[go: up one dir, main page]

JP6388528B2 - Ground fault detection device - Google Patents

Ground fault detection device Download PDF

Info

Publication number
JP6388528B2
JP6388528B2 JP2014235462A JP2014235462A JP6388528B2 JP 6388528 B2 JP6388528 B2 JP 6388528B2 JP 2014235462 A JP2014235462 A JP 2014235462A JP 2014235462 A JP2014235462 A JP 2014235462A JP 6388528 B2 JP6388528 B2 JP 6388528B2
Authority
JP
Japan
Prior art keywords
ground fault
power generation
generation system
current
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014235462A
Other languages
Japanese (ja)
Other versions
JP2016100962A (en
JP2016100962A5 (en
Inventor
大介 田嶌
大介 田嶌
清俊 田中
清俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014235462A priority Critical patent/JP6388528B2/en
Publication of JP2016100962A publication Critical patent/JP2016100962A/en
Publication of JP2016100962A5 publication Critical patent/JP2016100962A5/ja
Application granted granted Critical
Publication of JP6388528B2 publication Critical patent/JP6388528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、太陽光発電システムで発生した地絡を検出する地絡検出装置に関する。   The present invention relates to a ground fault detection device that detects a ground fault generated in a solar power generation system.

従来、太陽光発電システムは、下記特許文献1に記載されているように、連系運転または自立運転を切り替えて運転を行っている。また、太陽光発電システムには、下記特許文献2に記載されているように、連系運転時の太陽電池の地絡を検出する地絡検出回路を備えるものがある。地絡検出回路で地絡を検出した場合、太陽光発電システムでは、動作を停止することで安全な運転が可能となる。   Conventionally, as described in Patent Document 1 described below, a photovoltaic power generation system is operated by switching between a grid operation and a self-sustained operation. In addition, some solar power generation systems include a ground fault detection circuit that detects a ground fault of a solar cell at the time of interconnection operation, as described in Patent Document 2 below. When a ground fault is detected by the ground fault detection circuit, the solar power generation system can be operated safely by stopping the operation.

特開2010−259170号公報JP 2010-259170 A 特開平9−182449号公報JP-A-9-182449

しかしながら、上記従来の技術によれば、地絡検出できるのは連系運転時であり、自立運転時には地絡検出できない、という問題があった。   However, according to the above-described conventional technique, there is a problem that the ground fault can be detected during the interconnection operation and the ground fault cannot be detected during the independent operation.

本発明は、上記に鑑みてなされたものであって、自立運転時に地絡を検出可能な地絡検出装置を得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the ground fault detection apparatus which can detect a ground fault at the time of independent operation.

上述した課題を解決し、目的を達成するために、本発明は、太陽光発電システムの地絡電流を検出する電流検出部での検出結果に基づいて、前記太陽光発電システムでの地絡の有無を判定する地絡検出回路と、連系運転のときと自立運転のときで、前記地絡検出回路における地絡の判定基準を変更する制御を行う制御部と、を備える。前記地絡検出回路は、前記自立運転のときには、前記連系運転のときよりも、前記地絡電流に対して地絡を判定する際の検出感度を高く設定する、ことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a ground fault in the solar power generation system based on a detection result in a current detection unit that detects a ground fault current in the solar power generation system. A ground fault detection circuit that determines presence / absence; and a control unit that performs control to change a ground fault determination criterion in the ground fault detection circuit during the interconnection operation and the independent operation . The ground fault detection circuit is characterized in that the detection sensitivity when determining the ground fault with respect to the ground fault current is set higher in the independent operation than in the grid operation .

本発明によれば、自立運転時に地絡を検出できる、という効果を奏する。   According to the present invention, there is an effect that a ground fault can be detected during independent operation.

実施の形態1にかかる地絡検出装置を備える太陽光発電システムの構成例を示す図The figure which shows the structural example of a solar energy power generation system provided with the ground fault detection apparatus concerning Embodiment 1. FIG. 実施の形態1において連系運転時に地絡が発生したときの太陽光発電システムの状態を示す図The figure which shows the state of a solar power generation system when a ground fault generate | occur | produces at the time of interconnection operation in Embodiment 1. 実施の形態1において連系運転時に地絡が発生したときの零相変流器で検出された地絡電流を示す図The figure which shows the ground fault electric current detected with the zero phase current transformer when the ground fault generate | occur | produces at the time of interconnection operation in Embodiment 1. 実施の形態1において自立運転時に地絡が発生したときの太陽光発電システムの状態を示す図The figure which shows the state of the solar energy power generation system when a ground fault generate | occur | produces at the time of self-sustained operation in Embodiment 1. 実施の形態1において自立運転時に地絡が発生したときの零相変流器で検出された地絡電流を示す図The figure which shows the ground-fault current detected with the zero phase current transformer when the ground fault generate | occur | produces at the time of self-sustained operation in Embodiment 1.

以下に、本発明の実施の形態にかかる地絡検出装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Below, the ground fault detection apparatus concerning embodiment of this invention is demonstrated in detail based on drawing. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の実施の形態1にかかる地絡検出装置を備える太陽光発電システム100の構成例を示す図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a solar power generation system 100 including a ground fault detection device according to the first embodiment of the present invention.

太陽光発電システム100は、太陽光発電を行って直流電力を出力する太陽電池1と、太陽電池1とパワーコンディショナ8とを接続する接続箱2と、太陽光発電システム100で発生した地絡による地絡電流を検出する電流検出部である零相変流器(ZCT:Zero-phase Current Transformer)3と、太陽電池1からの直流電力の電圧を昇圧するコンバータ4と、コンバータ4によって昇圧された直流電力を交流電力に変換するインバータ5と、パワーコンディショナ8と交流系統9との間の接続をオンまたオフする連系リレー6と、パワーコンディショナ8と自立負荷10との間の接続をオンまたオフする自立リレー7と、パワーコンディショナ8へ交流電力を供給し、またパワーコンディショナ8から交流電力の供給を受けることが可能な交流系統9と、パワーコンディショナ8から交流電力の供給を受けて動作する自立負荷10と、パワーコンディショナ8の動作を制御する制御回路11と、を備える。   The solar power generation system 100 includes a solar cell 1 that performs solar power generation and outputs DC power, a connection box 2 that connects the solar cell 1 and the power conditioner 8, and a ground fault generated in the solar power generation system 100. The voltage is boosted by a zero-phase current transformer (ZCT) 3 that is a current detection unit that detects a ground-fault current due to the solar cell, a converter 4 that boosts the voltage of DC power from the solar cell 1, and the converter 4. The inverter 5 for converting the DC power into AC power, the interconnection relay 6 for turning on / off the connection between the power conditioner 8 and the AC system 9, and the connection between the power conditioner 8 and the self-supporting load 10 AC power that can be supplied to AC power from the power conditioner 8, and can be supplied with AC power from the independent relay 7 that turns on and off and the power conditioner 8. Provided with integrated 9, and independence load 10 that operates by being supplied with AC power from the power conditioner 8, and a control circuit 11 for controlling the operation of the power conditioner 8.

図1に示す太陽光発電システム100において、零相変流器3、コンバータ4、インバータ5、連系リレー6、および自立リレー7で、パワーコンディショナ8を構成する。図1では、連系リレー6および自立リレー7がともに開いた状態であるオフになっているが、連系運転時、連系リレー6はオンで自立リレー7はオフとなり、自立運転時、連系リレー6はオフで自立リレー7はオンとなる。なお、零相変流器3については、太陽光発電システム100で発生した地絡による地絡電流の変動を検出できるものであれば他の構成を用いてもよい。また、図1において、交流系統9とパワーコンディショナ8との間の中性線は接地点Aで接地されているものとする。   In the photovoltaic power generation system 100 shown in FIG. 1, a power conditioner 8 is configured by the zero-phase current transformer 3, the converter 4, the inverter 5, the interconnection relay 6, and the self-supporting relay 7. In FIG. 1, the interconnection relay 6 and the self-supporting relay 7 are both turned off. However, during the interconnection operation, the interconnection relay 6 is turned on and the self-contained relay 7 is turned off. The system relay 6 is off and the self-supporting relay 7 is on. In addition, about the zero phase current transformer 3, if the fluctuation | variation of the ground fault current by the ground fault which generate | occur | produced in the solar power generation system 100 can be detected, you may use another structure. In FIG. 1, the neutral line between the AC system 9 and the power conditioner 8 is assumed to be grounded at the ground point A.

地絡検出装置を含む制御回路11は、零相変流器3で検出された地絡電流に基づいて太陽光発電システム100での地絡の有無を判定する地絡検出回路12と、パワーコンディショナ8の動作を制御し、また、地絡検出回路12における地絡の判定基準を変更する制御を行う制御部13と、太陽光発電システム100の運転状態、地絡の発生などを表示する表示部14と、太陽光発電システム100の運転モードについて、ユーザによる連系運転または自立運転の選択を受け付ける選択部であるスイッチ15と、を備える。   A control circuit 11 including a ground fault detection device includes a ground fault detection circuit 12 that determines the presence or absence of a ground fault in the photovoltaic power generation system 100 based on the ground fault current detected by the zero-phase current transformer 3, and a power condition. The control unit 13 that controls the operation of the controller 8 and controls the ground fault detection circuit 12 to change the ground fault determination criteria, and the display that displays the operation state of the photovoltaic power generation system 100, the occurrence of the ground fault, and the like. Unit 14 and a switch 15 that is a selection unit that accepts selection of a grid connection operation or a self-sustained operation by the user for the operation mode of the photovoltaic power generation system 100.

具体的に、制御部13は、コンバータ4、インバータ5、連系リレー6、自立リレー7の動作を制御して、パワーコンディショナ8の動作を制御する。また、制御部13は、スイッチ15で選択された運転モードに基づいて、連系運転時と自立運転時で、地絡検出回路12における地絡の判定基準を変更する制御を行う。   Specifically, the control unit 13 controls the operation of the power conditioner 8 by controlling the operation of the converter 4, the inverter 5, the interconnection relay 6, and the self-supporting relay 7. Further, the control unit 13 performs control to change the ground fault determination criterion in the ground fault detection circuit 12 during the grid operation and the self-sustaining operation based on the operation mode selected by the switch 15.

つづいて、地絡検出装置において、太陽光発電システム100で発生する地絡を検出する動作について説明する。   It continues and the operation | movement which detects the ground fault which generate | occur | produces in the solar power generation system 100 in a ground fault detection apparatus is demonstrated.

まず、連系運転時で地絡が発生した場合について説明する。太陽光発電システム100の運転モードが連系運転の場合、最初に、ユーザがスイッチ15で連系運転を選択している。制御部13では、スイッチ15から連系運転が選択された旨の通知を受け、パワーコンディショナ8を連系運転で動作するように制御する。   First, a case where a ground fault occurs during the interconnected operation will be described. When the operation mode of the photovoltaic power generation system 100 is the interconnection operation, first, the user selects the interconnection operation with the switch 15. The control unit 13 receives a notification that the interconnection operation is selected from the switch 15 and controls the power conditioner 8 to operate in the interconnection operation.

図2は、実施の形態1において連系運転時に地絡が発生したときの太陽光発電システム100の状態を示す図である。図2において、図1との違いは、連系リレー6がオンしており、また、連系運転時には不要なことから自立負荷10の記載を省略している。また、太陽電池1と接続箱2との間で地絡が発生している状態を示す。太陽電池1と接続箱2との間の地絡箇所を地絡点Bとする。   FIG. 2 is a diagram illustrating a state of the photovoltaic power generation system 100 when a ground fault occurs during the interconnected operation in the first embodiment. In FIG. 2, the difference from FIG. 1 is that the interconnection relay 6 is on, and the description of the self-supporting load 10 is omitted because it is unnecessary during the interconnection operation. Moreover, the state in which the ground fault has generate | occur | produced between the solar cell 1 and the junction box 2 is shown. A ground fault point between the solar cell 1 and the junction box 2 is defined as a ground fault point B.

また、図3は、実施の形態1において連系運転時に地絡が発生したときの零相変流器3で検出された地絡電流Irを示す図である。   FIG. 3 is a diagram showing a ground fault current Ir detected by the zero-phase current transformer 3 when a ground fault occurs during the grid operation in the first embodiment.

図2に示すように、太陽電池1と接続箱2との間で地絡が発生した場合、地絡点B→接地点A→交流系統9→連系リレー6→インバータ5→コンバータ4→零相変流器3→接続箱2→地絡点Bという電流ループが発生する。この電流ループによって、零相変流器3において、図3に示す地絡電流Irが検出される。   As shown in FIG. 2, when a ground fault occurs between the solar cell 1 and the junction box 2, the ground fault point B → the ground point A → the AC system 9 → the interconnection relay 6 → the inverter 5 → the converter 4 → zero. A current loop of phase current transformer 3 → junction box 2 → ground fault B is generated. With this current loop, the ground fault current Ir shown in FIG. 3 is detected in the zero-phase current transformer 3.

地絡検出回路12には、零相変流器3から、零相変流器3で検出された図3に示す地絡電流Irの情報が入力される。地絡検出回路12は、制御部13からの制御により、連系運転時では地絡電流Irの検出感度を自立運転時よりも低く設定する。検出感度とは、測定において検出可能な最も小さな電流の変化量である。地絡検出回路12では、設定された検出感度を超える電流変化を検出することができる。ここでは一例として、連系運転時の地絡電流Irの検出感度を30mA以上100mA以下の範囲で設定する。   Information on the ground fault current Ir shown in FIG. 3 detected by the zero phase current transformer 3 is input from the zero phase current transformer 3 to the ground fault detection circuit 12. Under the control of the control unit 13, the ground fault detection circuit 12 sets the detection sensitivity of the ground fault current Ir to be lower during the interconnected operation than during the independent operation. The detection sensitivity is the smallest change amount of current that can be detected in the measurement. The ground fault detection circuit 12 can detect a current change exceeding the set detection sensitivity. Here, as an example, the detection sensitivity of the ground fault current Ir during the interconnection operation is set in the range of 30 mA to 100 mA.

