[go: up one dir, main page]

JP6384303B2 - Glass substrate polishing method - Google Patents

Glass substrate polishing method Download PDF

Info

Publication number
JP6384303B2
JP6384303B2 JP2014249604A JP2014249604A JP6384303B2 JP 6384303 B2 JP6384303 B2 JP 6384303B2 JP 2014249604 A JP2014249604 A JP 2014249604A JP 2014249604 A JP2014249604 A JP 2014249604A JP 6384303 B2 JP6384303 B2 JP 6384303B2
Authority
JP
Japan
Prior art keywords
glass substrate
polishing
main surface
shape formed
transition region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014249604A
Other languages
Japanese (ja)
Other versions
JP2016107386A (en
Inventor
佑介 平林
佑介 平林
直弘 梅尾
直弘 梅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2014249604A priority Critical patent/JP6384303B2/en
Publication of JP2016107386A publication Critical patent/JP2016107386A/en
Application granted granted Critical
Publication of JP6384303B2 publication Critical patent/JP6384303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、ガラス基板の研磨方法に関する。本発明は、各種リソグラフィの際に使用されるマスクブランク用ガラス基板の仕上げ研磨に好適である。
本発明は、EUV(Extreme Ultra Violet:極端紫外)光を用いたリソグラフィ(以下、「EUVL」と略する)の際に使用される反射型マスクの基材として使用されるガラス基板(以下、「EUVL光学基材用ガラス基板」と略する。)の仕上げ研磨に特に好ましいが、従来の透過型光学系を用いたリソグラフィの際に使用される透過型マスクの基材として使用されるガラス基板の仕上げ研磨にも好適である。
The present invention relates to a method for polishing a glass substrate. The present invention is suitable for finish polishing of a glass substrate for a mask blank used in various lithography.
The present invention relates to a glass substrate (hereinafter referred to as “a substrate for a reflective mask) used in lithography (hereinafter abbreviated as“ EUVL ”) using EUV (Extreme Ultra Violet) light. The glass substrate for EUVL optical substrate is abbreviated as “a glass substrate for EUVL optical substrate.”), But it is particularly preferable for a glass substrate used as a substrate for a transmission mask used in lithography using a conventional transmission optical system. It is also suitable for finish polishing.

近年における超LSIデバイスの高密度化や高精度化に伴い、各種リソグラフィに使用されるマスクブランク用ガラス基板表面に要求される仕様は年々厳しくなる状況にある。特に、露光光源の波長が短くなるにしたがって、基板表面の形状精度(平坦性)や欠陥(パーティクル、スクラッチ、ピット等)に対する要求が厳しくなっており、きわめて平坦度が高く、かつ、微小欠陥がないガラス基板が求められている。   With the recent increase in density and accuracy of VLSI devices, the specifications required for the glass substrate surface for mask blanks used in various lithography are becoming stricter year by year. In particular, as the wavelength of the exposure light source becomes shorter, the requirements for shape accuracy (flatness) and defects (particles, scratches, pits, etc.) on the substrate surface are becoming stricter. There is a need for no glass substrate.

例えば、露光光源としてArFエキシマレーザを用いたリソグラフィの場合は、要求されるマスクブランク用ガラス基板表面の平坦度が0.25μm以下、要求される欠陥サイズが0.07μm以下であり、さらにEUVLマスクブランク用ガラス基板の場合は、要求されるガラス基板表面の平坦度がPV値で0.03μm以下、要求される欠陥サイズが0.05μm以下となっている。   For example, in the case of lithography using an ArF excimer laser as the exposure light source, the required flatness of the mask blank glass substrate surface is 0.25 μm or less, the required defect size is 0.07 μm or less, and the EUVL mask In the case of a blank glass substrate, the required flatness of the glass substrate surface is 0.03 μm or less in terms of PV value, and the required defect size is 0.05 μm or less.

上記の平坦度を達成するため、マスクブランク用ガラス基板表面は、高精度の研磨が施される。この研磨では、所定の平坦度になるまで、比較的高い加工レートで予備研磨した後、より加工精度の高い方法を用いて、またはより加工精度が高くなるような加工条件を用いて、マスクブランク用ガラス基板表面が所望の平坦度になるように仕上げ研磨される。
特許文献1には、上記の予備研磨、および、仕上げ研磨の手順の一例が示されている。特許文献1に記載の方法では、酸化セリウムを主材とする研磨剤と、研磨パッドを備えたポリッシャを用いて、ガラス基板表面を予備研磨した後、研磨剤としてコロイダルシリカを用いてガラス基板表面を仕上げ研磨する。
In order to achieve the above flatness, the mask blank glass substrate surface is polished with high accuracy. In this polishing, after pre-polishing at a relatively high processing rate until a predetermined flatness is achieved, a mask blank is used by using a method with higher processing accuracy or processing conditions that increase processing accuracy. The glass substrate surface is finish-polished so as to have a desired flatness.
Patent Document 1 shows an example of the above-described preliminary polishing and finish polishing procedures. In the method described in Patent Document 1, a glass substrate surface is preliminarily polished using a polishing agent mainly composed of cerium oxide and a polisher provided with a polishing pad, and then colloidal silica is used as the polishing agent. Finish polishing.

マスクブランク用ガラス基板表面の外縁部には、カケの発生を抑制するなどの理由から、面取り面が通常設けられる。
上述した平坦度、および、欠点サイズに関する要求は、マスクブランク用ガラス基板表面のうち、面取り面が設けられた外縁部を除いた主表面に関するものである。
A chamfered surface is usually provided on the outer edge portion of the mask blank glass substrate surface for the purpose of suppressing the occurrence of chipping.
The requirements regarding the flatness and the defect size described above relate to the main surface of the mask blank glass substrate surface excluding the outer edge portion provided with the chamfered surface.

一方、特許文献2〜5には、マスクブランク用ガラス基板の面取り面の形状に関する要求が示されている。
特許文献2では、主表面と面取り面との境界から内側3mmの領域を除いた平坦度測定領域における平坦度が0.5μm以下であって、且つ主表面と面取り面の境界における基準面からの最大高さが−1μm以上0μm以下であることにより、半導体集積回路の製造等に用いられるステッパーの基板保持手段の形状が異なり、基板に対する当接する領域が異なるステッパーの基板保持手段にマスクを装着しても、マスクの変形を抑制し、転写パターンの位置精度の低下を最小限に抑えることができる、とされている。
特許文献3では、マスクブランク用ガラス基板の主表面の周縁部の縁だれ量を−2μm〜0μmとすることにより、露光機のステッパーに対し基板装着時の位置精度を良好にすることができる、とされている。
特許文献4では、表面と端面とが交差する端縁に形成された面取り面を、表面に対する角度が互いに異なる2段階の面取り面とし、表面と一段目の面取り面との交差角θ1を5〜40°とし、表面と二段目の面取り面との交差角θ2を30〜70°とすることにより、ガラス基板の端縁領域における不当な角張り部をなくして、脆さを緩和することにより、FBD等の製造工程でガラス基板が欠損する確率を低減できる、とされている。
特許文献5では、フォトマスクブランクスの主表面と面取り部との間に傾斜部を形成し、該傾斜部の俯角を、面取り部の俯角より小さくすることにより、マスク材塗布時に生じる基板周縁部でのマスク材の表面張力を低減させ、基板周縁部におけるフリンジ部を小さくできる、とされている。
On the other hand, Patent Documents 2 to 5 show requirements regarding the shape of the chamfered surface of the mask blank glass substrate.
In Patent Document 2, the flatness in the flatness measurement region excluding the inner 3 mm region from the boundary between the main surface and the chamfered surface is 0.5 μm or less, and from the reference surface at the boundary between the main surface and the chamfered surface. When the maximum height is −1 μm or more and 0 μm or less, the shape of the substrate holding means of the stepper used for manufacturing a semiconductor integrated circuit or the like is different, and a mask is attached to the substrate holding means of the stepper that is in contact with the substrate. However, it is said that the deformation of the mask can be suppressed and the decrease in the positional accuracy of the transfer pattern can be minimized.
In Patent Document 3, by setting the amount of fringing of the peripheral portion of the main surface of the glass substrate for mask blank to −2 μm to 0 μm, it is possible to improve the positional accuracy when mounting the substrate on the stepper of the exposure machine. It is said that.
In Patent Document 4, a chamfered surface formed at an edge where the surface and the end surface intersect with each other is defined as a two-stage chamfered surface having different angles with respect to the surface, and the intersection angle θ1 between the surface and the first-stage chamfered surface is 5 to 5. By setting the crossing angle θ2 between the surface and the second-stage chamfered surface to 30 ° to 70 ° by eliminating the unfair corners in the edge region of the glass substrate and reducing the brittleness The probability that a glass substrate is lost in a manufacturing process such as FBD can be reduced.
In Patent Document 5, an inclined portion is formed between the main surface of the photomask blank and the chamfered portion, and the depression angle of the inclined portion is made smaller than the depression angle of the chamfered portion, so that the substrate peripheral portion generated at the time of applying the mask material The surface tension of the mask material can be reduced, and the fringe portion at the peripheral edge portion of the substrate can be reduced.

特開昭64−40267号公報JP-A 64-40267 国際公開WO2004/083961号International Publication No. WO2004 / 083961 特開2006−146250号公報JP 2006-146250 A 特開2012−111661号公報JP 2012-111661 A 特開2008−003208号公報JP 2008-003208 A

マスクブランク用ガラス基板の主表面の仕上げ研磨時には、該主表面全体を研磨するため、該主表面と面取り面との境界付近にも研磨パッドが接触する。該主表面と面取り面との境界付近の形状によっては、研磨パッドに押しつけられて研磨スラリーが除去されてしまい、主表面と研磨パッドに挟まれた領域に研磨スラリーが十分に供給されず、ガラス基板主表面に欠点を発生させる場合がある。
面取り面の形状が特許文献2〜5に記載の要求を満たしている場合であっても、上述したガラス基板主表面の仕上げ研磨時において、欠点が発生する場合がある。
At the time of final polishing of the main surface of the mask blank glass substrate, since the entire main surface is polished, the polishing pad also contacts the vicinity of the boundary between the main surface and the chamfered surface. Depending on the shape near the boundary between the main surface and the chamfered surface, the polishing slurry is removed by being pressed against the polishing pad, and the polishing slurry is not sufficiently supplied to the region sandwiched between the main surface and the polishing pad. In some cases, defects may occur on the main surface of the substrate.
Even when the shape of the chamfered surface satisfies the requirements described in Patent Documents 2 to 5, a defect may occur during finish polishing of the glass substrate main surface described above.

本発明は、上記した従来技術の問題点を解決するため、面取り面を有するガラス基板の主表面を研磨する際に、該主表面における欠点の発生を抑制する方法の提供を目的とする。   An object of the present invention is to provide a method for suppressing the occurrence of defects on a main surface of a glass substrate having a chamfered surface when the main surface of the glass substrate having a chamfered surface is polished.

上記した目的を達成するため、本発明は、研磨パッドと研磨スラリーとを用いて、面取り面を有するガラス基板の主表面を研磨する、ガラス基板の研磨方法であって、
前記ガラス基板の主表面の総研磨量が5nm以上であり、研磨量が研磨終了時から遡って5nm以降の研磨については、
前記ガラス基板の側面に直交する断面形状における、該ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を基準にした場合に、主表面から面取り面にかけての領域のうち、前記基準からの高さが−0.2μm〜−0.7μmの遷移領域がなす形状が、下記(1)、(2)を満たす条件にて、ガラス基板の主表面を研磨することを特徴とする、ガラス基板の研磨方法を提供する。
(1)該遷移領域がなす形状の傾きが下記式を満たす。
0≧遷移領域の傾き≧0.0038×基準からの高さ[μm]+0.00021
(2)該遷移領域がなす形状における曲率が0〜−20×10-6[1/μm]を満たす。
In order to achieve the above-described object, the present invention is a method for polishing a glass substrate, wherein a main surface of a glass substrate having a chamfered surface is polished using a polishing pad and a polishing slurry.
The total polishing amount of the main surface of the glass substrate is 5 nm or more, and the polishing amount is 5 nm after polishing from the end of polishing.
In the cross-sectional shape orthogonal to the side surface of the glass substrate, when the distance from the side surface of the glass substrate is based on the least square line of the shape formed by the main surface in the range of 1.5 mm to 2.5 mm, from the main surface Of the regions extending from the chamfered surface, the shape of the transition region having a height from the reference of −0.2 μm to −0.7 μm satisfies the following conditions (1) and (2). A method for polishing a glass substrate, characterized by polishing a surface.
(1) The inclination of the shape formed by the transition region satisfies the following formula.
0 ≧ gradient of transition region ≧ 0.0038 × height from reference [μm] +0.00021
(2) The curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 [1 / μm].

本発明のガラス基板の研磨方法において、前記基準に対する、面取り面がなす形状の傾きが−0.33≧傾き≧−3であることが好ましい。   In the glass substrate polishing method of the present invention, it is preferable that the inclination of the shape formed by the chamfered surface with respect to the reference is −0.33 ≧ inclination ≧ −3.

本発明のガラス基板の研磨方法において、前記面取り面の幅が0.2〜0.6mmであることが好ましい。   In the glass substrate polishing method of the present invention, the chamfered surface preferably has a width of 0.2 to 0.6 mm.

本発明のガラス基板の研磨方法において、前記ガラス基板は、マスクブランク用ガラス基板であることが好ましい。   In the glass substrate polishing method of the present invention, the glass substrate is preferably a mask blank glass substrate.

また、本発明は、本発明の方法により主表面が研磨された、主表面の表面粗さRmsが0.1nm以下であり、該主表面の平坦度が0.5μm以下であるガラス基板を提供する。   The present invention also provides a glass substrate having a main surface polished by the method of the present invention, the main surface having a surface roughness Rms of 0.1 nm or less and a flatness of the main surface of 0.5 μm or less. To do.

また、本発明は、主表面の周囲に面取り面を有するガラス基板であって、
前記面取り面の幅が0.2〜0.6mmであり、
前記ガラス基板の側面に直交する断面形状における、該ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を基準にした場合に、主表面から面取り面にかけての領域のうち、前記基準からの高さが−0.2μm〜−0.7μmの遷移領域がなす形状が下記(1)、(2)を満たし、
前記基準に対する前記面取り面がなす形状の傾きが−0.33≧傾き≧−3である、ことを特徴とするガラス基板を提供する。
(1)該遷移領域がなす形状の傾きが下記式を満たす。
0≧遷移領域がなす形状の傾き≧0.0038×基準からの高さ[μm]+0.00021
(2)該遷移領域がなす形状における曲率が0〜−20×10-6[1/μm]を満たす。
Further, the present invention is a glass substrate having a chamfered surface around the main surface,
The chamfered surface has a width of 0.2 to 0.6 mm;
In the cross-sectional shape orthogonal to the side surface of the glass substrate, when the distance from the side surface of the glass substrate is based on the least square line of the shape formed by the main surface in the range of 1.5 mm to 2.5 mm, from the main surface The shape formed by the transition region having a height from the reference of −0.2 μm to −0.7 μm among the regions extending to the chamfered surface satisfies the following (1) and (2),
An inclination of a shape formed by the chamfered surface with respect to the reference is −0.33 ≧ inclination ≧ −3.
(1) The inclination of the shape formed by the transition region satisfies the following formula.
0 ≧ gradient of shape formed by transition region ≧ 0.0038 × height from reference [μm] +0.00021
(2) The curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 [1 / μm].

本発明の方法によれば、面取り面を有するガラス基板の主表面を研磨する際に、該主表面における欠点の発生を抑制することができる。   According to the method of the present invention, when the main surface of a glass substrate having a chamfered surface is polished, the occurrence of defects on the main surface can be suppressed.

図1は、面取り面を有するガラス基板の面取り面周辺を示した部分断面図である。FIG. 1 is a partial sectional view showing the periphery of a chamfered surface of a glass substrate having a chamfered surface. 図2は、実施例における基準からの高さと、遷移領域がなす形状の傾きと、の関係を示したグラフである。FIG. 2 is a graph showing the relationship between the height from the reference in the embodiment and the inclination of the shape formed by the transition region. 図3は、実施例における基準からの高さと、遷移領域がなす形状における曲率と、の関係を示したグラフである。FIG. 3 is a graph showing the relationship between the height from the reference in the example and the curvature of the shape formed by the transition region.

以下、図面を参照して、本発明のガラス基板の研磨方法について説明する。
本発明のガラス基板の研磨方法では、研磨スラリーと、研磨パッドと、を用いて、面取り面を有するガラス基板の主表面を研磨する。
Hereinafter, the glass substrate polishing method of the present invention will be described with reference to the drawings.
In the glass substrate polishing method of the present invention, the main surface of the glass substrate having a chamfered surface is polished using a polishing slurry and a polishing pad.

上述したように、マスクブランク用ガラス基板のような、表面性状に関する要求がきわめて厳しいガラス基板では、ガラス基板表面の外縁部に、カケの発生を抑制するなどの理由から、面取り面が通常設けられる。本発明の方法により研磨されるガラス基板は、その研磨対象である主面の周囲に面取り面を有する。
図1は、面取り面を有するガラス基板の面取り面周辺を示した部分断面図である。図1は、ガラス基板の側面に直交する断面形状を示しており、ガラス基板の主表面と、側面との間に、面取り面が位置している。面取り面の幅は、ガラス基板の仕様によって異なるが、マスクブランク用ガラス基板として使用される152mm角のガラス基板の場合、0.2〜0.6mmである。
以下、本明細書において、ガラス基板の主表面や面取り面についての記載は、ガラス基板の側面に直交する断面形状に関する記載とする。
As described above, in a glass substrate that is extremely demanding on surface properties, such as a mask blank glass substrate, a chamfered surface is usually provided on the outer edge of the glass substrate surface for the purpose of suppressing the occurrence of chipping. . The glass substrate polished by the method of the present invention has a chamfered surface around the main surface to be polished.
FIG. 1 is a partial sectional view showing the periphery of a chamfered surface of a glass substrate having a chamfered surface. FIG. 1 shows a cross-sectional shape orthogonal to the side surface of the glass substrate, and a chamfered surface is located between the main surface and the side surface of the glass substrate. The width of the chamfered surface varies depending on the specifications of the glass substrate, but is 0.2 to 0.6 mm in the case of a 152 mm square glass substrate used as a mask blank glass substrate.
Hereinafter, in this specification, description about the main surface and chamfering surface of a glass substrate shall be description regarding the cross-sectional shape orthogonal to the side surface of a glass substrate.

本発明のガラス基板の研磨方法において、ガラス基板の主表面の総研磨量は5nm以上であり、研磨量が研磨終了時から遡って5nm以降の研磨については、ガラス基板の主表面と面取り面との境界付近の形状が、以下に述べる特定の条件を満たす状態でガラス基板の主表面を研磨する。
マスクブランク用ガラス基板の主表面の仕上げ研磨時における問題点として上述したように、研磨パッドと研磨スラリーとを用いて、面取り面を有するガラス基板の主表面を研磨する場合、ガラス基板の主表面全体を研磨するため、主表面と面取り面との境界付近にも研磨パッドが接触する。ガラス基板の主表面と面取り面との境界付近の形状によっては、該境界付近に研磨パッドが接触する際に、研磨パッドに押しつけられて研磨スラリーが除去されてしまい、主表面と研磨パッドに挟まれた領域に研磨スラリーが十分に供給されず、ガラス基板の主表面に欠点を発生させる場合がある。
In the method for polishing a glass substrate according to the present invention, the total polishing amount of the main surface of the glass substrate is 5 nm or more, and for polishing after the polishing amount is 5 nm retroactively from the end of polishing, the main surface and chamfered surface of the glass substrate The main surface of the glass substrate is polished in a state where the shape in the vicinity of the boundary satisfies the specific conditions described below.
When the main surface of a glass substrate having a chamfered surface is polished by using a polishing pad and a polishing slurry as described above as a problem at the time of final polishing of the main surface of the glass substrate for mask blank, the main surface of the glass substrate In order to polish the whole, the polishing pad also contacts the vicinity of the boundary between the main surface and the chamfered surface. Depending on the shape near the boundary between the main surface and the chamfered surface of the glass substrate, when the polishing pad comes into contact with the vicinity of the boundary, the polishing slurry is pressed against the polishing pad to remove it, and is sandwiched between the main surface and the polishing pad. In some cases, the polishing slurry is not sufficiently supplied to the region, and defects are generated on the main surface of the glass substrate.

ガラス基板の主表面を研磨する際には、ガラス基板の主表面において、ガラス基板の主表面と面取り面との境界付近の形状に起因する欠点の発生と消失を繰り返す。すなわち、ガラス基板の主表面に発生した欠点は、該主表面をさらに研磨することにより消失する。しかしながら、該主表面の研磨の最終段階に発生した欠点は、該欠点の消失に十分な研磨量が得られないため、研磨終了後の主表面に残存する。本願発明者らは、欠点の消失に最低限必要な研磨量が5nmであることを見出した。そのため、本発明のガラス基板の研磨方法では、研磨量が研磨終了時から遡って5nm以降の研磨については、ガラス基板の主表面と面取り面との境界付近の形状が、以下に述べる特定の条件を満たす状態でガラス基板の主表面を研磨することで、研磨後の主表面における欠点を抑制することができる。
以下、本明細書において、研磨量が研磨終了時から遡って5nm以降の研磨のことを、「最終段階の研磨」とする。
When polishing the main surface of the glass substrate, generation and disappearance of defects due to the shape near the boundary between the main surface and the chamfered surface of the glass substrate are repeated on the main surface of the glass substrate. That is, the defect generated on the main surface of the glass substrate disappears by further polishing the main surface. However, the defects generated in the final stage of polishing of the main surface remain on the main surface after polishing because a polishing amount sufficient to eliminate the defects cannot be obtained. The inventors of the present application have found that the minimum polishing amount required for disappearance of defects is 5 nm. Therefore, in the method for polishing a glass substrate according to the present invention, the shape near the boundary between the main surface and the chamfered surface of the glass substrate has a specific condition described below for the polishing after 5 nm from the end of polishing. By polishing the main surface of the glass substrate in a state satisfying the above, defects on the main surface after polishing can be suppressed.
Hereinafter, in this specification, polishing with a polishing amount of 5 nm or more retroactively from the end of polishing is referred to as “final stage polishing”.

本発明のガラス基板の研磨方法では、最終段階の研磨において、ガラス基板の主表面と面取り面との境界付近の形状が満たすべき条件を、ガラス基板の側面に直交する断面形状における、ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線(図1中、太線で示されている)を基準として定める。ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を基準とする理由は以下の通りである。
研磨時にはガラス基板の主表面と研磨パッドが平行になり、角度の基準は主表面とするべきであるため、主表面に対する最小二乗直線を角度の基準とした。なお、最小二乗直線を使用する理由は、測定した形状データに含まれる高周波成分を除去して正しく傾きを評価するためである。またガラス基板の主表面と面取り面との境界と研磨パッドとの接触状態に対し基板の主表面の形状が与える影響は、該境界付近に近いほど大きく、遠いほど小さくなる。従って主表面の中で比較的該境界に近い範囲を該境界付近の形状の高さの基準にすることが好ましく、ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲に対する最小二乗直線を高さの基準とした。
以下、本明細書において、「基準」と記載した場合、ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を指す。
In the glass substrate polishing method of the present invention, in the final stage polishing, the condition of the shape near the boundary between the main surface and the chamfered surface of the glass substrate should satisfy the conditions of the glass substrate in a cross-sectional shape orthogonal to the side surface of the glass substrate. It is determined with reference to a least square line (indicated by a bold line in FIG. 1) having a shape formed by a main surface with a distance from the side surface in the range of 1.5 mm to 2.5 mm. The reason based on the least square line of the shape formed by the main surface having a distance from the side surface of the glass substrate in the range of 1.5 mm to 2.5 mm is as follows.
At the time of polishing, the main surface of the glass substrate and the polishing pad are parallel to each other, and the reference for the angle should be the main surface. Therefore, the least square line with respect to the main surface was used as the reference for the angle. The reason for using the least square line is to remove the high frequency component contained in the measured shape data and correctly evaluate the inclination. Further, the influence of the shape of the main surface of the substrate on the contact state between the boundary between the main surface and the chamfered surface of the glass substrate and the polishing pad becomes larger as it is closer to the boundary and smaller as it is farther away. Therefore, it is preferable to use a range relatively close to the boundary in the main surface as a reference for the height of the shape in the vicinity of the boundary, and the least square with respect to the range where the distance from the side surface of the glass substrate is 1.5 mm to 2.5 mm. A straight line was used as the height standard.
Hereinafter, in the present specification, when “reference” is described, it indicates a least square line having a shape formed by a main surface whose distance from the side surface of the glass substrate is in a range of 1.5 mm to 2.5 mm.

本発明のガラス基板の研磨方法では、主表面から面取り面にかけての領域のうち、上記で定義した基準からの高さが−0.2μm〜−0.7μmの領域を遷移領域とし、この遷移領域がなす形状が、下記(1)、(2)を満たす条件で最終段階の研磨を実施する。
(1)遷移領域がなす形状の傾きが下記式を満たす。
0≧遷移領域がなす形状の傾き≧0.0038×基準からの高さ[μm]+0.00021
(2)遷移領域がなす形状における曲率が0〜−20×10-6[1/μm]を満たす。
ここで、基準からの高さが−0.2μm〜−0.7μmの領域を遷移領域とするのは、ガラス基板の主表面全体を研磨する際には、主表面からの高さがおよそ−0.7μmの領域まで研磨パッドが接触するからであり、主表面からの高さが−0.2μmまでの領域は、対象となる領域の傾きが極めて小さく、形状を特定することが困難であるからである。
なお、上記の基準に対する、面取り面がなす形状の傾きは、ガラス基板の仕様によって異なるが、マスクブランク用ガラス基板として使用される152mm角のガラス基板の場合、−0.33≧傾き≧−3である。
In the method for polishing a glass substrate according to the present invention, a region having a height from the reference defined above of −0.2 μm to −0.7 μm among the regions from the main surface to the chamfered surface is defined as a transition region. The final stage polishing is performed under the conditions that the shape formed by satisfies the following (1) and (2).
(1) The inclination of the shape formed by the transition region satisfies the following formula.
0 ≧ gradient of shape formed by transition region ≧ 0.0038 × height from reference [μm] +0.00021
(2) The curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 [1 / μm].
Here, the region having a height from the reference of −0.2 μm to −0.7 μm is used as the transition region because the height from the main surface is approximately − when the entire main surface of the glass substrate is polished. This is because the polishing pad comes into contact with the 0.7 μm region. In the region where the height from the main surface is −0.2 μm, the inclination of the target region is extremely small, and it is difficult to specify the shape. Because.
In addition, although the inclination of the shape formed by the chamfered surface with respect to the above reference varies depending on the specification of the glass substrate, in the case of a 152 mm square glass substrate used as a mask blank glass substrate, −0.33 ≧ inclination ≧ −3 It is.

本発明のガラス基板の研磨方法では、最終段階の研磨の実施時において、遷移領域がなす形状が上記(1)、(2)を満たしているため、主表面と面取り面との境界付近に研磨パッドが接触した際に、研磨パッドに押しつけられて研磨スラリーが除去されてしまうおそれが低い。そのため、主表面と研磨パッドに挟まれた領域に研磨スラリーが十分に供給され、ガラス基板の主表面における欠点の発生が抑制される。   In the method for polishing a glass substrate according to the present invention, the shape formed by the transition region satisfies the above (1) and (2) when polishing at the final stage, so that polishing is performed near the boundary between the main surface and the chamfered surface. When the pad comes into contact, it is less likely that the polishing slurry will be removed by being pressed against the polishing pad. Therefore, the polishing slurry is sufficiently supplied to the region sandwiched between the main surface and the polishing pad, and the occurrence of defects on the main surface of the glass substrate is suppressed.

最終段階の研磨の研磨量は、上述したように、5nmである。この研磨量による遷移領域がなす形状の変化は2%程度である。そのため、遷移領域がなす形状は、最終段階の研磨実施後においても、上記(1)、(2)を満たす。
したがって、研磨実施後のガラス基板について、遷移領域がなす形状が上記(1)、(2)を満たすことを確認することにより、本発明の研磨方法が実施されたことを確認できる。
As described above, the final polishing amount is 5 nm. The change in the shape of the transition region due to the polishing amount is about 2%. Therefore, the shape formed by the transition region satisfies the above (1) and (2) even after the final stage of polishing.
Therefore, it can confirm that the grinding | polishing method of this invention was enforced by confirming that the shape which a transition area | region makes about the glass substrate after implementation | achievement satisfy | fills said (1) and (2).

本発明のガラス基板の研磨方法における好ましい態様を以下に示す。   The preferable aspect in the grinding | polishing method of the glass substrate of this invention is shown below.

[基板]
本発明のガラス基板の研磨方法を用いて研磨するガラス基板は、EUVL光学基材用ガラス基板、または、透過型マスクの基材として使用されるガラス基板である。
EUVL光学基材用ガラス基板を構成するガラスは、熱膨張係数が小さくかつ、そのばらつきの小さいガラスが好ましい。具体的には20℃における熱膨張係数が0±30ppb/℃の低熱膨張ガラスが好ましく、20℃における熱膨張係数が0±10ppb/℃の超低熱膨張ガラスがより好ましく、20℃における熱膨張係数が0±5ppb/℃の超低熱膨張ガラスがさらに好ましい。
上記低熱膨張ガラスおよび超低熱膨張ガラスとしては、SiO2を主成分とするガラス、典型的には石英ガラスが使用できる。具体的には例えばSiO2を主成分とし1〜12質量%のTiO2を含有する合成ガラス、AZ(旭硝子株式会社製ゼロ膨張ガラス)等が挙げられる。
一方、透過型マスクの基材として使用されるガラス基板を構成するガラスは、リソグラフィに使用する光線の波長(例えばKrFエキシマレーザでは248nm、ArFエキシマレーザでは193nm)において高い透過率を有する高透過率ガラスが好ましい。上記高透過率ガラスとしては、例えば珪素源と酸素源とを気相で反応させて、スートと呼ばれるSiO2からなる多孔質体を成長させ、焼結して得られる実質的にSiO2のみからなる合成石英ガラスが挙げられる。
なお、上記の用途のガラス基板は通常、四角形状の板状体で研磨される。
[substrate]
The glass substrate to be polished by using the glass substrate polishing method of the present invention is a glass substrate for EUVL optical base material or a glass substrate used as a base material for a transmission mask.
The glass constituting the glass substrate for EUVL optical substrate is preferably a glass having a small coefficient of thermal expansion and a small variation. Specifically, a low thermal expansion glass having a thermal expansion coefficient at 20 ° C. of 0 ± 30 ppb / ° C. is preferable, an ultra-low thermal expansion glass having a thermal expansion coefficient at 20 ° C. of 0 ± 10 ppb / ° C. is more preferable, and a thermal expansion coefficient at 20 ° C. Is more preferably an ultra-low thermal expansion glass having 0 ± 5 ppb / ° C.
As the low thermal expansion glass and ultra low thermal expansion glass, glass mainly composed of SiO 2 , typically quartz glass can be used. Specific examples include synthetic glass containing SiO 2 as a main component and containing 1 to 12% by mass of TiO 2 , AZ (zero expansion glass manufactured by Asahi Glass Co., Ltd.), and the like.
On the other hand, the glass constituting the glass substrate used as the base material of the transmission type mask has a high transmittance having a high transmittance at the wavelength of light used for lithography (for example, 248 nm for KrF excimer laser and 193 nm for ArF excimer laser). Glass is preferred. As the high transmittance glass, for example, a porous body made of SiO 2 called soot is grown by reacting a silicon source and an oxygen source in a gas phase, and obtained by sintering substantially only from SiO 2. Synthetic quartz glass is mentioned.
In addition, the glass substrate of said use is normally grind | polished with a square-shaped plate-shaped object.

[研磨スラリー]
本発明における研磨スラリーは、研磨粒子と、該研磨粒子の分散媒体と、を含む流体である。
研磨粒子としては、コロイダルシリカ又は酸化セリウムなどが好ましい。コロイダルシリカは、より精密にガラス基板を研磨できるので、その結果、より良好な精度で、凹状の欠陥が低減された又は除去されたガラス基板が得られ、特に好ましい。
研磨粒子の分散媒体としては、水、有機溶剤が挙げられ、水が好ましい。
[Polishing slurry]
The abrasive slurry in the present invention is a fluid containing abrasive particles and a dispersion medium of the abrasive particles.
As the abrasive particles, colloidal silica or cerium oxide is preferable. Colloidal silica can polish a glass substrate more precisely. As a result, a glass substrate in which concave defects are reduced or removed can be obtained with better accuracy, which is particularly preferable.
Examples of the dispersion medium for the abrasive particles include water and organic solvents, and water is preferred.

コロイダルシリカを用いる場合、平均一次粒子径は、5nm以上100nm以下であればよい。コロイダルシリカの平均一次粒子径が5nm以上であれば、ガラス基板の研磨効率を向上できる。また、コロイダルシリカの平均一次粒子径が100nm以下であれば、研磨液を用いて研磨された基板の表面粗さを低減できる。また、コロイダルシリカを用いる場合、平均一次粒子径は、10nm以上50nm以下がより好ましい。酸化セリウムについても、コロイダルシリカと同様の指標が適用でき、平均一次粒子径は、5nm以上100nm以下であればよく、10nm以上50nm以下がより好ましい。なお、平均一次粒子径は、ガス吸着法によって測定した比表面積より算出できる。   When colloidal silica is used, the average primary particle diameter may be 5 nm or more and 100 nm or less. If the average primary particle diameter of colloidal silica is 5 nm or more, the polishing efficiency of the glass substrate can be improved. Moreover, if the average primary particle diameter of colloidal silica is 100 nm or less, the surface roughness of the board | substrate grind | polished using polishing liquid can be reduced. When colloidal silica is used, the average primary particle size is more preferably 10 nm or more and 50 nm or less. The same index as colloidal silica can be applied to cerium oxide, and the average primary particle size may be 5 nm to 100 nm, and more preferably 10 nm to 50 nm. The average primary particle size can be calculated from the specific surface area measured by the gas adsorption method.

研磨スラリーにおけるコロイダルシリカの含有率は、5質量%以上40質量%以下であればよい。研磨スラリーにおけるコロイダルシリカの含有率が5質量%以上であれば、ガラス基板の研磨効率を向上できる。また、研磨スラリーにおけるコロイダルシリカの含有率が40質量%以下であれば、研磨されたガラス基板の洗浄の効率を向上できる。   The content of colloidal silica in the polishing slurry may be 5% by mass or more and 40% by mass or less. When the content of colloidal silica in the polishing slurry is 5% by mass or more, the polishing efficiency of the glass substrate can be improved. Moreover, if the content rate of the colloidal silica in the polishing slurry is 40% by mass or less, the cleaning efficiency of the polished glass substrate can be improved.

[研磨パッド]
本発明における研磨パッドとしては、不織布などの基布に、ポリウレタン樹脂を含浸させ、湿式凝固処理を行って得られたポリウレタン樹脂発泡層を有する研磨パッドなどが挙げられる。研磨パッドとしては、スウェード系研磨パッドが好ましい。
スウェード系研磨パッドにおけるナップ層の厚さは0.3〜1.0mm程度が実用上で好ましい。また、スウェード系研磨パッドとしては、適度の圧縮弾性率を有する軟質の樹脂発泡体が好ましく使用でき、具体的には例えばエーテル系、エステル系、カーボネート系などの樹脂発泡体が挙げられる。
[Polishing pad]
Examples of the polishing pad in the present invention include a polishing pad having a polyurethane resin foam layer obtained by impregnating a polyurethane resin into a base fabric such as a nonwoven fabric and performing wet coagulation treatment. As the polishing pad, a suede polishing pad is preferable.
The thickness of the nap layer in the suede polishing pad is preferably about 0.3 to 1.0 mm in practical use. As the suede type polishing pad, a soft resin foam having an appropriate compression modulus can be preferably used, and specific examples include resin foams such as ether, ester and carbonate.

本発明のガラス基板の研磨方法は、ガラス基板を研磨度の異なる複数の研磨工程で研磨するときの最後に行う仕上げ研磨として特に適している。このためガラス基板は、本発明の方法で研磨する前にあらかじめ所定の厚さに粗研磨し、端面研磨と面取り加工を行い、更にその主表面を表面粗さ、および、平坦度が一定以下になるように予備研磨しておくことが好ましい。予備研磨方法はとくに限定されるものではなく、公知の研磨方法を適用できる。例えば、複数のラップ研磨機を連続して設置し、研磨材や研磨条件を変えながら該研磨機で順次研磨することにより、ガラス基板の主表面を所定の表面粗さおよび平坦度に予備研磨できる。予備研磨後の表面粗さ(Rms)としては、1nm以下が好ましく、0.5nm以下がより好ましい。予備研磨後の平坦度(P−V値)としては、1μm以下が好ましく、0.5μm以下がより好ましい。さらに好ましくは0.2μmである。なお、本明細書において表面粗さとは、JIS−B0601に基づく二乗平均平方根粗さRq(旧RMS)として説明する。   The glass substrate polishing method of the present invention is particularly suitable as final polishing performed at the end when the glass substrate is polished in a plurality of polishing steps having different degrees of polishing. For this reason, the glass substrate is rough-polished to a predetermined thickness in advance before being polished by the method of the present invention, end-face polishing and chamfering are performed, and the main surface is made to have a surface roughness and flatness below a certain level. It is preferable to perform preliminary polishing so that The preliminary polishing method is not particularly limited, and a known polishing method can be applied. For example, a main surface of a glass substrate can be preliminarily polished to a predetermined surface roughness and flatness by sequentially installing a plurality of lapping machines and sequentially polishing with the polishing machine while changing the polishing material and polishing conditions. . The surface roughness (Rms) after preliminary polishing is preferably 1 nm or less, and more preferably 0.5 nm or less. The flatness (PV value) after preliminary polishing is preferably 1 μm or less, and more preferably 0.5 μm or less. More preferably, it is 0.2 μm. In addition, in this specification, surface roughness is demonstrated as the root mean square roughness Rq (old RMS) based on JIS-B0601.

本発明のガラス基板の研磨方法では、ガラス基板の仕上げ研磨として実施し、遷移領域がなす形状が、上記(1)、(2)を満たす条件で最終段階の研磨を実施することにより、面取り面を有するガラス基板の主表面を研磨する際に、該主表面における欠点の発生を抑制しつつ、該主表面を優れた表面性状に研磨することができる。
本発明の研磨方法により、主表面が研磨されたガラス基板は、該主表面の表面粗さ(Rms)が0.1nm以下であることが好ましく、0.05nm以下であることがより好ましく、0.02nm以下であることがさらに好ましい。また、該主表面の平坦度(P−V値)が0.5μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.02μm以下であることがさらに好ましい。
In the method for polishing a glass substrate according to the present invention, the chamfered surface is obtained by carrying out the final polishing under the condition that the shape formed by the transition region satisfies the above (1) and (2), as the final polishing of the glass substrate. When the main surface of a glass substrate having a surface is polished, the main surface can be polished to an excellent surface property while suppressing the occurrence of defects on the main surface.
The glass substrate whose main surface has been polished by the polishing method of the present invention preferably has a surface roughness (Rms) of 0.1 nm or less, more preferably 0.05 nm or less. More preferably, it is 0.02 nm or less. The flatness (PV value) of the main surface is preferably 0.5 μm or less, more preferably 0.1 μm or less, and further preferably 0.02 μm or less.

本発明のガラス基板は、主表面の周囲に面取り面を有するガラス基板であって、該面取り面の幅が0.2〜0.6mmであり、上記した基準に対する面取り面がなす形状の傾きが−0.33≧傾き≧−3であり、上記で定義した遷移領域がなす形状が上記(1)、(2)を満たす。本発明のガラス基板は、本発明の研磨方法を用いて、ガラス基板の主表面を研磨することで得ることができる。   The glass substrate of the present invention is a glass substrate having a chamfered surface around the main surface, the width of the chamfered surface is 0.2 to 0.6 mm, and the inclination of the shape formed by the chamfered surface with respect to the above-described reference is −0.33 ≧ slope ≧ −3, and the shape formed by the transition region defined above satisfies the above (1) and (2). The glass substrate of the present invention can be obtained by polishing the main surface of the glass substrate using the polishing method of the present invention.

本実施例では、以下の手順にしたがって、面取り面を有するガラス基板について、遷移領域がなす形状を設定することを試みた。
面取り面を有するガラス基板としては、152mm角のガラス基板であって、面取り面の幅が0.4mmのものを想定した。このガラス基板の側面に直交する断面形状において、ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を基準にした場合に、面取り面がなす形状の傾きが該基準に対して、−0.5であるものとした。
このガラス基板の側面に直交する断面形状において、上記で定義した基準をx軸とし、該x軸に対し直交する方向をy軸とし、該x軸方向で約0.1mmごとに断面形状を仮想的に分割した。仮想的に分割された断面形状の該基準に対する平均高さを該分割された断面形状の高さとした。また、該分割された断面形状に対する最小二乗直線の該基準に対する傾きを該分割された断面形状の傾きとした。最小二乗直線を使用する理由は、測定した形状データに含まれる高周波成分を除去して正しく傾きを評価するためである。このようにして得られた該ガラス基板の主表面から面取り面にかけての領域がなす形状の傾きを微分して、該領域がなす形状の曲率を求めた。上記で定義した基準からの高さが−0.2μm〜−0.7μmの領域を遷移領域とし、該遷移領域がなす形状の傾き、および、該遷移領域がなす曲率(1/μm)を変えたものが実施例1〜2、比較例1〜2であり、下記表1、2、および、図2、3に示した。なお、表1、2、および、図2、3に示した規定値(規定直線)は上記(1)中の右式、(2)中の式の等号が成立する場合の傾きおよび曲率である。
実施例1,2は遷移領域がなす形状の傾きが下記式を満たす。
0≧遷移領域がなす形状の傾き≧0.0038×基準からの高さ[μm]+0.00021
また、実施例1,2は遷移領域がなす形状における曲率が0〜−20×10-6を満たす。
実施例1,2のガラス基板について、最終段階の研磨を実施した場合、ガラス基板の主表面における欠点の発生を抑制できると考えられる。
一方、比較例1,2は遷移領域がなす形状における曲率が0〜−20×10-6を満たしているが、遷移領域がなす形状の傾きが下記式を満たさない。
0≧遷移領域がなす形状の傾き≧0.0038×基準からの高さ[μm]+0.00021
比較例1,2のガラス基板について、最終段階の研磨を実施した場合、ガラス基板の主表面における欠点の発生を抑制できないと考えられる。
EUVLマスクブランク用ガラス基板に使用可能な欠点品質を有するガラス基板の歩留りを比較した場合、遷移領域がなす形状が上記(1)、(2)を満たすガラス基板では歩留りが94%であるのに対し、遷移領域がなす形状が上記(1)、(2)を満たさないガラス基板では歩留りが64%であった。
In this example, an attempt was made to set the shape formed by the transition region for a glass substrate having a chamfered surface according to the following procedure.
As a glass substrate having a chamfered surface, a 152 mm square glass substrate having a chamfered surface width of 0.4 mm was assumed. In the cross-sectional shape perpendicular to the side surface of the glass substrate, a chamfered surface is formed when the least square line of the shape formed by the main surface with a distance from the side surface of the glass substrate of 1.5 mm to 2.5 mm is used as a reference. The inclination of the shape was −0.5 with respect to the reference.
In the cross-sectional shape orthogonal to the side surface of the glass substrate, the reference defined above is the x-axis, the direction orthogonal to the x-axis is the y-axis, and the cross-sectional shape is virtually every about 0.1 mm in the x-axis direction. Divided. The average height of the virtually divided sectional shape with respect to the reference was defined as the height of the divided sectional shape. Further, the inclination of the least square line with respect to the divided cross-sectional shape with respect to the reference is defined as the inclination of the divided cross-sectional shape. The reason for using the least square line is to remove the high-frequency component contained in the measured shape data and correctly evaluate the inclination. The slope of the shape formed by the region from the main surface to the chamfered surface of the glass substrate thus obtained was differentiated to determine the curvature of the shape formed by the region. A region having a height from the reference defined above of −0.2 μm to −0.7 μm is used as a transition region, and the shape slope formed by the transition region and the curvature (1 / μm) formed by the transition region are changed. Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Tables 1 and 2 and FIGS. The specified values (specified straight lines) shown in Tables 1 and 2 and FIGS. 2 and 3 are the slope and curvature when the right equation in (1) above and the equal sign in the equation in (2) hold. is there.
In the first and second embodiments, the slope of the shape formed by the transition region satisfies the following formula.
0 ≧ gradient of shape formed by transition region ≧ 0.0038 × height from reference [μm] +0.00021
In Examples 1 and 2, the curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 .
About the glass substrate of Examples 1 and 2, when the final stage polishing is performed, it is considered that generation of defects on the main surface of the glass substrate can be suppressed.
On the other hand, in Comparative Examples 1 and 2, the curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 , but the inclination of the shape formed by the transition region does not satisfy the following formula.
0 ≧ gradient of shape formed by transition region ≧ 0.0038 × height from reference [μm] +0.00021
It is considered that the occurrence of defects on the main surface of the glass substrate cannot be suppressed when the final polishing is performed on the glass substrates of Comparative Examples 1 and 2.
When comparing the yield of a glass substrate having a defect quality that can be used for a glass substrate for EUVL mask blank, the yield of the glass substrate satisfying the above (1) and (2) is 94% when the shape formed by the transition region is compared. On the other hand, the yield of the glass substrate whose shape formed by the transition region does not satisfy the above (1) and (2) was 64%.

Claims (6)

研磨パッドと研磨スラリーとを用いて、面取り面を有するガラス基板の主表面を研磨する、ガラス基板の研磨方法であって、
前記ガラス基板の主表面の総研磨量が5nm以上であり、研磨量が研磨終了時から遡って5nm以降の研磨については、
前記ガラス基板の側面に直交する断面形状における、該ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を基準にした場合に、主表面から面取り面にかけての領域のうち、前記基準からの高さが−0.2μm〜−0.7μmの遷移領域がなす形状が、下記(1)、(2)を満たす条件にて、ガラス基板の主表面を研磨することを特徴とする、ガラス基板の研磨方法。
(1)該遷移領域がなす形状の傾きが下記式を満たす。
0≧遷移領域の傾き≧0.0038×基準からの高さ[μm]+0.00021
(2)該遷移領域がなす形状における曲率が0〜−20×10-6を満たす。
A polishing method for a glass substrate, wherein a main surface of a glass substrate having a chamfered surface is polished using a polishing pad and a polishing slurry,
The total polishing amount of the main surface of the glass substrate is 5 nm or more, and the polishing amount is 5 nm after polishing from the end of polishing.
In the cross-sectional shape orthogonal to the side surface of the glass substrate, when the distance from the side surface of the glass substrate is based on the least square line of the shape formed by the main surface in the range of 1.5 mm to 2.5 mm, from the main surface Of the regions extending from the chamfered surface, the shape of the transition region having a height from the reference of −0.2 μm to −0.7 μm satisfies the following conditions (1) and (2). A method for polishing a glass substrate, comprising polishing a surface.
(1) The inclination of the shape formed by the transition region satisfies the following formula.
0 ≧ gradient of transition region ≧ 0.0038 × height from reference [μm] +0.00021
(2) The curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 .
前記基準に対する、面取り面がなす形状の傾きが−0.33≧傾き≧−3である、請求項1に記載のガラス基板の研磨方法。   The glass substrate polishing method according to claim 1, wherein an inclination of a shape formed by the chamfered surface with respect to the reference is −0.33 ≧ inclination ≧ −3. 前記面取り面の幅が0.2〜0.6mmである、請求項1または2に記載のガラス基板の研磨方法。   The glass substrate polishing method according to claim 1, wherein the chamfered surface has a width of 0.2 to 0.6 mm. 前記ガラス基板が、マスクブランク用ガラス基板である、請求項1〜3のいずれかに記載のガラス基板の研磨方法。   The method for polishing a glass substrate according to claim 1, wherein the glass substrate is a glass substrate for a mask blank. 請求項1〜4のいずれかに記載のガラス基板の研磨方法により主表面が研磨された、主表面の表面粗さRmsが0.1nm以下であり、該主表面の平坦度が0.5μm以下であるガラス基板。   The main surface is polished by the glass substrate polishing method according to claim 1, the main surface has a surface roughness Rms of 0.1 nm or less, and the main surface has a flatness of 0.5 μm or less. Is a glass substrate. 主表面の周囲に面取り面を有するガラス基板であって、
前記面取り面の幅が0.2〜0.6mmであり、
前記ガラス基板の側面に直交する断面形状における、該ガラス基板の側面からの距離が1.5mm〜2.5mmの範囲の主表面がなす形状の最小二乗直線を基準にした場合に、主表面から面取り面にかけての領域のうち、前記基準からの高さが−0.2μm〜−0.7μmの遷移領域がなす形状が下記(1)、(2)を満たし、
前記基準に対する前記面取り面がなす形状の傾きが−0.33≧傾き≧−3である、ことを特徴とするガラス基板。
(1)該遷移領域がなす形状の傾きが下記式を満たす。
0≧遷移領域がなす形状の傾き≧0.0038×基準からの高さ[μm]+0.00021
(2)該遷移領域がなす形状における曲率が0〜−20×10-6を満たす。
A glass substrate having a chamfered surface around a main surface,
The chamfered surface has a width of 0.2 to 0.6 mm;
In the cross-sectional shape orthogonal to the side surface of the glass substrate, when the distance from the side surface of the glass substrate is based on the least square line of the shape formed by the main surface in the range of 1.5 mm to 2.5 mm, from the main surface The shape formed by the transition region having a height from the reference of −0.2 μm to −0.7 μm among the regions extending to the chamfered surface satisfies the following (1) and (2),
An inclination of a shape formed by the chamfered surface with respect to the reference is −0.33 ≧ inclination ≧ −3.
(1) The inclination of the shape formed by the transition region satisfies the following formula.
0 ≧ gradient of shape formed by transition region ≧ 0.0038 × height from reference [μm] +0.00021
(2) The curvature in the shape formed by the transition region satisfies 0 to −20 × 10 −6 .
JP2014249604A 2014-12-10 2014-12-10 Glass substrate polishing method Active JP6384303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249604A JP6384303B2 (en) 2014-12-10 2014-12-10 Glass substrate polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249604A JP6384303B2 (en) 2014-12-10 2014-12-10 Glass substrate polishing method

Publications (2)

Publication Number Publication Date
JP2016107386A JP2016107386A (en) 2016-06-20
JP6384303B2 true JP6384303B2 (en) 2018-09-05

Family

ID=56122609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249604A Active JP6384303B2 (en) 2014-12-10 2014-12-10 Glass substrate polishing method

Country Status (1)

Country Link
JP (1) JP6384303B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202110317WA (en) * 2019-03-29 2021-10-28 Hoya Corp Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, transmissive mask blank, transmissive mask, and method of manufacturing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568888B2 (en) * 1999-09-30 2004-09-22 Hoya株式会社 Glass substrate for information recording medium, information recording medium, and method for producing them
JP4274708B2 (en) * 2001-05-14 2009-06-10 Hoya株式会社 Glass substrate for magnetic recording medium and manufacturing method thereof
JP5233621B2 (en) * 2008-12-02 2013-07-10 旭硝子株式会社 Glass substrate for magnetic disk and method for producing the same.
US9202505B2 (en) * 2010-12-28 2015-12-01 Konica Minolta, Inc. Method for manufacturing glass substrate for magnetic recording medium
WO2012157629A1 (en) * 2011-05-19 2012-11-22 Hoya株式会社 Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and method for making these

Also Published As

Publication number Publication date
JP2016107386A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP5332249B2 (en) Glass substrate polishing method
JP5637062B2 (en) Synthetic quartz glass substrate and manufacturing method thereof
JP4858154B2 (en) A method for polishing a glass substrate for mask blanks.
JP5472065B2 (en) Glass substrate for photomask and method for producing the same
JP6308039B2 (en) Manufacturing method of mask blank glass substrate
JP6269868B2 (en) Mask blank
KR20140027314A (en) Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and method for making these
JP5090633B2 (en) Glass substrate polishing method
TWI725144B (en) Substrate for photomask base and photomask base
JP2008307631A (en) Glass substrate polishing method
JP6229807B1 (en) Mask blank
JP6384303B2 (en) Glass substrate polishing method
JP6383982B2 (en) Mask blank glass substrate and manufacturing method thereof
JP2015136773A (en) Glass substrate polishing method
JP5942773B2 (en) Glass substrate polishing method
JP7694474B2 (en) Mask blank substrate and manufacturing method thereof
US20160168020A1 (en) Method of finishing pre-polished glass substrate surface
JP6565471B2 (en) Glass substrate for mask blanks
JP6582971B2 (en) Mask blank substrate and method for manufacturing the same
KR101167869B1 (en) Polishing method for glass substrate, and glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6384303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250