[go: up one dir, main page]

JP6300452B2 - Composition for DNA synthesis comprising intercalating dye and surfactant - Google Patents

Composition for DNA synthesis comprising intercalating dye and surfactant Download PDF

Info

Publication number
JP6300452B2
JP6300452B2 JP2013103009A JP2013103009A JP6300452B2 JP 6300452 B2 JP6300452 B2 JP 6300452B2 JP 2013103009 A JP2013103009 A JP 2013103009A JP 2013103009 A JP2013103009 A JP 2013103009A JP 6300452 B2 JP6300452 B2 JP 6300452B2
Authority
JP
Japan
Prior art keywords
pcr
sybr
reaction
registered trademark
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013103009A
Other languages
Japanese (ja)
Other versions
JP2013255489A (en
Inventor
亜由美 原田
亜由美 原田
武宏 相良
武宏 相良
上森 隆司
隆司 上森
向井 博之
博之 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Bio Inc
Original Assignee
Takara Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc filed Critical Takara Bio Inc
Priority to JP2013103009A priority Critical patent/JP6300452B2/en
Publication of JP2013255489A publication Critical patent/JP2013255489A/en
Application granted granted Critical
Publication of JP6300452B2 publication Critical patent/JP6300452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、インターカレーティング色素によるDNA合成反応の阻害が軽減又は解消されたDNA合成用の組成物、及び当該組成物を用いる方法に関する。   The present invention relates to a composition for DNA synthesis in which inhibition of a DNA synthesis reaction by an intercalating dye is reduced or eliminated, and a method using the composition.

DNA合成方法、特にポリメラーゼ連鎖反応(Polymerase Chain Reaction;PCR)法は、試験管内において簡便に所望の核酸断片を増幅する技術であり、近年、遺伝子に関する研究のみならず、生物学、医学、農業等幅広い分野において不可欠の実験手法となっている。また、PCRによる核酸の増幅を、例えばインターカレーティング色素を利用して経時的に測定することで、鋳型となるDNAの定量を精度良く行う方法が開発されている(非特許文献1)。この方法は、それまで知られていた定量的PCRと区別する意味で、リアルタイムPCR法と呼ばれている。   A DNA synthesis method, particularly a polymerase chain reaction (PCR) method, is a technique for simply amplifying a desired nucleic acid fragment in a test tube. In recent years, not only research on genes but also biology, medicine, agriculture, etc. It is an indispensable experimental method in a wide range of fields. In addition, a method has been developed for accurately quantifying DNA serving as a template by measuring nucleic acid amplification by PCR over time using, for example, an intercalating dye (Non-patent Document 1). This method is called a real-time PCR method in order to distinguish it from the previously known quantitative PCR.

インターカレーティング色素を用いたリアルタイムPCR法では、非特異的な増幅産物の有無を確認するために、PCR後に融解曲線分析が利用される(非特許文献2)。近年、この融解曲線分析を既知の一塩基多型(SNPs)の同定や未知のSNPsの探索に利用する技術が開発され、高解像度融解曲線(HRM)解析と呼ばれている。HRM解析は、DNAメチル化のスクリーニングにも応用されている。HRM解析が開発された当初は、リアルタイムPCR後のPCR産物を精製した後、高濃度のインターカレーティング色素を添加し、これを融解曲線分析に供することによって単一塩基の変異を検出する方法であった(非特許文献3)。この方法においてリアルタイムPCR後に直接融解曲線分析がなされていないのは、インターカレーティング色素として利用されたSYBR(登録商標) Green Iが、融解曲線分析により単一塩基の変異を検出できる程度の高い濃度で反応液中に存在する場合にPCRを阻害する性質を有するためである。   In the real-time PCR method using an intercalating dye, melting curve analysis is used after PCR in order to confirm the presence or absence of non-specific amplification products (Non-patent Document 2). In recent years, a technique for utilizing this melting curve analysis for identification of known single nucleotide polymorphisms (SNPs) and searching for unknown SNPs has been developed and is called high resolution melting curve (HRM) analysis. HRM analysis has also been applied to DNA methylation screening. When HRM analysis was first developed, the PCR product after real-time PCR was purified, then a high concentration of intercalating dye was added, and this was subjected to melting curve analysis to detect single base mutations. (Non-Patent Document 3). In this method, the melting curve analysis is not performed directly after the real-time PCR because SYBR (registered trademark) Green I used as an intercalating dye has such a high concentration that a single base mutation can be detected by melting curve analysis. This is because it has the property of inhibiting PCR when it is present in the reaction solution.

近年、反応液中に高濃度で存在していてもPCRの阻害効果が穏やかなLCGreen等の飽和色素と呼ばれるインターカレーティング色素が見出され、このような色素を利用してリアルタイムPCRから融解曲線分析までを閉鎖系で行う方法が開発された(非特許文献4)。しかしながら、飽和色素と呼ばれるインターカレーティング色素はリアルタイムPCRに一般的に使用されているSYBR(登録商標) Green Iと比較して非常に高価であるため(非引用文献5)、代替手段の提供が望まれていた。   In recent years, intercalating dyes called saturated dyes such as LCGreen, which have a gentle PCR inhibitory effect even when present at high concentrations in reaction solutions, have been found. A method for performing the analysis up to the closed system has been developed (Non-Patent Document 4). However, intercalating dyes called saturated dyes are very expensive compared to SYBR (registered trademark) Green I, which is commonly used for real-time PCR (Non-Patent Document 5). It was desired.

”Biotechnology” (N Y) 1993 Sep;11(9):1026−30."Biotechnology" (NY) 1993 Sep; 11 (9): 1026-30. ”Analytical Biochemistry” 1997 Feb 15;245(2):154−60.“Analytical Biochemistry” 1997 Feb 15; 245 (2): 154-60. “Clinical Chemistry”、2001年、第47巻、第4号、、p635−44.“Clinical Chemistry”, 2001, Vol. 47, No. 4, p635-44. “Clinical Chemistry”、2003年、第49巻、第6号、p853−60.“Clinical Chemistry”, 2003, Vol. 49, No. 6, p853-60. “Nucleic Acids Research”、2007年、第35巻、第19号、e127.“Nucleic Acids Research”, 2007, Vol. 35, No. 19, e127.

本発明の目的は、インターカレーティング色素によるDNA合成反応の阻害が軽減又は解消されるDNA合成用組成物、当該組成物を用いる方法、及びより経済的なPCR−HRM解析用の組成物を提供することにある。   An object of the present invention is to provide a composition for DNA synthesis in which inhibition of a DNA synthesis reaction by an intercalating dye is reduced or eliminated, a method using the composition, and a composition for more economical PCR-HRM analysis There is to do.

本発明者らは、上記の課題を解決すべく鋭意努力した結果、インターカレーティング色素によるPCRの阻害が界面活性剤を用いて軽減又は解消可能であることを見出し、本発明を完成させた。   As a result of diligent efforts to solve the above problems, the present inventors have found that inhibition of PCR by an intercalating dye can be reduced or eliminated by using a surfactant, and have completed the present invention.

すなわち、本発明の第1の発明は、
[1](a)DNAポリメラーゼ、(b)鋳型となる核酸、(c)反応緩衝剤、(d)2価の金属イオン、(e)少なくとも1種のデオキシリボヌクレオチド、(f)少なくとも1種のオリゴヌクレオチドプライマー、(g)2μM以上のインターカレーティング色素、並びに(h)0.2容量%以上の界面活性剤、を含む、DNA合成用組成物、
[2]4μM以上のインターカレーティング色素を含む、[1]に記載の組成物、
[3]0.8容量%以上の界面活性剤を含む、[1]に記載の組成物、
[4]インターカレーティング色素が、非対称のシアニン系色素である、[1]に記載の組成物、
[5]非対称のシアニン系色素が、SYBR(登録商標) Green Iである、[4]に記載の組成物、
[6]界面活性剤が、非イオン性界面活性剤又は陰イオン性界面活性剤である、[1]に記載の組成物、
[7]界面活性剤が、poly(ethylene glycol)4−nonylphenyl 3−sulfopropyl etherである、[6]に記載の組成物、
[8][1]〜[7]のいずれか一項に記載の組成物を調製する工程、及び前記工程で調製した組成物をDNA合成反応に供する工程、を包含するDNA合成方法、
[9](A)[8]に記載のDNA合成方法により二本鎖DNAを増幅する工程、(B)増幅された二本鎖DNAを融解して融解曲線を作成する工程、及び(C)融解曲線から遺伝子型を同定する工程、を含む、遺伝子型の決定方法、
に関する。
That is, the first invention of the present invention is
[1] (a) DNA polymerase, (b) template nucleic acid, (c) reaction buffer, (d) divalent metal ion, (e) at least one deoxyribonucleotide, (f) at least one type An oligonucleotide primer, (g) an intercalating dye of 2 μM or more, and (h) a surfactant of 0.2% by volume or more, a composition for DNA synthesis,
[2] The composition according to [1], comprising an intercalating dye of 4 μM or more,
[3] The composition according to [1], comprising 0.8% by volume or more of a surfactant.
[4] The composition according to [1], wherein the intercalating dye is an asymmetric cyanine dye.
[5] The composition according to [4], wherein the asymmetric cyanine dye is SYBR (registered trademark) Green I.
[6] The composition according to [1], wherein the surfactant is a nonionic surfactant or an anionic surfactant,
[7] The composition according to [6], wherein the surfactant is poly (ethyl glycol) 4-nonylphenyl 3-sulfopropyl ether,
[8] A DNA synthesis method comprising a step of preparing the composition according to any one of [1] to [7], and a step of subjecting the composition prepared in the step to a DNA synthesis reaction,
[9] A step of amplifying double-stranded DNA by the DNA synthesis method according to (A) [8], (B) a step of melting the amplified double-stranded DNA to create a melting curve, and (C) Identifying a genotype from a melting curve, comprising determining a genotype,
About.

本発明により、インターカレーティング色素によるDNA合成反応の阻害が軽減又は解消されるDNA合成用の組成物、及び当該組成物を用いる方法が提供される。   According to the present invention, a composition for DNA synthesis in which inhibition of a DNA synthesis reaction by an intercalating dye is reduced or eliminated, and a method using the composition are provided.

実施例1における、界面活性剤未添加の反応液でのリアルタイムPCRの結果を示す図である。FIG. 3 is a diagram showing the results of real-time PCR in a reaction solution without addition of a surfactant in Example 1. 実施例1における、界面活性剤としてTriton(登録商標) X−100を添加した反応液でのリアルタイムPCRの結果を示す図である。It is a figure which shows the result of real-time PCR in the reaction liquid which added Triton (trademark) X-100 as surfactant in Example 1. FIG. 実施例1における、界面活性剤としてTween(登録商標) 20を添加した反応液でのリアルタイムPCRの結果を示す図である。In Example 1, it is a figure which shows the result of real-time PCR in the reaction liquid which added Tween (trademark) 20 as surfactant. 実施例1における、界面活性剤としてOctyl−S−Glucosideを添加した反応液でのリアルタイムPCRの結果を示す図である。In Example 1, it is a figure which shows the result of real-time PCR in the reaction liquid which added Octyl-S-Glucoside as a surfactant. 実施例1における、界面活性剤としてNonidet(登録商標) P−40を添加した反応液でのリアルタイムPCRの結果を示す図である。In Example 1, it is a figure which shows the result of real-time PCR in the reaction liquid which added Nonidet (trademark) P-40 as surfactant. 実施例1における、界面活性剤としてpoly(ethylene glycol)4−nonylphenyl 3−sulfopropyl ether(以下、PNSEと記載することがある)を添加した反応液でのリアルタイムPCRの結果を示す図である。In Example 1, it is a figure which shows the result of the real-time PCR in the reaction liquid which added poly (ethylene glycol) 4-nonylphenyl 3-sulfopropyl ether (it may be described as PNSE below) as a surfactant. 実施例2における、SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using SYBR (registered trademark) Premix Ex Taq II (Tli RNaseH Plus) in Example 2. 実施例2における、SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)にSYBR(登録商標) GreenIの追加とTriton(登録商標) X−100の添加を行った反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。In Example 2, real-time PCR using a reaction solution in which SYBR (registered trademark) Green I was added to SYBR (registered trademark) Premix Ex Taq II (Tli RNase H Plus) and Triton (registered trademark) X-100 was added. It is a figure which shows the result of melting curve analysis. 実施例2における、SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)にSYBR(登録商標) GreenIの追加とTween(登録商標) 20の添加を行った反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。In Example 2, SYBR (registered trademark) Premix Ex Taq II (Tli RNase H Plus) was added to SYBR (registered trademark) Green I and Tween (registered trademark) 20 was used for melting in real-time PCR. It is a figure which shows the result of a curve analysis. 実施例2における、SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)にSYBR(登録商標) GreenIの追加とNonidet(登録商標) P−40の添加を行った反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。In Example 2, real-time PCR using a reaction solution in which SYBR (registered trademark) Green I was added to SYBR (registered trademark) Premix Ex Taq II (Tli RNase H Plus) and Nonidet (registered trademark) P-40 was added. It is a figure which shows the result of melting curve analysis. 実施例2における、SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)にSYBR(登録商標) GreenIの追加とPNSEの添加を行った反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。The results of melting curve analysis in real-time PCR using the reaction solution in which SYBR (registered trademark) Green I was added to SYBR (registered trademark) Premix Ex Taq II (Tli RNase H Plus) and PNSE were added in Example 2 were shown. FIG. 実施例3における、1×濃度のSYBR(登録商標) GreenIを含む反応液を用いたリアルタイムPCRにより得られたCt値を示す図である。図12において、縦軸はCt値を、横軸は反応液中のPNSEの濃度を示す。In Example 3, it is a figure which shows Ct value obtained by real-time PCR using the reaction liquid containing SYBR (trademark) GreenI of 1x density | concentration. In FIG. 12, the vertical axis represents the Ct value, and the horizontal axis represents the concentration of PNSE in the reaction solution. 実施例3における、2×濃度のSYBR(登録商標) GreenIを含む反応液を用いたリアルタイムPCRにより得られたCt値を示す図である。図13において、縦軸はCt値を、横軸は反応液中のPNSEの濃度を示す。In Example 3, it is a figure which shows Ct value obtained by real-time PCR using the reaction liquid containing 2 * density | concentration SYBR (trademark) GreenI. In FIG. 13, the vertical axis indicates the Ct value, and the horizontal axis indicates the concentration of PNSE in the reaction solution. 実施例3における、3×濃度のSYBR(登録商標) GreenIを含む反応液を用いたリアルタイムPCRにより得られたCt値を示す図である。図14において、縦軸はCt値を、横軸は反応液中のPNSEの濃度を示す。In Example 3, it is a figure which shows Ct value obtained by real-time PCR using the reaction liquid containing SYBR (trademark) GreenI of 3x density | concentration. In FIG. 14, the vertical axis indicates the Ct value, and the horizontal axis indicates the PNSE concentration in the reaction solution. 実施例3における、4×濃度のSYBR(登録商標) GreenIを含む反応液を用いたリアルタイムPCRにより得られたCt値を示す図である。図15において、縦軸はCt値を、横軸は反応液中のPNSEの濃度を示す。It is a figure which shows Ct value obtained by real-time PCR using the reaction liquid containing SYBR (trademark) GreenI of 4x density | concentration in Example 3. FIG. In FIG. 15, the vertical axis represents the Ct value, and the horizontal axis represents the concentration of PNSE in the reaction solution. 実施例4における、0.3×濃度のSYBR(登録商標) GreenIを含み、界面活性剤の添加を行わなかった反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which added 0.3x density | concentration SYBR (trademark) GreenI in Example 4, and did not add surfactant. 実施例4における、0.3×濃度のSYBR(登録商標) GreenIを含み、1.5%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which added 0.3% of PNSE in Example 4 and containing SYBR (trademark) GreenI of 0.3x density | concentration. 実施例4における、0.3×濃度のSYBR(登録商標) GreenIを含み、2%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 0.3x density | concentration SYBR (trademark) GreenI and added 2% PNSE in Example 4. FIG. 実施例4における、0.3×濃度のSYBR(登録商標) GreenIを含み、2.5%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 0.3x density | concentration SYBR (trademark) GreenI and added 2.5% PNSE in Example 4. FIG. 実施例4における、0.3×濃度のSYBR(登録商標) GreenIを含み、3%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using 0.3% density | concentration SYBR (trademark) GreenI and the reaction liquid which added 3% of PNSE in Example 4. FIG. 実施例4における、2×濃度のSYBR(登録商標) GreenIを含み、界面活性剤の添加を行わなかった反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図であり、この反応液を用いたリアルタイムPCRでは増幅産物が得られず、融解曲線が得られなかったことを示す図である。FIG. 10 is a diagram showing the results of melting curve analysis by real-time PCR using a reaction solution containing 2 × concentration of SYBR (registered trademark) Green I and having no addition of a surfactant in Example 4. It is a figure which shows that an amplification product was not obtained by real-time PCR using and a melting curve was not obtained. 実施例4における、2×濃度のSYBR(登録商標) GreenIを含み、1.5%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 2% density | concentration SYBR (trademark) GreenI in Example 4, and added 1.5% of PNSE. 実施例4における、2×濃度のSYBR(登録商標) GreenIを含み、2%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 2x concentration SYBR (trademark) GreenI and added 2% PNSE in Example 4. FIG. 実施例4における、2×濃度のSYBR(登録商標) GreenIを含み、2.5%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 2% density | concentration SYBR (trademark) GreenI and added 2.5% of PNSE in Example 4. FIG. 実施例4における、2×濃度のSYBR(登録商標) GreenIを含み、3%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 2% density | concentration SYBR (trademark) GreenI and added 3% PNSE in Example 4. FIG. 実施例4における、3×濃度のSYBR(登録商標) GreenIを含み、界面活性剤の添加を行わなかった反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図であり、この反応液を用いたリアルタイムPCRでは増幅産物が得られず、融解曲線が得られなかったことを示す図である。FIG. 6 is a diagram showing the results of melting curve analysis in real-time PCR using a reaction solution containing 3 × concentration of SYBR (registered trademark) Green I and having no addition of a surfactant in Example 4. It is a figure which shows that an amplification product was not obtained by real-time PCR using and a melting curve was not obtained. 実施例4における、3×濃度のSYBR(登録商標) GreenIを含み、1.5%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 3% density | concentration SYBR (trademark) GreenI in Example 4, and added 1.5% of PNSE. 実施例4における、3×濃度のSYBR(登録商標) GreenIを含み、2%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 3x density | concentration SYBR (trademark) GreenI and added 2% PNSE in Example 4. FIG. 実施例4における、3×濃度のSYBR(登録商標) GreenIを含み、2.5%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis by real-time PCR using the reaction liquid which contains 3% density | concentration SYBR (trademark) GreenI in Example 4, and added 2.5% of PNSE. 実施例4における、3×濃度のSYBR(登録商標) Green Iを含み、3%のPNSEを添加した反応液を用いたリアルタイムPCRでの融解曲線分析の結果を示す図である。It is a figure which shows the result of the melting curve analysis in real-time PCR using the reaction liquid which contains 3% PNSE in Example 4 and 3% density | concentration SYBR (registered trademark) Green I was added.

(1)本発明の組成物
本発明の組成物は、DNA合成反応に供するための組成物であって、(a)DNAポリメラーゼ、(b)鋳型となる核酸、(c)反応緩衝剤、(d)2価の金属イオン、(e)dATP、dTTP、dGTP及びdCTP、(f)少なくとも1種のオリゴヌクレオチドプライマー、(g)インターカレーティング色素、並びに(h)界面活性剤を含む。
(1) Composition of the present invention The composition of the present invention is a composition for use in a DNA synthesis reaction, comprising (a) a DNA polymerase, (b) a nucleic acid to be a template, (c) a reaction buffer, d) a divalent metal ion, (e) dATP, dTTP, dGTP and dCTP, (f) at least one oligonucleotide primer, (g) an intercalating dye, and (h) a surfactant.

本発明の組成物を用いたDNA合成反応では、インターカレーティング色素によるDNA合成反応の阻害が、界面活性剤によって軽減又は解消される。このため本発明の組成物は、特にインターカレーティング色素を用いたリアルタイムPCRや、高解像度融解曲線(HRM)解析に適している。   In the DNA synthesis reaction using the composition of the present invention, the inhibition of the DNA synthesis reaction by the intercalating dye is reduced or eliminated by the surfactant. Therefore, the composition of the present invention is particularly suitable for real-time PCR using an intercalating dye and high-resolution melting curve (HRM) analysis.

前記の本発明に使用されるDNAポリメラーゼは、DNA又はRNAを鋳型としてこれに相補的なDNAを合成する活性を有するものであれば特に限定はない。本発明を特に限定するものではないが、本発明に使用されるDNAポリメラーゼとしては、耐熱性のDNAポリメラーゼが好ましい。このようなDNAポリメラーゼとしては、Thermus属細菌由来DNAポリメラーゼ(Thermus aquaticus由来DNAポリメラーゼ等)や好熱性Bacillus属細菌由来DNAポリメラーゼ(Bacillus caldotenax由来DNAポリメラーゼ等)等の真正細菌由来の耐熱性DNAポリメラーゼ、及びPyrococcus属古細菌由来DNAポリメラーゼ(Pyrococcus sp.由来DNAポリメラーゼ等)やThermococcus属古細菌由来DNAポリメラーゼ(Thermococcus Kodakaraensis由来DNAポリメラーゼ等)等の古細菌由来の耐熱性DNAポリメラーゼが例示される。また、DNAポリメラーゼは、天然由来酵素又は組換体酵素のいずれも本発明に使用でき、DNAポリメラーゼ活性を有する範囲で天然由来のアミノ酸配列に改変が施されたDNAポリメラーゼも本発明に使用できる。   The DNA polymerase used in the present invention is not particularly limited as long as it has an activity of synthesizing DNA complementary to DNA or RNA as a template. Although the present invention is not particularly limited, the DNA polymerase used in the present invention is preferably a heat-resistant DNA polymerase. Examples of such a DNA polymerase include thermostable DNA polymerases derived from authentic bacteria such as DNA polymerases derived from Thermus bacteria (Thermus aquaticus-derived DNA polymerases) and thermophilic Bacillus genus-derived DNA polymerases (Bacillus caldotenax-derived DNA polymerases, etc.), And heat-resistant DNA polymerases derived from archaea such as Pyrococcus archaea-derived DNA polymerase (Pyrococcus sp.-derived DNA polymerase, etc.) and Thermococcus archaea-derived DNA polymerase (Thermococcus Kodakaraensis-derived DNA polymerase etc.). In addition, as the DNA polymerase, either a naturally occurring enzyme or a recombinant enzyme can be used in the present invention, and a DNA polymerase in which a naturally occurring amino acid sequence is modified within a range having DNA polymerase activity can also be used in the present invention.

本発明の組成物には、2種類以上のDNAポリメラーゼが含まれていても良い。2種類以上のDNAポリメラーゼとしては、3´→5´エキソヌクレアーゼ活性を有するDNAポリメラーゼと3´→5´エキソヌクレアーゼ活性を実質的に有さないDNAポリメラーゼとの組み合わせが例示される。なお、このような2種類のDNAポリメラーゼを含む反応液でPCRを行う技術は、LA−PCR(Long and Accurate PCR)として知られている。   The composition of the present invention may contain two or more types of DNA polymerase. Examples of the two or more types of DNA polymerases include a combination of a DNA polymerase having 3 ′ → 5 ′ exonuclease activity and a DNA polymerase having substantially no 3 ′ → 5 ′ exonuclease activity. A technique for performing PCR with a reaction solution containing two kinds of DNA polymerases is known as LA-PCR (Long and Accurate PCR).

本発明の組成物中のDNAポリメラーゼの濃度は、DNA合成反応が実施可能な濃度であれば特に限定はなく、例えばPCRが実施可能な濃度が例示される。Thermus aquaticus由来DNAポリメラーゼを用いて反応液量25μLでPCRを行う場合、反応液中のDNAポリメラーゼの量は0.125〜5U程度にすればよい。なお、本明細書に記載の耐熱性DNAポリメラーゼの活性は、市販の酵素の表示に基づくものであり、例えば、活性化サケ精子DNAを鋳型/プライマーとして用い、活性測定用反応液(25mM TAPS Buffer(pH9.3、25℃)、50mM KCl、2mM MgCl、1mM 2−Mercaptoethanol、各200μM dATP・dGTP・dTTP、100μM [α−32P]dCTP、0.25mg/mL 活性化サケ精子DNA)中にて、74℃において30分間に10nmolの全ヌクレオチドを酸不溶性沈殿物に取り込む活性を1Uとする。 The concentration of the DNA polymerase in the composition of the present invention is not particularly limited as long as it is a concentration at which a DNA synthesis reaction can be performed, and examples thereof include a concentration at which PCR can be performed. When PCR is performed using a Thermus aquaticus-derived DNA polymerase in a reaction solution volume of 25 μL, the amount of DNA polymerase in the reaction solution may be about 0.125 to 5U. The activity of the thermostable DNA polymerase described in the present specification is based on the indication of a commercially available enzyme. For example, activated salmon sperm DNA is used as a template / primer, and an activity measurement reaction solution (25 mM TAPS Buffer) is used. (PH 9.3, 25 ° C.), 50 mM KCl, 2 mM MgCl 2 , 1 mM 2-Mercaptoethanol, 200 μM dATP · dGTP · dTTP, 100 μM [α-32P] dCTP, 0.25 mg / mL activated salmon sperm DNA) Thus, the activity of incorporating 10 nmol of all nucleotides into an acid-insoluble precipitate for 30 minutes at 74 ° C. is defined as 1 U.

本発明の組成物に含まれる鋳型となる核酸は、本発明の組成物を用いたDNA合成反応において鋳型となる核酸であれば特に限定はなく、DNAであってもRNAであっても良い。   The nucleic acid used as a template contained in the composition of the present invention is not particularly limited as long as it is a nucleic acid used as a template in a DNA synthesis reaction using the composition of the present invention, and may be DNA or RNA.

本明細書において反応緩衝剤とは、反応溶液の水素イオン濃度(pH)の変動を和らげる作用を持つ化合物又は混合物のことをいう。一般に弱酸とその塩、あるいは弱塩基とその塩の混合溶液は強い緩衝作用を持つので、反応緩衝剤としてpHコントロールの目的で広く用いられている。本発明を特に限定するものではないが、本発明の組成物のpHは、PCRが実施される通常の範囲、例えばpH8.0〜pH9.5の範囲に設定されるのが適当である。   In the present specification, the reaction buffer refers to a compound or a mixture having an action of reducing fluctuations in the hydrogen ion concentration (pH) of a reaction solution. In general, a mixed solution of a weak acid and its salt or a weak base and its salt has a strong buffering action, and is therefore widely used as a reaction buffer for the purpose of pH control. Although the present invention is not particularly limited, it is appropriate that the pH of the composition of the present invention is set in a normal range in which PCR is performed, for example, in the range of pH 8.0 to pH 9.5.

本発明の組成物に含まれる2価の金属イオンとしては、マグネシウムイオン、マンガンイオン、及びコバルトイオンが例示される。各DNAポリメラーゼに適する2価の金属イオンとその濃度は、当該分野で知られている。2価の金属イオンは塩化物、硫酸塩、又は酢酸塩等の塩の形態で供給され得る。本発明を特に限定するものではないが、本発明の組成物中の2価の金属イオンの濃度としては、例えば0.5〜20mMが例示される。   Examples of the divalent metal ions contained in the composition of the present invention include magnesium ions, manganese ions, and cobalt ions. Suitable divalent metal ions and their concentrations for each DNA polymerase are known in the art. Divalent metal ions can be supplied in the form of salts such as chloride, sulfate, or acetate. Although this invention is not specifically limited, As a density | concentration of the bivalent metal ion in the composition of this invention, 0.5-20 mM is illustrated, for example.

デオキシリボヌクレオチドは、有機塩基に結合したデオキシリボースにホスホエステル結合を介してリン酸基が結合した化合物である。それぞれアデニン、グアニン、シトシン及びチミン塩基を有する4種のデオキシリボヌクレオチドが天然型DNAに見られる。塩基のアデニン、グアニン、シトシン、及びチミンはそれぞれ、A、G、C、及びTと略されることが多い。デオキシリボヌクレオチドは、遊離の一リン酸型、二リン酸型及び三リン酸型(すなわち、リン酸基が、それぞれ、1つ、2つ又は3つのリン酸部分を有する)を含む。また、塩基部分にヒポキサンチンやウラシルを有するデオキシリボヌクレオチド三リン酸も核酸合成反応に使用できることが知られている。本発明には、デオキシリボヌクレオシド三リン酸(例えば、dATP、dCTP、dITP、dGTP及びdTTP)及びそれらの誘導体の少なくとも1種が使用される。本発明の組成物に含まれるデオキシリボヌクレオチド三リン酸としては、好適にはdATP、dCTP、dGTP、及びdTTPの4種類の混合物が例示される。   Deoxyribonucleotide is a compound in which a phosphate group is bonded to deoxyribose bonded to an organic base via a phosphoester bond. Four types of deoxyribonucleotides, each having adenine, guanine, cytosine and thymine bases, are found in natural DNA. The bases adenine, guanine, cytosine, and thymine are often abbreviated as A, G, C, and T, respectively. Deoxyribonucleotides include free monophosphate, diphosphate, and triphosphate types (ie, the phosphate group has one, two, or three phosphate moieties, respectively). It is also known that deoxyribonucleotide triphosphates having hypoxanthine or uracil in the base moiety can also be used for nucleic acid synthesis reactions. In the present invention, at least one of deoxyribonucleoside triphosphates (eg, dATP, dCTP, dITP, dGTP, and dTTP) and derivatives thereof are used. Preferred examples of the deoxyribonucleotide triphosphate contained in the composition of the present invention include four types of mixtures of dATP, dCTP, dGTP, and dTTP.

オリゴヌクレオチドプライマーは、鋳型となる核酸の核酸配列に相補的な配列を有するオリゴヌクレオチドであり、使用される反応条件において鋳型となる核酸に対してアニールするものであれば特に限定されるものではない。プライマーの鎖長は、特異的なアニーリングを行う観点から、好ましくは6ヌクレオチド以上であり、更に好ましくは10ヌクレオチド以上であり、オリゴヌクレオチドの合成の観点から、好ましくは100ヌクレオチド以下であり、更に好ましくは30ヌクレオチド以下である。前記オリゴヌクレオチドは、例えば公知の方法により化学的に合成することができる。また、生物試料由来のオリゴヌクレオチドであっても良く、例えば天然の試料より調製したDNAの制限エンドヌクレアーゼ消化物から単離して作製しても良い。   The oligonucleotide primer is an oligonucleotide having a sequence complementary to the nucleic acid sequence of the template nucleic acid and is not particularly limited as long as it anneals to the template nucleic acid under the reaction conditions used. . The primer chain length is preferably 6 nucleotides or more, more preferably 10 nucleotides or more from the viewpoint of specific annealing, and preferably 100 nucleotides or less, more preferably from the viewpoint of oligonucleotide synthesis. Is 30 nucleotides or less. The oligonucleotide can be chemically synthesized, for example, by a known method. Moreover, it may be an oligonucleotide derived from a biological sample, for example, isolated from a restriction endonuclease digest of DNA prepared from a natural sample.

本明細書においてインターカレーティング色素とは、二本鎖核酸へのインターカレーションにより蛍光が増強される色素のことをいう。ある種のインターカレーティング色素は、PCRを阻害することが知られており、例えばSYBR(登録商標)Green Iは、約1μM(×0.5濃度;製品の20,000倍希釈)以上の濃度で、PCRを強く阻害することが知られている。本発明の組成物は、このようなインターカレーティング色素によるPCRの阻害を軽減又は解消できる。発明におけるインターカレーティング色素としては、PCRを阻害する作用があるインターカレーティング色素であれば特に限定はないが、SYBR(登録商標)Green I、SYTO−60、SYTO−62、POPO−3、TOTO−3、BOBO−3、TO−PRO−3、YO−PRO−1、及びSYTOX Orangeが好適に例示され、中でもSYBR(登録商標)Green Iがより好適に例示される。   In the present specification, an intercalating dye refers to a dye whose fluorescence is enhanced by intercalation into a double-stranded nucleic acid. Certain intercalating dyes are known to inhibit PCR, for example, SYBR® Green I has a concentration of about 1 μM (× 0.5 concentration; 20,000-fold dilution of the product) or higher. Thus, it is known to strongly inhibit PCR. The composition of the present invention can reduce or eliminate the inhibition of PCR by such an intercalating dye. The intercalating dye in the invention is not particularly limited as long as it is an intercalating dye having an action of inhibiting PCR, but SYBR (registered trademark) Green I, SYTO-60, SYTO-62, POPO-3, TOTO. -3, BOBO-3, TO-PRO-3, YO-PRO-1, and SYTOX Orange are preferable, and SYBR (registered trademark) Green I is more preferable.

SYBR(登録商標)Green Iは、ライフテクノロジーズ社から購入可能な非対称シアニン系色素であり、その構造はZipper Hら(“Nucleic Acids Research”、2004年、第32巻、第12号、e103)により明らかにされている。Zipper Hらによれば、ライフテクノロジーズ社より販売されているSYBR(登録商標)Green IのDMSO溶液の10,000倍希釈液(×1濃度)のSYBR(登録商標)Green Iのモル濃度は、約2μMである。   SYBR (registered trademark) Green I is an asymmetric cyanine dye that can be purchased from Life Technologies, and its structure is described by Zipper H et al. ("Nucleic Acids Research", 2004, Vol. 32, No. 12, e103). It has been revealed. According to Zipper H et al., The molar concentration of SYBR (registered trademark) Green I in a 10,000-fold dilution (x1 concentration) of DMSO solution of SYBR (registered trademark) Green I sold by Life Technologies, Inc. is About 2 μM.

本発明の組成物におけるインターカレーティング色素の濃度としては、より解像度が高い融解曲線分析のため、あるいはより高い蛍光強度を得るために、好ましくは2μM(1×濃度)以上、より好ましくは2μM(1×濃度)〜8μM(4×濃度)、より好ましくは3μM(1.5×濃度)〜8μM(4×濃度)、さらにより好ましくは4μM(2×濃度)〜8μM(4×濃度)が例示される。   The concentration of the intercalating dye in the composition of the present invention is preferably 2 μM (1 × concentration) or more, more preferably 2 μM (for concentration curve analysis with higher resolution or higher fluorescence intensity). 1 × concentration) to 8 μM (4 × concentration), more preferably 3 μM (1.5 × concentration) to 8 μM (4 × concentration), even more preferably 4 μM (2 × concentration) to 8 μM (4 × concentration). Is done.

本発明の組成物に含まれる界面活性剤は、インターカレーティング色素によるDNA合成反応の阻害を軽減又は解消可能なものであれば特に限定はないが、Triton(登録商標) X−100(Polyoxyethylene(10) octylphenyl ether)、Tween(登録商標) 20(Polyoxyethylene Sorbitan Monolaurate)、及びNonidet(登録商標) P−40(Octylphenyl−polyethylene glycol)等の非イオン性界面活性剤、poly(ethylene glycol)4−nonylphenyl 3−sulfopropyl ether(PNSE)等の陰イオン性界面活性剤、塩化ジステアリルジメチルアンモニウム等の陽イオン性界面活性剤、及びコカミドプロピルベタイン等の両性界面活性剤が例示され、そのうちTriton(登録商標) X−100、Tween(登録商標) 20、Nonidet(登録商標) P−40、及び
poly(ethylene glycol)4−nonylphenyl 3−sulfopropyl etherが好適に例示され、中でもpoly(ethylene glycol)4−nonylphenyl 3−sulfopropyl etherがより好適に例示される。
The surfactant contained in the composition of the present invention is not particularly limited as long as the inhibition of the DNA synthesis reaction by the intercalating dye can be reduced or eliminated, but Triton (registered trademark) X-100 (Polyoxyethylene ( 10) Non-ionic agents such as octylphenyl ether), Tween (registered trademark) 20 (Polyoxyethylene Sorbitan Monochlorate), and Nonidet (registered trademark) P-40 (Octylphenyl-polyethylene glycol). Anionic surfactants such as 3-sulfopropyl ether (PNSE), distearyldimethylammonium chloride, etc. Examples include ionic surfactants and amphoteric surfactants such as cocamidopropyl betaine, of which Triton® X-100, Tween® 20, Nonidet® P-40, and poly ( Ethylene glycol) 4-nonylphenyl 3-sulfopropyl ether is preferably exemplified, and poly (ethyl glycol) 4-nonylphenyl 3-sulfopropyl ether is more preferably exemplified.

本発明の組成物に含まれる界面活性剤の濃度としては、インターカレーティング色素によるDNA合成反応の阻害を軽減又は解消することが可能な濃度であれば特に限定はないが、例えば0.2容量%以上、好ましくは0.4容量%以上、より好ましくは0.8容量%以上、さらにより好ましくは0.8容量%〜3.2容量%が例示される。   The concentration of the surfactant contained in the composition of the present invention is not particularly limited as long as it can reduce or eliminate the inhibition of the DNA synthesis reaction by the intercalating dye. % Or more, preferably 0.4% by volume or more, more preferably 0.8% by volume or more, and still more preferably 0.8% by volume to 3.2% by volume.

(2)本発明のDNA合成方法
本発明のDNA合成方法は、本発明の組成物をDNA合成反応に供することにより行われる。本発明のDNA合成方法は、インターカレーティング色素によるDNA合成反応の阻害が軽減又は解消される組成物を用いるため、特にインターカレーティング色素を用いた定量的なDNA増幅反応に有用である。
(2) DNA synthesis method of the present invention The DNA synthesis method of the present invention is carried out by subjecting the composition of the present invention to a DNA synthesis reaction. The DNA synthesis method of the present invention is particularly useful for a quantitative DNA amplification reaction using an intercalating dye because it uses a composition that reduces or eliminates inhibition of the DNA synthesis reaction by the intercalating dye.

本発明のDNA合成方法としては、DNA又はRNAを鋳型としてこれに相補的なDNAを合成する反応を利用すればよく、このようなDNA合成反応としては、プライマー伸長反応、逆転写反応、PCR、逆転写ポリメラーゼ連鎖反応(RT−PCR)、ICAN法、LAMP法、SDA法等の当分野で周知のDNA合成反応が例示され、好適にはPCRが利用できる。本発明のDNA合成方法にPCRを利用する場合、PCRの温度サイクル条件としては一般的な条件が適用できる。例えば、二本鎖鋳型DNAの一本鎖への解離(変性)、一本鎖鋳型DNAへのプライマーのアニーリング、プライマーからの相補鎖合成(伸長)の3つのステップからなる反応により、又は「シャトルPCR」[『PCR法最前線』、「蛋白質核酸 酵素」別冊、第41巻、第5号、425頁〜428頁(1996)]と呼ばれる、前述の3ステップ反応のうちプライマーのアニーリング及び伸長のステップを同一温度で行なう2ステップ反応によりPCRが実施される。   As a DNA synthesis method of the present invention, a reaction of synthesizing DNA complementary to DNA or RNA as a template may be used. Examples of such DNA synthesis reaction include primer extension reaction, reverse transcription reaction, PCR, Well-known DNA synthesis reactions such as reverse transcription polymerase chain reaction (RT-PCR), ICAN method, LAMP method, SDA method and the like are exemplified, and PCR can be preferably used. When PCR is used in the DNA synthesis method of the present invention, general conditions can be applied as PCR temperature cycle conditions. For example, by a reaction comprising three steps of dissociation (denaturation) of a double-stranded template DNA into a single strand, annealing of a primer to the single-stranded template DNA, and synthesis of a complementary strand from the primer (extension), or “shuttle PCR "[" PCR Method Front Line "," Protein Nucleic Acid Enzyme ", Vol. 41, No. 5, pp. 425-428 (1996)] PCR is performed by a two-step reaction in which steps are performed at the same temperature.

本発明のDNA合成方法においては、DNA合成の過程をインターカレーティング色素
の蛍光によりモニタリングしてもよい。DNA合成過程のモニタリングには、市販のリアルタイムPCR用装置、例えばThermal Cycler Dice(登録商標) Real Time System(タカラバイオ社製)を用いればよい。
In the DNA synthesis method of the present invention, the DNA synthesis process may be monitored by the fluorescence of an intercalating dye. For monitoring the DNA synthesis process, a commercially available real-time PCR device, for example, Thermal Cycler Dice (registered trademark) Real Time System (manufactured by Takara Bio Inc.) may be used.

(3)本発明の遺伝子型の決定方法
本発明の遺伝子型の決定方法は、(A)本発明の組成物を用いて二本鎖DNAを増幅する工程、(B)増幅された二本鎖DNAを融解して融解曲線を作成する工程、及び(C)融解曲線から遺伝子型を同定する工程を含む。本発明の遺伝子型の決定方法の典型例は、PCR−HRM解析である。本発明の遺伝子型の決定方法は、安価なSYBR(登録商標) Green I等をインターカレーティング色素として利用できるため、HRM解析用として一般的なLCGreen、SYTO9、又はEvaGreen等の高価なインターカレーティング色素を用いる遺伝子型の決定方法と比べて、経済的である。本発明の遺伝子型の決定方法には、あるサンプルについて既知のSNPs等の多型を決定する方法、未知のSNPs等を探索する方法、あるサンプルについてのDNAメチル化の有無を決定する方法、及びDNAメチル化のスクリーニング方法が含まれる。
(3) Method for determining genotype of the present invention The method for determining genotype of the present invention comprises (A) a step of amplifying double-stranded DNA using the composition of the present invention, and (B) an amplified double strand. Melting a DNA to prepare a melting curve, and (C) identifying a genotype from the melting curve. A typical example of the genotype determination method of the present invention is PCR-HRM analysis. In the genotype determination method of the present invention, since inexpensive SYBR (registered trademark) Green I or the like can be used as an intercalating dye, expensive intercalating such as general LCGreen, SYTO9, or EvaGreen for HRM analysis. Compared to genotype determination methods using pigments, it is economical. The genotype determination method of the present invention includes a method for determining polymorphisms such as known SNPs for a sample, a method for searching for unknown SNPs, etc., a method for determining the presence or absence of DNA methylation for a sample, and Methods for screening for DNA methylation are included.

本発明の遺伝子型の決定方法における工程(A)の本発明の組成物を用いて二本鎖DNAを増幅する工程は、前記の「(2)本発明のDNA合成方法」において例示されたDNAの合成方法を用いて実施することができ、好適にはPCRによって実施できる。   The step of amplifying double-stranded DNA using the composition of the present invention in the step (A) in the genotyping method of the present invention is the DNA exemplified in the above “(2) DNA synthesis method of the present invention”. The synthesis method can be used, and preferably by PCR.

工程(B)の増幅された二本鎖DNAを融解して融解曲線を作成する工程は、工程(A)によって増幅された二本鎖DNAの温度上昇に伴う融解の過程をインターカレーティング色素由来の蛍光シグナルによってモニタリングし、温度に対して蛍光強度をプロットすることにより実施される。上記の工程(A)によって増幅された二本鎖DNAは、増幅反応後に熱変性と二本鎖DNAの形成の工程を経て得られた二本鎖DNAであってもよい。例えば、工程(A)をPCRにより実施する場合、PCR後の反応液、又はPCR後に熱変性と徐冷を行ったPCR反応液の温度を徐々に上昇させ、この間にインターカレーティング色素に由来する蛍光シグナルの強度を測定し、測定された蛍光強度を温度に対してプロットすればよい。また、融解曲線は、遺伝子型の決定が容易になるように、例えば温度に対して蛍光強度の一次微分の負の値をプロットして作成してもよい。   The step of melting the double-stranded DNA amplified in step (B) to create a melting curve is derived from an intercalating dye derived from the melting process accompanying the temperature increase of the double-stranded DNA amplified in step (A). This is performed by monitoring the fluorescence signal and plotting the fluorescence intensity against temperature. The double-stranded DNA amplified by the above step (A) may be a double-stranded DNA obtained through the steps of heat denaturation and double-stranded DNA formation after the amplification reaction. For example, when the step (A) is performed by PCR, the temperature of the reaction solution after PCR or the PCR reaction solution that has been subjected to thermal denaturation and slow cooling after PCR is gradually raised, and this is derived from the intercalating dye during this time. What is necessary is just to measure the intensity | strength of a fluorescence signal and to plot the measured fluorescence intensity with respect to temperature. Further, the melting curve may be created by plotting a negative value of the first derivative of the fluorescence intensity with respect to the temperature, for example, so that the genotype can be easily determined.

工程(C)の融解曲線から遺伝子型を同定する工程は、例えば遺伝子型を同定しようとする試料を鋳型に増幅された二本鎖DNAを用いて工程(B)により作成した融解曲線を、核酸配列を確認済みの対照を鋳型にした場合の融解曲線と比較し、その差を識別することによって実施される。   The step of identifying the genotype from the melting curve of the step (C) is performed by, for example, using the double-stranded DNA amplified using the sample whose genotype is to be identified as a template, This is done by comparing the sequence to a melting curve using a confirmed control as a template and identifying the difference.

上記の工程(B)と工程(C)による融解曲線解析は、例えばReed GH et al.(Clinical Chemistry 2004年 Oct、第50巻、第10号、p1748−54.)に記載の方法に従って行うことができる。また、解析装置として、例えば、HRM解析装置として知られているLightScanner(IdahoTechnology社製)やLightCycler 480(Roche社製)を用いて行うことができる。   Melting curve analysis by the above steps (B) and (C) can be performed by, for example, Reed GH et al. (Clinical Chemistry 2004 Oct, Vol. 50, No. 10, p1748-54.). Moreover, as an analysis apparatus, it can carry out using LightScanner (made by IdahoTechnology company) and LightCycler 480 (made by Roche company) known as an HRM analyzer, for example.

以下に本発明を実施例により具体的に説明するが、本発明の範囲はこれら実施例に限定されるものではない。以下、特段の記載がない%は、全て容量%を示す。   EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to these examples. Hereinafter, “%” unless otherwise specified indicates “% by volume”.

実施例1 インターカレーティング色素によるPCR阻害の界面活性剤による軽減
SYBR(登録商標) Premix Ex Taq (Tli RNaseH Plus)(タカラバイオ社製)の標準の反応液組成にさらにSYBR(登録商標) Green Iを加えたPCR反応液を用いて、インターカレーティング色素によるPCR阻害と、界面活性剤によるその阻害の抑制効果について評価した。界面活性剤としては、Triton(登録商標) X−100、Tween(登録商標) 20、Octyl−S−Glucoside、Nonidet(登録商標) P−40、及びpoly(ethylene glycol)4−nonylphenyl 3−sulfopropyl ether(以下、PNSE)を使用した。PCRの鋳型としては、500ngのHuman HL60 cell Total RNAを鋳型にPrimeScript(登録商標) RT reagent Kit (Perfect Real Time)(タカラバイオ社製)を用いた逆転写反応によって得られたcDNAのうち、10pg RNA相当量を用いた。プライマー対としては、Actin beta cDNA領域の381bpの領域を標的配列とする、配列表の配列番号:1の核酸配列からなるプライマー、及び配列表の配列番号:2の核酸配列からなるプライマーを用いた。
Example 1 Mitigation of PCR inhibition by intercalating dye with surfactant SYBR (registered trademark) Premix Ex Taq (Tli RNaseH Plus) (manufactured by Takara Bio Inc.) and SYBR (registered trademark) Green I Using the PCR reaction solution with the addition of, the PCR inhibition by the intercalating dye and the inhibitory effect of the inhibition by the surfactant were evaluated. As surfactants, Triton (registered trademark) X-100, Tween (registered trademark) 20, Octyl-S-Glucoside, Nonidet (registered trademark) P-40, and poly (ethyleneglycol) 4-nonylphenyl 3-sulfopropyl ether. (Hereinafter referred to as PNSE) was used. As a PCR template, 10 pg of cDNA obtained by reverse transcription reaction using PrimeScript (registered trademark) RT reagent Kit (Perfect Real Time) (manufactured by Takara Bio Inc.) using 500 ng Human HL60 cell Total RNA as a template. RNA equivalents were used. As a primer pair, a primer consisting of the nucleic acid sequence of SEQ ID NO: 1 in the sequence listing, and a primer consisting of the nucleic acid sequence of SEQ ID NO: 2 in the sequence listing, which uses the 381 bp region of the Actin beta cDNA region as the target sequence, were used. .

SYBR(登録商標) Premix Ex Taq (Tli RNaseH Plus)にSYBR(登録商標) Green Iを追加しないPCR反応液として、10pg RNA相当量のcDNA、0.2μM eachのプライマー、1x SYBR(登録商標) Premix Ex Taq (Tli RNaseH Plus)(タカラバイオ社製)、及び0.6%の各種界面活性剤を含む25μLの反応液、並びに界面活性剤を添加しない以外は上記と同様の組成の25μLの反応液(計6種類)を、氷上にて調製した。また、上記と同様の反応液組成に加え、さらに0.3x濃度に相当する SYBR(登録商標) Green I(3x SYBR(登録商標) Green I溶液を反応液25μL当たり2.5μL使用)、又は0.6x濃度に相当するSYBR(登録商標) Green I(6x SYBR(登録商標) Green I溶液を反応液25μL当たり2.5μL使用)を含む25μLの反応液を調製した(計12種類)。次に、これらのPCR反応液を、95℃、30secの初期変性を行った後に、95℃、5秒〜60℃、30秒を1サイクルとする40サイクルのリアルタイムPCRに供した。なお、上記のリアルタイムPCRには、反応装置としてThermal Cycler Dice(登録商標) Real Time System (タカラバイオ社製)を用いた。   As a PCR reaction solution in which SYBR (registered trademark) Green I is not added to SYBR (registered trademark) Premix Ex Taq (Tli RNase H Plus), cDNA equivalent to 10 pg RNA, primer of 0.2 μM reach, 1 × SYBR (registered trademark) Premix Ex Taq (Tli RNaseH Plus) (manufactured by Takara Bio Inc.), 25 μL of a reaction solution containing 0.6% of various surfactants, and 25 μL of a reaction solution having the same composition as above except that no surfactant is added (6 types in total) were prepared on ice. In addition to the same reaction solution composition as described above, SYBR (registered trademark) Green I corresponding to a concentration of 0.3x (2.5 μL of 3x SYBR (registered trademark) Green I solution is used per 25 μL of the reaction solution), or 0 25 μL of reaction solutions containing SYBR (registered trademark) Green I corresponding to 6 × concentration (using 2.5 μL of 6 × SYBR (registered trademark) Green I solution per 25 μL of reaction solution) were prepared (total 12 types). Next, these PCR reaction solutions were subjected to initial denaturation at 95 ° C. for 30 seconds, and then subjected to 40 cycles of real-time PCR with 95 ° C., 5 seconds to 60 ° C. for 30 seconds as one cycle. In the above real-time PCR, Thermal Cycler Dice (registered trademark) Real Time System (manufactured by Takara Bio Inc.) was used as a reaction apparatus.

各反応液の増幅産物をモニタリングした結果を図1〜6に示す。その結果、界面活性剤を未添加の場合には、0.3x、又は0.6x濃度に相当する量のSYBR(登録商標) Green Iを追加した反応液においてCt値がかなり遅れていたのに対し、各種界面活性剤を添加した場合には、増幅産物が確認できなかったOctyl S−glucosideを添加した反応液を除いて、Ct値が遅れることなく良好な反応性を示した。このことは、界面活性剤の添加によって、SYBR(登録商標) Green Iに基因するPCR阻害効果が軽減又は解消されたことを示す。   The results of monitoring the amplification product of each reaction solution are shown in FIGS. As a result, when the surfactant was not added, the Ct value was considerably delayed in the reaction solution to which SYBR (registered trademark) Green I was added in an amount corresponding to 0.3x or 0.6x concentration. On the other hand, when various surfactants were added, good reactivity was exhibited without delay in the Ct value except for the reaction solution added with Octyl S-glucoside, in which no amplification product could be confirmed. This indicates that the PCR inhibitory effect due to SYBR (registered trademark) Green I was reduced or eliminated by the addition of the surfactant.

本実施例により、インターカレーティング色素によるPCR阻害は、界面活性剤によって軽減又は解消することが可能であり、従来は困難と考えられていた高濃度のSYBR(登録商標) Green I存在下でのPCRが可能であることが示された。   According to this example, PCR inhibition by an intercalating dye can be reduced or eliminated by a surfactant, and in the presence of a high concentration of SYBR (registered trademark) Green I, which was conventionally considered difficult. It was shown that PCR is possible.

実施例2 SYBR(登録商標) Green Iを用いたHRM解析
実施例1で高濃度のSYBR(登録商標) Green I存在下でのPCRが可能であることが示されたことにより、SYBR(登録商標) Green Iを用いてPCRから融解曲線分析までを閉管(closed−tube)で行うHRM解析(High−resolution melting analysis)が可能であると考えた。そこで、SYBR(登録商標) Green Iを用いたHRM解析について試験した。
Example 2 HRM analysis using SYBR (registered trademark) Green I It was shown in Example 1 that PCR in the presence of a high concentration of SYBR (registered trademark) Green I is possible. ) It was considered that HRM analysis (High-resolution melting analysis) in which the process from PCR to melting curve analysis was performed using Green I in a closed-tube is possible. Therefore, HRM analysis using SYBR (registered trademark) Green I was tested.

MeltDoctor HRM Positive Control Kit (Applied Biosystems社製)に含まれるAA、AG、GGのalleleを持つ鋳型溶液(20x template)、及びプライマー混合液(20x primer)を用い、SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)(タカラバイオ社製)の標準の反応液組成に加えて各種界面活性剤を添加し、さらにSYBR(登録商標) Green Iを追加した反応液を用いて、HRM解析を行った。PCR反応液としては、各鋳型について、1x濃度の鋳型、1x濃度のプライマー混合液、1x SYBR(登録商標) Premix Ex Taq II (Tli RNaseH Plus)、0.75x濃度に相当するSYBR(登録商標) Green I(6x SYBR(登録商標) Green Iを反応液20μL当たり2.5μL使用))、0.9%のTriton(登録商標) X−100、Tween(登録商標) 20、若しくはNonidet(登録商標) P−40、又は1.2%のPNSEを含む25μLの反応液を計12種類、氷上にて調製した。また、対照として、界面活性剤の添加とSYBR(登録商標) Green I(Invitrogen社製)の追加をしない以外は、上記と同様の組成を持つ反応液20μLを計3種類、氷上にて調製した。次に、これらのPCR反応液を、95℃、30secの初期変性を行った後に、95℃、5秒〜60℃、30秒を1サイクルとする40サイクルのリアルタイムPCRに供した。リアルタイムPCR終了後、95℃、60秒〜40℃、60秒〜60℃、1秒の反応の後、95℃まで0.02℃/secのスロープ設定で加熱してDNAの融解反応を行った。なお、上記のリアルタイムPCR、及び融解反応には、反応装置としてLightCycler 480(Roche社製)を用いた。   SYBR (Registered Trademark) II Prix using a template solution (20x primer) having AA, AG, and GG allele included in Melt Doctor HRM Positive Control Kit (Applied Biosystems) and primer mixture (20x primer) In addition to the standard reaction solution composition of (Tli RNase H Plus) (manufactured by Takara Bio Inc.), various surfactants were added, and HRM analysis was performed using a reaction solution to which SYBR (registered trademark) Green I was further added. . As a PCR reaction solution, for each template, 1 × concentration template, 1 × concentration primer mixed solution, 1 × SYBR (registered trademark) Premix Ex Taq II (Tli RNaseH Plus), SYBR (registered trademark) corresponding to 0.75 × concentration. Green I (6x SYBR® Green I used 2.5 μL per 20 μL reaction)), 0.9% Triton® X-100, Tween® 20, or Nonidet® A total of 12 types of 25 μL reaction solutions containing P-40 or 1.2% PNSE were prepared on ice. In addition, as a control, a total of 20 types of reaction solutions having the same composition as described above were prepared on ice except that a surfactant was not added and SYBR (registered trademark) Green I (manufactured by Invitrogen) was not added. . Next, these PCR reaction solutions were subjected to initial denaturation at 95 ° C. for 30 seconds, and then subjected to 40 cycles of real-time PCR with 95 ° C., 5 seconds to 60 ° C. for 30 seconds as one cycle. After completion of real-time PCR, the reaction of 95 ° C., 60 seconds to 40 ° C., 60 seconds to 60 ° C., 1 second was performed, and then the DNA was melted by heating to 95 ° C. with a slope setting of 0.02 ° C./sec . Note that LightCycler 480 (Roche) was used as a reaction apparatus for the above-described real-time PCR and melting reaction.

各反応液の融解反応において蛍光強度をモニタリングし、温度に対して蛍光強度の一次微分の負の値をプロットした結果を図7〜11に示す。図7〜11に示される通り、SYBR(登録商標) Green Iを追加していない反応液では、GGホモサンプルを鋳型とした場合の融解曲線とA/Gヘテロサンプルを鋳型とした場合の融解曲線との区別が困難であった。一方、SYBR(登録商標) Green Iを追加した反応液では、融解曲線により各サンプルを区別することが可能であった。また、界面活性剤としてTriton(登録商標) X−100、Tween(登録商標) 20、Nonidet(登録商標) P−40を用いた場合は、Allele A/Gヘテロサンプルを対象とした場合において高温側の融解曲線のピークが低温側の融解曲線のピークに対して高かったが、PNSEを用いた場合は、高温側の融解曲線のピークが低温側の融解曲線のピークとほぼ同等のレベルであった。このことは、界面活性剤としてPNSEを用いた反応液では、融解したDNAから遊離したSYBR(登録商標) Green Iが、より融解温度が高い他の2本鎖DNAにインターカレートし難いことを示す。この結果は、界面活性剤としてPNSEを用いた反応液は、HRM解析における解像度がより高いことを示す。本実施例により、高濃度のインターカレーティング色素、及び当該色素によるPCRの阻害を抑制する界面活性剤を含む反応液によって、HRM解析が可能であることが示された。また、界面活性剤としてPNSEを用いることにより、より高解像度のHRM解析が可能であることが示された。   The fluorescence intensity is monitored in the melting reaction of each reaction solution, and the results of plotting the negative value of the first derivative of the fluorescence intensity against the temperature are shown in FIGS. As shown in FIGS. 7 to 11, in the reaction solution not added with SYBR (registered trademark) Green I, a melting curve when a GG homo sample is used as a template and a melting curve when an A / G hetero sample is used as a template. It was difficult to distinguish it from. On the other hand, in the reaction solution to which SYBR (registered trademark) Green I was added, each sample could be distinguished by a melting curve. In addition, when Triton (registered trademark) X-100, Tween (registered trademark) 20, Nonidet (registered trademark) P-40 is used as a surfactant, the higher temperature side when allele A / G heterosamples are targeted. The melting curve peak was higher than the melting curve peak on the low temperature side, but when PNSE was used, the melting curve peak on the high temperature side was almost the same level as the melting curve peak on the low temperature side. . This means that in a reaction solution using PNSE as a surfactant, SYBR (registered trademark) Green I released from the melted DNA is difficult to intercalate with other double-stranded DNA having a higher melting temperature. Show. This result shows that the reaction solution using PNSE as the surfactant has higher resolution in HRM analysis. This example shows that HRM analysis is possible with a reaction solution containing a high concentration of intercalating dye and a surfactant that suppresses PCR inhibition by the dye. It was also shown that higher resolution HRM analysis is possible by using PNSE as a surfactant.

実施例3 PCR阻害の軽減又は解消に有効な界面活性剤の濃度の確認
インターカレーティング色素としてSYBR(登録商標) Green Iを、界面活性剤としてPNSEを用いて、インターカレーティング色素によるPCR阻害を軽減又は解消するのに有効な界面活性剤の濃度を確認した。PCRの鋳型としては、500ngのHuman HL60 cell Total RNAを鋳型にPrimeScript(登録商標) RT reagent Kit (Perfect Real Time)を用いた逆転写反応によって得られたcDNAのうち、10ng RNA相当量を用いた。プライマー対としては、Actin beta cDNA領域の186bpの領域を標的配列とする配列表の配列番号1の核酸配列からなるプライマー、及び配列表の配列番号3のヌクレオチド配列からなるプライマーを用いた。PCR反応液としては、10ng RNA相当量のcDNA、0.3μM eachのプライマー対、1x LA PCR buffer II(Mg2+ Plus)〔TaKaRa LA Taq (タカラバイオ社製)に添付の10x LA PCR buffer II(Mg2+ Plus)を使用〕、0.4 mM each dNTP、1.25UのTaKaRa Taq DNA polymerase Hot start version(タカラバイオ社製)、1x、2x、3x又は4x濃度のSYBR(登録商標) Green I、及び0%、0.2%、0.4%、0.8%、1.2%、1.6%、2.0%、2.4%、2.8%、又は3.2%濃度のPNSEを含む25μLのPCR反応液を計40種類、氷上にて調製した。また、陰性対照(NTC)として、鋳型及びPNSEを含まない以外は上記と同様の組成の溶液を計4種類、氷上にて調製した。次に、これらのPCR反応液を、95℃、30secの初期変性を行った後に、95℃、5秒〜60℃、30秒を1サイクルとする40サイクルのリアルタイムPCRに供した。なお、上記のリアルタイムPCRには、反応装置としてThermal Cycler Dice(登録商標) Real Time System (タカラバイオ社製)を用いた。
Example 3 Confirmation of concentration of surfactant effective in reducing or eliminating PCR inhibition Using SYBR (registered trademark) Green I as an intercalating dye and PNSE as a surfactant, PCR inhibition by an intercalating dye was performed. The concentration of surfactant effective to reduce or eliminate was confirmed. As a template for PCR, an equivalent amount of 10 ng RNA was used among cDNAs obtained by reverse transcription using PrimeScript (registered trademark) RT reagent Kit (Perfect Real Time) using 500 ng of Human HL60 cell total RNA as a template. . As a primer pair, a primer composed of the nucleic acid sequence of SEQ ID NO: 1 in the sequence listing with the 186 bp region of the Actin beta cDNA region as a target sequence and a primer composed of the nucleotide sequence of SEQ ID NO: 3 in the sequence listing were used. As a PCR reaction solution, 10 ng RNA equivalent amount of cDNA, 0.3 μM each primer pair, 1 × LA PCR buffer II (Mg 2+ Plus) [TaKaRa LA Taq (manufactured by Takara Bio Inc.), 10 × LA PCR buffer II (supplied) Mg 2+ Plus)], 0.4 mM each dNTP, 1.25 U TaKaRa Taq DNA polymerase hot start version (manufactured by Takara Bio Inc.), 1 ×, 2 ×, 3 × or 4 × concentrations of SYBR® Green I, And 0%, 0.2%, 0.4%, 0.8%, 1.2%, 1.6%, 2.0%, 2.4%, 2.8%, or 3.2% concentration A total of 40 types of 25 μL PCR reaction solutions containing PNSE were prepared on ice. Further, as a negative control (NTC), a total of four types of solutions having the same composition as described above were prepared on ice except that the template and PNSE were not included. Next, these PCR reaction solutions were subjected to initial denaturation at 95 ° C. for 30 seconds, and then subjected to 40 cycles of real-time PCR with 95 ° C., 5 seconds to 60 ° C. for 30 seconds as one cycle. In the above real-time PCR, Thermal Cycler Dice (registered trademark) Real Time System (manufactured by Takara Bio Inc.) was used as a reaction apparatus.

各反応液の増幅産物をモニタリングして算出したCt値を図12〜15に示す。図12〜15に示される通り、PNSEを含まない反応液では、試験したいずれのSYBR(登録商標) Green I濃度でも増幅産物が得られなかった。1x濃度(約2μM)のSYBR(登録商標) Green Iを含む反応液での反応においては、0.2% PNSE濃度から3.2%のPNSE濃度での反応においてほぼ同等のCt値が得られた。この結果から、0.2%〜3.2%のPNSEを含む反応液では、SYBR(登録商標) Green IによるPCRの阻害がほぼ完全に解消されたと推測できる。2x濃度(約4μM)のSYBR(登録商標) Green Iを含む反応液での反応においては、いずれのPNSE濃度でもSYBR(登録商標) Green IによるPCRの阻害が解消されていたが、0.2%のPNSE濃度ではCt値が比較的大きく、ある程度のPCRの阻害が認められた。一方、0.4%から3.2%のPNSE濃度での反応においては、ほぼ同等のCt値が得られた。この結果から、0.4%〜3.2%のPNSEを含む反応液では、SYBR(登録商標) Green IによるPCRの阻害がほぼ完全に解消されたと推測できる。3x濃度(約6μM)のSYBR(登録商標) Green Iを含む反応液での反応においては、いずれのPNSE濃度でもSYBR(登録商標) Green IによるPCRの阻害が解消されていたが、0.2%〜0.4%のPNSE濃度ではCt値が比較的大きく、ある程度のPCRの阻害が認められた。一方、0.8%から3.2%のPNSE濃度での反応においては、ほぼ同等のCt値が得られた。この結果から、0.8%〜3.2%のPNSEを含む反応液では、SYBR(登録商標) Green IによるPCRの阻害がほぼ完全に解消されたと推測できる。4x濃度(約8μM)のSYBR(登録商標) Green Iを含む反応液での反応においては、0.2%のPNSE濃度では、増幅産物が得られなかった。また、0.4% PNSE濃度ではCt値が比較的大きく、ある程度のPCRの阻害が認められた。一方、0.8%から3.2%のPNSE濃度での反応においては、ほぼ同等のCt値が得られた。この結果から、0.8%〜3.2%のPNSEを含む反応液では、SYBR(登録商標) Green IによるPCRの阻害がほぼ完全に解消されたと推測できる。   Ct values calculated by monitoring the amplification product of each reaction solution are shown in FIGS. As shown in FIGS. 12 to 15, no amplification product was obtained in any of the tested SYBR (registered trademark) Green I concentrations in the reaction solution not containing PNSE. In a reaction with a reaction solution containing 1 × concentration (about 2 μM) of SYBR (registered trademark) Green I, almost the same Ct value is obtained in a reaction from a 0.2% PNSE concentration to a 3.2% PNSE concentration. It was. From this result, it can be presumed that PCR inhibition by SYBR (registered trademark) Green I was almost completely eliminated in the reaction solution containing 0.2% to 3.2% PNSE. In the reaction with the reaction solution containing 2 × concentration (about 4 μM) of SYBR (registered trademark) Green I, PCR inhibition by SYBR (registered trademark) Green I was eliminated at any PNSE concentration. At a PNSE concentration of%, the Ct value was relatively large and some inhibition of PCR was observed. On the other hand, almost the same Ct value was obtained in the reaction at a PNSE concentration of 0.4% to 3.2%. From this result, it can be inferred that PCR reaction by SYBR (registered trademark) Green I was almost completely eliminated in the reaction solution containing 0.4% to 3.2% PNSE. In the reaction with the reaction solution containing 3 × concentration (about 6 μM) of SYBR (registered trademark) Green I, PCR inhibition by SYBR (registered trademark) Green I was eliminated at any PNSE concentration, but 0.2 Ct values were relatively large at PNSE concentrations from% to 0.4%, and some inhibition of PCR was observed. On the other hand, almost the same Ct value was obtained in the reaction at a PNSE concentration of 0.8% to 3.2%. From this result, it can be inferred that PCR reaction by SYBR (registered trademark) Green I was almost completely eliminated in the reaction solution containing 0.8% to 3.2% PNSE. In a reaction with a reaction solution containing 4 × concentration (about 8 μM) of SYBR (registered trademark) Green I, no amplification product was obtained at a PNSE concentration of 0.2%. Moreover, Ct value was comparatively large at 0.4% PNSE concentration, and some inhibition of PCR was recognized. On the other hand, almost the same Ct value was obtained in the reaction at a PNSE concentration of 0.8% to 3.2%. From this result, it can be inferred that PCR reaction by SYBR (registered trademark) Green I was almost completely eliminated in the reaction solution containing 0.8% to 3.2% PNSE.

実施例4 HRM解析に適したインターカレーティング色素濃度及び界面活性剤濃度の検討
(1)鋳型DNAの調製
100ng Human HL60 genomeを鋳型に、配列表の配列番号4の核酸配列からなるプライマー及び配列表の配列番号5の核酸配列からなるプライマーを用いて、252bpのTP53a遺伝子領域(配列番号10)からなるDNA断片をPCR増幅した。次に、得られた増幅産物をT−Vector pMD19 (Simple) (タカラバイオ社製)にクローニングした。こうして得られたプラスミドDNAを、pMD19−Simple−TP53G(配列番号11)とした。
Example 4 Examination of Intercalating Dye Concentration and Surfactant Concentration Suitable for HRM Analysis (1) Preparation of Template DNA Primer and Sequence Listing Comprising the Nucleic Acid Sequence of SEQ ID NO: 4 in Sequence Listing Using 100 ng Human HL60 Genome as a Template A DNA fragment consisting of a 252 bp TP53a gene region (SEQ ID NO: 10) was PCR amplified using a primer consisting of the nucleic acid sequence of SEQ ID NO: 5. Next, the obtained amplification product was cloned into T-Vector pMD19 (Simple) (manufactured by Takara Bio Inc.). The plasmid DNA thus obtained was designated as pMD19-Simple-TP53G (SEQ ID NO: 11).

10pgのpMD19−Simple−TP53Gを鋳型にPrimeSTAR(登録商標) Mutagenesis Basal Kit(タカラバイオ社製)を用いて、TP53a内部配列のGをCに変換(配列番号11に記載の塩基配列における2360番目のGをCに変換)した。こうして得られたプラスミドDNAを、pMD19−Simple−TP53Cとした。   Using 10 pg of pMD19-Simple-TP53G as a template, PrimeSTAR (registered trademark) Mutagenesis Basal Kit (manufactured by Takara Bio Inc.) was used to convert G of TP53a internal sequence to C (the 2360th position in the nucleotide sequence described in SEQ ID NO: 11) G was converted to C). The plasmid DNA thus obtained was designated as pMD19-Simple-TP53C.

(2)HRM解析
pMD19−Simple−TP53GとpMD19−Simple−TP53Cとを鋳型として用い、TP53a遺伝子領域の99bp領域を標的配列としたHRMリアルタイムPCRにより、HRM解析に適したインターカレーティング色素濃度及び界面活性剤濃度を検討した。上記のTP53a遺伝子領域の99bp領域は、上記の2つのプラスミド間で互いに異なる1塩基が存在する核酸配列を含む。本実施例では、pMD19−Simple−TP53Gのみを鋳型とした場合をGGアレル、pMD19−Simple−TP53Cのみを鋳型とした場合をCCアレル、pMD19−Simple−TP53CとpMD19−Simple−TP53Gを1:1の比率で混合したものを鋳型とした場合をG/Cアレルとした。TP53遺伝子領域の99bpを増幅するためのプライマー対としては、配列表の配列番号:8の核酸配列からなるプライマー、及び配列表の配列番号:9の核酸配列からなるプライマーを用いた。PCR反応液としては、1pgのpMD19−Simple−TP53G、若しくはpMD19−Simple−TP53C、又はそれぞれ0.5pgのpMD19−Simple−TP53GとpMD19−Simple−TP53C、0.4μM eachのプライマー、1x LA PCR buffer II(Mg2+ Plus)〔TaKaRa LA Taq (タカラバイオ社製)に添付の10x LA PCR buffer II(Mg2+ Plus)を使用〕、0.4mM eachのdNTP、1.25UのTaKaRa Taq DNA polymerase Hot start version(タカラバイオ社製)、及び0.3x、2x、又は3x濃度のSYBR(登録商標) Green I、及び、0%、1.5%、2.0%、2.5%、又は3.0%濃度のPNSEを含む25μLの反応液を計35種類、氷上にて調製した。次に、これらのPCR反応液を、95℃、30secの初期変性を行った後に、95℃、5秒〜60℃、30秒を1サイクルとする40サイクルのリアルタイムPCRに供した。リアルタイムPCR後、95℃、60秒〜40℃、60秒〜60℃、1秒の反応の後、95℃まで0.02℃/secのスロープ設定で加熱しDNAの融解反応を行った。なお、上記のリアルタイムPCR、及び融解反応には、反応装置としてLightCycler 480(Roche社製)を用いた。
(2) HRM analysis Intercalating dye concentration and interface suitable for HRM analysis by HRM real-time PCR using pMD19-Simple-TP53G and pMD19-Simple-TP53C as templates and 99bp region of TP53a gene region as target sequence The active agent concentration was examined. The 99 bp region of the TP53a gene region includes a nucleic acid sequence in which one base different from each other exists between the two plasmids. In this example, a case where only pMD19-Simple-TP53G is used as a template is a GG allele, a case where only pMD19-Simple-TP53C is used as a template is a CC allele, and pMD19-Simple-TP53C and pMD19-Simple-TP53G are 1: 1. A G / C allele was obtained when the mixture was used as a template. As a primer pair for amplifying 99 bp of the TP53 gene region, a primer consisting of the nucleic acid sequence of SEQ ID NO: 8 in the sequence listing and a primer consisting of the nucleic acid sequence of SEQ ID NO: 9 in the sequence listing were used. As a PCR reaction solution, 1 pg of pMD19-Simple-TP53G, or pMD19-Simple-TP53C, or 0.5 pg of pMD19-Simple-TP53G and pMD19-Simple-TP53C, 0.4 μM each primer, 1 × LA PCR buffer II (Mg 2+ Plus) (using 10x LA PCR buffer II (Mg 2+ Plus) attached to TaKaRa LA Taq (Takara Bio)), 0.4 mM each dNTP, 1.25 U TaKaRa Taq DNA polymerase Hot start version (manufactured by Takara Bio Inc.) and 0.3x, 2x, or 3x concentrations of SYBR® Green I and 0%, 1.5%, 2.0%, 2.5 , Or the reaction solution a total of 35 kinds of 25μL containing PNSE of 3.0% concentration was prepared on ice. Next, these PCR reaction solutions were subjected to initial denaturation at 95 ° C. for 30 seconds, and then subjected to 40 cycles of real-time PCR with 95 ° C., 5 seconds to 60 ° C. for 30 seconds as one cycle. After the real-time PCR, the reaction of 95 ° C., 60 seconds to 40 ° C., 60 seconds to 60 ° C., and 1 second was performed, and then the DNA was melted by heating to 95 ° C. with a slope setting of 0.02 ° C./sec. Note that LightCycler 480 (Roche) was used as a reaction apparatus for the above-described real-time PCR and melting reaction.

各反応液の融解反応において蛍光強度をモニタリングし、温度に対して蛍光強度の一次微分の負の値をプロットした結果を図16〜30に示す。図16〜30に示される通り、PNSEを含まない反応液での反応においては、0.3x濃度(約0.6μM)のSYBR(登録商標) Green Iの反応液での反応においてのみ、増幅産物が得られた。そして、この増幅産物を融解反応に供して得られた融解曲線では、各アレルを区別することが非常に困難であった。一方、PNSEを含む反応液での反応においては、試験したいずれの条件でも増幅産物が得られた。そして、これらの増幅産物を融解反応に供して得られた融解曲線より、各アレルを区別することが可能であった。また、HRM解析の解像度は、SYBR(登録商標) Green Iの濃度が高いほど高くなる傾向があった。さらには、驚くべきことに、0.3x濃度(約0.6μM)のSYBR(登録商標) Green Iの反応液であってもPNSEを含む場合には、解像度は低いものの、融解曲線により各アレルをある程度区別することが可能であった。   The fluorescence intensity is monitored in the melting reaction of each reaction solution, and the result of plotting the negative value of the first derivative of the fluorescence intensity against the temperature is shown in FIGS. As shown in FIGS. 16 to 30, in the reaction in the reaction solution not containing PNSE, the amplification product is obtained only in the reaction in the reaction solution of SYBR (registered trademark) Green I at a concentration of 0.3 × (about 0.6 μM). was gotten. In the melting curve obtained by subjecting this amplification product to a melting reaction, it is very difficult to distinguish each allele. On the other hand, in the reaction with the reaction solution containing PNSE, an amplification product was obtained under any of the tested conditions. Each allele could be distinguished from the melting curve obtained by subjecting these amplification products to a melting reaction. Further, the resolution of HRM analysis tended to increase as the concentration of SYBR (registered trademark) Green I increased. Furthermore, surprisingly, even when the reaction solution of SYBR (registered trademark) Green I at a concentration of 0.3 × (about 0.6 μM) contains PNSE, although the resolution is low, the melting curve shows each allele. Could be distinguished to some extent.

本発明は、遺伝子工学、生物学、医学、農業等幅広い分野において有用である。   The present invention is useful in a wide range of fields such as genetic engineering, biology, medicine and agriculture.

SEQ ID NO:1 ; Designed PCR primer "hACTB-F".
SEQ ID NO:2 ; Designed PCR primer "hACTB-R381".
SEQ ID NO:3 ; Designed PCR primer "hACTB-R186".
SEQ ID NO:4 ; Designed PCR primer "TP53a_cloning_PCR_01-F".
SEQ ID NO:5 ; Designed PCR primer "TP53a_cloning_PCR_01-R".
SEQ ID NO:6 ; Designed PCR primer "TP53a_MutC_PCR_01-F".
SEQ ID NO:7 ; Designed PCR primer "TP53a_MutC_PCR_01-R".
SEQ ID NO:8 ; Designed PCR primer "TP53a_PCR_01-F".
SEQ ID NO:9 ; Designed PCR primer "TP53a_PCR_01-R".
SEQ ID NO:11 ; Plasmid "pMD19-Simple-TP53G".
SEQ ID NO: 1; Designed PCR primer "hACTB-F".
SEQ ID NO: 2; Designed PCR primer "hACTB-R381".
SEQ ID NO: 3; Designed PCR primer "hACTB-R186".
SEQ ID NO: 4; Designed PCR primer "TP53a_cloning_PCR_01-F".
SEQ ID NO: 5; Designed PCR primer "TP53a_cloning_PCR_01-R".
SEQ ID NO: 6; Designed PCR primer "TP53a_MutC_PCR_01-F".
SEQ ID NO: 7; Designed PCR primer "TP53a_MutC_PCR_01-R".
SEQ ID NO: 8; Designed PCR primer "TP53a_PCR_01-F".
SEQ ID NO: 9; Designed PCR primer "TP53a_PCR_01-R".
SEQ ID NO: 11; Plasmid "pMD19-Simple-TP53G".

Claims (5)

下記(a)〜(h)を含む、DNA合成反応に用いる組成物:
(a)DNAポリメラーゼ;
(b)鋳型となる核酸;
(c)反応緩衝剤;
(d)2価の金属イオン;
(e)少なくとも1種のデオキシリボヌクレオチド;
(f)少なくとも1種のオリゴヌクレオチドプライマー;
(g)最終濃度が2μM以上のSYBR(登録商標) Green I;並びに
(h)最終濃度が0.2容量%以上のpoly(ethylene glycol)4−nonylphenyl 3−sulfopropyl ether(PNSE)
A composition used for a DNA synthesis reaction comprising the following (a) to (h):
(A) DNA polymerase;
(B) a template nucleic acid;
(C) a reaction buffer;
(D) a divalent metal ion;
(E) at least one deoxyribonucleotide;
(F) at least one oligonucleotide primer;
(G) SYBR (registered trademark) Green I having a final concentration of 2 μM or more; and (h) poly (ethyleneglycol) 4-nonylphenyl-3-sulfopropyl ether (PNSE) having a final concentration of 0.2% by volume or more.
最終濃度が4μM以上のSYBR(登録商標) Green Iを含む、請求項1に記載の組成物。 The composition of claim 1 comprising SYBR® Green I at a final concentration of 4 μM or more. 最終濃度が0.8容量%以上のpoly(ethylene glycol)4−nonylphenyl 3−sulfopropyl ether(PNSE)を含む、請求項1に記載の組成物。 The composition according to claim 1, comprising poly (ethyleneglycol) 4-nonylphenyl 3-sulfopropyl ether (PNSE) having a final concentration of 0.8% by volume or more. 請求項1〜のいずれか一項に記載の組成物を調製する工程、及び前記工程で調製した組成物をDNA合成反応に用いる工程、を包含するDNA合成方法。 Claim 1 preparing a composition according to any one of 3, and DNA synthesis method comprising, for use in DNA synthesis reaction composition prepared by the process. 下記工程(A)〜(C)を含む、遺伝子型の決定方法:
(A)請求項に記載のDNA合成方法により二本鎖DNAを増幅する工程;
(B)増幅された二本鎖DNAを融解して融解曲線を作成する工程;及び
(C)融解曲線から遺伝子型を同定する工程。
A genotype determination method including the following steps (A) to (C):
(A) a step of amplifying double-stranded DNA by the DNA synthesis method according to claim 4 ;
(B) melting the amplified double-stranded DNA to create a melting curve; and (C) identifying the genotype from the melting curve.
JP2013103009A 2012-05-17 2013-05-15 Composition for DNA synthesis comprising intercalating dye and surfactant Active JP6300452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103009A JP6300452B2 (en) 2012-05-17 2013-05-15 Composition for DNA synthesis comprising intercalating dye and surfactant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012113771 2012-05-17
JP2012113771 2012-05-17
JP2013103009A JP6300452B2 (en) 2012-05-17 2013-05-15 Composition for DNA synthesis comprising intercalating dye and surfactant

Publications (2)

Publication Number Publication Date
JP2013255489A JP2013255489A (en) 2013-12-26
JP6300452B2 true JP6300452B2 (en) 2018-03-28

Family

ID=49952529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103009A Active JP6300452B2 (en) 2012-05-17 2013-05-15 Composition for DNA synthesis comprising intercalating dye and surfactant

Country Status (1)

Country Link
JP (1) JP6300452B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2069487B1 (en) * 2006-07-25 2014-03-19 Agilent Technologies, Inc. Zwitterionic detergents for the storage and use of dna polymerases
US7846703B2 (en) * 2006-10-02 2010-12-07 Takara Bio Inc. Method for enhancing polymerase activity
US7972828B2 (en) * 2006-12-19 2011-07-05 Sigma-Aldrich Co. Stabilized compositions of thermostable DNA polymerase and anionic or zwitterionic detergent
US8435741B2 (en) * 2007-07-26 2013-05-07 Fujifilm Corporation Isothermal nucleic acid amplification method using surfactant
JP2009136221A (en) * 2007-12-07 2009-06-25 Ebara Jitsugyo Co Ltd Nucleic acid extraction method
US8265879B2 (en) * 2009-04-17 2012-09-11 Roche Molecular Systems, Inc. Determination of single peak melting temperature by PCR analogy and double sigmoid equation
JP2011010618A (en) * 2009-07-03 2011-01-20 Signpost Corp Method for determining affection risk of arteriosclerotic disease of diabetic patient and test agent therefor
JP5713337B2 (en) * 2010-09-15 2015-05-07 博 堀田 Method for evaluating hepatitis C virus strain and use thereof

Also Published As

Publication number Publication date
JP2013255489A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP7318072B2 (en) Methods for variant detection
JP5886755B2 (en) Allele-specific amplification of nucleic acids
JP5624044B2 (en) Improved allele-specific amplification
JP6144697B2 (en) DNA polymerase with improved activity
JP6356694B2 (en) DNA polymerase with improved activity
JP6140182B2 (en) DNA polymerase with improved activity
TWI688656B (en) PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutation
JP6224613B2 (en) DNA polymerase with improved activity
CN104838015B (en) There is the primer of phosphate and base through modification in ApoE gene
JP2015522292A (en) Collaborative primers, probes, and their uses
US20160369330A1 (en) Compositions for improved allele-specific pcr
Kranaster et al. One‐step RNA pathogen detection with reverse transcriptase activity of a mutated thermostable Thermus aquaticus DNA polymerase
JP7160142B2 (en) Nucleic acid amplification reagent and nucleic acid amplification method
JP2017538429A (en) Allele-specific amplification of nucleic acids using blocking oligonucleotides for wild-type suppression
JP6300452B2 (en) Composition for DNA synthesis comprising intercalating dye and surfactant
US11572580B2 (en) Oligonucleotide preservation method
JP4942160B2 (en) Method for isothermal amplification of nucleic acid using RecA protein
JP7306722B2 (en) Primer and its use
Thomas Polymerase chain reaction and its various modifications In: Winter School on Vistas in Marine Biotechnology 5th to 26th October 2010

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250