JP6261010B2 - Hydrogen remaining amount sensor and manufacturing method thereof - Google Patents
Hydrogen remaining amount sensor and manufacturing method thereof Download PDFInfo
- Publication number
- JP6261010B2 JP6261010B2 JP2015243087A JP2015243087A JP6261010B2 JP 6261010 B2 JP6261010 B2 JP 6261010B2 JP 2015243087 A JP2015243087 A JP 2015243087A JP 2015243087 A JP2015243087 A JP 2015243087A JP 6261010 B2 JP6261010 B2 JP 6261010B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- sensor
- storage alloy
- hydrogen storage
- remaining amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
この発明は、水素吸蔵合金を収容している水素貯蔵容器などの水素の残量を検知する水素残量センサに関するものである。 The present invention relates to a hydrogen remaining amount sensor for detecting the remaining amount of hydrogen in a hydrogen storage container or the like containing a hydrogen storage alloy.
水素貯蔵容器のひとつである水素吸蔵合金容器は、その体積貯蔵密度に優れることから普及し始めているが、水素吸蔵合金容器内の水素残量を知る手がかりが得られにくいという課題がある。通常の水素ガスタンクであれば圧力計を取付けることで水素残量を容易に知ることができる。一方、水素吸蔵合金の場合は、PCT曲線で表されるプラトーといわれる平坦な領域があり、ここの圧力差(最小と最大の圧力差)が小さいことに加え、合金の温度が変わればこのプラトーの圧力も変わるため、圧力計だけで容器内の水素残量を正確に知ることは難しい。
大型の水素吸蔵合金容器の水素貯蔵システムでは、間接的な測定方法であるが、高精度の質量流量計を用いてその積算値から水素残量を知ることでできる。しかし、質量流量計の価格は高く、小型化も難しいため比較的小型の水素吸蔵合金容器には不向きといえる。そこで、この水素吸蔵合金容器に向いた直接的に水素残量を知ることのできる水素残量計あるいはセンサが提案されている。
A hydrogen storage alloy container, which is one of the hydrogen storage containers, has begun to spread due to its excellent volume storage density, but there is a problem that it is difficult to obtain a clue to know the remaining amount of hydrogen in the hydrogen storage alloy container. If it is a normal hydrogen gas tank, the remaining amount of hydrogen can be easily known by attaching a pressure gauge. On the other hand, in the case of a hydrogen storage alloy, there is a flat region called a plateau represented by a PCT curve. In addition to the small pressure difference (minimum and maximum pressure difference) here, this plateau will change if the temperature of the alloy changes. Since the pressure of the gas also changes, it is difficult to accurately know the remaining amount of hydrogen in the container using only a pressure gauge.
In a hydrogen storage system for a large hydrogen storage alloy container, this is an indirect measurement method, but the remaining amount of hydrogen can be known from the integrated value using a high-precision mass flow meter. However, since the mass flow meter is expensive and difficult to downsize, it can be said that it is not suitable for a relatively small hydrogen storage alloy container. Therefore, a hydrogen remaining amount meter or sensor that can directly know the remaining amount of hydrogen suitable for this hydrogen storage alloy container has been proposed.
特許文献1で提案されている水素残量の計測方法は、タンクの壁に直接ひずみゲージを貼り付ける方法である。
特許文献2で提案されている水素残量の検知方法は、タンク内に水素吸蔵圧の異なる3つの水素吸蔵合金とマイクロヒータを組み合わせた方法である。
特許文献3で提案されている水素残量センサは、小型のセンサ本体に水素吸蔵合金を充填し、センサにひずみセンサを張り付けることで、水素吸蔵合金の水素吸収による膨張を感知し、水素残量を知る方法である。
The method for measuring the remaining amount of hydrogen proposed in
The method for detecting the remaining amount of hydrogen proposed in
The hydrogen remaining amount sensor proposed in
しかし、特許文献1による方法は、合金膨張に伴うタンクの膨張変形は場所によって異なるため、ひずみゲージが複数個でなければ精度を欠くと考えられる。
また、特許文献2による方法は、複雑な仕組みであり、低コストで作製することは難しいと考えられる。
さらに、特許文献3における水素残量センサでは、実施例に水素残量と出力の関係を示すグラフが示されているが、水素吸収率が高い領域において出力波形に平坦部を持ち、水素残量と出力との直線性が悪く精度に難があるという問題がある。
However, in the method according to
Further, the method according to
Furthermore, in the hydrogen remaining amount sensor in
この発明は、上記事情を背景として水素残量センサの課題を解決するためになされたものであり、水素吸蔵合金の充填率を上昇させることでセンサ出力を増加させ、高精度な水素残量検知を可能にする水素残量センサおよびその製造方法を提供することを目的としている。 This invention was made in order to solve the problem of the remaining amount of hydrogen sensor in the background of the above circumstances, and by increasing the filling rate of the hydrogen storage alloy, the sensor output is increased and the remaining amount of hydrogen is detected with high accuracy. It is an object of the present invention to provide a hydrogen remaining amount sensor and a manufacturing method thereof.
すなわち、本発明の水素残量センサのうち、第1の形態は、主となる水素吸蔵合金により水素の吸放出がなされる空間に配置される水素残量センサであって、センサ用水素吸蔵合金の粉末が60%超の充填率で充填され、前記水素の内外移動が可能とされた容器形状のセンサ本体を備え、該センサ本体は、前記センサ用水素吸蔵合金の水素吸放出に伴って歪みが容易に生じる易歪み部を一部に有し、該易歪み部の歪みを測定するひずみゲージが設けられており、
前記センサ本体は、壁面に軸方向に沿って切り欠き部を持つ円筒型形状を有し、軸方向長さが5mm〜30mmの範囲内、径の大きさと、軸方向長さの比が1:2〜1:4の範囲内であり、パイプ強度が3.0 N/mm 2 〜25.0N/mm 2 であることを特徴とする水素残量センサ。
ただし、充填率は、前記センサ本体の初期体積に対する充填率であり、パイプ強度は2(t/D)σYsから求められる値であり、t:肉厚、D:パイプ径、σYs:耐力である。
That is, among the remaining hydrogen sensors of the present invention, the first embodiment is a remaining hydrogen sensor disposed in a space where hydrogen is absorbed and released by the main hydrogen storage alloy, and the hydrogen storage alloy for the sensor. The container body is filled with a powder having a filling rate of more than 60%, and the hydrogen body can be moved in and out. The sensor body is distorted as the hydrogen storage alloy for the sensor absorbs and releases hydrogen. Has an easy strain part that easily occurs, and a strain gauge for measuring the strain of the easy strain part is provided ,
The sensor main body has a cylindrical shape with a notch on the wall surface along the axial direction. The axial length is in the range of 5 mm to 30 mm, and the ratio of the diameter to the axial length is 1: 2 to 1: in the range of 4, the hydrogen remaining sensor, wherein the pipe strength is 3.0 N / mm 2 ~25.0N / mm 2.
However, the filling rate is Ri filling rate der respect to the initial volume of the sensor body, the pipe strength is a value obtained from 2 (t / D) σYs, t: wall thickness, D: pipe diameter, ShigumaYs: in Strength Oh Ru.
第2の形態の水素残留センサは、前記形態の本発明において、前記センサ本体に、充填材料としてセンサ用水素給蔵合金のみが充填されていることを特徴とする。 The hydrogen residual sensor of the second aspect is characterized in that, in the present invention of the above aspect, the sensor main body is filled with only a hydrogen storage alloy for a sensor as a filling material.
第3の形態の水素残留センサは、前記形態の本発明において、前記センサ本体が筒状の形状を有しており、前記センサ用水素吸蔵合金が筒断面長方向において、2%〜5%膨張する充填量で充填されていることを特徴とする。 According to a third aspect of the present invention, in the hydrogen residue sensor according to the first aspect, the sensor body has a cylindrical shape, and the hydrogen storage alloy for the sensor expands by 2% to 5% in the longitudinal direction of the cylinder cross section. It is characterized by being filled with a filling amount.
本発明の水素残留センサの製造方法のうち、第1の形態は、主となる水素吸蔵合金により水素の吸放出がなされる空間に配置される水素残量センサの製造方法であって、
水素の内外移動が可能とされ、水素吸放出に伴って歪みが容易に生じる易歪み部が一部に設けられ、壁面に軸方向に沿った切り欠き部を有し、軸方向長さが5mm〜30mmの範囲内、径の大きさと軸方向長さの比が1:2〜1:4の範囲内、パイプ強度が3.0 N/mm 2 〜25.0N/mm 2 である円筒型形状のセンサ本体に、センサ用水素吸蔵合金の粉末を60%超の充填率で、かつ筒断面長方向において、2%〜5%膨張する充填量で充填するとともに、
前記易歪み部の歪みを測定するひずみゲージを設けることを特徴とする。
ただし、充填率は、前記センサ本体の初期体積に対する充填率であり、パイプ強度は2(t/D)σYsから求められる値であり、t:肉厚、D:パイプ径、σYs:耐力である。
Of the method for producing a hydrogen residue sensor according to the present invention, the first embodiment is a method for producing a hydrogen remaining amount sensor disposed in a space where hydrogen is absorbed and released by a main hydrogen storage alloy,
It is possible to move hydrogen in and out, a part of which is easily distorted, which is easily distorted with hydrogen absorption and release , has a notch along the axial direction on the wall surface, and has an axial length of 5 mm. in the range of ~30Mm, size and ratio of the axial length of the diameter is 1: 2 to 1: in the range of 4, cylindrical shape pipe strength is 3.0 N / mm 2 ~25.0N / mm 2 The sensor body is filled with hydrogen storage alloy powder for the sensor at a filling rate of more than 60% and in a filling amount that expands by 2% to 5% in the longitudinal direction of the cylinder cross section,
A strain gauge for measuring the strain of the easy strain portion is provided.
However, the filling rate is Ri filling rate der respect to the initial volume of the sensor body, the pipe strength is a value obtained from 2 (t / D) σYs, t: wall thickness, D: pipe diameter, ShigumaYs: in Strength Oh Ru.
本発明によれば、センサ本体に十分な量の粉末状の水素吸蔵合金を充填することで、水素吸収に伴うセンサ本体における歪み出力を精度よく得ることができ、これにより水素残量を正確に知ることを可能にする。
すなわち、水素吸蔵合金の膨張をセンサ本体に効率よく伝達することが可能となり、これにより、高精度に水素残量を検知、出力できる残量センサを提供することができる。
According to the present invention, by filling the sensor body with a sufficient amount of powdered hydrogen storage alloy, the strain output in the sensor body accompanying hydrogen absorption can be obtained with high accuracy, thereby accurately determining the remaining amount of hydrogen. Make it possible to know.
That is, it is possible to efficiently transmit the expansion of the hydrogen storage alloy to the sensor main body, thereby providing a remaining amount sensor that can detect and output the remaining amount of hydrogen with high accuracy.
また、充填に際し、センサ本体の筒断面径が元の大きさより2〜5%膨張する程度まで充填すれば、歪み出力を増大させて低水素濃度域においても精度よく合金膨張を検知することが可能となる。
さらに、センサ本体の筒断面長さに対する軸方向長さの最適化を行えば、合金膨張による力が無駄なくセンサ本体に伝達されるようになり、センサ出力の高精度化が可能となる。
In addition, when filling, if the cylinder cross-sectional diameter of the sensor body expands to an extent that expands 2-5% from the original size, it is possible to increase the strain output and detect the alloy expansion accurately even in the low hydrogen concentration region. It becomes.
Furthermore, if the axial length of the sensor main body is optimized with respect to the cross-sectional length of the cylinder, the force due to the alloy expansion can be transmitted to the sensor main body without waste, and the sensor output can be highly accurate.
以下に、本発明の一実施形態を添付図面に基づいて説明する。
まず、センサ本体内に充頃するセンサ用水素吸蔵合金は、残量測定対象の水素貯蔵容器などに収容されている水素吸蔵合金(主となる水素吸蔵合金)と同じものを用いるのが一般的であるが、より残量を正確に検出できる特性が得られるならば、主となる水素吸蔵合金とは異なった水素吸蔵合金を充填しても良い。水素吸蔵合金は、粉末状にして充填に備えられる。水素吸蔵合金粉末の粒径は特に限定されるものではなく、適宜の大きさにすることができる。例えば、粒径100μm〜1000μmの粒径が望ましい。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
First, the hydrogen storage alloy for the sensor that fills the sensor body is generally the same as the hydrogen storage alloy (main hydrogen storage alloy) housed in the hydrogen storage container or the like for which the remaining amount is to be measured. However, a hydrogen storage alloy different from the main hydrogen storage alloy may be filled as long as a characteristic capable of accurately detecting the remaining amount is obtained. The hydrogen storage alloy is prepared in a powder form for filling. The particle size of the hydrogen storage alloy powder is not particularly limited and can be set to an appropriate size. For example, a particle size of 100 μm to 1000 μm is desirable.
センサ本体1は、軸方向両端を開口した筒形状を有しており、アルミニウム材料製からなる。アルミニウム合金としては、JIS A1070などが挙げられる。但し、本発明としては、センサ本体1にアルミニウム材料を使用する場合でも、この材料に限定されるものではない。センサ本体1の形状は、図1のような円筒型のセンサ本体が好ましい。ただし、本発明としては、センサ本体の形状や材料が特に限定されるものではない。
The
このセンサ本体1は、パイプ強度3.0 N/m2〜15.0 N/m2のアルミニウム合金パイプを用いて製造することが望ましい。パイプ強度は2(t/D)σYsから求められる値であり、t:肉厚、D:パイプ径、σYs:耐力である。パイプ強度が低すぎると、水素の吸収によるセンサ本体の変形に伴って塑性変形が生じ、水素残量の測定ができなくなる。一方、パイプ強度が高すぎると、水素放出による歪み量が小さくなり、高い精度での水素残量検出が難しくなる。
The
また、センサ本体1が、筒壁に軸方向全長に亘って切り欠き部2を有しており、断面C型形状を有している。センサ本体1の円筒内がセンサ用水素吸蔵合金充填部となっている。この切り欠き部2の対向する筒壁は、各センサ本体が切り欠き部2を開放端として変形する際に応力が集中する易歪み部3となっており、その部分の表面に、図2に示す歪みゲージ4が貼り付けられる。
Moreover, the sensor
センサ本体1には、水素吸蔵合金粉末5が充填される。充填方法は適宜の方法により行うことができ、本発明としては充填方法が特に限定されるものではない。水素吸蔵合金は、前記センサ本体の内容積の初期体積に対し、60%超の充填率で充填するのが望ましく、さらに65%以上の充填率で充填するのが一層望ましい。また、充填に際し、筒断面長方向において、2%〜5%膨張するように充填するのが望ましい。
The
前記センサ本体は、径の大きさが、5〜12mm、軸方向長さが10mm〜30mmの範囲内とするのが望ましく、径の大きさと、軸方向長さの比が1:2〜1:4の範囲内であるのが一層望ましい。
また、本実施形態では、水素残量センサの本体軸方向長さを適正に設定することで、センサ出力を高精度化している。軸方向長さが短い場合、合金膨張による力が径方向へ伝わらずに軸方向へ逃げやすくなり、軸方向長さが長い場合、合金充填にムラができやすくなり、出力波形が安定しなくなる。同様の理由で軸方向長さは10mm以上であることが望ましく、30mm以下とするのが一層望ましい。
The sensor body preferably has a diameter of 5 to 12 mm and an axial length of 10 mm to 30 mm, and the ratio of the diameter to the axial length is 1: 2 to 1: More preferably, it is within the range of 4.
In this embodiment, the sensor output is highly accurate by appropriately setting the length of the hydrogen remaining amount sensor in the main body axial direction. When the axial length is short, the force due to the alloy expansion is not transmitted in the radial direction, but easily escapes in the axial direction. When the axial length is long, the alloy filling is likely to be uneven, and the output waveform becomes unstable. Axial length for the same reason, it is desirably on the 10 m m or more, even more desirably set to 30mm or less.
また、径の大きさと軸方向長さの比を適正に設定することで、センサ出力の高精度化を確実にする。その比が小さいと、合金の膨張による力の伝達が悪化し、その比が大きいと合金充填ムラを生じやすくする。 In addition, the accuracy of the sensor output can be ensured by appropriately setting the ratio between the diameter and the axial length. When the ratio is small, the transmission of force due to the expansion of the alloy is deteriorated, and when the ratio is large, the alloy filling unevenness is likely to occur.
図2にC型のセンサ本体1におけるセンサ用水素吸蔵合金粉末5が充填された充填部の水素吸放出にともなう変形の模式図を示す。水素を吸収して水素吸蔵合金が膨張すると、センサ本体1は切り欠き部2の開放端を開くように弾性変形するため、開放端の反対側にある易歪み部3に歪みが集中して、歪みゲージ4は圧縮応力を受けることになる。この易歪み部3の歪みが歪みゲージ4によって検出される。
上記形態におけるセンサ本体1への合金充填はセンサ本体径が元の大きさより2〜5%膨張する程度まで充填しており、初期センサ本体の水素吸蔵合金充填空間の容積に対し、水素吸蔵合金の充填率が65%以上になっている。これにより水素吸収率の低い段階でも歪み変化が出やすくなり、残量計の優れた特性が得られる。センサ本体の充填率を65%以上まで充填することで、残量センサ出力を従来技術の約1.5倍に増加させることができ、低水素濃度域においても精度よく合金膨張を検知することが可能となる。
FIG. 2 is a schematic diagram showing a deformation associated with hydrogen absorption / release of the filling portion filled with the hydrogen
In the above embodiment, the
以下に、本発明の一実施例を説明する。
図1と同形状となるよう、肉厚0.25mmのアルミニウム合金のC型管(Dφ5mm、L20mm)を残量センサ用のセンサ本体として用いる。ただし、L:センサ本体長さ、D:センサ本体径、t:センサ本体肉厚であり、パイプ強度は3.40N/mm2 であった。
センサ本体内部には、AB5系の水素吸蔵合金粉末を充填率が約72%まで充填した(水素吸蔵合金質量1.8g)。水素吸蔵合金樹脂混合物の充填後、共和電業製KFG型ひずみゲージを貼り付けた。径方向の膨張は合金充填終了時で5.2mm程度まで膨張していることを計測した。したがって、約4%の膨張が見られた。
An embodiment of the present invention will be described below.
An aluminum alloy C-shaped tube (
Inside the sensor body, AB 5 type hydrogen absorbing alloy powder filling rate of filled to about 72% (hydrogen storage alloy by weight 1.8 g). After filling with the hydrogen storage alloy resin mixture, a KFG type strain gauge manufactured by Kyowa Dengyo was attached. It was measured that the expansion in the radial direction was expanded to about 5.2 mm at the end of the alloy filling. Therefore, an expansion of about 4% was seen.
試験用の水素貯蔵容器に、センサ本体内に充填したものと同じ水素吸蔵合金粉末を90g充填し、水素吸蔵合金充填部の中心付近に差し込んだ。また、センサ本体の周りの空隙部はセラミックウールで充填した。歪みゲージの出力線は継手を通じて外部に引き出され、データ収集装置に繋いで歪みを随時記録できるようにした。また、水素貯蔵容器には水素の導入バルブを取り付けた。 A hydrogen storage container for testing was filled with 90 g of the same hydrogen storage alloy powder as that filled in the sensor body, and inserted near the center of the hydrogen storage alloy filling portion. The gap around the sensor body was filled with ceramic wool. The strain gauge output line was drawn to the outside through a joint and connected to a data collection device so that strain could be recorded as needed. A hydrogen introduction valve was attached to the hydrogen storage container.
水素貯蔵容器を80℃で、10時間ロータリーポンプによって真空引き後、15℃の水槽に浸けて1MPaの水素を導入し、活性化した。活性化後、4回水素吸放出を繰り返して出力を安定させた。次に、20℃で1MPaの水素を満充填した後、20℃のまま最大0.1NL/minの速度で水素を大気圧まで放出きせたときの歪み変化を記録した。水素貯蔵容器の水素残量を横軸に、そのときの歪みを縦軸にプロットしたグラフを図3に示した。 The hydrogen storage container was evacuated by a rotary pump at 80 ° C. for 10 hours and then immersed in a water bath at 15 ° C. to introduce 1 MPa of hydrogen to activate. After activation, hydrogen absorption and desorption was repeated four times to stabilize the output. Next, after fully filling 1 MPa of hydrogen at 20 ° C., a change in strain was recorded when hydrogen was released to atmospheric pressure at a maximum speed of 0.1 NL / min. A graph in which the remaining amount of hydrogen in the hydrogen storage container is plotted on the horizontal axis and the strain at that time is plotted on the vertical axis is shown in FIG.
水素残量は高精度の質量流量計を用いて計測し、積算値を百分率化したものである。図3に示すように、歪み量は水素放出とともに概ね直線に沿ってひずみが増えていく(圧縮ひずみが解消していく)傾向が見られるため、このセンサの利用により正確な残量表示が可能となった。
図4にセンサ本体合金充填率と水素残量とセンサ出力波形の誤差の最大値の関係図を示す。図4より、充填率に関し、誤差10%以下とするためには充填率は65%以上とすることが好ましい。また、誤差8%以下を要求する場合は充填率が70%以上とすることが望ましい。
The remaining amount of hydrogen is measured using a high-precision mass flow meter, and the integrated value is a percentage. As shown in Fig. 3, the amount of strain tends to increase along a straight line with the release of hydrogen (compression strain is eliminated), so the sensor can be used to accurately display the remaining amount. It became.
FIG. 4 shows a relationship diagram of the sensor body alloy filling rate, the remaining amount of hydrogen, and the maximum value of the error of the sensor output waveform. From FIG. 4, it is preferable that the filling rate is 65% or more in order to make the
以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは本実施形態に対する適宜の変更が可能である。 As mentioned above, although this invention was demonstrated based on the said embodiment, an appropriate change with respect to this embodiment is possible unless it deviates from the scope of the present invention.
1 センサ本体
2 切り欠き部
3 易歪み部
4 ひずみゲージ
5 水素吸蔵合金粉末
DESCRIPTION OF
Claims (4)
前記センサ本体は、壁面に軸方向に沿って切り欠き部を持つ円筒型形状を有し、軸方向長さが5mm〜30mmの範囲内、径の大きさと、軸方向長さの比が1:2〜1:4の範囲内であり、パイプ強度として、3.0 N/mm 2 〜25.0N/mm 2 の強度を有していることを特徴とする水素残量センサ。
ただし、充填率は、前記センサ本体の初期体積に対する充填率であり、パイプ強度は2(t/D)σYsから求められる値であり、t:肉厚、D:パイプ径、σYs:耐力である。 A hydrogen remaining amount sensor disposed in a space where hydrogen is absorbed and released by a main hydrogen storage alloy, wherein the hydrogen storage alloy powder for the sensor is filled at a filling rate exceeding 60%, and the movement of the hydrogen in and out A container-shaped sensor main body, the sensor main body partly having an easily distorted portion that easily distorts due to hydrogen absorption / release of the hydrogen storage alloy for the sensor, A strain gauge is provided to measure the strain of
The sensor main body has a cylindrical shape with a notch on the wall surface along the axial direction. The axial length is in the range of 5 mm to 30 mm, and the ratio of the diameter to the axial length is 1: 2 to 1: in the range of 4, the hydrogen remaining sensor, characterized in that the pipe strength, has a strength of 3.0 N / mm 2 ~25.0N / mm 2.
However, the filling rate is Ri filling rate der respect to the initial volume of the sensor body, the pipe strength is a value obtained from 2 (t / D) σYs, t: wall thickness, D: pipe diameter, ShigumaYs: in Strength Oh Ru.
水素の内外移動が可能とされ、水素吸放出に伴って歪みが容易に生じる易歪み部が一部に設けられ、壁面に軸方向に沿った切り欠き部を有し、軸方向長さが5mm〜30mmの範囲内、径の大きさと軸方向長さの比が1:2〜1:4の範囲内であり、パイプ強度が、3.0N/mm 2 〜25.0N/mm 2 である円筒型形状のセンサ本体に、センサ用水素吸蔵合金の粉末を60%超の充填率で、かつ筒断面長方向において、2%〜5%膨張する充填量で充填するとともに、
前記易歪み部の歪みを測定するひずみゲージを設けることを特徴とする水素残量センサの製造方法。
ただし、充填率は、前記センサ本体の初期体積に対する充填率であり、パイプ強度は2(t/D)σYsから求められる値であり、t:肉厚、D:パイプ径、σYs:耐力である。 A method for manufacturing a hydrogen remaining amount sensor disposed in a space where hydrogen is absorbed and released by a main hydrogen storage alloy,
It is possible to move hydrogen in and out, a part of which is easily distorted, which is easily distorted with hydrogen absorption and release , has a notch along the axial direction on the wall surface, and has an axial length of 5 mm. in the range of ~30Mm, size and ratio of the axial length of the diameter is 1: 2 to 1: in the range of 4, the pipe strength is 3.0N / mm 2 ~25.0N / mm 2 cylinder Fill the mold-shaped sensor body with the hydrogen storage alloy powder for the sensor at a filling rate of more than 60% and a filling amount that expands by 2% to 5% in the longitudinal direction of the cylinder cross section,
A method of manufacturing a hydrogen remaining amount sensor, comprising: a strain gauge for measuring strain of the easy strain portion.
However, the filling rate is Ri filling rate der respect to the initial volume of the sensor body, the pipe strength is a value obtained from 2 (t / D) σYs, t: wall thickness, D: pipe diameter, ShigumaYs: in Strength Oh Ru.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015243087A JP6261010B2 (en) | 2015-12-14 | 2015-12-14 | Hydrogen remaining amount sensor and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015243087A JP6261010B2 (en) | 2015-12-14 | 2015-12-14 | Hydrogen remaining amount sensor and manufacturing method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2017110917A JP2017110917A (en) | 2017-06-22 |
| JP6261010B2 true JP6261010B2 (en) | 2018-01-17 |
Family
ID=59080616
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015243087A Active JP6261010B2 (en) | 2015-12-14 | 2015-12-14 | Hydrogen remaining amount sensor and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6261010B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111578128A (en) * | 2019-02-15 | 2020-08-25 | 深圳市佳华利道新技术开发有限公司 | Device for detecting performance of alloy hydrogen storage device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7526533B2 (en) * | 2022-03-30 | 2024-08-01 | 株式会社辰巳菱機 | Power Supply System |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4263747B2 (en) * | 2007-01-26 | 2009-05-13 | 株式会社日本製鋼所 | Hydrogen remaining amount sensor |
-
2015
- 2015-12-14 JP JP2015243087A patent/JP6261010B2/en active Active
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111578128A (en) * | 2019-02-15 | 2020-08-25 | 深圳市佳华利道新技术开发有限公司 | Device for detecting performance of alloy hydrogen storage device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2017110917A (en) | 2017-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6261010B2 (en) | Hydrogen remaining amount sensor and manufacturing method thereof | |
| CN105403468B (en) | A kind of creep testing machine | |
| CN201917314U (en) | A device for measuring volume deformation of unsaturated soil | |
| CN101907540A (en) | Test method for axial preload and unequal stiffness of gyro instrument bearings | |
| CN109283052A (en) | The circular elasticity modulus of tubing and the measurement method of Poisson's ratio | |
| CN105953968B (en) | A kind of novel ultrahigh pressure pressure sensor and pressure detection method | |
| CN110388973B (en) | Standard container and volume compensation method thereof | |
| CN104697710A (en) | Pressure sensor calibrating device using granular solid as medium | |
| CN204944745U (en) | Special high-temperature force sensor demarcating device | |
| CN218823662U (en) | Circumferential coupling axial constraint stress monitoring device | |
| CN203869950U (en) | Device for testing changes of mechanical properties of epoxy resin in filling type anchorage device | |
| CN104075829B (en) | A kind of new type vibration wire concrete pressure cell | |
| CN102818673B (en) | High-accuracy static extra high pressure sensor and pressure measurement method | |
| JP6282301B2 (en) | Hydrogen remaining amount sensor | |
| CN103063360A (en) | Seismic-resistant pressure gauge | |
| CN101458143B (en) | A Method for Calibrating Direction Gauge Using Oriented Molecular Flow | |
| CN204988597U (en) | Super minute -pressure capsule pressure gauge | |
| JP5974256B2 (en) | Tension measuring device | |
| CN101718574A (en) | Method for measuring volume of volume variation chamber of constant-pressure pressure leak calibration apparatus | |
| CN207036086U (en) | The unidirectional strain detection testing device of the soil body | |
| JP6948067B2 (en) | Pressure measuring device | |
| Nicolotti et al. | A hydrogen sensor for liquid-metal breeding blankets | |
| CN202267565U (en) | Vibration-resisting pressure gage | |
| KR101340334B1 (en) | Establishment method of Standard Dynamic Pressure by using fluid | |
| JP2018169225A (en) | Hydrogen quantity detector and hydrogen storage alloy container |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170926 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171115 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171205 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171206 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6261010 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |