[go: up one dir, main page]

JP6331822B2 - Positive electrode active material, positive electrode and lithium ion secondary battery - Google Patents

Positive electrode active material, positive electrode and lithium ion secondary battery Download PDF

Info

Publication number
JP6331822B2
JP6331822B2 JP2014149745A JP2014149745A JP6331822B2 JP 6331822 B2 JP6331822 B2 JP 6331822B2 JP 2014149745 A JP2014149745 A JP 2014149745A JP 2014149745 A JP2014149745 A JP 2014149745A JP 6331822 B2 JP6331822 B2 JP 6331822B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014149745A
Other languages
Japanese (ja)
Other versions
JP2016025032A (en
Inventor
友彦 加藤
友彦 加藤
佐野 篤史
篤史 佐野
佐々木 孝
孝 佐々木
樋口 章二
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014149745A priority Critical patent/JP6331822B2/en
Publication of JP2016025032A publication Critical patent/JP2016025032A/en
Application granted granted Critical
Publication of JP6331822B2 publication Critical patent/JP6331822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質、正極及びリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material, a positive electrode, and a lithium ion secondary battery.

従来、リチウムイオン二次電池の正極活物質としてLiCoOやLiNi1/3Mn1/3Co1/3等の層状化合物やLiMn等のスピネル化合物が用いられてきた。近年では、LiFePOに代表されるオリビン型構造の化合物が注目されている。オリビン構造を有する正極材料は高温での熱安定性が高く、安全性が高いことが知られている。しかし、LiFePOを用いたリチウムイオン二次電池は、その平均放電電圧が3.5V程度と低く、エネルギー密度が低くなるという欠点を有する。そのため、高い充放電電圧を実現し得るリン酸系正極材料として、LiCoPOやLiNiPO等が提案されている。しかし、これらの正極材料を用いたリチウムイオン二次電池においても、十分な容量が得られていないのが現状である。 Conventionally, layered compounds such as LiCoO 2 and LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel compounds such as LiMn 2 O 4 have been used as positive electrode active materials for lithium ion secondary batteries. In recent years, compounds having an olivine type structure typified by LiFePO 4 have attracted attention. It is known that a positive electrode material having an olivine structure has high thermal stability at high temperatures and high safety. However, a lithium ion secondary battery using LiFePO 4 has a disadvantage that its average discharge voltage is as low as about 3.5 V and the energy density is low. Therefore, LiCoPO 4 , LiNiPO 4, and the like have been proposed as phosphoric acid-based positive electrode materials that can realize a high charge / discharge voltage. However, the present situation is that a sufficient capacity is not obtained even in lithium ion secondary batteries using these positive electrode materials.

更に、LiMPO型リン酸オリビンに類似する正極活物質として、単位格子中に2個のリチウム原子を有するLiCoSiO等の活物質が提案されている(例えば、特許文献1参照) Further, as a positive electrode active material similar to LiMPO 4 type olivine phosphate, an active material such as Li 2 CoSiO 4 having two lithium atoms in a unit cell has been proposed (for example, see Patent Document 1).

特願2006−167960号公報Japanese Patent Application No. 2006-167960

しかし、上記公報で提案された電池は、平均放電電圧3.5Vと2.5Vの間で自由に容量を設計できるとされるが、放電容量は未だ十分満足できるものではなく、さらに大きな放電容量を示す正極活物質の開発が望まれている。そのため本発明は、平均放電電圧が高く、かつ十分な容量が得られるリチウムイオン二次電池を提供することを課題とする。   However, although it is said that the battery proposed in the above publication can freely design the capacity between the average discharge voltages of 3.5 V and 2.5 V, the discharge capacity is not yet satisfactory and the discharge capacity is even larger. Development of a positive electrode active material exhibiting the above has been desired. Therefore, an object of the present invention is to provide a lithium ion secondary battery having a high average discharge voltage and a sufficient capacity.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、平均放電電圧が高く、かつ十分な容量が得られる正極活物質、正極及びリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and aims to provide a positive electrode active material, a positive electrode, and a lithium ion secondary battery that have a high average discharge voltage and a sufficient capacity. To do.

上記目的を達成するために本発明に係る正極活物質は、一般式Li2−x1−yO(Si1−zGe)O(式中、Mは、Mo、Nb、Ta及びTiからなる群から選ばれる少なくとも1種の元素であり、x、y及びzはそれぞれ、0≦x≦2、0.05≦y≦0.5、0≦z≦0.3の範囲である)で表されるリチウム−バナジウム−シリケート系化合物であることを特徴とする。 Positive electrode active material in accordance with the present invention in order to achieve the above object, the general formula Li 2-x V 1-y M y O (Si 1-z Ge z) O 4 ( wherein, M is Mo, Nb, It is at least one element selected from the group consisting of Ta and Ti, and x, y, and z are ranges of 0 ≦ x ≦ 2, 0.05 ≦ y ≦ 0.5, and 0 ≦ z ≦ 0.3, respectively. A lithium-vanadium-silicate compound represented by

本発明によれば、平均放電電圧が高く、かつ十分な容量が得られる正極活物質、正極及びリチウムイオン二次電池が実現することができる。この理由としては必ずしも明らかではないが、次のように考えられる。   According to the present invention, a positive electrode active material, a positive electrode, and a lithium ion secondary battery that have a high average discharge voltage and a sufficient capacity can be realized. Although the reason for this is not necessarily clear, it can be considered as follows.

本発明に係る正極活物質は、V及び遷移金属(M)1モルに対し、2モルのLiを含有することが可能なことから容量の理論値は大きくなり、さらに4価、4配位のVのイオン半径(0.58Å)より大きいイオン半径を持つ、Mo(0.65Å)、Nb(0.68Å)、Ta(0.68Å)及びTi(0.61Å)からなる群から選ばれる少なくとも1種の元素により部分的にVを置換することで、Liの挿入脱離に好適な格子間距離となり、平均放電電圧が高く、かつ十分な容量が得られると考えられる。同様に、4価、4配位のSiのイオン半径(0.26Å)より大きいイオン半径を持つGe(0.39Å)により部分的にSiを置換することにより、Liの挿入脱離に好適な格子間距離となり、平均放電電圧が高く、かつ十分な容量が得られると考えられる。   Since the positive electrode active material according to the present invention can contain 2 mol of Li with respect to 1 mol of V and the transition metal (M), the theoretical value of the capacity is increased, and further, tetravalent and tetracoordinated. At least selected from the group consisting of Mo (0.65 Å), Nb (0.68 Å), Ta (0.68 Å) and Ti (0.61 Å) having an ionic radius greater than the ionic radius of V (0.58 Å) It is considered that by substituting V partially with one kind of element, an interstitial distance suitable for insertion and extraction of Li is obtained, an average discharge voltage is high, and a sufficient capacity can be obtained. Similarly, by partially replacing Si with Ge (0.39Å) having an ion radius larger than that of tetravalent and tetracoordinated Si (0.26Å), it is suitable for insertion and extraction of Li. It is considered that the interstitial distance is high, the average discharge voltage is high, and a sufficient capacity can be obtained.

xの範囲は0≦x≦2である。通常はx=2の化合物が合成され初期状態の組成となる。また、x=2の場合、二次電池の組み立て直後において、放電から開始できるので、充電が不要となる利点がある。さらにxの値を調整することにより遷移金属の価数を調整することも可能となる。   The range of x is 0 ≦ x ≦ 2. Usually, a compound with x = 2 is synthesized to have an initial composition. Further, in the case of x = 2, immediately after the secondary battery is assembled, it can be started from discharge, so that there is an advantage that charging is unnecessary. Further, the valence of the transition metal can be adjusted by adjusting the value of x.

yの範囲は0.05≦y≦0.5の範囲ある。放電容量の点から0.1≦y≦0.4がより好ましい。また、zの好ましい範囲は0≦z≦0.3である。   The range of y is 0.05 ≦ y ≦ 0.5. From the viewpoint of discharge capacity, 0.1 ≦ y ≦ 0.4 is more preferable. A preferable range of z is 0 ≦ z ≦ 0.3.

また、CuKα線を使用したX線回折法による、2θ=28°付近における(200)面の回折ピーク強度Aと2θ=20°付近における(001)面の回折ピーク強度Bとのピーク強度比A/Bが0.87以上1.32以下の時には、充放電の際にLiが挿入脱離しても結晶構造が安定である程度に結晶性が高く、活物質の粉砕工程等によるダメージが抑えられる傾向となるため、平均放電電圧が高く、かつ十分な容量が得られると考えられる。   Further, the peak intensity ratio A between the diffraction peak intensity A of (200) plane near 2θ = 28 ° and the diffraction peak intensity B of (001) plane near 2θ = 20 ° by X-ray diffraction using CuKα ray. When / B is 0.87 or more and 1.32 or less, even if Li is inserted or desorbed during charge / discharge, the crystal structure is stable and crystallinity is high to some extent, and damage due to the active material crushing process or the like tends to be suppressed Therefore, it is considered that the average discharge voltage is high and sufficient capacity can be obtained.

また、本発明に係る正極は、集電体と上記正極活物質を含み、前記集電体上に設けられた正極活物質層とを備えることにより、平均放電電圧が高く、かつ十分な容量を得ることができる。   In addition, the positive electrode according to the present invention includes a current collector and the positive electrode active material, and includes a positive electrode active material layer provided on the current collector, thereby providing a high average discharge voltage and sufficient capacity. Can be obtained.

また、本発明に係るリチウムイオン二次電池は、上記正極を備えることにより、平均放電電圧が高く、かつ十分な容量を得ることができる。   Moreover, the lithium ion secondary battery which concerns on this invention can obtain a sufficient capacity | capacitance with a high average discharge voltage by providing the said positive electrode.

本発明によれば、平均放電電圧が高く、かつ十分な容量が得られる正極活物質、正極及びリチウムイオン二次電池を提供することができる。   According to the present invention, it is possible to provide a positive electrode active material, a positive electrode, and a lithium ion secondary battery that have a high average discharge voltage and a sufficient capacity.

本実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery according to the present embodiment. 実施例1の粉砕処理後の正極活物質と導電助剤との混合粉末のX線回折図である。2 is an X-ray diffraction pattern of a mixed powder of a positive electrode active material and a conductive additive after pulverization in Example 1. FIG.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
本実施形態に係るリチウムイオン二次電池について図1を参照して簡単に説明する。
<Lithium ion secondary battery>
The lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、正極10及び負極20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that the positive electrode 10 and the negative electrode 20 are disposed to face each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

<正極活物質>
続いて、本実施形態に係る正極活物質について説明する。
<Positive electrode active material>
Then, the positive electrode active material which concerns on this embodiment is demonstrated.

本実施形態に係る正極活物質は、Li2−x1−yO(Si1−zGe)Oで表されるリチウム−バナジウム−シリケート系化合物であることを特徴とする。Mは、Mo、Nb、Ta及びTiからなる群から選ばれる少なくとも1種の元素であり、4価、4配位のVのイオン半径より大きいイオン半径を持つ。同様に、4価、4配位のSiのイオン半径より大きいイオン半径を持つGeにより部分的にSiを置換してもよい。また、x、y及びzはそれぞれ、0≦x≦2、0.05≦y≦0.5、0≦z≦0.3の範囲が好ましい。以上のようなリチウム−バナジウム−シリケート系化合物を用いることにより、Liの挿入脱離に好適な格子間距離となり、平均放電電圧が高く、かつ十分な容量が得られると考えられる。 Positive electrode active material according to the present embodiment, the lithium is represented by Li 2-x V 1-y M y O (Si 1-z Ge z) O 4 - characterized in that it is a silicate compound - vanadium. M is at least one element selected from the group consisting of Mo, Nb, Ta, and Ti, and has an ionic radius larger than that of tetravalent and tetracoordinate V. Similarly, Si may be partially substituted by Ge having an ion radius larger than that of tetravalent and tetracoordinate Si. Further, x, y, and z are preferably in the ranges of 0 ≦ x ≦ 2, 0.05 ≦ y ≦ 0.5, and 0 ≦ z ≦ 0.3, respectively. By using the lithium-vanadium-silicate compound as described above, it is considered that the interstitial distance is suitable for insertion and extraction of Li, the average discharge voltage is high, and a sufficient capacity can be obtained.

また、X線回折法による2θ=28°付近における(200)面の回折ピーク強度Aと2θ=20°付近における(001)面の回折ピーク強度Bとのピーク強度比A/Bが0.87以上1.32以下であることがより好ましい。ピーク強度比A/Bが0.87以上1.32以下の時には、充放電の際にLiが挿入脱離しても結晶構造が安定である程度に結晶性が高く、かつ活物質の粉砕工程等によるダメージが抑えられる傾向となるため、平均放電電圧が高く、かつ十分な容量が得られると考えられる。   Further, the peak intensity ratio A / B between the diffraction peak intensity A of the (200) plane near 2θ = 28 ° and the diffraction peak intensity B of the (001) plane near 2θ = 20 ° according to the X-ray diffraction method is 0.87. More preferably, it is 1.32 or less. When the peak intensity ratio A / B is 0.87 or more and 1.32 or less, the crystal structure is stable to a certain degree even if Li is inserted and desorbed during charge and discharge, and the crystallinity is high to a certain extent. Since damage tends to be suppressed, it is considered that the average discharge voltage is high and sufficient capacity can be obtained.

<正極活物質の製造方法>
正極活物質の製造方法は特に限定されないが、固相反応合成法、水熱合成法、カーボサーマルリダクション法などにより合成することができる。以下に、本実施形態に係る固相反応合成法を用いた正極活物質の製造方法について説明する。固相反応合成法は、原料調製工程、焼成工程を備える。焼成工程後に必要に応じて粉砕工程及び分級工程を実施しても良い。
<Method for producing positive electrode active material>
The method for producing the positive electrode active material is not particularly limited, but can be synthesized by a solid phase reaction synthesis method, a hydrothermal synthesis method, a carbothermal reduction method, or the like. Below, the manufacturing method of the positive electrode active material using the solid-phase reaction synthesis method which concerns on this embodiment is demonstrated. The solid phase reaction synthesis method includes a raw material preparation step and a firing step. You may implement a grinding | pulverization process and a classification process as needed after a baking process.

原料調製工程では、リチウム源、遷移金属源、ケイ素源及びゲルマニウム源等の原料を秤量し、混合して調製する。混合は、例えば乳鉢、ボールミル、ビーズミル、振動ボールミル及び遊星ボールミル等を用いて行ってもよい。さらに、遷移金属源の価数を調整するために、カーボン等の還元剤を追加してもよい。   In the raw material preparation step, raw materials such as a lithium source, a transition metal source, a silicon source, and a germanium source are weighed and mixed to prepare. Mixing may be performed using, for example, a mortar, ball mill, bead mill, vibrating ball mill, planetary ball mill, or the like. Furthermore, in order to adjust the valence of the transition metal source, a reducing agent such as carbon may be added.

焼成工程の加熱処理手法は任意であるが、例えば箱形炉、管状炉、トンネル炉及びロータリーキルン等を使用することができる。加熱処理は、通常、昇温・最高温度保持・降温の三部分に分けられ、更に、昇温・最高温度保持・降温の工程を2回又はそれ以上繰り返し行なってもよい。また、加熱処理と加熱処理との間に、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程を挟んで行なってもよい。   The heat treatment method in the firing step is arbitrary, and for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, or the like can be used. The heat treatment is usually divided into three parts of temperature rise, maximum temperature hold, and temperature drop, and the steps of temperature rise, maximum temperature hold, and temperature drop may be repeated twice or more. Further, a crushing step that means eliminating aggregation to such an extent that the secondary particles are not destroyed may be sandwiched between the heat treatments.

焼成工程の雰囲気は特に限定されないが、アルゴン雰囲気中、酸素雰囲気中、窒素雰囲気中またはそれらの混合雰囲気中が好ましい。   Although the atmosphere of a baking process is not specifically limited, In argon atmosphere, oxygen atmosphere, nitrogen atmosphere, or those mixed atmosphere is preferable.

粉砕工程では、粉砕方法として例えば遊星ボールミルやジェットミル等を用いることができる。粉砕により、一次粒子または二次粒子が微小化する。また粉砕工程では、正極活物質と導電助剤との混合物を粉砕してもよい。なお、粉砕工程は、リチウムイオン二次電池の正極活物質層14を作製する時点、すなわち、活物質、導電助剤、バインダー及び溶媒等から調製したスラリーに対して粉砕処理を施し、正極集電体12上に塗布し、乾燥することにより正極活物質層14を形成しても良い。   In the pulverization step, for example, a planetary ball mill or a jet mill can be used as a pulverization method. By the pulverization, the primary particles or the secondary particles are micronized. Moreover, you may grind | pulverize the mixture of a positive electrode active material and a conductive support agent in a grinding | pulverization process. In the pulverization step, the positive electrode active material layer 14 of the lithium ion secondary battery is produced, that is, the slurry prepared from the active material, the conductive auxiliary agent, the binder, the solvent, and the like is subjected to a pulverization treatment to obtain a positive electrode current collector. The positive electrode active material layer 14 may be formed by applying on the body 12 and drying.

分級工程では、焼成工程で得た生成物あるいは粉砕工程で得られた生成物を分級することによって、粗大粒子や微小粒子を除去することができる。分級は、乾燥等が不要で、スケールアップが容易である等の利点を有することから湿式に比べ乾式が好ましい。乾式分級機としては、例えば、振動ふるい機、超音波振動ふるい機、サイクロン、ミクロン、セパレータ及び高精度気流分級機等が挙げられる。また、必要に応じて複数回、分級工程を繰り返してもよい。   In the classification step, coarse particles and fine particles can be removed by classifying the product obtained in the firing step or the product obtained in the pulverization step. The classification has advantages such as that drying is not necessary and scale-up is easy, and the dry method is preferable to the wet method. Examples of the dry classifier include a vibration sieve machine, an ultrasonic vibration sieve machine, a cyclone, a micron, a separator, and a high-precision airflow classifier. Moreover, you may repeat a classification process in multiple times as needed.

正極活物質の回折ピーク強度の算出方法はX線回折法により求めることが出来る。X線回折パターンより結晶構造を同定し、リチウム−バナジウム−シリケート系化合物の2θ=28°付近における(200)面の回折ピーク、及び2θ=20°付近における(100)面の回折ピークよりそれぞれピーク強度を求めることができる。
<正極>
続いて、本実施形態に係る正極10について説明する。
The calculation method of the diffraction peak intensity of the positive electrode active material can be obtained by an X-ray diffraction method. The crystal structure is identified from the X-ray diffraction pattern, and the peak is determined from the diffraction peak of (200) plane near 2θ = 28 ° and the diffraction peak of (100) plane near 2θ = 20 ° of the lithium-vanadium-silicate compound. The strength can be determined.
<Positive electrode>
Subsequently, the positive electrode 10 according to the present embodiment will be described.

正極10の正極集電体12としては、例えば、アルミニウム箔等を使用できる。正極活物質層14は、少なくとも上記本実施形態に係る正極活物質と導電助剤とを含有する。正極活物質層14は正極活物質及び導電助剤を結着するバインダーを含んでもよい。   As the positive electrode current collector 12 of the positive electrode 10, for example, an aluminum foil or the like can be used. The positive electrode active material layer 14 contains at least the positive electrode active material according to the present embodiment and a conductive additive. The positive electrode active material layer 14 may include a binder that binds the positive electrode active material and the conductive additive.

導電助剤としては、カーボンブラック類等の炭素材料、銅、ニッケル、ステンレス、鉄等の金属粉、炭素材料及び金属粉の混合物、ITOのような導電性酸化物が挙げられる。   Examples of the conductive aid include carbon materials such as carbon blacks, metal powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal powders, and conductive oxides such as ITO.

バインダーは、正極活物質と導電助剤とを正極集電体12に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(以下、PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。   The binder is not particularly limited as long as the positive electrode active material and the conductive additive can be bound to the positive electrode current collector 12, and a known binder can be used. Examples thereof include fluororesins such as polyvinylidene fluoride (hereinafter referred to as PVDF), polytetrafluoroethylene (PTFE), and a vinylidene fluoride-hexafluoropropylene copolymer.

正極活物質層14の正極活物質と導電助剤とバインダーの比率は特に限定されないが、正極活物質の比率が少ないと電極密度が小さくなる傾向にあり、正極活物質の比率は80重量%以上が好ましい。   The ratio of the positive electrode active material, the conductive additive, and the binder of the positive electrode active material layer 14 is not particularly limited, but the electrode density tends to decrease when the ratio of the positive electrode active material is small, and the ratio of the positive electrode active material is 80% by weight or more. Is preferred.

このような正極10は、公知の方法、例えば、正極活物質、導電助剤及びバインダーを、それらの種類に応じた溶媒、例えばPVDFの場合はN−メチル−2−ピロリドン(以下、Nメチルピロリドン)、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。   Such a positive electrode 10 is prepared by a known method, for example, a positive electrode active material, a conductive additive and a binder, and a solvent corresponding to the type thereof, for example, N-methyl-2-pyrrolidone (hereinafter referred to as N-methylpyrrolidone in the case of PVDF). ), A slurry added to a solvent such as N, N-dimethylformamide is applied to the surface of the positive electrode current collector 12 and dried.

<負極>
負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、導電助剤、及び、バインダーを含むものを使用できる。導電助剤としては特に限定されず、炭素材料、金属粉などが使用できる。負極に用いられるバインダーとしては、PVDF、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が使用できる。
<Negative electrode>
As the negative electrode current collector 22, a copper foil or the like can be used. Moreover, as the negative electrode active material layer 24, the thing containing a negative electrode active material, a conductive support agent, and a binder can be used. It does not specifically limit as a conductive support agent, A carbon material, a metal powder, etc. can be used. As the binder used for the negative electrode, fluororesins such as PVDF, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and the like can be used.

負極活物質としては、黒鉛、難黒鉛化炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。 As the negative electrode active material, carbon materials such as graphite and non-graphitizable carbon, metals that can be combined with lithium such as Al, Si and Sn, and amorphous materials mainly composed of oxides such as SiO 2 and SnO 2 Examples thereof include particles containing a compound, lithium titanate (Li 4 Ti 5 O 12 ), and the like.

負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して負極集電体22に塗布すればよい。   The negative electrode 20 may be manufactured by adjusting the slurry and applying it to the negative electrode current collector 22 in the same manner as the positive electrode 10.

<電解液>
電解液としては、特に限定されず、例えば、本実施形態では、有機溶媒にリチウム塩を含む電解液を使用することができる。リチウム塩としては、例えば、LiPF、LiClO、LiBF等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
<Electrolyte>
The electrolytic solution is not particularly limited. For example, in the present embodiment, an electrolytic solution containing a lithium salt in an organic solvent can be used. Examples of the lithium salt, LiPF 6, LiClO 4, salts of LiBF 4 or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Preferable examples of the organic solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate. These may be used alone or in combination of two or more at any ratio.

また、セパレータ18は、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が使用できる。   The separator 18 is at least one component selected from the group consisting of a monolayer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. The fiber nonwoven fabric which consists of can be used.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されず、例えば、金属ラミネートフィルムを利用できる。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, a metal laminate film can be used. .

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

本正極活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(正極に本発明の正極活物質粒子を含む電極を用い、負極に金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。   This positive electrode active material can also be used as an electrode material for electrochemical elements other than lithium ion secondary batteries. As such an electrochemical element, a lithium ion secondary battery other than a lithium ion secondary battery such as a metal lithium secondary battery (an electrode including the positive electrode active material particles of the present invention as a positive electrode and metal lithium as a negative electrode) is used. Examples thereof include secondary batteries and electrochemical capacitors such as lithium capacitors.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
[正極活物質の作製]
VOを3.69g、TiOを0.89g、LiSiOを5.00g秤量し、乳鉢を用いて混合した。混合した粉末をアルミナるつぼに入れて電気炉を用いて800℃、12時間、アルゴン雰囲気にて熱処理を行った。冷却後に取り出したところ紫色の粉末が得られた。
Example 1
[Preparation of positive electrode active material]
The VO 2 3.69 g, and TiO 2 0.89 g, and Li 2 SiO 3 and 5.00g weighed and mixed using a mortar. The mixed powder was put in an alumina crucible and heat-treated in an argon atmosphere at 800 ° C. for 12 hours using an electric furnace. When it was taken out after cooling, a purple powder was obtained.

得られた正極活物質について、誘導結合プラズマ法(以下、ICP法)による組成分析を行った結果、組成はLi0.8Ti0.2SiOであることが確認された。 The obtained positive electrode active material was subjected to composition analysis by an inductively coupled plasma method (hereinafter, ICP method), and as a result, it was confirmed that the composition was Li 2 V 0.8 Ti 0.2 SiO 5 .

得られた正極活物質と、導電助剤であるアセチレンブラックと、ケッチェンブラックとを、80:5:5の重量比で秤量し、容器に入れ、遊星型ボールミルによる粉砕処理を回転数500rpmにて10分間行った。   The obtained positive electrode active material, acetylene black as a conductive auxiliary agent, and ketjen black were weighed at a weight ratio of 80: 5: 5, put in a container, and pulverized by a planetary ball mill at 500 rpm. For 10 minutes.

粉砕処理後の正極活物質と導電助剤との混合粉末について、X線回折法により結晶構造の同定と回折ピーク強度を求めた。X線回折装置として株式会社リガク社製「UltimaIV」を用い、以下の測定条件にて行った。
測定条件
Filter: Ni
ターゲット:Cu Kα 1.54060Å
X線出力設定:40kV−40mA
スリット:発散1/2°、散乱1/2°、受光0.15mm
走査速度:2°/min
サンプリング幅:0.02°
測定結果を図2に示す。結晶構造は正方晶のLiVOSiOの回折パターンとほぼ一致していることを確認し、2θ=28°付近における(200)面の回折ピーク強度Aと2θ=20°付近における(001)面の回折ピーク強度Bとのピーク強度比A/Bを求めたところ1.16であった。
For the mixed powder of the positive electrode active material and the conductive additive after the pulverization treatment, the crystal structure was identified and the diffraction peak intensity was determined by X-ray diffraction. Using “UltimaIV” manufactured by Rigaku Corporation as an X-ray diffractometer, the measurement was performed under the following measurement conditions.
Measurement conditions Filter: Ni
Target: Cu Kα 1.54060Å
X-ray output setting: 40kV-40mA
Slit: Divergence 1/2 °, scattering 1/2 °, light receiving 0.15mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
The measurement results are shown in FIG. It was confirmed that the crystal structure almost coincided with the diffraction pattern of tetragonal Li 2 VOSiO 4 , and (200) plane diffraction peak intensity A near 2θ = 28 ° and (001) plane near 2θ = 20 °. The peak intensity ratio A / B with the diffraction peak intensity B of 1.16 was 1.16.

[評価用セルの作製]
実施例1の粉砕処理後の正極活物質と導電助剤との混合粉末とバインダーであるPVDFとを重量比を90:10で混合したものを、溶媒であるNメチルピロリドン中に分散させてスラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、正極活物質層が形成された正極を作製した。
[Production of evaluation cell]
A slurry obtained by dispersing a mixed powder of the positive electrode active material and conductive additive after the pulverization treatment of Example 1 and PVDF as a binder in a weight ratio of 90:10 in N methylpyrrolidone as a solvent. Was prepared. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to produce a positive electrode on which a positive electrode active material layer was formed.

次に、負極として人造黒鉛(BTR社製FSN)とPVdFのNメチルピロリドン5wt%溶液を人造黒鉛:PVDF=93:7の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。   Next, artificial graphite (FSR manufactured by BTR) and a 5 wt% N-methylpyrrolidone solution of PVdF were mixed as a negative electrode in a ratio of artificial graphite: PVDF = 93: 7 to prepare a slurry paint. The negative electrode was produced by apply | coating a coating material to the copper foil which is a collector, and drying and rolling.

正極と、負極とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れた。電解液はエチレンカーボネート、ジエチルカーボネートを体積比3:7で混合し、支持塩としてLiPFを1mol/Lになるよう溶解した。 A positive electrode and a negative electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was placed in an aluminum laminate pack. As the electrolyte, ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7, and LiPF 6 was dissolved as a supporting salt at 1 mol / L.

積層体を入れたアルミラミネートパックに、上記電解液を注入した後、真空シールし、実施例1の評価用セルを作製した。   The above electrolyte was poured into an aluminum laminate pack containing the laminate, and then vacuum-sealed to produce an evaluation cell of Example 1.

[電池特性の測定]
実施例1の評価用セルを、25℃で、電流値18mA/gで4.4Vまで定電流で充電した後、電流値18mA/gで2.5Vまで定電流放電した。このとき、実施例1の放電容量は168mAh/gであり、平均放電電圧は3.47Vであった。
[Measurement of battery characteristics]
The evaluation cell of Example 1 was charged at a constant current of up to 4.4 V at 25 ° C. and a current value of 18 mA / g, and then discharged to 2.5 V at a current value of 18 mA / g. At this time, the discharge capacity of Example 1 was 168 mAh / g, and the average discharge voltage was 3.47V.

(実施例2〜6、比較例1、2)
実施例2〜6及び比較例1、2においては、表1に記載の活物質組成となるように原料を秤量した以外は、実施例1と同様の方法で正極活物質の合成及び正極活物質と導電助剤との混合粉末を作製し、X線回折法により結晶構造の同定と回折ピーク強度よりピーク強度比A/Bを求めた。さらに、実施例1と同様の方法で、評価用セルの作製及び電池特性評価を行った。結果を表1に示す。
(Examples 2-6, Comparative Examples 1 and 2)
In Examples 2 to 6 and Comparative Examples 1 and 2, the synthesis of the positive electrode active material and the positive electrode active material were carried out in the same manner as in Example 1 except that the raw materials were weighed so as to have the active material compositions shown in Table 1. A mixed powder of a conductive additive and a conductive auxiliary was prepared, and the peak intensity ratio A / B was determined from the identification of the crystal structure and the diffraction peak intensity by the X-ray diffraction method. Further, evaluation cells were prepared and battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例7〜9)
実施例6〜8においては、遊星型ボールミルによる粉砕処理の回転数をそれぞれ480rpm、530rpm及び550rpmとした以外は、実施例1と同様の方法で正極活物質の合成及び正極活物質と導電助剤との混合粉末を作製し、X線回折法により結晶構造の同定と回折ピーク強度よりピーク強度比A/Bを求めた。さらに、実施例1と同様の方法で、評価用セルの作製及び電池特性評価を行った。結果を表1に示す。
(Examples 7 to 9)
In Examples 6 to 8, the synthesis of the positive electrode active material and the positive electrode active material and the conductive auxiliary agent were carried out in the same manner as in Example 1 except that the rotation speed of the grinding treatment by the planetary ball mill was 480 rpm, 530 rpm and 550 rpm, respectively. The peak intensity ratio A / B was determined from the identification of the crystal structure and the diffraction peak intensity by the X-ray diffraction method. Further, evaluation cells were prepared and battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例10、11、比較例3)
実施例10、11及び比較例3においては、表1に記載の活物質組成となるようにVO、TiO、LiSiO及びLiGeOを秤量した以外は、実施例1と同様の方法で正極活物質の合成及び正極活物質と導電助剤との混合粉末を作製し、X線回折法により結晶構造の同定と回折ピーク強度よりピーク強度比A/Bを求めた。さらに、実施例1と同様の方法で、評価用セルの作製及び電池特性評価を行った。結果を表1に示す。
(Examples 10 and 11, Comparative Example 3)
Examples 10 and 11 and Comparative Example 3 were the same as Example 1 except that VO 2 , TiO 2 , Li 2 SiO 3 and Li 2 GeO 3 were weighed so as to have the active material composition described in Table 1. The positive electrode active material was synthesized by the method described above and a mixed powder of the positive electrode active material and the conductive additive was prepared, and the peak intensity ratio A / B was obtained from the identification of the crystal structure and the diffraction peak intensity by the X-ray diffraction method. Further, evaluation cells were prepared and battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 0006331822
Figure 0006331822

表1から明らかなように、実施例1〜11の評価用セルの放電容量は160mAh/g以上であり、かつ平均放電電圧は3.41V以上であることが確認された。また、実施例1〜4、6、8、10及び11のピーク強度比A/Bは0.87以上1.32以下であり、放電容量は164mAh/g以上であることが確認された。   As is apparent from Table 1, it was confirmed that the discharge capacity of the evaluation cells of Examples 1 to 11 was 160 mAh / g or more and the average discharge voltage was 3.41 V or more. Moreover, it was confirmed that the peak intensity ratio A / B of Examples 1-4, 6, 8, 10, and 11 was 0.87 or more and 1.32 or less, and the discharge capacity was 164 mAh / g or more.

(実施例12〜18、比較例4、5)
実施例12〜18及び比較例4、5においては、表2に記載の活物質組成となるようにVO、TiO、MoO、LiSiO及びLiGeOを秤量した以外は、実施例1と同様の方法で正極活物質の合成及び正極活物質と導電助剤との混合粉末を作製し、X線回折法により結晶構造の同定と回折ピーク強度よりピーク強度比A/Bを求めた。さらに、実施例1と同様の方法で、評価用セルの作製及び電池特性評価を行った。結果を表2に示す。
(Examples 12 to 18, Comparative Examples 4 and 5)
In Examples 12 to 18 and Comparative Examples 4 and 5, except that VO 2 , TiO 2 , MoO 2 , Li 2 SiO 3 and Li 2 GeO 3 were weighed so as to have the active material composition shown in Table 2, Synthesis of the positive electrode active material and a mixed powder of the positive electrode active material and the conductive additive were prepared in the same manner as in Example 1, and the peak intensity ratio A / B was determined from the identification of the crystal structure and the diffraction peak intensity by the X-ray diffraction method. Asked. Further, evaluation cells were prepared and battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 0006331822
Figure 0006331822

表2から明らかなように、実施例12〜18の評価用セルの放電容量は160mAh/g以上であり、かつ平均放電電圧は3.42V以上であることが確認された。また、実施例12〜17のピーク強度比A/Bは1.01以上1.24以下であり、放電容量は164mAh/g以上であることが確認された。   As is apparent from Table 2, it was confirmed that the discharge capacity of the evaluation cells of Examples 12 to 18 was 160 mAh / g or more and the average discharge voltage was 3.42 V or more. Moreover, the peak intensity ratio A / B of Examples 12 to 17 was 1.01 to 1.24, and the discharge capacity was confirmed to be 164 mAh / g or more.

(実施例19〜31、比較例6〜8)
実施例19〜31及び比較例6〜8においては、表3に記載の活物質組成となるようにVO、TiO、MoO、Nb、Ta、LiSiO及びLiGeOを秤量し、さらにNb及びTaに対して50%molのアセチレンブラックを秤量した以外は、実施例1と同様の方法で正極活物質の合成及び正極活物質と導電助剤との混合粉末を作製し、X線回折法により結晶構造の同定と回折ピーク強度よりピーク強度比A/Bを求めた。さらに、実施例1と同様の方法で、評価用セルの作製及び電池特性評価を行った。結果を表3に示す。
(Examples 19 to 31, Comparative Examples 6 to 8)
In Examples 19 to 31 and Comparative Examples 6 to 8, VO 2 , TiO 2 , MoO 2 , Nb 2 O 5 , Ta 2 O 5 , Li 2 SiO 3 and the active material compositions shown in Table 3 were used. Synthesis of positive electrode active material and positive electrode active material in the same manner as in Example 1 except that Li 2 GeO 3 was weighed and 50% mol of acetylene black was weighed with respect to Nb 2 O 5 and Ta 2 O 5 . A mixed powder of a conductive additive and a conductive auxiliary was prepared, and the peak intensity ratio A / B was determined from the identification of the crystal structure and the diffraction peak intensity by the X-ray diffraction method. Further, evaluation cells were prepared and battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 3.

Figure 0006331822
Figure 0006331822

表3から明らかなように、実施例19〜31の評価用セルの放電容量は160mAh/g以上であり、かつ平均放電電圧は3.41V以上であることが確認された。また、実施例19〜29のピーク強度比A/Bは0.97以上1.19以下であり、放電容量は164mAh/g以上であることが確認された。   As is apparent from Table 3, it was confirmed that the discharge capacity of the evaluation cells of Examples 19 to 31 was 160 mAh / g or more and the average discharge voltage was 3.41 V or more. Moreover, the peak intensity ratio A / B of Examples 19 to 29 was 0.97 or more and 1.19 or less, and the discharge capacity was confirmed to be 164 mAh / g or more.

10…正極、20…負極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 20 ... Negative electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (4)

一般式(1)で表されるリチウム−バナジウム−シリケート系化合物であることを特徴とする正極活物質。
Li2−x1−yO(Si1−zGe)O (1)
(式中、Mは、Mo、Nb、Ta及びTiからなる群から選ばれる少なくとも1種の元素であり、x、y及びzはそれぞれ、0≦x≦2、0.05≦y≦0.5及び0≦z≦0.3の範囲である。)
A positive electrode active material, which is a lithium-vanadium-silicate compound represented by the general formula (1).
Li 2-x V 1-y M y O (Si 1-z Ge z) O 4 (1)
(In the formula, M is at least one element selected from the group consisting of Mo, Nb, Ta and Ti, and x, y and z are 0 ≦ x ≦ 2, 0.05 ≦ y ≦ 0. 5 and 0 ≦ z ≦ 0.3.)
前記リチウム−バナジウム−シリケート系化合物のX線回折法による(200)面の回折ピーク強度Aと(001)面の回折ピーク強度Bとのピーク強度比A/Bが0.87以上1.32以下であることを特徴とする請求項1記載の正極活物質。   The peak intensity ratio A / B between the diffraction peak intensity A on the (200) plane and the diffraction peak intensity B on the (001) plane according to the X-ray diffraction method of the lithium-vanadium-silicate compound is 0.87 or more and 1.32 or less. The positive electrode active material according to claim 1, wherein: 集電体と、請求項1又は2記載の正極活物質を含み前記集電体上に設けられた正極活物質層と、を備える正極。   A positive electrode comprising a current collector and a positive electrode active material layer comprising the positive electrode active material according to claim 1 or 2 and provided on the current collector. 請求項3記載の正極を備えるリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode according to claim 3.
JP2014149745A 2014-07-23 2014-07-23 Positive electrode active material, positive electrode and lithium ion secondary battery Active JP6331822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149745A JP6331822B2 (en) 2014-07-23 2014-07-23 Positive electrode active material, positive electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149745A JP6331822B2 (en) 2014-07-23 2014-07-23 Positive electrode active material, positive electrode and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016025032A JP2016025032A (en) 2016-02-08
JP6331822B2 true JP6331822B2 (en) 2018-05-30

Family

ID=55271621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149745A Active JP6331822B2 (en) 2014-07-23 2014-07-23 Positive electrode active material, positive electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6331822B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211325B (en) * 2020-03-09 2021-09-17 广东工业大学 Lithium ion battery cathode material and preparation method and application thereof
WO2025084421A1 (en) * 2023-10-20 2025-04-24 株式会社レゾナック Solid electrolyte, solid electrolyte sintered body, and lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105039A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Positive electrode material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2013069526A (en) * 2011-09-22 2013-04-18 Asahi Glass Co Ltd Method of manufacturing positive electrode material for secondary battery
JP5728721B2 (en) * 2011-10-12 2015-06-03 国立研究開発法人産業技術総合研究所 Heat-resistant lithium ion secondary battery
JP5590576B2 (en) * 2011-10-14 2014-09-17 独立行政法人産業技術総合研究所 Method for manufacturing electrode for power storage device, and power storage device

Also Published As

Publication number Publication date
JP2016025032A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
WO2014077277A1 (en) Lithium composite oxide, method for producing same, positive electrode active material for secondary batteries containing said lithium composite oxide, positive electrode for secondary batteries containing said positive electrode active material, and lithium ion secondary battery using said positive electrode
CN102439766A (en) Composites containing mixed lithium metal oxides
TW201626618A (en) Method for manufacturing positive electrode material for electrical storage device
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP7059951B2 (en) Negative electrode layer and all-solid-state battery
JP2016095980A (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022179554A (en) lithium compound
JPWO2012153561A1 (en) Lithium titanate particles, active material, and method for producing lithium titanate particles
Setiawan et al. Ca-doped LTO using waste eggshells as Ca source to improve the discharge capacity of anode material for lithium-ion battery
JP7238783B2 (en) tungsten trioxide
JP6220365B2 (en) Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same
JP6331822B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP5968712B2 (en) Method for producing lithium titanate powder, lithium ion secondary battery and lithium ion capacitor using the lithium titanate powder
WO2018021480A1 (en) Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2008288005A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2021077445A (en) Non-aqueous electrolyte battery
JP5988095B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP6197609B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP5195854B2 (en) Lithium ion secondary battery
Saroha et al. Electrochemical studies of novel olivine-layered (LiFePO4-Li2MnO3) dual composite as an alternative cathode material for lithium-ion batteries
JP2017063043A (en) Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same
JP6164422B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250