地絡検出回路12は、制御部13からの制御により設定された検出感度で、太陽光発電システム100で地絡が発生しているかどうかを判定する。地絡検出回路12は、太陽光発電システム100で地絡が発生していると判定した場合、制御部13へ地絡の発生を通知する。そして、制御部13は、地絡検出回路12から地絡発生を通知された場合、連系リレー6をオフし、パワーコンディショナ8の動作を停止する制御を行う。   The ground fault detection circuit 12 determines whether or not a ground fault has occurred in the photovoltaic power generation system 100 with the detection sensitivity set by the control from the control unit 13. When it is determined that a ground fault has occurred in the solar power generation system 100, the ground fault detection circuit 12 notifies the control unit 13 of the occurrence of a ground fault. Then, when notified of the occurrence of the ground fault from the ground fault detection circuit 12, the control unit 13 performs control to turn off the interconnection relay 6 and stop the operation of the power conditioner 8.

つぎに、自立運転時で地絡が発生した場合について説明する。太陽光発電システム100の運転モードが自立運転の場合、最初に、ユーザがスイッチ15で自立運転を選択している。制御部13では、スイッチ15から自立運転が選択された旨の通知を受け、パワーコンディショナ8を自立運転で動作するように制御する。   Next, a case where a ground fault occurs during the independent operation will be described. When the operation mode of the solar power generation system 100 is the independent operation, the user first selects the independent operation with the switch 15. The control unit 13 receives a notification that the autonomous operation has been selected from the switch 15 and controls the power conditioner 8 to operate in the autonomous operation.

図4は、実施の形態1において自立運転時に地絡が発生したときの太陽光発電システム100の状態を示す図である。図4において、図1との違いは、自立リレー7がオンしている。また、太陽電池1と接続箱2との間で地絡が発生し、さらに、パワーコンディショナ8の外部の自立負荷10で地絡が発生している状態を示す。太陽電池1と接続箱2との間の地絡箇所を地絡点Bとする。また、自立負荷10の地絡箇所を地絡点Cとする。ここでは、自立負荷10で地絡した場合について説明するが、地絡箇所は自立負荷10とパワーコンディショナ8の間の配線部分でもよい。   FIG. 4 is a diagram illustrating a state of the photovoltaic power generation system 100 when a ground fault occurs during the independent operation in the first embodiment. In FIG. 4, the difference from FIG. 1 is that the self-supporting relay 7 is turned on. In addition, a ground fault is generated between the solar cell 1 and the junction box 2, and further, a ground fault is generated in the self-supporting load 10 outside the power conditioner 8. A ground fault point between the solar cell 1 and the junction box 2 is defined as a ground fault point B. The ground fault location of the self-supporting load 10 is defined as a ground fault point C. Here, although the case where a ground fault is caused by the self-supporting load 10 will be described, the ground fault location may be a wiring portion between the self-supporting load 10 and the power conditioner 8.

また、図5は、実施の形態1において自立運転時に地絡が発生したときの零相変流器3で検出された地絡電流Irを示す図である。図5において、IrDCは地絡電流Irの直流成分、IrACは地絡電流Irの交流成分を示す。   FIG. 5 is a diagram showing the ground fault current Ir detected by the zero-phase current transformer 3 when a ground fault occurs during the self-sustaining operation in the first embodiment. In FIG. 5, IrDC represents a direct current component of the ground fault current Ir, and IrAC represents an alternating current component of the ground fault current Ir.

図4に示すように、太陽電池1と接続箱2との間で地絡が発生し、さらに、自立負荷10の側でも地絡が発生した場合、地絡点B→地絡点C→自立負荷10→自立リレー7→インバータ5→コンバータ4→零相変流器3→接続箱2→地絡点Bという電流ループが発生する。この電流ループによって、零相変流器3において、図5に示す地絡電流Irが検出される。   As shown in FIG. 4, when a ground fault occurs between the solar cell 1 and the junction box 2, and further a ground fault occurs on the side of the self-supporting load 10, the ground fault point B → the ground fault point C → the self-supporting state. A current loop of load 10 → self-supporting relay 7 → inverter 5 → converter 4 → zero phase current transformer 3 → junction box 2 → ground fault B is generated. By this current loop, the ground fault current Ir shown in FIG. 5 is detected in the zero-phase current transformer 3.

地絡検出回路12には、零相変流器3から、零相変流器3で検出された図5に示す地絡電流Irの情報が入力される。地絡検出回路12は、制御部13からの制御により、自立運転時では地絡電流Irの検出感度を連系運転時よりも高く設定する。ここでは一例として、自立運転時の地絡電流Irの検出感度を30mA未満で設定する。   Information on the ground fault current Ir shown in FIG. 5 detected by the zero phase current transformer 3 is input from the zero phase current transformer 3 to the ground fault detection circuit 12. Under the control of the control unit 13, the ground fault detection circuit 12 sets the detection sensitivity of the ground fault current Ir higher during the independent operation than during the grid operation. Here, as an example, the detection sensitivity of the ground fault current Ir during the independent operation is set to be less than 30 mA.

地絡検出回路12は、制御部13からの制御により設定された検出感度で、太陽光発電システム100で地絡が発生しているかどうかを判定する。地絡検出回路12は、太陽光発電システム100で地絡が発生していると判定した場合、制御部13へ地絡の発生を通知する。そして、制御部13は、地絡検出回路12から地絡発生を通知された場合、自立リレー7をオフし、パワーコンディショナ8の動作を停止する制御を行う。   The ground fault detection circuit 12 determines whether or not a ground fault has occurred in the photovoltaic power generation system 100 with the detection sensitivity set by the control from the control unit 13. When it is determined that a ground fault has occurred in the solar power generation system 100, the ground fault detection circuit 12 notifies the control unit 13 of the occurrence of a ground fault. Then, when notified of the occurrence of the ground fault from the ground fault detection circuit 12, the control unit 13 performs control to turn off the self-supporting relay 7 and stop the operation of the power conditioner 8.

制御部13は、連系運転時と自立運転時で、地絡検出回路12における地絡の判定基準、ここでは地絡電流Irの検出感度を変更する制御を行う。自立運転時に地絡が検出された場合、図5に示すように、直流成分IrDCと交流成分IrACが含まれる地絡電流Irが流れることになる。一般的に、交流成分IrACの方が、直流成分IrDCよりも人体に及ぼす影響が大きいため、自立運転時の検出感度を連系運転時と同様に低く設定すると、人体に対する保護が不十分となる。一方で、連系運転時も自立運転時と同様に検出感度を高く設定すると、交流系統9側の瞬時停電などの電圧変動の影響により、連系運転時では誤検出のおそれがある。   The control unit 13 performs control to change the ground fault determination standard in the ground fault detection circuit 12, that is, the detection sensitivity of the ground fault current Ir in the grid operation and the independent operation. When a ground fault is detected during the self-sustaining operation, as shown in FIG. 5, a ground fault current Ir including a direct current component IrDC and an alternating current component IrAC flows. In general, the AC component IrAC has a greater effect on the human body than the DC component IrDC. Therefore, if the detection sensitivity during the independent operation is set to be low as in the case of the interconnection operation, the human body is not sufficiently protected. . On the other hand, if the detection sensitivity is set to be high in the interconnected operation as in the independent operation, there is a risk of erroneous detection during the interconnected operation due to the influence of voltage fluctuation such as an instantaneous power failure on the AC system 9 side.

そのため、制御部13では、地絡検出回路12における地絡電流Irの判定基準について、連系運転時は30mA以上100mA以下の範囲で検出感度を設定し、自立運転時は30mA未満で検出感度を設定し、自立運転時の検出感度を連系運転時の検出感度よりも高く設定する。地絡検出回路12では、例えば、地絡電流Irが50mAであった場合、連系運転時の検出感度が100mAのときは地絡していないと判定し、自立運転時は地絡していると判定する。これにより、制御部13では、自立運転時は、連系運転時の検出感度よりも小さな電流であっても地絡と判定することが可能となる。   For this reason, the control unit 13 sets the detection sensitivity within the range of 30 mA to 100 mA during the interconnected operation and sets the detection sensitivity to less than 30 mA during the independent operation with respect to the determination criterion of the ground fault current Ir in the ground fault detection circuit 12. Set it so that the detection sensitivity during autonomous operation is higher than the detection sensitivity during interconnected operation. In the ground fault detection circuit 12, for example, when the ground fault current Ir is 50 mA, it is determined that there is no ground fault when the detection sensitivity during the interconnection operation is 100 mA, and there is a ground fault during the independent operation. Is determined. As a result, the control unit 13 can determine a ground fault even during a self-sustained operation even if the current is smaller than the detection sensitivity during the interconnected operation.

以上説明したように、本実施の形態によれば、制御部13は、自立運転のときと連系運転のときで、太陽光発電システム100で発生した地絡電流Irの地絡検出回路12での地絡の判定基準を変更する。具体的に、制御部13は、スイッチ15でユーザから自立運転を選択した場合、地絡検出回路12に対して、自立運転のときの地絡電流Irの検出感度を連系運転のときよりも高く設定することとした。これにより、太陽光発電システム100の自立運転時に地絡が発生し、直流成分IrDCと交流成分IrACが含まれる地絡電流Irが発生した場合でも、地絡検出回路12は適切に地絡の判定を行うことができ、太陽光発電システム100およびユーザを保護することができる。   As described above, according to the present embodiment, the control unit 13 uses the ground fault detection circuit 12 for the ground fault current Ir generated in the photovoltaic power generation system 100 during the independent operation and the interconnection operation. Change the ground fault criteria. Specifically, when the control unit 13 selects the independent operation from the user with the switch 15, the control unit 13 sets the detection sensitivity of the ground fault current Ir at the time of the independent operation to the ground fault detection circuit 12 more than at the time of the connected operation. We decided to set it high. Thereby, even when a ground fault occurs during the independent operation of the photovoltaic power generation system 100 and a ground fault current Ir including the direct current component IrDC and the alternating current component IrAC is generated, the ground fault detection circuit 12 appropriately determines the ground fault. And can protect the photovoltaic power generation system 100 and the user.

なお、本実施の形態では、連系運転時の検出感度の範囲を、自立運転時の検出感度の範囲に隣接しつつ重ならいようにしているが、一例であり、これに限定するものではない。   In the present embodiment, the range of detection sensitivity at the time of interconnected operation is overlapped with the range of detection sensitivity at the time of independent operation, but this is an example, and the present invention is not limited to this. .

また、本実施の形態では、制御部13が、スイッチ15からユーザが選択した運転モードの情報を受け、地絡検出回路12の検出感度を設定していたが、これに限定するものではない。スイッチ15が、ユーザが選択した運転モードの情報を制御部13とともに地絡検出回路12へ通知し、地絡検出回路12が、直接スイッチ15からユーザが選択した運転モードの情報を受け、検出感度を設定してもよい。   Moreover, in this Embodiment, although the control part 13 received the information of the operation mode which the user selected from the switch 15, and set the detection sensitivity of the ground fault detection circuit 12, it is not limited to this. The switch 15 notifies the information on the operation mode selected by the user to the ground fault detection circuit 12 together with the control unit 13, and the ground fault detection circuit 12 receives the information on the operation mode selected by the user directly from the switch 15 and detects the detection sensitivity. May be set.

実施の形態2.
実施の形態1では、連系運転時と自立運転時の地絡の判定基準を変更し、自立運転時の地絡電流Irの検出感度を高くした。本実施の形態2では、自立運転時の地絡の判定において、直流成分IrDCよりも交流成分IrACに重み付けをした検出用地絡電流Irsを用いる方法について説明する。
Embodiment 2. FIG.
In the first embodiment, the ground fault determination standard at the time of the grid operation and the independent operation is changed, and the detection sensitivity of the ground fault current Ir at the independent operation is increased. In the second embodiment, a method of using the detection ground fault current Irs in which the AC component IrAC is weighted more than the DC component IrDC in the determination of the ground fault during the independent operation will be described.

地絡検出回路12では、連系運転時と自立運転時で検出感度を一定とし、自立運転時において、検出された地絡電流Irを交流成分IrACと直流成分IrDCに分離する。地絡検出回路12は、直流成分IrDCの平均値と、交流成分IrACの実効値を求めたうえで交流成分IrACの実効値に係数Kを乗じた値と、を用いて下記の式(1)により検出用地絡電流Irsを算出する。地絡検出回路12では、一例として、K=1.67とした場合、検出用地絡電流Irsが、例えば、実施の形態1で用いた自立運転時の判定値である30mA×1.67≒50mA以上となった場合、地絡が発生したと判定する。   The ground fault detection circuit 12 makes the detection sensitivity constant during the interconnection operation and the independent operation, and separates the detected ground fault current Ir into the AC component IrAC and the DC component IrDC during the independent operation. The ground fault detection circuit 12 calculates the following equation (1) using the average value of the direct current component IrDC and the value obtained by multiplying the effective value of the alternating current component IrAC by the coefficient K after obtaining the effective value of the alternating current component IrAC. To calculate the detection ground fault current Irs. In the ground fault detection circuit 12, as an example, when K = 1.67, the detection ground fault current Irs is, for example, 30 mA × 1.67≈50 mA which is the determination value in the self-sustaining operation used in the first embodiment. When it becomes above, it determines with the earth fault having generate | occur | produced.

Irs=IrDCの平均値+IrACの実効値×K …(1)     Irs = average value of IrDC + effective value of IrAC × K (1)

太陽光発電システム100で地絡が発生していると判定した場合、実施の形態1と同様、地絡検出回路12は、制御部13へ地絡の発生を通知する。そして、制御部13は、地絡検出回路12から地絡発生を通知された場合、自立リレー7をオフし、パワーコンディショナ8の動作を停止する制御を行う。   When it is determined that a ground fault has occurred in the solar power generation system 100, the ground fault detection circuit 12 notifies the control unit 13 of the occurrence of a ground fault, as in the first embodiment. Then, when notified of the occurrence of the ground fault from the ground fault detection circuit 12, the control unit 13 performs control to turn off the self-supporting relay 7 and stop the operation of the power conditioner 8.

以上説明したように、本実施の形態によれば、地絡検出回路12は、太陽光発電システム100の自立運転時、検出された地絡電流Irを交流成分IrACおよび直流成分IrDCに分離し、直流成分IrDCから求めた平均値および交流成分IrACから求めた実効値に重み付けをした値を用いて地絡の判定を行うこととした。これにより、地絡検出回路12では、交流成分IrACから求めた実効値に重み付けをしない場合と比較して、自立運転時に地絡の判定をし易くすることで、実施の形態1と同様、太陽光発電システム100およびユーザを適切に保護することができる。
なお、以上の実施の形態1,2では、連系運転または、自立運転の選択を選択部であるスイッチ15によるものとして説明したが、この選択を例えば、制御部13において、交流系統9が通電しているときは連系運転に、交流系統9が停電しているときは自立運転が選択されることにより実施しても同様の効果を奏する。
As described above, according to the present embodiment, the ground fault detection circuit 12 separates the detected ground fault current Ir into the alternating current component IrAC and the direct current component IrDC when the photovoltaic power generation system 100 is operating independently. The determination of the ground fault is performed using the average value obtained from the direct current component IrDC and the value obtained by weighting the effective value obtained from the alternating current component IrAC. Thereby, the ground fault detection circuit 12 makes it easier to determine the ground fault during the self-sustained operation than in the case where the effective value obtained from the AC component IrAC is not weighted. The photovoltaic system 100 and the user can be appropriately protected.
In the first and second embodiments described above, the selection of the interconnection operation or the independent operation is described as being performed by the switch 15 that is the selection unit. However, this selection is performed by the control unit 13 in which the AC system 9 is energized, for example. The same effect can be obtained even if the operation is performed by selecting the independent operation when the AC system 9 is out of power when the AC system 9 is out of power.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 太陽電池、2 接続箱、3 零相変流器、4 コンバータ、5 インバータ、6 連系リレー、7 自立リレー、8 パワーコンディショナ、9 交流系統、10 自立負荷、11 制御回路、12 地絡検出回路、13 制御部、14 表示部、15 スイッチ、100 太陽光発電システム。   DESCRIPTION OF SYMBOLS 1 Solar cell, 2 Junction box, 3 Zero phase current transformer, 4 Converter, 5 Inverter, 6 interconnection relay, 7 Autonomous relay, 8 Power conditioner, 9 AC system, 10 Autonomous load, 11 Control circuit, 12 Ground fault Detection circuit, 13 control unit, 14 display unit, 15 switch, 100 solar power generation system.

Claims (4)

太陽光発電システムの地絡電流を検出する電流検出部での検出結果に基づいて、前記太陽光発電システムでの地絡の有無を判定する地絡検出回路と、
連系運転のときと自立運転のときで、前記地絡検出回路における地絡の判定基準を変更する制御を行う制御部と、
を備え
前記地絡検出回路は、前記自立運転のときには、前記連系運転のときよりも、前記地絡電流に対して地絡を判定する際の検出感度を高く設定する、
ことを特徴とする地絡検出装置。
Based on the detection result in the current detection unit that detects the ground fault current of the solar power generation system, a ground fault detection circuit that determines the presence or absence of the ground fault in the solar power generation system,
A control unit that performs control to change a ground fault determination criterion in the ground fault detection circuit at the time of interconnected operation and autonomous operation;
Equipped with a,
The ground fault detection circuit sets the detection sensitivity at the time of determining the ground fault with respect to the ground fault current higher than that at the time of the interconnection operation in the independent operation.
A ground fault detection device characterized by that.
太陽光発電システムの地絡電流を検出する電流検出部での検出結果に基づいて、前記太陽光発電システムでの地絡の有無を判定する地絡検出回路と、
自立運転のときは、地絡電流を交流成分および直流成分に分離し、前記交流成分から求めた実効値に重み付けをした値および前記直流成分から求めた平均値を用いて地絡の判定を行う制御部と、
を備えることを特徴とする地絡検出装置。
Based on the detection result in the current detection unit that detects the ground fault current of the solar power generation system, a ground fault detection circuit that determines the presence or absence of the ground fault in the solar power generation system,
During self-sustained operation, the ground fault current is separated into an AC component and a DC component, and a ground fault is determined using a value obtained by weighting the effective value obtained from the AC component and an average value obtained from the DC component. A control unit;
A ground fault detection device comprising:
前記太陽光発電システムの運転モードについてユーザによる連系運転または前記自立運転の選択を受け付ける選択部をさらに備え、
前記制御部は、前記選択部からの通知により、前記太陽光発電システムの運転モードを前記連系運転または前記自立運転に切替える
ことを特徴とする請求項1または2に記載の地絡検出装置。
The system further comprises a selection unit that accepts selection of the grid-operated operation or the independent operation by the user for the operation mode of the solar power generation system,
The ground fault detection device according to claim 1 or 2 , wherein the control unit switches the operation mode of the photovoltaic power generation system to the interconnection operation or the self-sustained operation based on a notification from the selection unit.
前記制御部は、交流系統が通電時には前記太陽光発電システムの運転モードを連系運転に、前記交流系統が停電時には前記太陽光発電システムの運転モードを前記自立運転に切替える
ことを特徴とする請求項1または2に記載の地絡検出装置。
The control unit switches the operation mode of the photovoltaic power generation system to the interconnected operation when the AC system is energized, and switches the operation mode of the photovoltaic power generation system to the independent operation when the AC system is out of power. Item 3. The ground fault detection device according to Item 1 or 2 .
JP2014235462A 2014-11-20 2014-11-20 Ground fault detection device Expired - Fee Related JP6388528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014235462A JP6388528B2 (en) 2014-11-20 2014-11-20 Ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014235462A JP6388528B2 (en) 2014-11-20 2014-11-20 Ground fault detection device

Publications (3)

Publication Number Publication Date
JP2016100962A JP2016100962A (en) 2016-05-30
JP2016100962A5 JP2016100962A5 (en) 2017-12-14
JP6388528B2 true JP6388528B2 (en) 2018-09-12

Family

ID=56078228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014235462A Expired - Fee Related JP6388528B2 (en) 2014-11-20 2014-11-20 Ground fault detection device

Country Status (1)

Country Link
JP (1) JP6388528B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235278A1 (en) 2017-06-23 2018-12-27 東芝三菱電機産業システム株式会社 Power converter control device
WO2019016867A1 (en) * 2017-07-18 2019-01-24 東芝三菱電機産業システム株式会社 Ground fault detector and power conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218320A (en) * 1988-02-25 1989-08-31 Toshiba Corp Ground fault detector
JP2001169561A (en) * 1999-12-02 2001-06-22 Canon Inc Power supply device, control device, and control method therefor
JP2002233045A (en) * 2001-02-02 2002-08-16 Canon Inc Apparatus and method for ground fault detection in a photovoltaic power system
JP4172633B2 (en) * 2003-02-27 2008-10-29 京セラ株式会社 AC load power system
JP5596934B2 (en) * 2009-04-22 2014-09-24 パナソニック株式会社 Power supply device for autonomous operation and grid interconnection system using the same
JP5792824B2 (en) * 2011-10-27 2015-10-14 京セラ株式会社 Power supply system, distributed power supply system, management device, and power supply control method
JP2013229960A (en) * 2012-04-24 2013-11-07 Mitsubishi Electric Corp Power converter

Also Published As

Publication number Publication date
JP2016100962A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
EP3509179B1 (en) Fault current limiting control and protection coordination method for converter operating in isolated state in flexible direct current power transmission system
JP6190059B2 (en) Uninterruptible power system
JP6642075B2 (en) Arc handling control device and arc handling control method
KR100870618B1 (en) Protective device of air circuit breaker
EP2680425B1 (en) Power conversion apparatus
JP5939069B2 (en) Inverter
JP6494252B2 (en) Power conditioner, power system, and control method for power conditioner
JP6388528B2 (en) Ground fault detection device
CA2910749A1 (en) Method of tripping a circuit interrupter in a back fed configuration
JP2019110710A (en) Protection device for dispersion type power supply and system equipped with the same
JP6105643B2 (en) Earth leakage breaker
JP5359242B2 (en) Inverter
JP6620937B2 (en) Power storage system, operation method
US9726728B2 (en) Switching device having a measuring apparatus
JP2006166585A (en) Power conversion device
JP2013229960A (en) Power converter
JP6490931B2 (en) Uninterruptible power supply and control method of uninterruptible power supply
JP2014039444A (en) System interconnection inverter device
JP5376860B2 (en) Power supply system
JP2013059147A (en) Power conversion device
CN101211721A (en) Air circuit breaker protection device
JP6251027B2 (en) Short-circuit direction relay
JP2000023368A (en) Solar light power generation system
KR20140013646A (en) Device for prevention disaster of abnormal voltage protection in electric power system and method thereof
JP2012085444A (en) Insulation monitoring device for charge and discharge system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180814

R150 Certificate of patent or registration of utility model

Ref document number: 6388528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees