroleum gas-composition analysis method”.
The density at 15 ° C. is a value measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.
The sulfur content is a value measured according to JIS K 2541 “Crude oil and petroleum products—Sulfur content test method”.
The research octane number is a value measured according to JIS K 2280.
[燃料油基材の製造方法]
以下に、本実施形態に係る燃料油基材を得るための原料油、製造手順等について説明する。
<FCC原料油>
燃料油基材の製造に用いることのできるFCC原料油について説明する。FCCの原料油としては、前述のように、熱分解油を分留して得られる重質留分を所定量、脱硫重油に混合したものを用いる。FCC原料油として用いることのできる脱硫重油としては、間接脱硫重油、直接脱硫重油が挙げられる。
(熱分解油を分留して得られる重質留分)
本実施形態において、熱分解油を分留して得られる重質留分とは、例えば、エチレン分解炉プロセス等のナフサの熱分解によって得られる熱分解油のうち、留出温度が100℃以上350℃以下、好ましくは140℃以上280℃以下の範囲にある留分を指す。
重質留分の性状は、下記のとおりである。重質留分の15℃の密度が0.900g/cm3以上であることが好ましく、より好ましくは、0.93g/cm3以上0.98g/cm3以下である。重質留分の15℃の密度が上記範囲であれば、FCC装置における触媒上に堆積するコーク量を少なくすることができ、触媒再生設備の負荷低減及び反応効率向上を達成できる。
重質留分に含まれる硫黄分は、0.5質量%以下であり、好ましくは、0.1質量%以下である。重質留分に含まれる硫黄分が0.1質量%以下であると、FCC装置の下流にある排ガス脱硫設備やガス回収設備の負荷を軽減できる。
[Method for producing fuel oil base]
Below, the raw material oil for obtaining the fuel oil base material which concerns on this embodiment, a manufacturing procedure, etc. are demonstrated.
<FCC feedstock>
The FCC raw material oil that can be used for producing the fuel oil base material will be described. As described above, the FCC raw material oil is obtained by mixing a predetermined amount of heavy fraction obtained by fractionating pyrolysis oil with desulfurized heavy oil. Examples of the desulfurized heavy oil that can be used as the FCC feedstock include indirect desulfurized heavy oil and direct desulfurized heavy oil.
(Heavy fraction obtained by fractionating pyrolysis oil)
In the present embodiment, the heavy fraction obtained by fractionating pyrolysis oil is, for example, a distillation temperature of 100 ° C. or higher among pyrolysis oil obtained by pyrolysis of naphtha such as an ethylene cracking furnace process. It refers to a fraction in the range of 350 ° C. or lower, preferably 140 ° C. or higher and 280 ° C. or lower.
The properties of the heavy fraction are as follows. The density of the heavy fraction at 15 ° C. is preferably 0.900 g / cm 3 or more, more preferably 0.93 g / cm 3 or more and 0.98 g / cm 3 or less. If the density of the heavy fraction at 15 ° C. is in the above range, the amount of coke deposited on the catalyst in the FCC apparatus can be reduced, and the load reduction and the reaction efficiency improvement of the catalyst regeneration facility can be achieved.
The sulfur content contained in the heavy fraction is 0.5% by mass or less, and preferably 0.1% by mass or less. When the sulfur content in the heavy fraction is 0.1% by mass or less, the load on the exhaust gas desulfurization facility and the gas recovery facility downstream of the FCC unit can be reduced.
本実施形態における重質留分の蒸留性状は、ASTM D86に準拠した蒸留方法による10容量%留出温度(T10)が140℃以上190℃以下であり、50容量%留出温度(T50)が150℃以上200℃以下であるものが好ましい。また、90容量%留出温度(T90)が170℃以上260℃以下であるものが好ましい。
重質留分の蒸留性状が上記範囲であれば、FCC装置における触媒上に堆積するコーク量を少なくすることができ、触媒再生設備の負荷低減及び反応効率向上を達成できる。
また、本実施形態において、15℃における密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度である。硫黄分は、JIS K 2541「原油及び石油製品−硫黄分試験方法」により測定される値である。リサーチ法オクタン価は、JIS K 2280に準拠したリサーチ法によって得られる値である。
The distillation properties of the heavy fraction in this embodiment are such that the 10 vol% distillation temperature (T10) by the distillation method based on ASTM D86 is 140 ° C. or higher and 190 ° C. or lower, and the 50 vol% distillation temperature (T50) is What is 150 degreeC or more and 200 degrees C or less is preferable. Moreover, what has 90 volume% distillation temperature (T90) of 170 degreeC or more and 260 degrees C or less is preferable.
If the distillation property of the heavy fraction is within the above range, the amount of coke deposited on the catalyst in the FCC apparatus can be reduced, and the load reduction and the reaction efficiency improvement of the catalyst regeneration facility can be achieved.
In the present embodiment, the density at 15 ° C. is a density measured by JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”. The sulfur content is a value measured according to JIS K 2541 “Crude oil and petroleum products—sulfur content test method”. The research method octane number is a value obtained by a research method based on JIS K 2280.
上記性状を有する重質留分としては、C9留分を主成分とした重質留分が好適に挙げられる。C9留分に含まれる成分としては、スチレン、プロピルベンゼン、メチルエチルベンゼン、トリメチルベンゼン、インデン、ジシクロペンタジエン、ナフタリン等が挙げられる。 As the heavy fraction having the above properties, a heavy fraction containing a C9 fraction as a main component is preferably exemplified. Examples of the component contained in the C9 fraction include styrene, propylbenzene, methylethylbenzene, trimethylbenzene, indene, dicyclopentadiene, naphthalene and the like.
(間接脱硫重油)
本実施形態に係る燃料油基材の製造に用いられるFCC原料油として、例えば、原油の常圧蒸留にて得られる重質軽油、減圧軽油等を間接脱硫装置(VH)にて脱硫処理して得られる脱硫重質軽油(VHHGO)、脱硫減圧軽油(VHVGO)、溶剤脱れき装置から得られる脱れき油等が併用できる。
(Indirect desulfurization heavy oil)
As the FCC feedstock used in the production of the fuel oil base material according to the present embodiment, for example, heavy gas oil obtained by atmospheric distillation of crude oil, vacuum gas oil or the like is desulfurized with an indirect desulfurization apparatus (VH). The resulting desulfurized heavy gas oil (VHHGO), desulfurized vacuum gas oil (VHVGO), degassed oil obtained from a solvent degassing device, and the like can be used in combination.
(直接脱硫重油)
本実施形態に係る燃料油基材の製造に用いられるFCC原料油として、さらに、原油の常圧蒸留残油(AR)及び減圧蒸留残油(VR)、重質軽油、接触分解残油、ビスブレーキング油、ビチューメンなどの密度の高い石油留分を用いて重油直接脱硫装置(RH)において水素化脱硫及び水素化分解して得られた脱硫重油(DSAR)を用いることができる。
脱硫重油(DSAR)を得るための水素化脱硫及び水素化分解は、触媒の存在下で行い、反応温度、反応圧力、液空間速度等の反応条件を最適化することにより必要とされる脱硫率や重質油の分解率を達成することができる。
(Direct desulfurized heavy oil)
As the FCC feedstock used in the production of the fuel oil base material according to this embodiment, the crude oil distillation residue (AR) and vacuum distillation residue (VR), heavy gas oil, catalytic cracking residue, screw Desulfurized heavy oil (DSAR) obtained by hydrodesulfurization and hydrocracking in a heavy oil direct desulfurization apparatus (RH) using a high-density petroleum fraction such as braking oil and bitumen can be used.
Hydrodesulfurization and hydrocracking to obtain desulfurized heavy oil (DSAR) is carried out in the presence of a catalyst, and the desulfurization rate required by optimizing reaction conditions such as reaction temperature, reaction pressure, and liquid space velocity And the degradation rate of heavy oil can be achieved.
水素化脱硫及び水素化分解は、通常300〜450℃、好ましくは330〜420℃、より好ましくは380〜420℃の温度条件下で通常10〜22MPa、好ましくは13〜20MPaの水素加圧下で行われる。液空間速度(LHSV)は通常0.1〜10h-1、好ましくは0.1〜3h-1、水素/油比は通常200〜10,000Nm3/KL、好ましくは500〜10,000Nm3/KLの範囲で行われる。 The hydrodesulfurization and hydrocracking are usually carried out at a temperature of 300 to 450 ° C., preferably 330 to 420 ° C., more preferably 380 to 420 ° C. under a hydrogen pressure of usually 10 to 22 MPa, preferably 13 to 20 MPa. Is called. The liquid hourly space velocity (LHSV) is usually 0.1 to 10 -1, preferably 0.1~3h -1, a hydrogen / oil ratio is typically 200~10,000Nm 3 / KL, preferably 500~10,000Nm 3 / It is performed in the range of KL.
水素化脱硫及び水素化分解は、第一工程として水素化脱金属処理工程、第二工程として水素化脱硫処理工程の2工程を含むことが好ましい。原料重質油は、初めに第一工程である水素化脱金属処理工程で、水素化脱金属処理され、水素化脱硫触媒の活性低下の原因となるバナジウム、ニッケルなどの金属分が水素化され脱金属される。次いで水素化脱金属処理工程で処理された留出油は、第二工程である水素化脱硫処理工程に送られ水素化脱硫処理される。この時、第一工程と第二工程は同一装置内で行うこともできるが、別装置で行ってもよい。触媒の劣化抑制の点から、前記RHの上流に、別途OCR等の脱金属装置を付帯して有することが好ましい。 The hydrodesulfurization and hydrocracking preferably include two steps, a hydrodemetallation treatment step as the first step and a hydrodesulfurization treatment step as the second step. Raw heavy oil is first hydrodemetallized in the hydrodemetallation process, which is the first step, and metal components such as vanadium and nickel that cause a decrease in the activity of the hydrodesulfurization catalyst are hydrogenated. Demetalized. Next, the distillate treated in the hydrodemetallation process is sent to the hydrodesulfurization process, which is the second process, and hydrodesulfurized. At this time, the first step and the second step can be performed in the same apparatus, but may be performed in different apparatuses. From the viewpoint of suppressing the deterioration of the catalyst, it is preferable that a separate metal removal device such as OCR is additionally provided upstream of the RH.
上記第一工程と第二工程の機能分担を実現させる具体的手段としては、触媒担体の細孔構造と担持金属量とをパラメーターとして、例えば、第一工程においては、担体の細孔径を大きく(又は金属担持量を少なく)する方法により、触媒の細孔容積を大きくして、分子の大きな金属分を捕捉して、第二工程では表面積の大きい(細孔の径が小さく、数の多い)担体に、活性金属をより多く担持した触媒を用いて、主として硫黄化合物の水素化脱硫を行なう。これら各工程は、前記のとおりの主たる機能分担を有するが、全体としては原料重質油の水素化精製処理が行われる。 As a specific means for realizing the function sharing between the first step and the second step, the pore structure of the catalyst support and the amount of supported metal are used as parameters. For example, in the first step, the pore size of the support is increased ( (Or reduce the amount of supported metal) to increase the pore volume of the catalyst and capture the large metal content of the molecule. In the second step, the surface area is large (the pore diameter is small and the number is large). Hydrodesulfurization of sulfur compounds is mainly performed using a catalyst that supports more active metal on the support. Each of these steps has the main function sharing as described above, but as a whole, hydrorefining treatment of raw material heavy oil is performed.
水素化脱硫及び水素化分解に用いる触媒は、水素化脱金属能、水素化脱硫能を持った公知の触媒をいずれも用いることができ、例えば、アルミナ、シリカ−アルミナ、ゼオライトあるいはこれらの混合物等の担体に、周期表第V〜VIII族金属、あるいはこれらの硫化物、酸化物を担持した触媒を用いることができる。上記周期表第V〜VIII族の金属の金属としては、水素化脱硫に適した活性金属を用いる点から、好ましくはニッケル、コバルト、モリブデン、タングステン等、あるいはこれらの組み合わせが用いられる。本発明においては、重質油に対してより水素化脱硫、水素化分解および水素化能の優れている点から、触媒としてアルミナ等の多孔質無機酸化物担体にCo−Mo、Co−Mo−P、Ni−Mo、Ni−Mo−P等の金属を担持した触媒を用いることが好ましい。 As the catalyst used for hydrodesulfurization and hydrocracking, any known catalyst having hydrodemetallization ability and hydrodesulfurization ability can be used. For example, alumina, silica-alumina, zeolite or a mixture thereof, etc. A catalyst carrying a group V to VIII metal of the periodic table or a sulfide or oxide thereof can be used as the support. From the viewpoint of using an active metal suitable for hydrodesulfurization, nickel, cobalt, molybdenum, tungsten, or a combination thereof is preferably used as the metal of the Group V to VIII metal of the periodic table. In the present invention, since it is more excellent in hydrodesulfurization, hydrocracking and hydrogenation ability than heavy oil, a porous inorganic oxide carrier such as alumina is used as a catalyst for Co-Mo, Co-Mo- It is preferable to use a catalyst carrying a metal such as P, Ni—Mo, Ni—Mo—P or the like.
上記水素化脱硫及び水素化分解で用いられる反応器としては従来公知の様式の反応器、例えば固定床、移動床いずれも使用することができ、ダウンフロー式、アップフロー式のいずれであってもよい。 As a reactor used in the above hydrodesulfurization and hydrocracking, a conventionally known type of reactor, for example, a fixed bed or a moving bed can be used, and any of a downflow type and an upflow type can be used. Good.
RHにおける水素化脱硫及び水素化分解で得られた反応生成物は、気液分離装置により気液を分離し、液相は蒸留等の分離操作によりナフサ留分、灯油留分、軽油留分、重油留分等の所望の留分に分留し回収する。このとき得られた重油留分であるDSARをFCC原料油として用いる。
上記RHにおける水素化脱硫及び水素化分解においては、その脱硫率(HDS)、脱窒素率(HDN)、脱バナジウム率(HDV)、脱ニッケル率(HDNi)、脱残炭率(HDCCR)、脱アスファルテン率(HDAs)がそれぞれ、80〜90%、35〜40%、75〜80%、65〜75%、50〜55%、60%以上であることが好ましい。これらは、いずれもRHの原料油と生成油中の各成分量から、各成分の除去割合として算出される。
得られたDSARは、軽油等のいわゆる中間留分となり得る留分は極力軽油等に活用するという点から、沸点が330℃以上の炭化水素の重質留分であることが好ましく、その芳香族分含有量は、70〜90質量%であることが好ましく、硫黄分含有量は0.2〜0.5質量%であることが好ましい。
The reaction product obtained by hydrodesulfurization and hydrocracking in RH is separated into gas and liquid by a gas-liquid separator, and the liquid phase is separated by naphtha fraction, kerosene fraction, light oil fraction, It is fractionated into a desired fraction such as a heavy oil fraction and recovered. DSAR which is the heavy oil fraction obtained at this time is used as FCC feedstock.
In the above hydrodesulfurization and hydrocracking in RH, the desulfurization rate (HDS), denitrogenation rate (HDN), devanadium rate (HDV), denicking rate (HDNi), decarburized rate (HDCCR), desulfurization rate. The asphaltene ratio (HDAs) is preferably 80 to 90%, 35 to 40%, 75 to 80%, 65 to 75%, 50 to 55%, and 60% or more, respectively. These are all calculated as the removal ratio of each component from the amount of each component in the RH feedstock and product oil.
The obtained DSAR is preferably a heavy hydrocarbon hydrocarbon fraction having a boiling point of 330 ° C. or higher from the viewpoint that a fraction that can be a so-called middle fraction such as light oil is utilized as much as possible for light oil. The content of the component is preferably 70 to 90% by mass, and the content of the sulfur is preferably 0.2 to 0.5% by mass.
(その他のFCC原料油)
FCC装置の原料油としては、上述の熱分解油を分留して得られる重質留分、間接脱硫重油、直接脱硫重油のほか、本発明の効果を損なわない範囲で、重質軽油、減圧軽油、脱れき軽油、常圧残油等を混合して用いることができる。
(Other FCC feedstock)
FCC equipment feedstocks include heavy fraction obtained by fractionating the above pyrolysis oil, indirect desulfurized heavy oil, direct desulfurized heavy oil, heavy light oil, reduced pressure as long as the effects of the present invention are not impaired. Light oil, degassed light oil, atmospheric residual oil and the like can be mixed and used.
<FCC原料油の組成>
上述の熱分解油を分留して得られる重質留分は、他の原料油成分と混合することなく、FCC原料油として使用可能である。また、上述の熱分解油を分留して得られる重質留分は、上述した間接脱硫重油及び直接脱硫重油と混合して用いることもできる。また、さらに上述したその他のFCC原料油と混合して用いることができる。
上述した熱分解油を分留して得られる重質留分と間接脱硫重油と直接脱硫重油とを混合して用いる場合、得率向上の観点から上述した重質留分は多い程好ましいが、得率向上と臭気性(無臭気)の観点から、FCC原料油全量基準で、重質留分を1容量%以上10容量%以下含むことが好ましく、より好ましくは、1容量%以上5容量%以下である。
また、間接脱硫重油と直接脱硫重油とは、容量比で、FCC装置の熱バランスを保つ為に50:50〜95:5であることが好ましい。
<Composition of FCC feedstock>
The heavy fraction obtained by fractionating the above pyrolyzed oil can be used as an FCC feedstock without being mixed with other feedstock components. Moreover, the heavy fraction obtained by fractionating the above-mentioned pyrolysis oil can also be used by mixing with the indirect desulfurized heavy oil and direct desulfurized heavy oil described above. Further, it can be used by mixing with other FCC feedstocks described above.
When a heavy fraction obtained by fractionating the pyrolysis oil described above, an indirect desulfurized heavy oil, and a direct desulfurized heavy oil are mixed and used, the above-mentioned heavy fraction is more preferable from the viewpoint of yield improvement. From the viewpoint of improvement in yield and odor (odorless), it is preferable that the heavy fraction is contained in an amount of 1% by volume to 10% by volume based on the total amount of FCC feedstock, and more preferably 1% by volume to 5% by volume. It is as follows.
The indirect desulfurized heavy oil and the direct desulfurized heavy oil are preferably in a volume ratio of 50:50 to 95: 5 in order to maintain the heat balance of the FCC apparatus.
<FCC装置>
本実施形態に係る燃料油基材の製造方法では、FCC装置に上述したFCC原料油が導入され、次の処理条件によって接触分解される。
上述した熱分解油を分留して得られる重質留分と間接脱硫重油と直接脱硫重油の混合は配管内で行われ、混合後のFCC原料油をFCC装置内部に導入する。接触分解の処理条件としては、反応温度480℃以上650℃以下が好ましく、480℃以上550℃以下の範囲がより好ましい。
また、反応圧力は、0.02MPa以上5MPa以下の範囲が好ましく、0.2MPa以上2MPa以下の範囲がより好ましい。
流動接触分解処理によって得られる分解油は、分留塔により、さらにガス分、PP留分(プロパン、プロピレン)、BB留分(ブタン、ブチレン)、FCCガソリン(FG)留分(沸点範囲185℃未満の留分)、分解軽油(LCO)留分(沸点範囲185℃以上370℃以下の留分)、及び残渣油留分(重質循環油(HCO)+分解残油(CLO))に分留される。なお、沸点範囲185℃以上210℃以下の留分は運転方針によりFG留分として分留される場合もある。
反応温度及び反応圧力が上記範囲であると、接触分解が効率よく起こり、接触分解処理によって得られる反応生成物(分解油)を分留して得られる燃料油基材の得率(容量%)が高められる。
<FCC equipment>
In the method for producing a fuel oil base material according to the present embodiment, the FCC raw material oil described above is introduced into the FCC apparatus, and is subjected to catalytic cracking under the following processing conditions.
The heavy fraction obtained by fractionating the pyrolysis oil, the indirect desulfurized heavy oil and the direct desulfurized heavy oil are mixed in the pipe, and the mixed FCC feedstock is introduced into the FCC apparatus. The treatment conditions for catalytic cracking are preferably a reaction temperature of 480 ° C. or higher and 650 ° C. or lower, and more preferably a range of 480 ° C. or higher and 550 ° C. or lower.
The reaction pressure is preferably in the range of 0.02 MPa to 5 MPa, more preferably in the range of 0.2 MPa to 2 MPa.
The cracked oil obtained by the fluid catalytic cracking treatment is further divided into a gas fraction, a PP fraction (propane, propylene), a BB fraction (butane, butylene), and an FCC gasoline (FG) fraction (boiling point range 185 ° C.). Fraction), cracked light oil (LCO) fraction (boiling range 185 ° C. or more and 370 ° C. or less), and residue oil fraction (heavy circulating oil (HCO) + cracked residue (CLO)). Be retained. A fraction having a boiling range of 185 ° C. or higher and 210 ° C. or lower may be fractionated as an FG fraction depending on the operation policy.
When the reaction temperature and reaction pressure are within the above ranges, catalytic cracking occurs efficiently, and the yield (volume%) of the fuel oil base material obtained by fractionating the reaction product (cracked oil) obtained by catalytic cracking treatment Is increased.
本発明を、実施例を参照してさらに詳細に説明する。本発明は、これらの例に限定されない。なお、各例における性状及び性能は、下記の方法に従って測定した。
[評価方法]
各性状は、次の方法により評価した。
<15℃における密度>
15℃における密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」に準拠して測定した。
<硫黄分>
硫黄分は、JIS K 2541「原油及び石油製品−硫黄分試験方法」に準拠して測定した。
<残留炭素分>
残留炭素分はJIS K 2270「原油及び石油製品−残留炭素分試験方法」に準拠して測定した。
<蒸留性状>
熱分解油の重質留分の蒸留は、ASTM D86に準拠して測定した。間接脱硫重油の蒸留は、ASTM D6352に準拠して測定した。直接脱硫重油の蒸留は、ASTM D7169に準拠して測定した。
<臭気性試験>
三点嗜好法に準拠して行った。独特の臭いがない場合をA、独特の臭いが少しある場合をB、独特の強い臭いがあると感じた場合をCとした。
The invention is explained in more detail with reference to examples. The present invention is not limited to these examples. In addition, the property and performance in each example were measured according to the following method.
[Evaluation method]
Each property was evaluated by the following method.
<Density at 15 ° C>
The density at 15 ° C. was measured in accordance with JIS K 2249 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
<Sulfur content>
The sulfur content was measured according to JIS K 2541 “Crude oil and petroleum products—Sulfur content test method”.
<Residual carbon content>
Residual carbon content was measured according to JIS K 2270 “Crude oil and petroleum products—residual carbon content test method”.
<Distillation properties>
Distillation of the heavy fraction of pyrolysis oil was measured according to ASTM D86. Indirect desulfurized heavy oil distillation was measured according to ASTM D6352. The direct desulfurized heavy oil distillation was measured according to ASTM D7169.
<Odor test>
This was done according to the three-point preference method. The case where there was no peculiar odor was A, the case where there was a little peculiar odor, B, and the case where it felt that there was a peculiar strong odor, C.
[実施例、比較例]
熱分解油を分留して得られ、第1表に示す性状を有する重質留分と、第2表に示す性状を有する脱硫重油とを流動接触分解装置に導入し、処理した。流動接触分解装置における処理条件を下記の条件に設定して、さらに分留し、燃料油基材を得た。得られた燃料油基材の得率及びFCCガソリンのRONと、製品の臭気性評価とを第3表に示した。
なお、接触分解装置における反応条件は、下記のとおりとした。
反応温度:507℃
反応圧力:0.23MPa
原料油温度:240℃
触媒/油=8.9
[Examples and Comparative Examples]
A heavy fraction having properties shown in Table 1 obtained by fractionating pyrolysis oil and desulfurized heavy oil having properties shown in Table 2 were introduced into a fluid catalytic cracking apparatus and processed. The treatment conditions in the fluid catalytic cracking apparatus were set to the following conditions and further fractionated to obtain a fuel oil base material. The yield of the obtained fuel oil base material, RON of FCC gasoline, and odor evaluation of the product are shown in Table 3.
The reaction conditions in the catalytic cracking apparatus were as follows.
Reaction temperature: 507 ° C
Reaction pressure: 0.23 MPa
Feedstock temperature: 240 ° C
Catalyst / oil = 8.9
[評価結果]
実施例によれば、FCC装置の原料油としてナフサの熱分解によって得られる熱分解油を分留して得られる重質留分を用いた場合には、FCCガソリン留分のRONが向上することが確認された。なお、FCCの原料油として用いる熱分解油を分留して得られる重質留分の配合比を、1容量%〜10容量%、より好ましくは、1容量%〜5容量%とすれば、臭気性の観点からも好ましい。
[Evaluation results]
According to the embodiment, when a heavy fraction obtained by fractionating a pyrolysis oil obtained by pyrolysis of naphtha is used as a feedstock for an FCC unit, RON of the FCC gasoline fraction is improved. Was confirmed. In addition, if the blending ratio of the heavy fraction obtained by fractionating the pyrolysis oil used as the FCC feedstock is 1 vol% to 10 vol%, more preferably 1 vol% to 5 vol%, It is also preferable from the viewpoint of odor.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014078158A JP6258756B2 (en) | 2014-04-04 | 2014-04-04 | Method for producing fuel oil base material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014078158A JP6258756B2 (en) | 2014-04-04 | 2014-04-04 | Method for producing fuel oil base material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2015199799A JP2015199799A (en) | 2015-11-12 |
| JP6258756B2 true JP6258756B2 (en) | 2018-01-10 |
Family
ID=54551390
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014078158A Active JP6258756B2 (en) | 2014-04-04 | 2014-04-04 | Method for producing fuel oil base material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6258756B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3112851B2 (en) | 1996-01-30 | 2000-11-27 | デュルコップ アードラー アクチエンゲゼルシャフト | Sewing machine with upper transfer device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7068000B2 (en) * | 2018-03-29 | 2022-05-16 | コスモ石油株式会社 | Raw material oil composition for fluid cracking equipment |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4808209B2 (en) * | 2004-03-08 | 2011-11-02 | 中国石油化工股▲分▼有限公司 | Process for producing lower olefins and aromatic hydrocarbons |
| US8163168B2 (en) * | 2008-07-25 | 2012-04-24 | Exxonmobil Research And Engineering Company | Process for flexible vacuum gas oil conversion |
| JP2010111596A (en) * | 2008-11-04 | 2010-05-20 | Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai | Apparatus and method for treatment of 4c fraction |
| JP5314546B2 (en) * | 2009-09-15 | 2013-10-16 | Jx日鉱日石エネルギー株式会社 | Method for pyrolysis of heavy oil |
-
2014
- 2014-04-04 JP JP2014078158A patent/JP6258756B2/en active Active
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3112851B2 (en) | 1996-01-30 | 2000-11-27 | デュルコップ アードラー アクチエンゲゼルシャフト | Sewing machine with upper transfer device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2015199799A (en) | 2015-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2753424B1 (en) | Catalytic system and process for the total hydroconversion of heavy oils | |
| KR102517485B1 (en) | Systems and methods for converting heavy oil into petrochemical products | |
| KR20020084408A (en) | Process and Apparatus for Processing Residue | |
| CA2901390C (en) | Process for partial upgrading of heavy and/or extra-heavy crude oils for its transportation | |
| KR20210060606A (en) | How to upgrade heavy oil for steam cracking process | |
| CA2931241C (en) | Processing vacuum residuum and vacuum gas oil in ebullated bed reactor systems | |
| JP6283561B2 (en) | Method for producing fuel oil base material | |
| KR20250039429A (en) | Process for processing hydrocarbon oil feed stream using gasification unit and steam enhanced catalytic cracker | |
| JP5460224B2 (en) | Method for producing highly aromatic hydrocarbon oil | |
| JP5406629B2 (en) | Method for producing highly aromatic hydrocarbon oil | |
| CA2899196C (en) | Fixed bed hydrovisbreaking of heavy hydrocarbon oils | |
| JP6258756B2 (en) | Method for producing fuel oil base material | |
| JP5404505B2 (en) | Method for producing isopentane fraction for gasoline base | |
| JP6548223B2 (en) | Method of producing fuel oil base material | |
| JP5371327B2 (en) | Method for producing hydrocarbon oil | |
| CN113930255B (en) | Hydrogenation method for producing chemical raw materials from crude oil | |
| CN113930254B (en) | A method for producing chemical raw materials by hydrocracking of crude oil | |
| CN112745947B (en) | Method and system for processing heavy raw oil | |
| JP6254881B2 (en) | Method for producing xylene | |
| CN112745946B (en) | Method and system for processing heavy raw oil | |
| Osman et al. | Analysis Study for the Benefits of Heavy Crude Oil Hydrotreating Before Distillation | |
| US20200199464A1 (en) | Naphthenic compositions derived from fcc process fractions | |
| JP5207923B2 (en) | Process for producing refined hydrocarbon oil | |
| CN113930256A (en) | A kind of hydrocracking method for producing chemical raw material from high nitrogen crude oil | |
| CN112342059A (en) | A method for blending catalytic cracking oil slurry in delayed coking unit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161226 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170511 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170516 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170714 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170801 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171101 |
|
| A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20171109 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171128 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171207 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6258756 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |