JP6278812B2 - Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle - Google Patents
Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle Download PDFInfo
- Publication number
- JP6278812B2 JP6278812B2 JP2014087236A JP2014087236A JP6278812B2 JP 6278812 B2 JP6278812 B2 JP 6278812B2 JP 2014087236 A JP2014087236 A JP 2014087236A JP 2014087236 A JP2014087236 A JP 2014087236A JP 6278812 B2 JP6278812 B2 JP 6278812B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- copper alloy
- alloy material
- less
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 159
- 239000000956 alloy Substances 0.000 title claims description 150
- 238000009826 distribution Methods 0.000 title claims description 10
- 239000010949 copper Substances 0.000 claims description 69
- 229910052802 copper Inorganic materials 0.000 claims description 57
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 56
- 229910052726 zirconium Inorganic materials 0.000 claims description 34
- 239000012535 impurity Substances 0.000 claims description 30
- 229910052709 silver Inorganic materials 0.000 claims description 30
- 239000004020 conductor Substances 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 229910052717 sulfur Inorganic materials 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 239000004332 silver Substances 0.000 claims description 12
- 239000011593 sulfur Substances 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000011777 magnesium Substances 0.000 claims description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 10
- 239000011575 calcium Substances 0.000 claims description 8
- 239000010955 niobium Substances 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 238000005097 cold rolling Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 238000000137 annealing Methods 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- 229910017985 Cu—Zr Inorganic materials 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Conductive Materials (AREA)
Description
本発明は、銅合金材、電気自動車用の配電部材及びハイブリッド自動車用の配電部材に関する。 The present invention relates to a copper alloy material, a power distribution member for an electric vehicle, and a power distribution member for a hybrid vehicle.
電気部品の配線部材として、導電率が100%IACS以上であるタフピッチ銅や無酸素銅を用いた銅材(純銅材)が用いられている。しかしながら、通電により銅材が昇温するにしたがって、銅材が軟化してしまい、銅材の強度が低くなってしまう。つまり、銅材には、耐熱性が低いという問題がある。そこで、耐熱性を向上させた配線部材として、例えば錫(Sn)を含む銅合金(C1441)、鉄(Fe)を含む銅合金(C1921)、ジルコニウム(Zr)を含む銅合金(C1510)等を用いた銅合金材が提案されている。しかしながら、これらの銅合金材は、銅材と比べて高い耐熱性を有するものの、導電率が90%IACS程度と低くなってしまう。そこで、微量のFe及び燐(P)を含む銅合金などを用いた銅合金材が提案されている(例えば特許文献1参照)。 As a wiring member of an electrical component, a copper material (pure copper material) using tough pitch copper or oxygen-free copper having a conductivity of 100% IACS or more is used. However, as the temperature of the copper material increases due to energization, the copper material softens and the strength of the copper material decreases. That is, the copper material has a problem of low heat resistance. Therefore, as a wiring member with improved heat resistance, for example, a copper alloy (C1441) containing tin (Sn), a copper alloy (C1921) containing iron (Fe), a copper alloy (C1510) containing zirconium (Zr), etc. The copper alloy material used has been proposed. However, although these copper alloy materials have higher heat resistance than copper materials, the electrical conductivity is as low as about 90% IACS. Therefore, a copper alloy material using a copper alloy containing a small amount of Fe and phosphorus (P) has been proposed (see, for example, Patent Document 1).
Fe及びPを含む銅合金材は、銅材と同程度の高い導電率を有し、銅材よりも高い耐熱性を有する。しかしながら、大電流が流される電気自動車やハイブリッド自動車等の配線部材には、より高い耐熱性が要求されている。つまり、より高温環境下で使用された場合であっても、軟化することなく、高い強度を有する配線部材が要求されている。 The copper alloy material containing Fe and P has a high electrical conductivity similar to that of the copper material, and has higher heat resistance than the copper material. However, higher heat resistance is required for wiring members such as electric vehicles and hybrid vehicles through which a large current flows. That is, there is a demand for a wiring member having high strength without being softened even when used in a higher temperature environment.
本発明は、上記課題を解決し、銅合金材の導電性の低下を抑制しつつ、銅合金材の耐熱性をより向上させる技術を提供する。 This invention solves the said subject and provides the technique which improves the heat resistance of a copper alloy material more, suppressing the fall of the electroconductivity of a copper alloy material.
本発明の一態様によれば、0.003質量%以上0.01質量%以下のジルコニウムと、0.03質量%以上0.1質量%以下の銀と、0.0005質量%以上の硫黄と、を含有し、残部が銅及び不可避不純物からなる銅合金材が提供される。 According to one embodiment of the present invention, 0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, 0.0005% by mass or more of sulfur, Thus, a copper alloy material is provided, the balance of which consists of copper and inevitable impurities.
本発明の他の態様によれば、0.003質量%以上0.01質量%以下のジルコニウムと、0.03質量%以上0.1質量%以下の銀と、0.0005質量%以上の硫黄と、を含有し、残部が銅及び不可避不純物からなる銅合金材で形成された導体と、前記導体の外周を囲うように設けられた絶縁層と、を備える電気自動車用の配電部材が提供される。 According to another aspect of the present invention, 0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, and 0.0005% by mass or more of sulfur. And a distribution member for an electric vehicle comprising a conductor formed of a copper alloy material including copper and inevitable impurities, and an insulating layer provided so as to surround an outer periphery of the conductor. The
本発明のさらに他の態様によれば、0.003質量%以上0.01質量%以下のジルコニウムと、0.03質量%以上0.1質量%以下の銀と、0.0005質量%以上の硫黄と、を含有し、残部が銅及び不可避不純物からなる銅合金材で形成された導体と、前記導体の外周を囲うように設けられた絶縁層と、を備えるハイブリッド自動車用の配電部材が提供される。 According to still another aspect of the present invention, 0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, and 0.0005% by mass or more of silver. Provided is a power distribution member for a hybrid vehicle comprising a conductor formed of a copper alloy material containing sulfur and the balance of copper and inevitable impurities, and an insulating layer provided so as to surround the outer periphery of the conductor Is done.
本発明によれば、銅合金材の導電性の低下を抑制しつつ、銅合金材の耐熱性をより向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the heat resistance of a copper alloy material can be improved more, suppressing the electroconductive fall of a copper alloy material.
<本発明の一実施形態>
まず、本発明の一実施形態にかかる銅合金材の構成について説明する。
<One Embodiment of the Present Invention>
First, the structure of the copper alloy material concerning one Embodiment of this invention is demonstrated.
(1)銅合金材の構成
本実施形態にかかる銅合金材は、所定量のジルコニウム(Zr)と、所定量の銀(Ag)と、所定量の硫黄(S)と、を含有し、残部が銅(Cu)及び不可避不純物からなる。
(1) Configuration of Copper Alloy Material The copper alloy material according to the present embodiment contains a predetermined amount of zirconium (Zr), a predetermined amount of silver (Ag), and a predetermined amount of sulfur (S), and the balance. Consists of copper (Cu) and inevitable impurities.
銅合金材中にZrを含有させたCu−Zr合金や、銅合金材中にAgを含有させたCu−Ag合金は、導電性の低下を抑制しつつ、銅合金材の耐熱性を向上させることができる合金である。さらに、銅合金材中に所定量のZrと所定量のAgとの両方を含有させることで、ZrとAgとの相乗効果により、Zr、Agのそれぞれの含有量を増やすことなく、耐熱性を向上させることができる。つまり、ZrとAgとの合計含有量を、銅合金材中にZrのみ(又はAgのみ)を含有したときのZr(又はAg)の含有量よりも少なくしても、銅合金材中にZrのみ(又はAgのみ)を含有した場合よりも耐熱性を向上させることができる。 Cu-Zr alloy containing Zr in a copper alloy material and Cu-Ag alloy containing Ag in a copper alloy material improve the heat resistance of the copper alloy material while suppressing a decrease in conductivity. An alloy that can. Furthermore, by including both a predetermined amount of Zr and a predetermined amount of Ag in the copper alloy material, the heat resistance can be increased without increasing the respective contents of Zr and Ag by the synergistic effect of Zr and Ag. Can be improved. That is, even if the total content of Zr and Ag is less than the content of Zr (or Ag) when only Zr (or only Ag) is contained in the copper alloy material, Zr in the copper alloy material Heat resistance can be improved as compared with the case of containing only (or only Ag).
銅合金材中のZrの含有量(濃度、添加量)は0.003質量%以上0.01質量%以下とすることが好ましい。Zrの含有量が0.003質量%未満であると、Zrを含有させることによる耐熱性の向上効果が十分に得られないことがある。つまり、所望の耐熱性が得られないことがある。Zrの含有量を0.003質量%以上にすることで、所望の耐熱性を得ることができる。しかしながら、Zrの含有量が0.01質量%を超えると、導電性が低下してしまうことがある。例えば、銅合金材の導電率が97%IACS未満になってしまうことがある。Zrの含有量を0.01質量%以下にすることで、導電性の低下を抑制できる。例えば、銅合金材の導電率を97%IACS以上にできる。 The content (concentration, addition amount) of Zr in the copper alloy material is preferably 0.003% by mass or more and 0.01% by mass or less. When the content of Zr is less than 0.003% by mass, the effect of improving heat resistance by containing Zr may not be sufficiently obtained. That is, the desired heat resistance may not be obtained. Desirable heat resistance can be obtained by making the content of Zr 0.003% by mass or more. However, if the content of Zr exceeds 0.01% by mass, the conductivity may decrease. For example, the conductivity of the copper alloy material may be less than 97% IACS. By making the content of Zr 0.01% by mass or less, a decrease in conductivity can be suppressed. For example, the electrical conductivity of the copper alloy material can be 97% IACS or higher.
銅合金材中のAgの含有量(濃度、添加量)は0.03質量%以上0.1質量%以下とすることが好ましい。Agの含有量が0.03質量%未満であると、Agを含有させることによる耐熱性の向上効果が十分に得られないことがある。つまり、所望の耐熱性が得られないことがある。Agの含有量を0.03質量%以上にすることで、所望の耐熱性を得ることができる。しかしながら、Agの含有量が0.1質量%を超えると、導電性が低下してしまうことがある。例えば、銅合金材の導電率が97%IACS未満になってしまうことがある。また、Agは高価な添加成分であるため、Agの含有量が多くなると、製造コストが高くなってしまう。Agの含有量を0.1質量%以下にすることで、導電性の低下を抑制できる。例えば、銅合金材の導電率を97%IACS以上にできる。また、導電性の低下を抑制しつつ、耐熱性を向上させた銅合金材を安価に製造できる。 The content (concentration, addition amount) of Ag in the copper alloy material is preferably 0.03% by mass or more and 0.1% by mass or less. When the content of Ag is less than 0.03% by mass, the effect of improving heat resistance by containing Ag may not be sufficiently obtained. That is, the desired heat resistance may not be obtained. Desirable heat resistance can be obtained by setting the Ag content to 0.03% by mass or more. However, if the Ag content exceeds 0.1% by mass, the conductivity may decrease. For example, the conductivity of the copper alloy material may be less than 97% IACS. Moreover, since Ag is an expensive additive component, if the content of Ag increases, the manufacturing cost increases. By making the content of Ag 0.1% by mass or less, it is possible to suppress a decrease in conductivity. For example, the electrical conductivity of the copper alloy material can be 97% IACS or higher. Moreover, the copper alloy material which improved heat resistance can be manufactured cheaply, suppressing the electroconductive fall.
銅合金材中には、Sが固溶しているとよい。銅合金材中のSの含有量(濃度、添加量)は0.0005質量%以上、好ましくは0.005質量%以下にするとよい。銅合金材中のSはS以外の不可避不純物と反応しやすい。このため、銅合金材中のSの含有量が0.0005質量%未満であると、銅合金材中のSがS以外の不可避不純物と反応した場合、銅合金材中に固溶するSの量が少なくなってしまうことがある。例えば、銅合金材中のSの大部分が不可避不純物と反応してしまい、銅合金材中にSが殆ど固溶しなくなることがある。銅合金材中のSの含有量を0.0005質量%以上とすることで、これを解決でき、銅合金材中のSがS以外の不可避不純物と反応した場合であっても、銅合金材中にSを固溶させることができる。つまり、Sの少なくとも一部を銅合金材中に固溶させることができる。しかしながら、銅合金材中のSの含有量が0.005質量%を超えると、導電性が低下してしまうことがある。例えば、銅合金材の導電率が97%IACS未満になってしまうことがある。銅合金材中のSの含有量は0.005質量%以下とすることで、導電性の低下を抑制できる。例えば、銅合金材の導電率を97%IACS以上にできる。なお、銅合金材中に固溶するSの量(銅合金材中のSの固溶量)が多くなるほど、耐熱性をより向上させることができる。従って、少なくとも耐熱性の点から、銅合金材中のSの含有量は、上述の範囲内で、できるだけ多くするとよい。 S is preferably dissolved in the copper alloy material. The content (concentration, addition amount) of S in the copper alloy material is 0.0005% by mass or more, preferably 0.005% by mass or less. S in the copper alloy material tends to react with inevitable impurities other than S. For this reason, when content of S in a copper alloy material is less than 0.0005 mass%, when S in a copper alloy material reacts with unavoidable impurities other than S, S dissolved in the copper alloy material. The amount may be reduced. For example, most of S in the copper alloy material may react with inevitable impurities, and S may hardly dissolve in the copper alloy material. By making the content of S in the copper alloy material 0.0005% by mass or more, this can be solved, and even if the S in the copper alloy material reacts with unavoidable impurities other than S, the copper alloy material S can be dissolved therein. That is, at least a part of S can be dissolved in the copper alloy material. However, if the content of S in the copper alloy material exceeds 0.005% by mass, the conductivity may decrease. For example, the conductivity of the copper alloy material may be less than 97% IACS. By making the content of S in the copper alloy material 0.005% by mass or less, a decrease in conductivity can be suppressed. For example, the electrical conductivity of the copper alloy material can be 97% IACS or higher. In addition, heat resistance can be improved more, so that the quantity of S which dissolves in a copper alloy material (the solid solution quantity of S in a copper alloy material) increases. Therefore, at least from the viewpoint of heat resistance, the content of S in the copper alloy material should be as large as possible within the above range.
銅合金材中に含まれる不可避不純物としての酸素(O)の含有量(濃度)は、例えば0.001質量%以下とすることが好ましい。これにより、銅合金材中で生成される酸化物の量を低減できる。具体的には、銅合金材中でOと反応するZr、Agの量を低減できる。Zr、AgはOと反応して酸化物になると、銅合金材の耐熱性を向上させる効果を発揮できないことがある。従って、Oの含有量を低減することで、Oと反応することで消費されるZr、Agの量を低減できる。その結果、Zr、Agの含有量を増やすことなく、銅合金材の耐熱性の向上に寄与するZr、Agの量を増やすことができる。銅合金材中のOの含有量が0.001質量%を超えると、銅合金材中に生成されてしまう酸化物の量が多くなってしまう。つまり、Oと反応するZr、Agの量が多くなってしまう。銅合金材中のOの含有量を所定量以下とするために、母材のCuとしては、例えば純度が99.99%以上の無酸素銅(OFC:Oxygen Free Copper)等を用いるとよい。 The content (concentration) of oxygen (O) as an inevitable impurity contained in the copper alloy material is preferably 0.001% by mass or less, for example. Thereby, the quantity of the oxide produced | generated in a copper alloy material can be reduced. Specifically, the amount of Zr and Ag that react with O in the copper alloy material can be reduced. When Zr and Ag react with O to become oxides, the effect of improving the heat resistance of the copper alloy material may not be exhibited. Therefore, the amount of Zr and Ag consumed by reacting with O can be reduced by reducing the content of O. As a result, it is possible to increase the amounts of Zr and Ag that contribute to improving the heat resistance of the copper alloy material without increasing the contents of Zr and Ag. When the content of O in the copper alloy material exceeds 0.001% by mass, the amount of oxide that is generated in the copper alloy material increases. That is, the amount of Zr and Ag that react with O increases. In order to set the content of O in the copper alloy material to a predetermined amount or less, for example, oxygen-free copper (OFC: Oxygen Free Copper) having a purity of 99.99% or more may be used as the base material Cu.
銅合金材中に含まれる不可避不純物としての、マグネシウム(Mg)、カルシウム(Ca)、チタン(Ti)、バナジウム(V)、鉄(Fe)、ニッケル(Ni)、ニオブ(Nb)、ハフニウム(Hf)、タンタル(Ta)の合計含有量(濃度)は、例えば0.005質量%以下であることが好ましい。つまり、銅合金材中に含まれるSと反応しやすい成分の含有量は少ない方がよい。これにより、Mg等の不可避不純物と反応することで消費されるSの量を低減できる。従って、銅合金材中のSの固溶量を増やすことができる。Mg等の不可避不純物の合計含有量が0.005質量%を超えると、銅合金材中の多くのSがMg等の不可避不純物と反応してしまう。従って、銅合金材中のSの固溶量が少なくなってしまう。 Magnesium (Mg), calcium (Ca), titanium (Ti), vanadium (V), iron (Fe), nickel (Ni), niobium (Nb), hafnium (Hf) as inevitable impurities contained in the copper alloy material ), The total content (concentration) of tantalum (Ta) is, for example, preferably 0.005% by mass or less. That is, it is better that the content of the component that easily reacts with S contained in the copper alloy material is small. Thereby, the quantity of S consumed by reacting with inevitable impurities, such as Mg, can be reduced. Therefore, the solid solution amount of S in the copper alloy material can be increased. If the total content of inevitable impurities such as Mg exceeds 0.005% by mass, much S in the copper alloy material reacts with inevitable impurities such as Mg. Therefore, the amount of S dissolved in the copper alloy material is reduced.
(2)銅合金材の製造方法
次に、本実施形態にかかる銅合金材の製造方法について、例えば溶解鋳造法を例示して説明する。
(2) Manufacturing method of copper alloy material Next, the manufacturing method of the copper alloy material concerning this embodiment is demonstrated, for example, illustrating a melt casting method.
(鋳造工程)
まず、母材であるCu(例えば無酸素銅)を、例えば、高周波溶解炉等を用いて窒素雰囲気下で溶解して銅の溶湯を生成する。続いて、高周波溶解炉等を用いて窒素雰囲気下で、銅の溶湯中に、所定量のZrと、所定量のAgとを添加して混合し、銅合金の溶湯を生成する。このとき、Zrの含有量が0.003質量%以上0.01質量%以下となり、Agの含有量が0.03質量%以上0.1質量%以下、Sの含有量が0.0005質量%以上となり、残部がCu及び不可避不純物からなるように、各成分の添加量を調整する。なお、Sの含有量は、例えば母材であるCuを変更することで調整できる。具体的には、母材であるCu中に、不可避不純物として含まれるSの含有量が所定量である母材を用いることで、銅合金材中に含まれるSの量を調整できる。そして、この銅合金の溶湯を鋳型に注いで(出湯して)冷却し、所定量のZr、Ag、Sを含有し、所定形状(例えば厚さが25mm、幅が30mm、長さが150mm)の銅合金の鋳塊を鋳造する。
(Casting process)
First, Cu (for example, oxygen-free copper) which is a base material is melted in a nitrogen atmosphere using, for example, a high-frequency melting furnace or the like to generate a molten copper. Subsequently, a predetermined amount of Zr and a predetermined amount of Ag are added and mixed in the molten copper under a nitrogen atmosphere using a high-frequency melting furnace or the like to produce a molten copper alloy. At this time, the Zr content is 0.003% by mass to 0.01% by mass, the Ag content is 0.03% by mass to 0.1% by mass, and the S content is 0.0005% by mass. Thus, the addition amount of each component is adjusted so that the balance is made of Cu and inevitable impurities. Note that the S content can be adjusted, for example, by changing the base material Cu. Specifically, the amount of S contained in the copper alloy material can be adjusted by using a base material in which the content of S contained as an inevitable impurity is a predetermined amount in Cu which is a base material. Then, this molten copper alloy is poured into a mold (and poured out), cooled, contains a predetermined amount of Zr, Ag, and S, and has a predetermined shape (for example, a thickness of 25 mm, a width of 30 mm, and a length of 150 mm). A copper alloy ingot is cast.
(圧延工程)
鋳造工程が終了した後、鋳塊を所定温度(例えば950℃)で所定時間(例えば30分間)加熱する。そして、鋳塊の温度を所定温度(例えば950℃)に維持した状態で、鋳塊に対して所定の加工度(例えば1パスあたり25%)で熱間圧延処理を行い、所定厚さ(例えば8mm)の熱間圧延材を形成する。その後、熱間圧延材に所定の加工度(例えば1パスあたり60%)で1回又は複数回の第1の冷間圧延処理と、必要に応じて1回又は複数回の焼鈍処理とを行う。第1の冷間圧延処理を複数回行う場合、冷間圧延処理と焼鈍処理とを交互に繰り返して行うとよい。その後、1回又は複数回の第2の冷間圧延処理を、焼鈍処理を挟むことなく連続して行う。これにより、所定厚さ(例えば0.2mm)の銅合金材を形成する。
(Rolling process)
After the casting process is completed, the ingot is heated at a predetermined temperature (for example, 950 ° C.) for a predetermined time (for example, 30 minutes). Then, in a state where the temperature of the ingot is maintained at a predetermined temperature (for example, 950 ° C.), the ingot is hot-rolled at a predetermined processing degree (for example, 25% per pass), and a predetermined thickness (for example, 8 mm) hot rolled material is formed. Thereafter, the hot-rolled material is subjected to one or more first cold rolling treatments at a predetermined degree of processing (for example, 60% per pass) and, if necessary, one or more annealing treatments. . When the first cold rolling process is performed a plurality of times, the cold rolling process and the annealing process may be alternately repeated. Thereafter, one or more second cold rolling processes are continuously performed without interposing an annealing process. Thereby, a copper alloy material having a predetermined thickness (for example, 0.2 mm) is formed.
(3)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effects According to the Present Embodiment According to the present embodiment, one or a plurality of effects described below are exhibited.
(a)本実施形態によれば、銅合金材は、0.003質量%以上0.01質量%以下のZrと、0.03質量%以上0.1質量%以下のAgと、0.0005質量%以上のSと、を含有し、残部がCu及び不可避不純物からなる。これにより、銅合金材の導電性の低下を抑制しつつ、耐熱性を向上させることができる。例えば、本実施形態にかかる銅合金材は、純銅からなる銅材と同程度の高い導電率を維持しつつ、高温環境下で使用された場合であっても軟化が生じにくく、所定の強度を有する。 (A) According to the present embodiment, the copper alloy material contains 0.003 mass% or more and 0.01 mass% or less of Zr, 0.03 mass% or more and 0.1 mass% or less of Ag, and 0.0005 And S in an amount of not less than mass%, with the balance being Cu and inevitable impurities. Thereby, heat resistance can be improved, suppressing the fall of the electroconductivity of a copper alloy material. For example, the copper alloy material according to the present embodiment is not easily softened even when used in a high-temperature environment while maintaining the same high conductivity as a copper material made of pure copper, and has a predetermined strength. Have.
(b)例えば、銅合金材は、硬化している状態であっても、銅材と同程度の高い導電性を有する。通常、銅合金材は、例えば冷間圧延処理により加工硬化して硬度が高くなるにつれて、導電率が低下してしまう。しかしながら、本実施形態によれば、例えば冷間圧延処理によりビッカース硬さHvが120以上になるまで硬化させた状態であっても、導電率を97%IACS以上にできる。 (B) For example, even when the copper alloy material is in a cured state, the copper alloy material has high conductivity similar to that of the copper material. Usually, the conductivity of the copper alloy material decreases as the hardness of the copper alloy material increases due to work hardening by cold rolling, for example. However, according to the present embodiment, the electrical conductivity can be increased to 97% IACS or higher even in a state of being hardened by, for example, cold rolling until the Vickers hardness Hv is 120 or higher.
(c)また、本実施形態にかかる銅合金材は、例えば銅材よりも高い耐熱性を有する。具体的には、銅合金材は、450℃の条件下で5分間加熱した場合であっても軟化が生じることを抑制できる。例えば、本実施形態にかかる銅合金材では、450℃の条件下で5分間加熱した直後のビッカース硬さHvを100以上にできる。 (C) Moreover, the copper alloy material concerning this embodiment has heat resistance higher than a copper material, for example. Specifically, the copper alloy material can suppress softening even when heated for 5 minutes at 450 ° C. For example, in the copper alloy material according to the present embodiment, the Vickers hardness Hv immediately after heating for 5 minutes at 450 ° C. can be set to 100 or more.
(d)銅合金材が所定量のZrと所定量のAgとを含むことで、ZrとAgとの相互作用により、Zr及びAgの合計含有量を低減しても、所望の耐熱性を得ることができる。また、Zr及びAgの合計含有量を低減することで、導電性の低下を抑制できる。従って、上記(a)〜(c)の効果をより得ることができる。 (D) When the copper alloy material contains a predetermined amount of Zr and a predetermined amount of Ag, the desired heat resistance is obtained even if the total content of Zr and Ag is reduced by the interaction between Zr and Ag. be able to. Moreover, the electrical conductivity fall can be suppressed by reducing the total content of Zr and Ag. Therefore, the effects (a) to (c) can be obtained more.
(e)Zr及びAgの含有量に加えて、銅合金材中にSが固溶するように、銅合金材中のSの含有量を調整している。つまり、銅合金材中のSの含有量を0.0005質量%以上に調整している。銅合金材中にSを固溶させることで、銅合金材の耐熱性をより向上させることができる。従って、上記(a)(c)の効果をより得ることができる。 (E) In addition to the contents of Zr and Ag, the content of S in the copper alloy material is adjusted so that S is dissolved in the copper alloy material. That is, the content of S in the copper alloy material is adjusted to 0.0005% by mass or more. The heat resistance of the copper alloy material can be further improved by dissolving S in the copper alloy material. Therefore, the effects (a) and (c) can be further obtained.
(f)銅合金材中のSの固溶量を一定量以上とすることで、銅合金材の導電性の低下をより抑制しつつ、耐熱性をより向上させることができる。従って、上記(a)〜(c)の効果をより得ることができる。また、高い耐熱性を、安定して得ることができる。 (F) By setting the solid solution amount of S in the copper alloy material to a certain amount or more, the heat resistance can be further improved while further suppressing the decrease in the conductivity of the copper alloy material. Therefore, the effects (a) to (c) can be obtained more. Moreover, high heat resistance can be obtained stably.
(g)銅合金材中の不可避不純物としてのOの含有量を0.001質量%以下にすることで、Oと反応してしまうZr、Agの量を低減できる。従って、Zr、Agの含有量を増やすことなく、耐熱性の向上に寄与するZr、Agの量を増やすことができる。これにより、銅合金材の導電性の低下をより抑制しつつ、耐熱性をより向上させることができる。その結果、上記(a)〜(d)の効果をより得ることができる。 (G) By making content of O as an inevitable impurity in a copper alloy material 0.001 mass% or less, the quantity of Zr and Ag which react with O can be reduced. Therefore, it is possible to increase the amounts of Zr and Ag that contribute to the improvement of heat resistance without increasing the contents of Zr and Ag. Thereby, heat resistance can be improved more, suppressing the fall of the electroconductivity of a copper alloy material more. As a result, the effects (a) to (d) can be obtained more.
(h)銅合金材中の不可避不純物としての、Mg、Ca、Ti、V、Fe、Ni、Nb、Hf、Taの合計含有量を0.005質量%以下にすることで、銅合金材中に一定量以上のSを固溶させることができる。上記(e)(f)の効果をより得ることができる。 (H) In the copper alloy material, the total content of Mg, Ca, Ti, V, Fe, Ni, Nb, Hf and Ta as inevitable impurities in the copper alloy material is 0.005% by mass or less. A certain amount or more of S can be dissolved. The effects (e) and (f) can be further obtained.
(i)本実施形態にかかる銅合金材は、比較的高温環境下に長時間曝されるような過酷な環境下で用いられる場合に、特に有効である。具体的には、大電流が流される電気自動車やハイブリッド自動車の配線部材として用いる場合に、特に有効である。電気自動車用やハイブリッド自動車用の配線部材は、本実施形態にかかる銅合金材で形成される導体と、例えばポリエチレン、エチレンプロピレンゴムで形成され、導体の周囲を囲うように設けられる絶縁層と、を備えている。本実施形態にかかる銅合金材を用いて形成した電気自動車用やハイブリッド自動車用の配線部材は、導体に大電流が流されることで導体が高温に加熱された場合であっても、導体に軟化が生じにくく、導体が高い強度を有している。従って、配線部材の信頼性を向上させることができる。 (I) The copper alloy material according to the present embodiment is particularly effective when used in a severe environment such as being exposed to a relatively high temperature environment for a long time. Specifically, it is particularly effective when used as a wiring member of an electric vehicle or a hybrid vehicle through which a large current flows. A wiring member for an electric vehicle or a hybrid vehicle includes a conductor formed of a copper alloy material according to the present embodiment, an insulating layer formed of, for example, polyethylene and ethylene propylene rubber and surrounding the conductor, It has. The wiring member for electric vehicles and hybrid vehicles formed using the copper alloy material according to the present embodiment is softened to the conductor even when the conductor is heated to a high temperature by flowing a large current through the conductor. Is difficult to occur, and the conductor has high strength. Therefore, the reliability of the wiring member can be improved.
以下、参考までに、従来のタフピッチ銅や無酸素銅からなる銅材(純銅材)について説明する。銅材は、高い導電性を有する。例えば、銅材は、軟化している状態で102%IACS程度の導電率を有し、例えば冷間圧延処理によりビッカース硬さHvが120程度になるまで硬化させた状態で100%IACS程度の導電率を有する。しかしながら、銅材は、耐熱性が低いため、通電されて昇温するにしたがって、強度が低くなってしまう。銅材は、例えば300℃程度の加熱によっても軟化してしまい、ビッカース硬さHvが大きく低下してしまう。従って、銅材が電気自動車用やハイブリッド自動車用の配線部材として用いられ、配線部材に大電流が流された場合、配線部材が軟化してしまい、強度が大幅に低下してしまう。従って、配線部材の信頼性が低下してしまう。 Hereinafter, for reference, a conventional copper material (pure copper material) made of tough pitch copper or oxygen-free copper will be described. The copper material has high conductivity. For example, a copper material has a conductivity of about 102% IACS in a softened state, for example, a conductivity of about 100% IACS in a state of being hardened by a cold rolling process until a Vickers hardness Hv is about 120. Have a rate. However, since the copper material has low heat resistance, the strength decreases as the temperature is increased by energization. The copper material is softened by heating at, for example, about 300 ° C., and the Vickers hardness Hv is greatly reduced. Accordingly, when a copper material is used as a wiring member for an electric vehicle or a hybrid vehicle and a large current is passed through the wiring member, the wiring member is softened and the strength is greatly reduced. Therefore, the reliability of the wiring member is lowered.
また、従来のSn、Fe、Zrのいずれか一つのみを含有する銅合金材は、銅材と比べて高い耐熱性を有する。しかしながら、Sn、Fe、Zrのいずれか一つのみを含有する銅合金材は、本実施形態にかかる銅合金材と同程度の耐熱性を得ようとすると、Sn、Fe、Zrのそれぞれの含有量を多くする必要がある。Sn、Fe,Zr等の含有量が多くなると、銅合金材の導電性が低下してしまう。例えば、従来のSn、Fe、Zrのいずれか一つのみを含有し、耐熱性を向上させた銅合金材では、ビッカース硬さHvが120程度となるまで硬化させた状態で、導電率を97%IACS以上とすることは困難であった。 Further, a copper alloy material containing only one of conventional Sn, Fe, and Zr has higher heat resistance than a copper material. However, if the copper alloy material containing only one of Sn, Fe, and Zr tries to obtain the same level of heat resistance as the copper alloy material according to the present embodiment, each of the contents of Sn, Fe, and Zr is included. It is necessary to increase the amount. If the content of Sn, Fe, Zr, etc. increases, the conductivity of the copper alloy material will decrease. For example, in a conventional copper alloy material containing only one of Sn, Fe, and Zr and having improved heat resistance, the conductivity is 97 in a state of being cured until the Vickers hardness Hv is about 120. It was difficult to make it more than% IACS.
これに対し、本実施形態によれば、所定量のZrと、所定量のAgと、所定量のSと、を含み、残部がCu及び不可避不純物からなる。このため、上述の課題を効果的に解決できる。 On the other hand, according to the present embodiment, a predetermined amount of Zr, a predetermined amount of Ag, and a predetermined amount of S are included, and the balance is made of Cu and inevitable impurities. For this reason, the above-mentioned subject can be solved effectively.
(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other embodiments of the present invention)
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.
上述の実施形態では、銅合金材中のSの含有量を、母材として、母材であるCu中に不可避不純物として含まれるSが所定量含まれる所定のCuを用いることで調整したが、これに限定されない。例えば、銅合金材中にSを含む化合物等を添加することで、Sの含有量を調整してもよい。 In the above-described embodiment, the content of S in the copper alloy material is adjusted by using a predetermined Cu containing a predetermined amount of S included as an inevitable impurity in Cu as a base material. It is not limited to this. For example, the content of S may be adjusted by adding a compound containing S to the copper alloy material.
上述の実施形態では、冷間圧延処理として、第1の冷間圧延処理と、第2の冷間圧延処理と、を行ったが、これに限定されない。例えば、第1の冷間圧延処理及び焼鈍処理を行わず、1回又は複数回の第2の冷間圧延処理のみを連続して行ってもよい。 In the above-described embodiment, the first cold rolling process and the second cold rolling process are performed as the cold rolling process, but the present invention is not limited to this. For example, the first cold rolling process and the annealing process may not be performed, and only one or a plurality of second cold rolling processes may be performed continuously.
上述の実施形態では、銅合金材が、例えば電気自動車用の配線部材やハイブリッド自動車用の配線部材に用いられる場合について説明したが、これに限定されない。例えば、銅合金材をパワーモジュール等に用いてもよい。これによっても、高温環境下で銅合金材が軟化することを抑制でき、パワーモジュールの信頼性を向上させることができる。 In the above-described embodiment, the case where the copper alloy material is used for, for example, a wiring member for an electric vehicle or a wiring member for a hybrid vehicle is described, but the present invention is not limited to this. For example, a copper alloy material may be used for a power module or the like. Also by this, it can suppress that a copper alloy material softens under a high temperature environment, and can improve the reliability of a power module.
次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited thereto.
試料1〜37の各試料を作製し、各試料について導電性及び耐熱性についての評価を行った。 Samples 1 to 37 were prepared, and the conductivity and heat resistance of each sample were evaluated.
<試料の作製>
(試料1)
試料1では、母材として、純度が99.995%であり、Sの含有量が所定量(例えば0.0020%)である無酸素銅を用いた。そして、高周波溶解炉を用いて窒素雰囲気下で無酸素銅を所定の温度(例えば1250℃)に加熱して溶解して銅の溶湯を溶製(生成)した。続いて、高周波溶解炉による銅の溶湯の加熱を維持した状態で、窒素雰囲気下で銅の溶湯中に0.004質量%のZrと、0.05質量%のAgとを添加して混合し、銅合金の溶湯を溶製した。その後、銅合金の溶湯を所定の鋳型に注いで冷却し、厚さが25mmであり、幅が30mmであり、長さが150mmである鋳塊(インゴット)を鋳造した。つまり、所定量のZr、所定量のAg、所定量のSを含み、残部がCu及び不可避不純物からなる鋳塊を作製した。続いて、鋳造したインゴットを950℃で30分間加熱した後、鋳塊が降温する前に1パスあたりの加工度が25%である熱間圧延処理を行い、厚さが8mmである熱間圧延材を作製した。熱間圧延材が所定温度(例えば室温程度)まで降温した後、熱間圧延材に対して1パスあたりの加工度が94%である冷間圧延処理を行い、厚さが0.5mmである一次冷間圧延材を作製した。そして、一次冷間圧延材を700℃で1分間加熱する焼鈍処理を行った。そして、焼鈍処理後の一次冷間圧延材が所定温度(例えば室温程度)まで降温した後、一次冷間圧延材に対して1パスあたりの加工度が60%の冷間圧延処理を行い、厚さが0.2mmである銅合金材を作製した。これを試料1とした。
<Preparation of sample>
(Sample 1)
In Sample 1, oxygen-free copper having a purity of 99.995% and a S content of a predetermined amount (for example, 0.0020%) was used as a base material. Then, using a high-frequency melting furnace, oxygen-free copper was heated to a predetermined temperature (for example, 1250 ° C.) in a nitrogen atmosphere and melted to produce (generate) a molten copper. Subsequently, while maintaining the heating of the molten copper in the high-frequency melting furnace, 0.004% by mass of Zr and 0.05% by mass of Ag are added and mixed in the molten copper under a nitrogen atmosphere. Then, a molten copper alloy was melted. Thereafter, the molten copper alloy was poured into a predetermined mold and cooled, and an ingot having a thickness of 25 mm, a width of 30 mm, and a length of 150 mm was cast. That is, an ingot containing a predetermined amount of Zr, a predetermined amount of Ag, and a predetermined amount of S, with the balance being Cu and inevitable impurities was produced. Subsequently, after the cast ingot is heated at 950 ° C. for 30 minutes, before the temperature of the ingot is lowered, a hot rolling process with a processing degree per pass of 25% is performed, and a hot rolling with a thickness of 8 mm is performed. A material was prepared. After the hot-rolled material is cooled to a predetermined temperature (for example, about room temperature), the hot-rolled material is cold-rolled with a workability of 94% per pass, and the thickness is 0.5 mm. A primary cold rolled material was produced. And the annealing process which heats a primary cold-rolled material at 700 degreeC for 1 minute was performed. And after the primary cold-rolled material after annealing treatment falls to predetermined temperature (for example, about room temperature), the cold rolling process of 60% of the work degree per pass is performed with respect to the primary cold-rolled material, and thickness A copper alloy material having a thickness of 0.2 mm was produced. This was designated as Sample 1.
試料1について、酸素(O)の含有量と、Sの含有量と、を分析した。Oの含有量は0.0003質量%であり、Sの含有量は0.0020質量%であった。 Sample 1 was analyzed for oxygen (O) content and S content. The O content was 0.0003% by mass, and the S content was 0.0020% by mass.
(試料2〜18)
試料2〜18では、銅の溶湯中に添加するZr、Agの添加量を変更し、銅合金材の組成を下記の表1に示す通りとした。その他は、実施例1と同様にして銅合金材を作製した。これらをそれぞれ試料2〜18とした。
(Samples 2-18)
In Samples 2 to 18, the amount of Zr and Ag added to the molten copper was changed, and the composition of the copper alloy material was as shown in Table 1 below. Otherwise, a copper alloy material was produced in the same manner as in Example 1. These were designated as Samples 2 to 18, respectively.
(試料19〜試料21)
試料19〜試料21では、銅合金材中のSの含有量が下記の表1に示す通りとなるように、母材として、Sの含有量が異なる無酸素銅を用いた。その他は、実施例1と同様にして銅合金材を作製した。これらをそれぞれ試料19〜21とした。
(Sample 19 to Sample 21)
In Samples 19 to 21, oxygen-free copper having different S contents was used as a base material so that the S content in the copper alloy material was as shown in Table 1 below. Otherwise, a copper alloy material was produced in the same manner as in Example 1. These were designated as Samples 19 to 21, respectively.
(試料23〜26)
試料23〜26では、高周波溶解炉を用いて銅の溶湯(銅合金の溶湯)を溶製する際、窒素雰囲気の高周波溶解炉内の窒素雰囲気中に酸素含有ガスを混合した。つまり、高周波溶解炉の雰囲気中の酸素分圧を変更した。これにより、銅合金材中の酸素(O)の含有量を変更した。その他は、実施例1と同様にして銅合金材を作製した。これらをそれぞれ試料23〜26とした。
(Samples 23 to 26)
In Samples 23 to 26, when a copper melt (copper alloy melt) was melted using a high-frequency melting furnace, an oxygen-containing gas was mixed in a nitrogen atmosphere in a high-frequency melting furnace in a nitrogen atmosphere. That is, the oxygen partial pressure in the atmosphere of the high frequency melting furnace was changed. Thereby, the content of oxygen (O) in the copper alloy material was changed. Otherwise, a copper alloy material was produced in the same manner as in Example 1. These were designated as Samples 23 to 26, respectively.
(試料27)
試料27では、母材である無酸素銅として、銅合金材中のSの含有量が0.0003質量%となるようにSを含む無酸素銅を用いた。また、高周波溶解炉を用いて銅の溶湯(銅合金の溶湯)を溶製する際、窒素雰囲気の高周波溶解炉内の窒素雰囲気中に酸素含有ガスを混合した。これにより、銅合金材中のSとOとの含有量を変更した。その他は、実施例1と同様にして銅合金材を作製した。これを試料27とした。
(Sample 27)
In sample 27, oxygen-free copper containing S was used as oxygen-free copper as a base material so that the content of S in the copper alloy material was 0.0003 mass%. In addition, when melting a copper melt (copper alloy melt) using a high-frequency melting furnace, an oxygen-containing gas was mixed in a nitrogen atmosphere in a high-frequency melting furnace in a nitrogen atmosphere. Thereby, content of S and O in a copper alloy material was changed. Otherwise, a copper alloy material was produced in the same manner as in Example 1. This was designated as Sample 27.
(試料28〜試料37)
試料28〜試料37では、銅合金材の組成を下記の表1に示す通りとした。具体的には、銅合金材中のZr、Ag、S、Cu及び不可避不純物以外の成分、つまりその他の成分の含有量が下記の表1に示す通りとなるように、銅の溶湯中に表1に示す各成分をそれぞれ銅の溶湯中に添加して銅合金の溶湯を溶製した。その他は、実施例1と同様にして銅合金材を作製した。これらをそれぞれ試料28〜37とした。
(Sample 28 to Sample 37)
In Samples 28 to 37, the composition of the copper alloy material was as shown in Table 1 below. Specifically, the components other than Zr, Ag, S, Cu and inevitable impurities in the copper alloy material, that is, the contents of other components are represented in the molten copper so that the contents thereof are as shown in Table 1 below. Each component shown in No. 1 was added to a molten copper to prepare a molten copper alloy. Otherwise, a copper alloy material was produced in the same manner as in Example 1. These were designated as samples 28 to 37, respectively.
<評価結果>
試料1〜37についてそれぞれ、導電性及び耐熱性の評価を行った。
<Evaluation results>
Samples 1 to 37 were evaluated for conductivity and heat resistance, respectively.
(導電性の評価方法)
導電性の評価は、試料1〜37の各試料の導電率をそれぞれ測定することで行った。導電率の測定は、JIS H0505に準拠する導電率測定方法に基づいて測定した。その結果を上記の表1に示す。
(Conductivity evaluation method)
The conductivity was evaluated by measuring the conductivity of each of Samples 1 to 37. The conductivity was measured based on a conductivity measuring method based on JIS H0505. The results are shown in Table 1 above.
(硬化状態のビッカース硬さ)
試料1〜37のそれぞれについて、硬化している状態でビッカース硬さHvを測定した。ビッカース硬さHvは、JIS Z2244に準拠する測定方法に基づき、試験荷重を200gfとして測定した。その結果を、硬化状態のビッカース硬さHvとし、上記の表1に示す。
(Hardened Vickers hardness)
About each of the samples 1-37, the Vickers hardness Hv was measured in the hardening state. The Vickers hardness Hv was measured with a test load of 200 gf based on a measurement method based on JIS Z2244. The results are shown in Table 1 above as Vickers hardness Hv in a cured state.
(耐熱性の評価方法)
耐熱性の評価は、試料1〜37のそれぞれを450℃の条件下で5分間加熱し、試料1〜37がそれぞれ、450℃の温度を維持している状態で、ビッカース硬さHvを測定することで行った。ビッカース硬さHvは、JIS Z2244に準拠する測定方法に基づき、試験荷重を200gfとして測定した。その結果を加熱後のビッカース硬さHvとし、上記の表1に示す。なお、加熱後のビッカース硬さHvの値が高いほど、耐熱性が良好であることを示している。
(Method for evaluating heat resistance)
In the evaluation of heat resistance, each of the samples 1 to 37 is heated for 5 minutes under the condition of 450 ° C., and the samples 1 to 37 are each maintained at a temperature of 450 ° C., and the Vickers hardness Hv is measured. I went there. The Vickers hardness Hv was measured with a test load of 200 gf based on a measurement method based on JIS Z2244. The results are shown in Table 1 above as Vickers hardness Hv after heating. In addition, it has shown that heat resistance is so favorable that the value of the Vickers hardness Hv after a heating is high.
試料1〜8、試料19、20、22、23、試料28〜37から、0.003質量%以上0.01質量%以下のZrと、0.03質量%以上0.1質量%以下のAgと、0.0005質量%以上のSと、を含有し、残部がCu及び不可避不純物からなる銅合金材であると、高い導電性と高い耐熱性とを兼ね備えることを確認した。具体的には、銅材と同程度の高い導電性を維持しつつ、銅材よりも高い耐熱性を有することを確認した。例えば、ビッカース硬さHvが120以上となるまで硬化させた状態で、導電率が97%IACS以上となることを確認した。また、高温で加熱しても軟化が生じず、高い強度を有することを確認した。例えば、450℃の条件下で5分間加熱した直後のビッカース硬さHvが100以上となることを確認した。 From Samples 1 to 8, Samples 19, 20, 22, 23, and Samples 28 to 37, Zr of 0.003% by mass to 0.01% by mass and Ag of 0.03% by mass to 0.1% by mass When the copper alloy material contains 0.0005 mass% or more of S and the balance is made of Cu and inevitable impurities, it was confirmed that both high conductivity and high heat resistance were obtained. Specifically, it has been confirmed that it has higher heat resistance than the copper material while maintaining the same high conductivity as the copper material. For example, it was confirmed that the electrical conductivity was 97% IACS or more in a state of being cured until the Vickers hardness Hv was 120 or more. Further, it was confirmed that even when heated at a high temperature, softening does not occur and the strength is high. For example, it was confirmed that the Vickers hardness Hv immediately after heating at 450 ° C. for 5 minutes is 100 or more.
試料9〜12から、銅合金材中のZrの含有量が0.003質量%以下であったり、銅合金材中にZrが含有されていない(銅合金材中のAgのみが含有されている)場合、耐熱性が低下することを確認した。具体的には、450℃の条件下で5分間加熱すると軟化が生じてしまうことを確認した。つまり、450℃の条件下で5分間加熱した直後のビッカース硬さHvが100未満となることを確認した。 From Samples 9 to 12, the Zr content in the copper alloy material is 0.003% by mass or less, or the copper alloy material does not contain Zr (only the Ag in the copper alloy material is contained). ), The heat resistance was confirmed to decrease. Specifically, it was confirmed that softening would occur when heated at 450 ° C. for 5 minutes. That is, it was confirmed that the Vickers hardness Hv immediately after heating at 450 ° C. for 5 minutes was less than 100.
試料13〜15から、銅合金材中のZrの含有量が0.010質量%を超えると、導電性が低下することを確認した。つまり、銅合金材をビッカース硬さHvが120以上となるまで硬化させると、導電率が97%IACS未満となることを確認した。 From Samples 13 to 15, it was confirmed that when the content of Zr in the copper alloy material exceeds 0.010% by mass, the conductivity decreases. That is, it was confirmed that when the copper alloy material was cured until the Vickers hardness Hv was 120 or more, the electrical conductivity was less than 97% IACS.
試料16から、銅合金材中にZrのみが含有され、Agが含有されていない場合、耐熱性が低下することを確認した。つまり、450℃の条件下で5分間加熱すると、軟化が生じ、ビッカース硬さHvが100未満となることを確認した。試料17から、銅合金材中のAgの含有量が0.03質量%未満である場合、耐熱性が低下することを確認した。つまり、450℃の条件下で5分間加熱すると軟化が生じ、ビッカース硬さHvが100未満となることを確認した。 From the sample 16, when only Zr was contained in the copper alloy material and Ag was not contained, it was confirmed that the heat resistance was lowered. That is, it was confirmed that when heated for 5 minutes at 450 ° C., softening occurred and the Vickers hardness Hv was less than 100. From the sample 17, when the content of Ag in the copper alloy material was less than 0.03% by mass, it was confirmed that the heat resistance was lowered. That is, it was confirmed that when heated for 5 minutes at 450 ° C., softening occurred and the Vickers hardness Hv was less than 100.
試料18から、銅合金材中のAgの含有量が0.1質量%を超えると、導電性が低下することを確認した。つまり、銅合金材をビッカース硬さHvが120以上となるまで硬化させた状態で、導電率が97%IACS未満となることを確認した。また、銅合金材の製造コストが高くなってしまうことも確認した。 From the sample 18, when the content of Ag in the copper alloy material exceeds 0.1% by mass, it was confirmed that the conductivity was lowered. That is, it was confirmed that the conductivity was less than 97% IACS in a state where the copper alloy material was cured until the Vickers hardness Hv was 120 or more. It was also confirmed that the manufacturing cost of the copper alloy material was increased.
試料1と試料19と試料20とを比較すると、銅合金材中のSの含有量が多くなるほど、耐熱性が向上することを確認した。これは、銅合金材中に固溶するSの量が増えたためと考えられる。つまり、銅合金材中に一定量以上のSが固溶しているためと考えられる。 When Sample 1, Sample 19, and Sample 20 were compared, it was confirmed that the heat resistance improved as the S content in the copper alloy material increased. This is presumably because the amount of S dissolved in the copper alloy material increased. That is, it is considered that a certain amount or more of S is dissolved in the copper alloy material.
試料21、試料27から、銅合金材中のSの含有量が0.0005質量%未満であると、耐熱性が低下することを確認した。つまり、試料1と、試料21又は試料27とを比較すると、銅合金材中のSの含有量が0.0003質量%であると、450℃の条件下で5分間加熱すると、軟化が生じ、ビッカース硬さHvが100未満となることを確認した。 From Samples 21 and 27, it was confirmed that the heat resistance was reduced when the content of S in the copper alloy material was less than 0.0005 mass%. That is, when Sample 1 is compared with Sample 21 or Sample 27, when the content of S in the copper alloy material is 0.0003 mass%, when heated at 450 ° C. for 5 minutes, softening occurs, It was confirmed that the Vickers hardness Hv was less than 100.
試料1と試料22〜26とを比較すると、銅合金材中のOの含有量が少ないほど、耐熱性が向上することを確認した。つまり、銅合金材中のOの含有量が少なくなるほど、加熱後のビッカース硬さHvの値が大きくなることを確認した。また、試料24〜26から、銅合金材中のOの含有量が0.001質量%を超えると、耐熱性が低下することを確認した。つまり、450℃の条件下で5分間加熱すると、軟化が生じ、ビッカース硬さHvが100未満となることを確認した。 When Sample 1 was compared with Samples 22 to 26, it was confirmed that the heat resistance was improved as the content of O in the copper alloy material was smaller. That is, it was confirmed that the value of the Vickers hardness Hv after heating increases as the content of O in the copper alloy material decreases. Moreover, from samples 24-26, when the content of O in the copper alloy material exceeded 0.001% by mass, it was confirmed that the heat resistance was lowered. That is, it was confirmed that when heated for 5 minutes at 450 ° C., softening occurred and the Vickers hardness Hv was less than 100.
試料28〜試料37から、Mg、Ca、Ti、V、Fe、Ni、Nb、Hf、Taの合計含有量が少ないほど、耐熱性が向上することを確認した。つまり、銅合金材中のMg、Ca、Ti、V、Fe、Ni、Nb、Hf、Taの合計含有量が少ないほど、加熱後のビッカース硬さHvの値が大きくなることを確認した。具体的には、試料28〜32と、試料33〜37と、を比較すると、銅合金材中のMg、Ca、Ti、V、Fe、Ni、Nb、Hf、Taの合計含有量が少ない試料28〜32の方が耐熱性が良いことを確認した。また、試料28〜37はいずれも、ビッカース硬さHvの値が120以上となるまで硬化させた状態で、導電率が97%IACS以上となり、本願の所望の導電性を有していることを確認した。 From Samples 28 to 37, it was confirmed that the heat resistance was improved as the total content of Mg, Ca, Ti, V, Fe, Ni, Nb, Hf, and Ta was decreased. That is, it was confirmed that the value of the Vickers hardness Hv after heating increases as the total content of Mg, Ca, Ti, V, Fe, Ni, Nb, Hf, and Ta in the copper alloy material decreases. Specifically, when the samples 28 to 32 and the samples 33 to 37 are compared, the sample having a small total content of Mg, Ca, Ti, V, Fe, Ni, Nb, Hf, and Ta in the copper alloy material. It was confirmed that 28-32 had better heat resistance. In addition, the samples 28 to 37 are all cured until the value of the Vickers hardness Hv is 120 or more, and the conductivity is 97% IACS or more, and the samples have the desired conductivity of the present application. confirmed.
<好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment>
Hereinafter, preferred embodiments of the present invention will be additionally described.
[付記1]
本発明の一態様によれば、
0.003質量%以上0.01質量%以下のジルコニウムと、0.03質量%以上0.1質量%以下の銀と、0.0005質量%以上の硫黄と、を含有し、残部が銅及び不可避不純物からなる銅合金材が提供される。
[Appendix 1]
According to one aspect of the invention,
0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, and 0.0005% by mass or more of sulfur, with the balance being copper and A copper alloy material comprising inevitable impurities is provided.
[付記2]
付記1の銅合金材であって、好ましくは、
前記硫黄の少なくとも一部が固溶している。
[Appendix 2]
The copper alloy material of Appendix 1, preferably,
At least a part of the sulfur is dissolved.
[付記3]
付記1又は2の銅合金材であって、好ましくは、
マグネシウム、カルシウム、チタン、バナジウム、鉄、ニッケル、ニオブ、ハフニウム、タンタルの合計含有量が0.005質量%以下である。
[Appendix 3]
The copper alloy material according to appendix 1 or 2, preferably,
The total content of magnesium, calcium, titanium, vanadium, iron, nickel, niobium, hafnium, and tantalum is 0.005% by mass or less.
[付記4]
付記1ないし3のいずれかの銅合金材であって、好ましくは、
酸素の含有量が0.001質量%以下である。
[Appendix 4]
The copper alloy material according to any one of appendices 1 to 3, preferably,
The oxygen content is 0.001% by mass or less.
[付記5]
付記1ないし4のいずれかの銅合金材であって、好ましくは、
ビッカース硬さHvが120以上となるまで硬化させた状態で、導電率が97%IACS以上である。
[Appendix 5]
The copper alloy material according to any one of appendices 1 to 4, preferably,
The electrical conductivity is 97% IACS or more in a state of being cured until the Vickers hardness Hv is 120 or more.
[付記6]
付記1ないし5のいずれかの銅合金材であって、好ましくは、
450℃の条件下で5分間加熱した直後のビッカース硬さHvが100以上である。
[Appendix 6]
The copper alloy material according to any one of appendices 1 to 5, preferably,
The Vickers hardness Hv immediately after heating for 5 minutes at 450 ° C. is 100 or more.
[付記7]
本発明の他の態様によれば、
0.003質量%以上0.01質量%以下のジルコニウムと、0.03質量%以上0.1質量%以下の銀と、0.0005質量%以上の硫黄と、を含有し、残部が銅及び不可避不純物からなる銅合金材で形成された導体と、
前記導体の外周を囲うように設けられた絶縁層と、を備える電気自動車用の配電部材が提供される。
[Appendix 7]
According to another aspect of the invention,
0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, and 0.0005% by mass or more of sulfur, with the balance being copper and A conductor formed of a copper alloy material made of inevitable impurities;
There is provided a power distribution member for an electric vehicle comprising an insulating layer provided so as to surround an outer periphery of the conductor.
[付記8]
本発明のさらに他の態様によれば、
0.003質量%以上0.01質量%以下のジルコニウムと、0.03質量%以上0.1質量%以下の銀と、0.0005質量%以上の硫黄と、を含有し、残部が銅及び不可避不純物からなる銅合金材で形成された導体と、
前記導体の外周を囲うように設けられた絶縁層と、を備えるハイブリッド自動車用の配電部材が提供される。
[Appendix 8]
According to yet another aspect of the invention,
0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, and 0.0005% by mass or more of sulfur, with the balance being copper and A conductor formed of a copper alloy material made of inevitable impurities;
There is provided a power distribution member for a hybrid vehicle comprising an insulating layer provided so as to surround an outer periphery of the conductor.
Claims (5)
ビッカース硬さHvが120以上となるまで硬化させた状態で、導電率が97%IACS以上である
銅合金材。 0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, 0.0005% by mass or more and 0.005% by mass or less of sulfur; Containing 001 mass% or less of oxygen, the balance consisting of copper and unavoidable impurities with a total content of 0.005 mass% or less ,
A copper alloy material having a conductivity of 97% IACS or more in a state of being cured until the Vickers hardness Hv is 120 or more.
450℃の条件下で5分間加熱した直後のビッカース硬さHvが100以上である
銅合金材。 0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, 0.0005% by mass or more and 0.005% by mass or less of sulfur; Containing 001 mass% or less of oxygen, the balance consisting of copper and unavoidable impurities with a total content of 0.005 mass% or less ,
A copper alloy material having a Vickers hardness Hv of 100 or more immediately after heating at 450 ° C. for 5 minutes.
請求項1または2に記載の銅合金材。 The copper alloy material according to claim 1 or 2 , wherein the total content of magnesium, calcium, titanium, vanadium, iron, nickel, niobium, hafnium, and tantalum is 0.005 mass% or less.
前記導体の外周を囲うように設けられた絶縁層と、を備える
電気自動車用の配電部材。 0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, 0.0005% by mass or more and 0.005% by mass or less of sulfur; A conductor formed of a copper alloy material containing 001% by mass or less of oxygen, the balance being copper and a total content of 0.005% by mass or less of inevitable impurities;
An electric distribution member for an electric vehicle, comprising: an insulating layer provided so as to surround an outer periphery of the conductor.
前記導体の外周を囲うように設けられた絶縁層と、を備える
ハイブリッド自動車用の配電部材。
0.003% by mass or more and 0.01% by mass or less of zirconium, 0.03% by mass or more and 0.1% by mass or less of silver, 0.0005% by mass or more and 0.005% by mass or less of sulfur; A conductor formed of a copper alloy material containing 001% by mass or less of oxygen, the balance being copper and a total content of 0.005% by mass or less of inevitable impurities;
A power distribution member for a hybrid vehicle, comprising: an insulating layer provided so as to surround an outer periphery of the conductor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014087236A JP6278812B2 (en) | 2014-04-21 | 2014-04-21 | Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014087236A JP6278812B2 (en) | 2014-04-21 | 2014-04-21 | Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2015206075A JP2015206075A (en) | 2015-11-19 |
| JP6278812B2 true JP6278812B2 (en) | 2018-02-14 |
Family
ID=54603120
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014087236A Active JP6278812B2 (en) | 2014-04-21 | 2014-04-21 | Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6278812B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2020094241A (en) * | 2018-12-13 | 2020-06-18 | 三菱マテリアル株式会社 | Pure copper material, member for electronic and electrical device, member for heat release |
| JP7451964B2 (en) * | 2019-01-16 | 2024-03-19 | 株式会社プロテリアル | Cu alloy plate and its manufacturing method |
| US20240116110A1 (en) * | 2022-10-04 | 2024-04-11 | Iowa State University Research Foundation, Inc. | Oxidation resistant high conductivity copper alloys |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0243811B2 (en) * | 1985-06-15 | 1990-10-01 | Dowa Mining Co | RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO |
| JPH0644412B2 (en) * | 1989-04-10 | 1994-06-08 | 株式会社フジクラ | Copper composite wire for extra fine wire |
| JP3324228B2 (en) * | 1993-09-14 | 2002-09-17 | 日立電線株式会社 | Copper wire for ultrafine wire and method of manufacturing the same |
| JP2008255418A (en) * | 2007-04-05 | 2008-10-23 | Hitachi Cable Ltd | Copper material manufacturing method and copper material |
| KR20120060842A (en) * | 2009-08-12 | 2012-06-12 | 페더럴-모굴 이그니션 컴퍼니 | Spark plug including electrodes with low swelling rate and high corrosion resistance |
| JP2014065933A (en) * | 2012-09-25 | 2014-04-17 | Sh Copper Products Corp | Rolled copper foil for lithium ion secondary battery collector |
| CN103924118B (en) * | 2013-01-11 | 2017-07-28 | 株式会社Sh铜业 | The power distribution unit of Cu alloy material, power distribution unit used for electric vehicle and Hybrid Vehicle |
| JP6425404B2 (en) * | 2014-04-16 | 2018-11-21 | 株式会社Shカッパープロダクツ | Copper alloy material for ceramic wiring substrate, ceramic wiring substrate, and method of manufacturing ceramic wiring substrate |
-
2014
- 2014-04-21 JP JP2014087236A patent/JP6278812B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2015206075A (en) | 2015-11-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5320642B2 (en) | Copper alloy manufacturing method and copper alloy | |
| JP5320541B2 (en) | Copper alloy material for electrical and electronic parts | |
| TWI547569B (en) | Copper alloy having high strength and high conductivity | |
| JP5539055B2 (en) | Copper alloy material for electric / electronic parts and method for producing the same | |
| CN104302794B (en) | Copper alloy sheet with excellent electrical conductivity and stress relaxation properties | |
| JP2004149874A (en) | Easily-workable high-strength high-electric conductive copper alloy | |
| TWI550107B (en) | Cu-Co-Si copper alloy strip and method for producing the same | |
| KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
| PH12013000337A1 (en) | Copper alloy material for electrical and electronic components and method of preparing the same | |
| JP5802150B2 (en) | Copper alloy | |
| JP2016156057A (en) | Copper alloy plate for electrical and electronic parts | |
| JP6278812B2 (en) | Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle | |
| JP2006274383A (en) | Copper material manufacturing method and copper material | |
| JP2017179502A (en) | Copper alloy plate with excellent strength and conductivity | |
| JP2012001780A (en) | Copper alloy material for electric/electronic component, and method of manufacturing the same | |
| JP5232794B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
| JP2020111789A (en) | Copper alloy material | |
| JP2007246931A (en) | Copper alloy for electronic and electrical equipment parts with excellent electrical conductivity | |
| JP2020002439A (en) | Copper alloy for fuse | |
| JP2007126739A (en) | Copper alloy for electronic material | |
| JP2010121166A (en) | Copper alloy having high strength and high electric conductivity | |
| JP5952726B2 (en) | Copper alloy | |
| JP5748945B2 (en) | Copper alloy material manufacturing method and copper alloy material obtained thereby | |
| JP6749122B2 (en) | Copper alloy plate with excellent strength and conductivity | |
| JP4459067B2 (en) | High strength and high conductivity copper alloy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160617 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170404 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170526 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170929 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171219 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180116 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6278812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |