[go: up one dir, main page]

JP6470863B1 - Stress luminescence measuring apparatus and stress luminescence measuring method - Google Patents

Stress luminescence measuring apparatus and stress luminescence measuring method Download PDF

Info

Publication number
JP6470863B1
JP6470863B1 JP2018161972A JP2018161972A JP6470863B1 JP 6470863 B1 JP6470863 B1 JP 6470863B1 JP 2018161972 A JP2018161972 A JP 2018161972A JP 2018161972 A JP2018161972 A JP 2018161972A JP 6470863 B1 JP6470863 B1 JP 6470863B1
Authority
JP
Japan
Prior art keywords
stress
amount
excitation light
light
luminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018161972A
Other languages
Japanese (ja)
Other versions
JP2020034450A (en
Inventor
翔 橋本
翔 橋本
Original Assignee
株式会社トヨタプロダクションエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トヨタプロダクションエンジニアリング filed Critical 株式会社トヨタプロダクションエンジニアリング
Priority to JP2018161972A priority Critical patent/JP6470863B1/en
Application granted granted Critical
Publication of JP6470863B1 publication Critical patent/JP6470863B1/en
Publication of JP2020034450A publication Critical patent/JP2020034450A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる応力発光計測装置及び応力発光計測方法を提供すること。
【解決手段】応力発光体を含む応力発光塗料2に励起光L0を連続照射する励起光照射部20と、前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得部14と、前記応力発光体を励起する励起光量に対する蛍光光量の関係を予め取得する関係取得部15と、前記蛍光光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定部16と、励起光照射部20に対して励起光量決定部16が決定した励起光量の励起光を連続して照射させる照射制御部17とを備える。
【選択図】図1
The present invention provides a stress luminescence measuring apparatus and a stress luminescence measuring method capable of measuring stress luminescence continuously generated at irregular time intervals separately from spontaneous emission light including fluorescence and phosphorescence.
An excitation light irradiating unit for continuously irradiating a stress luminescent coating material including a stress luminescent material with excitation light L0, and a stress luminescence amount for obtaining in advance a stress luminescence amount corresponding to a reference stress applied to the stress luminescent material. An acquisition unit 14, a relationship acquisition unit 15 that acquires in advance the relationship between the amount of fluorescent light and the amount of excitation light that excites the stress illuminant, and the amount of excitation light that causes the ratio of the amount of stress luminescence to the amount of fluorescent light to be a predetermined value or more. An excitation light amount determination unit 16 and an irradiation control unit 17 that continuously irradiates the excitation light irradiation unit 20 with excitation light of the excitation light amount determined by the excitation light amount determination unit 16 are provided.
[Selection] Figure 1

Description

本発明は、不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる応力発光計測装置及び応力発光計測方法に関する。   The present invention relates to a stress luminescence measuring apparatus and a stress luminescence measuring method capable of measuring stress luminescence continuously generated at indefinite time intervals separately from spontaneous emission light including fluorescence and phosphorescence.

従来、計測対象の残留応力や応力集中などによる破壊を検知又は予測するために、応力分布が計測されることが多い。一般的に、応力分布の計測手法として、(1)計測対象にひずみゲージを貼り付けてひずみ量を電気的に検出する手法A、(2)赤外線カメラを用いて計測対象の振動に対する発熱作用又は吸熱作用を計測して応力分布を求める手法B、(3)計測対象の表面にランダム模様を付与して複数カメラで撮像し、応力変動を求めるデジタル画像相関法Cなどが知られている。   Conventionally, a stress distribution is often measured in order to detect or predict a failure due to a residual stress or stress concentration to be measured. In general, as a stress distribution measurement method, (1) a method A in which a strain gauge is attached to a measurement target to electrically detect a strain amount, and (2) a heat generation action on vibration of the measurement target using an infrared camera or There are known a method B for obtaining a stress distribution by measuring an endothermic effect, and (3) a digital image correlation method C for obtaining a stress variation by applying a random pattern to a surface to be measured and imaging with a plurality of cameras.

ところが、上記の手法Aは、ひずみゲージは貼り付けのための手間がかかるとともに計測部位が限られるという問題がある。また、上記の手法Bは、赤外線カメラは測定範囲が限られ、繰り返し加振が必要になるという問題がある。さらに、上記のデジタル画像相関法Cは、事前に表面模様の準備が必要になるという問題がある。   However, the above-mentioned method A has a problem that the strain gauge is troublesome for attaching and the measurement site is limited. In addition, the above method B has a problem that the infrared camera has a limited measurement range and requires repeated excitation. Further, the digital image correlation method C has a problem that it is necessary to prepare a surface pattern in advance.

このため、非接触かつ広範囲に一括で応力計測するために、応力発光体を表面に付与した計測対象からの応力発光を撮像することにより、計測対象の応力分布を非接触で計測する技術が注目されている。例えば、特許文献1には、応力発光体の励起状態が飽和するまでの励起光照射時間を記憶しておき、この励起光照射時間分、励起光を照射することによって応力発光体の励起状態を飽和状態にし、一定条件で発光する装置が開示されている。なお、応力発光塗料を応力発光させるためには、応力発光塗料内の応力発光体を励起状態にする必要があり、この応力発光体の励起は、応力発光塗料に励起光を照射する必要がある。   For this reason, in order to measure stress in a wide area in a non-contact manner, attention has been paid to a technique for measuring the stress distribution of the measurement object in a non-contact manner by imaging the stress emission from the measurement object with a stress illuminant applied to the surface. Has been. For example, Patent Document 1 stores the excitation light irradiation time until the excitation state of the stress luminescent material is saturated, and the excitation state of the stress luminescent material is determined by irradiating the excitation light for this excitation light irradiation time. An apparatus that saturates and emits light under certain conditions is disclosed. In addition, in order to make the stress luminescent paint emit stress, the stress luminescent material in the stress luminescent paint needs to be in an excited state, and the excitation of the stress luminescent paint needs to irradiate the stress luminescent paint with excitation light. .

特開2016−180637号公報Japanese Patent Laid-Open No. 2006-180637

しかしながら、応力発光塗料の励起エネルギーの充填率が低い状態になると、応力発光塗料に応力が与えられたとしても、応力に起因する応力発光の発光感度が低下するため、時間的に連続した応力計測を行うことができなくなってしまう。したがって、応力発光塗料の十分な励起状態を保持するために応力発光塗料に励起光を連続照射すればよいが、応力発光塗料に励起光を照射すると、励起光の照射時点から励起光量に応じた蛍光と燐光とが自然放出光として発光し、応力に起因する応力発光が自然放出光に埋もれてしまい、自然放出光から応力発光を分離して検出することが困難になるという課題が生ずる。   However, when the stress energy luminescent paint has a low excitation energy filling rate, even if stress is applied to the stress luminescent paint, the luminescence sensitivity of stress luminescence due to the stress decreases, so time-dependent stress measurement It becomes impossible to do. Therefore, in order to maintain a sufficient excitation state of the stress-stimulated luminescent paint, it is only necessary to continuously irradiate the stress-stimulated luminescent paint with excitation light. Fluorescence and phosphorescence are emitted as spontaneous emission light, and stress emission due to stress is buried in the spontaneous emission light, which causes a problem that it becomes difficult to detect the stress emission separately from the spontaneous emission light.

本発明は、上記の課題を解決するためになされたものであり、不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる応力発光計測装置及び応力発光計測方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and stress luminescence measurement capable of separately measuring stress luminescence continuously generated at indefinite time intervals from spontaneous emission light including fluorescence and phosphorescence. An object is to provide an apparatus and a stress luminescence measurement method.

上述した課題を解決し、目的を達成するため、本発明は、応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測装置であって、前記応力発光塗料に励起光を連続照射する励起光照射部と、前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得部と、前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得部と、前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定部と、前記励起光照射部に対して前記励起光量決定部が決定した励起光量の励起光を連続して照射させる照射制御部とを備えたことを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the present invention irradiates a stress-stimulated luminescent material including a stress-stimulated luminescent material with excitation light to bring the stress-stimulated luminescent material into an excited state, and the stress-stimulated luminescent material is indefinitely spaced. A stress luminescence measuring device for measuring stress luminescence according to stress applied to the excitation light irradiating unit for continuously irradiating the stress luminescent paint with excitation light, and stress according to a reference stress applied to the stress luminescent material A stress emission amount acquisition unit for acquiring the emission amount in advance, a relationship acquisition unit for acquiring in advance a relationship of the spontaneous emission amount with respect to the excitation amount for exciting the stress illuminant, and a ratio of the stress emission amount with respect to the spontaneous emission amount is predetermined. An excitation light amount determination unit that determines an excitation light amount that is equal to or greater than a value, and an irradiation control unit that continuously irradiates the excitation light with the excitation light amount determined by the excitation light amount determination unit to the excitation light irradiation unit Features To.

また、本発明は、上記の発明において、前記励起光量決定部は、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする。   Further, the present invention is the above invention, wherein the excitation light amount determining unit is configured to perform the above-described measurement with respect to the spontaneous emission light amount when the stress light emission amount is equal to or greater than a predetermined stress light emission amount exceeding a stress light emission amount corresponding to the reference stress. The ratio of the stress light emission amount is equal to or greater than a predetermined value, and the excitation light amount that enables the stress light emission of the predetermined stress light emission amount is determined.

また、本発明は、上記の発明において、前記応力発光塗料の発光を撮像する撮像部を備えたことを特徴とする。   Moreover, the present invention is characterized in that, in the above-described invention, an image pickup unit for picking up light emitted from the stress-stimulated luminescent paint is provided.

また、本発明は、応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測方法であって、前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得ステップと、前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得ステップと、前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定ステップと、前記励起光量決定ステップが決定した励起光量の励起光を連続して照射させる照射制御ステップとを含むことを特徴とする。   Further, the present invention irradiates a stress-stimulated luminescent material including a stress-stimulated luminescent material with excitation light to bring the stress-stimulated luminescent material into an excited state, and measures stress luminescence according to the stress applied to the stress-stimulated luminescent material at indefinite time intervals. A stress luminescence measuring method for obtaining a stress luminescence amount in accordance with a reference stress applied to the stress luminescence body, and a relationship between a spontaneous emission amount and an excitation light amount for exciting the stress luminescence body The relationship acquisition step of acquiring the excitation light amount, the excitation light amount determination step for determining the excitation light amount for which the ratio of the stress light emission amount to the spontaneous emission light amount is a predetermined value or more, and the excitation light of the excitation light amount determined by the excitation light amount determination step And an irradiation control step of continuously irradiating the light.

また、本発明は、上記の発明において、前記励起光量決定ステップは、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする。   Further, the present invention is the above invention, wherein the excitation light amount determination step is configured to perform the step for determining the amount of spontaneous emission when the stress light emission amount is equal to or greater than a predetermined stress light emission amount exceeding a stress light emission amount corresponding to the reference stress. The ratio of the stress light emission amount is equal to or greater than a predetermined value, and the excitation light amount that enables the stress light emission of the predetermined stress light emission amount is determined.

また、本発明は、上記の発明において、前記応力発光塗料の発光を撮像する撮像ステップを含むことを特徴とする。   Moreover, the present invention is characterized in that, in the above-mentioned invention, an imaging step of imaging the light emission of the stress-stimulated luminescent paint is included.

本発明によれば、不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測することができる。   According to the present invention, it is possible to measure stress luminescence continuously generated at indefinite time intervals separately from spontaneous emission light including fluorescence and phosphorescence.

図1は、本実施の形態に係る応力発光計測装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a stress luminescence measuring apparatus according to the present embodiment. 図2は、励起光の照射をオフした場合における自然放出光量の時間推移を示す図である。FIG. 2 is a diagram showing a temporal transition of the spontaneous emission light amount when the excitation light irradiation is turned off. 図3は、発生する応力に対する応力発光量の関係を示す図である。FIG. 3 is a diagram illustrating the relationship of the amount of stress luminescence to the generated stress. 図4は、基準応力が加えられた場合における応力発光プロファイルを示す図である。FIG. 4 is a diagram showing a stress light emission profile when a reference stress is applied. 図5は、励起光量に対する自然放出光量の関係を示す図である。FIG. 5 is a diagram showing the relationship of the spontaneous emission light quantity with respect to the excitation light quantity. 図6は、従来の連続励起による発光状態と本実施の形態の連続励起による発光状態とを比較する図である。FIG. 6 is a diagram comparing a light emission state by conventional continuous excitation and a light emission state by continuous excitation of the present embodiment. 図7は、制御部による応力発光計測処理手順を示すフローチャートである。FIG. 7 is a flowchart showing a stress luminescence measurement processing procedure by the control unit.

以下、添付図面を参照して、本実施の形態に係る応力発光計測装置及び応力発光計測方法について説明する。   Hereinafter, a stress luminescence measurement apparatus and a stress luminescence measurement method according to the present embodiment will be described with reference to the accompanying drawings.

<装置構成>
図1は、本実施の形態に係る応力発光計測装置1の構成を示す図である。図1に示した応力発光計測装置1は、例えば外部からの力Pが加わることによって発生した応力Sにより金属疲労が生じる計測対象部材101の表面に、応力発光体が含まれる応力発光塗料2が塗布されている。
<Device configuration>
FIG. 1 is a diagram showing a configuration of a stress luminescence measuring apparatus 1 according to the present embodiment. In the stress luminescence measuring apparatus 1 shown in FIG. 1, for example, a stress luminescent paint 2 including a stress luminescent material is formed on the surface of a measurement target member 101 in which metal fatigue occurs due to a stress S generated by applying an external force P. It has been applied.

計測対象部材101に発生する応力Sは、不定な時間間隔で連続発生する。応力発光計測装置1は、応力発光体を含む応力発光塗料2に励起光L0を連続照射して応力発光体を励起状態にし、応力発光体に発生する応力Sに応じた応力発光L2を計測する。なお、応力発光体が励起状態にあると、応力発光L2とは無関係に蛍光及び燐光として自然放出する自然放出光L1を発光する。   The stress S generated in the measurement target member 101 is continuously generated at indefinite time intervals. The stress luminescence measuring apparatus 1 continuously irradiates the stress luminescent paint 2 including the stress luminescent material with the excitation light L0 to bring the stress luminescent material into an excited state, and measures the stress luminescence L2 corresponding to the stress S generated in the stress luminescent material. . When the stress luminescent material is in an excited state, spontaneous emission light L1 that spontaneously emits as fluorescence and phosphorescence is emitted regardless of the stress emission L2.

応力発光体は、外部からの機械刺激により発光する発光材料である。機械刺激の種類としては摩擦、衝撃、圧縮、引っ張り、ねじりなどがあり、かかる機械刺激により応力発光体に応力が発生する。応力発光体は、例えば、粒子径の制御が可能な粉末状のセラミックス微粒子であり、ユーロピウムをドープし構造制御したアルミン酸ストロンチウム(SrAl2O4:Eu)、遷移金属や希土類をドープした硫化亜鉛(ZnS:Mn)、チタン酸バリウム・カルシウム((Ba,Ca)TiO3:Pr)、アルミン酸カルシウム・イットリウム(CaYAl3O7:Ce)などである。なお、上記の応力発光体は、紫外線を励起光として可視光を発光するものであるが、紫外線や近赤外線を発光するものであってもよい。   The stress-stimulated luminescent material is a luminescent material that emits light by external mechanical stimulation. Types of mechanical stimulation include friction, impact, compression, tension, torsion, and the like, and stress is generated in the stress light emitter by such mechanical stimulation. The stress-stimulated luminescent material is, for example, powdery ceramic fine particles whose particle diameter can be controlled, strontium aluminate doped with europium (SrAl2O4: Eu), zinc sulfide doped with transition metal or rare earth (ZnS: Mn), barium-calcium titanate ((Ba, Ca) TiO3: Pr), calcium aluminate-yttrium (CaYAl3O7: Ce), and the like. The stress-stimulated luminescent material emits visible light using ultraviolet light as excitation light, but may emit ultraviolet light or near infrared light.

図1に示した応力発光計測装置1は、励起光L0である紫外線を応力発光塗料2に連続照射する励起光照射部20と、応力発光塗料2の発光を撮像する撮像部30と、装置本体10とを有する。   The stress luminescence measuring apparatus 1 shown in FIG. 1 includes an excitation light irradiating unit 20 that continuously irradiates the stress luminescent paint 2 with ultraviolet light that is excitation light L0, an imaging unit 30 that images the luminescence of the stress luminescent paint 2, and an apparatus main body. 10 and.

装置本体10は、入出力部11、記憶部12及び制御部13を有し、励起光照射部20及び撮像部30に接続される。入出力部11は、各種操作入力及び表示出力等を行うタッチパネル式ディスプレイなどの入出力インターフェースである。   The apparatus main body 10 includes an input / output unit 11, a storage unit 12, and a control unit 13, and is connected to the excitation light irradiation unit 20 and the imaging unit 30. The input / output unit 11 is an input / output interface such as a touch panel display for performing various operation inputs and display outputs.

記憶部12は、フラッシュメモリ等の不揮発性メモリ又はハードディスク装置等の二次記憶媒体等からなる記憶デバイスであり、応力発光量LMSを含む応力発光量データD1と、蛍光光量の励起光量依存性の関係f2を含む関係データD2と、励起光量L0aを含む励起光量データD3と、計測画像Dを含む計測画像データD4とを記憶する。   The storage unit 12 is a storage device composed of a non-volatile memory such as a flash memory or a secondary storage medium such as a hard disk device, etc., and the stress luminescence amount data D1 including the stress luminescence amount LMS and the excitation light amount dependency of the fluorescence light amount. The relationship data D2 including the relationship f2, the excitation light amount data D3 including the excitation light amount L0a, and the measurement image data D4 including the measurement image D are stored.

制御部13は、応力発光計測装置1を全体制御する制御部であり、応力発光量取得部14、関係取得部15、励起光量決定部16、照射制御部17及び計測画像取得制御部18を有する。実際には、これらの機能部に対応するプログラムを図示しないROMや不揮発性メモリに記憶しておき、これらのプログラムをCPU(Central Processing Unit)にロードして実行することにより、応力発光量取得部14、関係取得部15、励起光量決定部16、照射制御部17及び計測画像取得制御部18にそれぞれ対応するプロセスを実行させることになる。   The control unit 13 is a control unit that totally controls the stress luminescence measurement apparatus 1, and includes a stress luminescence amount acquisition unit 14, a relationship acquisition unit 15, an excitation light amount determination unit 16, an irradiation control unit 17, and a measurement image acquisition control unit 18. . In practice, programs corresponding to these functional units are stored in a ROM or non-volatile memory (not shown), and these programs are loaded into a CPU (Central Processing Unit) and executed, thereby obtaining a stress emission amount acquisition unit. 14, the relationship acquisition unit 15, the excitation light amount determination unit 16, the irradiation control unit 17, and the measurement image acquisition control unit 18 execute corresponding processes.

応力発光量取得部14は、応力発光体に加えられる基準応力SSに応じた応力発光量LMSを予め取得する。この応力発光量LMSは、応力発光量データD1に含まれる。   The stress light emission amount acquisition unit 14 acquires in advance the stress light emission amount LMS corresponding to the reference stress SS applied to the stress light emitter. The stress light emission amount LMS is included in the stress light emission amount data D1.

関係取得部15は、応力発光体を励起する励起光量に対する蛍光光量の関係f2を予め取得する。この関係f2は、関係データD2に含まれる。   The relationship acquisition unit 15 acquires in advance a relationship f2 of the fluorescence light amount with respect to the excitation light amount that excites the stress illuminant. This relationship f2 is included in the relationship data D2.

励起光量決定部16は、蛍光光量に対する応力発光量LMSの比が所定値以上となる励起光量L0aを決定する。決定した励起光量L0aは、励起光量データD3に含まれる。   The excitation light amount determination unit 16 determines the excitation light amount L0a at which the ratio of the stress light emission amount LMS to the fluorescence light amount is equal to or greater than a predetermined value. The determined excitation light amount L0a is included in the excitation light amount data D3.

照射制御部17は、励起光照射部20を介して、励起光量決定部16が決定した励起光量L0aの励起光を応力発光塗料2に対して連続照射する。   The irradiation control unit 17 continuously irradiates the stress luminescent paint 2 with the excitation light of the excitation light amount L0a determined by the excitation light amount determination unit 16 via the excitation light irradiation unit 20.

計測画像取得制御部18は、撮像部30により撮像された応力発光塗料2の計測画像Dを取得し、記憶部12の計測画像データD4として記憶する。   The measurement image acquisition control unit 18 acquires the measurement image D of the stress-stimulated luminescent paint 2 imaged by the imaging unit 30 and stores it as measurement image data D4 in the storage unit 12.

<励起光量L0aの決定処理>
次に、励起光量決定部16による励起光量L0aの決定処理について説明する。
<Determination processing of excitation light quantity L0a>
Next, the determination process of the excitation light amount L0a by the excitation light amount determination unit 16 will be described.

まず、上記のように、自然放出光L1は、応力発光体が励起状態にあると、応力発光L2とは無関係に蛍光及び燐光を自然放出する。蛍光は、励起光L0から吸収した励起状態のエネルギーの一部を熱として放出し、残りの励起状態のエネルギーを光として放出するものであり、励起光よりも長波長側にシフトした光、例えば緑色の可視光として放出される。一方、燐光は、異なるエネルギー準位間の項間交差が起こり、すぐに基底状態に戻れず、蛍光に比してゆっくりと発光し続ける。例えば、蛍光は10-6〜10-3秒で発光し、燐光は10-3〜10秒で発光する。これに対し、応力Sに起因する応力発光L2は、励起状態のエネルギーの一部を熱として放出し、蛍光及び燐光のエネルギー準位に近く、かつ、異なる特定のエネルギー準位に遷移し、応力Sが発生した場合、この遷移した特定のエネルギー準位から基底状態に遷移することによって、例えば緑色の可視光として発光する。 First, as described above, the spontaneous emission light L1 spontaneously emits fluorescence and phosphorescence regardless of the stress emission L2 when the stress luminescent material is in an excited state. Fluorescence emits a part of the excited state energy absorbed from the excitation light L0 as heat, and emits the remaining excited state energy as light. Light that is shifted to a longer wavelength side than the excitation light, for example, It is emitted as green visible light. On the other hand, phosphorescence causes an intersystem crossing between different energy levels, does not immediately return to the ground state, and continues to emit light more slowly than fluorescence. For example, fluorescence is emitted in 10 −6 to 10 −3 seconds, and phosphorescence is emitted in 10 −3 to 10 seconds. On the other hand, the stress luminescence L2 caused by the stress S emits a part of the energy of the excited state as heat, is close to the energy levels of fluorescence and phosphorescence, and transitions to different specific energy levels. When S is generated, light is emitted as, for example, green visible light by transitioning from the transitioned specific energy level to the ground state.

したがって、図2に示すように、自然放出光量LM1は、第1励起光L01又は第2励起光L02が照射されている間は、蛍光が大部分を占める蛍光領域E1が形成され、第1励起光L01の照射がオフされた時点t1からは燐光のみとなり、燐光の光量が時間経過とともに減少する燐光領域E2が形成される時間推移を呈する。例えば、最大励起状態の自然放出光量LM1(最大光量Lmax)を100%として正規化した場合、時点t2,t3,t4と時間経過するに従って、それぞれ光量が30%、20%、10%に減少する。   Therefore, as shown in FIG. 2, the spontaneous emission light quantity LM1 is formed with a fluorescence region E1 in which the fluorescence is mostly occupied while the first excitation light L01 or the second excitation light L02 is irradiated, and the first excitation light L01 is formed. From the time t1 when the irradiation of the light L01 is turned off, only phosphorescence is obtained, and a time transition is formed in which a phosphorescent region E2 in which the amount of phosphorescence decreases with the passage of time is formed. For example, when the spontaneous emission light amount LM1 (maximum light amount Lmax) in the maximum excitation state is normalized as 100%, the light amount decreases to 30%, 20%, and 10% as time elapses at time points t2, t3, and t4, respectively. .

一方、応力Sが発生した場合に応力発光体から発光する応力発光L2の応力発光量LM2は、ひずみ量とひずみ速度との乗算値で決定され、ひずみ速度が一定であった場合、図3に示すように、発生する応力Sの大きさに対して直線的な関係f1を有する。しかし、応力Sの発生時に、応力発光体における応力発光のエネルギー準位におけるエネルギー充填率が低いと、応力Sに応じた応力発光量LM2を発光することができなくなる。この関係f1を維持しない応力発光が発生すると、精度の高い応力分布、応力変化を得ることができないとともに、応力発光が燐光に埋もれてしまう可能性がある。   On the other hand, when the stress S is generated, the stress light emission amount LM2 of the stress light emission L2 emitted from the stress light emitter is determined by the product of the strain amount and the strain rate, and when the strain rate is constant, FIG. As shown, there is a linear relationship f1 with respect to the magnitude of the generated stress S. However, when the stress S is generated, if the energy filling rate in the energy level of the stress luminescence in the stress luminescent material is low, the stress luminescence quantity LM2 corresponding to the stress S cannot be emitted. If stress emission that does not maintain this relationship f1 occurs, highly accurate stress distribution and stress change cannot be obtained, and stress emission may be buried in phosphorescence.

このため、本実施の形態では、照射制御部17が励起光照射部20を介して励起光L0を応力発光塗料2に対して連続照射を行って、発生した応力Sに応じた応力発光量LMSが得られるエネルギー充填量となるようにしている。しかし、励起光L0が応力発光体に照射されると、上記の自然放出光L1、特に蛍光が発生し、十分なエネルギー充填量に励起された状態であっても、応力発光量LM2が自然放出光量LM1に埋もれてしまい、応力発光L2と自然放出光L1とを分離して計測できなくなってしまう。   Therefore, in the present embodiment, the irradiation controller 17 continuously irradiates the stress luminescent paint 2 with the excitation light L0 via the excitation light irradiator 20, and the stress luminescence LMS corresponding to the generated stress S. The energy filling amount is obtained. However, when the stress light emitter is irradiated with the excitation light L0, the above-described spontaneous emission light L1, particularly fluorescence, is generated, and the stress emission light amount LM2 is spontaneously emitted even when excited with a sufficient energy filling amount. The light amount LM1 is buried, and the stress emission L2 and the spontaneous emission light L1 are separated and cannot be measured.

そこで、図3及び図4に示すように、応力発光量取得部14は、基準応力SSに対する応力発光量LMSを取得する。そして、この信号成分である応力発光量LMSを、雑音成分である自然放出光量LM1から分離して計測できるようにするため、励起光L0の連続照射時における自然放出光量LM1を小さくするため、励起光量LM0を小さくする。   Therefore, as illustrated in FIGS. 3 and 4, the stress light emission amount acquisition unit 14 acquires the stress light emission amount LMS with respect to the reference stress SS. Then, in order to be able to measure the stress light emission amount LMS as the signal component separately from the spontaneous emission amount LM1 as the noise component, the excitation light amount LM1 during the continuous irradiation of the excitation light L0 is reduced to reduce the spontaneous emission amount LM1. Reduce the light quantity LM0.

図5に示すように、励起光量LM0に対する自然放出光量LM1の関係f2は、励起光量LM0の増大に伴って自然放出光量LM1が増大する。関係取得部15は、この関係f2を予め取得しておく。なお、自然放出光量LM1は、励起光L0が連続照射されているため、ほとんど蛍光光量である。なお、自然放出光量LM1及び応力発光量LM2は、単位時間あたりに通過する光量である。   As shown in FIG. 5, in the relationship f2 of the spontaneous emission light quantity LM1 with respect to the excitation light quantity LM0, the spontaneous emission light quantity LM1 increases as the excitation light quantity LM0 increases. The relationship acquisition unit 15 acquires this relationship f2 in advance. The spontaneous emission light quantity LM1 is almost a fluorescent light quantity because the excitation light L0 is continuously irradiated. The spontaneous emission light amount LM1 and the stress light emission amount LM2 are light amounts that pass per unit time.

そして、励起光量決定部16は、自然放出光量(蛍光光量)LM1に対する応力発光量LMSの比が所定値以上となる励起光量L0aを決定する。この励起光量L0aは、励起光量L0aの時の自然放出光量Laに対する応力発光量LMSの比が所定値、例えば25dB以上となる値である。なお、励起光量L0aで励起する場合、励起光量L0aによって応力発光体に充填されるエネルギー充填率は飽和状態でなく、エネルギー充填量が低い。このため、励起光量L0aは、発生する応力S(基準応力SS)に応じた応力発光量LMSを発光できるエネルギー充填量以上となることが必要である。   Then, the excitation light amount determination unit 16 determines the excitation light amount L0a at which the ratio of the stress light emission amount LMS to the spontaneous emission light amount (fluorescence light amount) LM1 is equal to or greater than a predetermined value. The excitation light amount L0a is a value at which the ratio of the stress light emission amount LMS to the spontaneous emission light amount La when the excitation light amount L0a is a predetermined value, for example, 25 dB or more. In addition, when exciting with the excitation light quantity L0a, the energy filling rate with which the stress light emitter is filled with the excitation light quantity L0a is not saturated, and the energy filling quantity is low. For this reason, the excitation light amount L0a needs to be equal to or more than the energy filling amount capable of emitting the stress light emission amount LMS corresponding to the generated stress S (reference stress SS).

図6(a)に示すように、従来、自然放出光量LM1は、励起光L0の連続照射によって応力発光体のエネルギー充填率が100%(飽和状態)となっていて、自然放出光量LM1は最大光量Lmaxであった。応力発光量LMSが最大光量Lmax以下となった場合、応力発光L2は自然放出光L1に完全に埋もれてしまう。   As shown in FIG. 6A, conventionally, the spontaneous emission light quantity LM1 has a maximum energy filling rate of 100% (saturated) due to continuous irradiation of the excitation light L0, and the spontaneous emission light quantity LM1 is the maximum. The amount of light Lmax. When the stress light emission amount LMS is equal to or less than the maximum light amount Lmax, the stress light emission L2 is completely buried in the spontaneous emission light L1.

これに対し、本実施の形態では、図6(b)に示すように、励起光量LM0を励起光量L0aまで減らして自然放出光量LM1を最大光量Lmaxより小さく、さらに、応力発光量LMSよりも小さい自然放出光量Laとしているため、応力発光L2は自然放出光L1に埋もれない。すなわち、応力発光量LMSと自然放出光量Laとの間に大きな光量差ΔLが生じ、応力発光L2と自然放出光L1とを分離して計測することができる。すなわち、励起光L0を連続照射する場合であっても、雑音成分としての自然放出光量Laに対する、信号成分としての応力発光量LMSの比(S/N比)を所定値以上、例えば25dB以上とすることができ、応力発光L2と自然放出光L1とを分離して計測することができる。   On the other hand, in the present embodiment, as shown in FIG. 6B, the excitation light amount LM0 is reduced to the excitation light amount L0a so that the spontaneous emission light amount LM1 is smaller than the maximum light amount Lmax and is smaller than the stress light emission amount LMS. Since the spontaneous emission amount La is used, the stress emission L2 is not buried in the spontaneous emission light L1. That is, a large light amount difference ΔL occurs between the stress light emission amount LMS and the spontaneous emission light amount La, and the stress light emission L2 and the spontaneous emission light L1 can be measured separately. That is, even when the excitation light L0 is continuously irradiated, the ratio (S / N ratio) of the stress emission amount LMS as the signal component to the spontaneous emission amount La as the noise component is not less than a predetermined value, for example, not less than 25 dB. The stress emission L2 and the spontaneous emission light L1 can be separated and measured.

特に、不定な時間間隔で応力発光L2が連続発生する場合であっても、励起光L0を連続照射しているので、応力発光L2を自然放出光L1から分離して計測することができる。   In particular, even when the stress luminescence L2 is continuously generated at an indefinite time interval, since the excitation light L0 is continuously irradiated, the stress luminescence L2 can be measured separately from the spontaneous emission light L1.

<応力発光計測処理>
次に、制御部13による応力発光計測処理手順について説明する。図7は、制御部13による応力発光計測処理手順を示すフローチャートである。図7に示すように、まず、応力発光量取得部14は、基準応力SSに応じた応力発光量LMSを取得する(ステップS101)。その後、関係取得部15は、励起光量LM0に対する自然放出光量(蛍光光量)LM1の関係f2を取得する(ステップS102)。その後、励起光量決定部16は、自然放出光量LM1に対する応力発光量LMSの比が所定値以上となる励起光量L0aを決定する(ステップS103)。
<Stress luminescence measurement processing>
Next, the stress light emission measurement processing procedure by the control unit 13 will be described. FIG. 7 is a flowchart showing a stress luminescence measurement processing procedure by the control unit 13. As shown in FIG. 7, first, the stress light emission amount acquisition unit 14 acquires the stress light emission amount LMS corresponding to the reference stress SS (step S101). Thereafter, the relationship acquisition unit 15 acquires the relationship f2 of the spontaneous emission light amount (fluorescence light amount) LM1 with respect to the excitation light amount LM0 (step S102). Thereafter, the excitation light amount determination unit 16 determines the excitation light amount L0a at which the ratio of the stress light emission amount LMS to the spontaneous emission light amount LM1 is equal to or greater than a predetermined value (step S103).

その後、制御部13は、応力発光計測の開始か否かを判定する(ステップS104)。応力発光計測の開始でないならば(ステップS104;No)、ステップS104の判定処理を繰り返す。一方、応力発光計測の開始であるならば(ステップS104;Yes)、照射制御部17の制御のもとに、励起光量決定部16によって決定された励起光量L0aの励起光L0を、励起光照射部20を介して連続照射するとともに、計測画像取得制御部18の制御のもとに、撮像部30を介して応力発光塗料2の計測画像Dを撮像し、計測画像データD4として記憶する(ステップS105)。   Thereafter, the control unit 13 determines whether or not the stress luminescence measurement is started (step S104). If the stress luminescence measurement is not started (step S104; No), the determination process of step S104 is repeated. On the other hand, if the stress luminescence measurement is started (step S104; Yes), the excitation light irradiation with the excitation light L0 of the excitation light amount L0a determined by the excitation light amount determination unit 16 under the control of the irradiation control unit 17 is performed. The measurement image D of the stress-stimulated luminescent paint 2 is imaged through the imaging unit 30 and stored as measurement image data D4 under the control of the measurement image acquisition control unit 18 while being continuously irradiated through the unit 20 (step S1). S105).

その後、応力発光計測の終了か否かを判定する(ステップS106)。応力発光計測の終了でないならば(ステップS106;No)、ステップS105に移行して上記の照射処理及び撮像処理を繰り返し行う。一方、応力発光計測の終了であるならば(ステップS106;Yes)、本処理を終了する。   Thereafter, it is determined whether or not the stress luminescence measurement is finished (step S106). If it is not the end of the stress luminescence measurement (step S106; No), the process proceeds to step S105, and the above irradiation process and imaging process are repeated. On the other hand, if it is the end of the stress luminescence measurement (step S106; Yes), this process is ended.

なお、励起光量決定部16は、応力発光量LM2が基準応力SSに応じた応力発光量LMSを超える所定応力発光量以上となった場合、自然放出光量LM1に対する応力発光量LM2の比が所定値以上であって、所定応力発光量の応力発光を可能にする励起光量を決定する調整してもよい。すなわち、応力発光量LM2が大きくなり、単位時間あたりのエネルギー消費量が高くなった場合、励起光量LM0を増加して、常時、高いエネルギー充填率を維持するように調整してもよい。なお、この場合、基準応力SSが大きくなり、基準応力SSに対する応力発光量LMSが大きくなることと等価であるため、応力発光量LMSを設定変更すればよい。   The excitation light quantity determination unit 16 determines that the ratio of the stress light emission quantity LM2 to the spontaneous emission light quantity LM1 is a predetermined value when the stress light emission quantity LM2 is equal to or greater than the predetermined stress light emission quantity LMS exceeding the stress light emission quantity LMS corresponding to the reference stress SS. In this way, adjustment may be made to determine the excitation light amount that enables stress light emission of a predetermined stress light emission amount. That is, when the stress light emission amount LM2 increases and the energy consumption amount per unit time increases, the excitation light amount LM0 may be increased so as to constantly maintain a high energy filling rate. In this case, since the reference stress SS is increased and this is equivalent to an increase in the stress emission amount LMS with respect to the reference stress SS, the stress emission amount LMS may be changed.

さらに、上記の実施の形態では、撮像部30を用いた計測画像を得るようにしていたが、これに限らず、目視計測を行ってもよい。   Furthermore, in the above embodiment, a measurement image using the imaging unit 30 is obtained. However, the measurement image is not limited to this, and visual measurement may be performed.

なお、上記の実施の形態で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。   Note that each configuration illustrated in the above embodiment is functionally schematic, and does not necessarily need to be physically configured as illustrated. That is, the form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in an arbitrary unit according to various loads or usage conditions. Can be configured.

本発明の応力発光計測装置及び応力発光計測方法は、応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、前記応力発光体に加えられる応力に応じた応力発光を計測する場合に有用であり、特に不定な時間間隔で連続発生する応力発光を、蛍光及び燐光を含む自然放出光から分離して計測する場合に有用である。   The stress luminescence measuring apparatus and the stress luminescence measuring method of the present invention are a method in which a stress luminescent coating material including a stress luminescent material is irradiated with excitation light to bring the stress luminescent material into an excited state, and a stress corresponding to the stress applied to the stress luminescent material. This is useful when measuring luminescence, and particularly useful when measuring stress luminescence continuously generated at indefinite time intervals separately from spontaneous emission light including fluorescence and phosphorescence.

1 応力発光計測装置
2 応力発光塗料
10 装置本体
11 入出力部
12 記憶部
13 制御部
14 応力発光量取得部
15 関係取得部
16 励起光量決定部
17 照射制御部
18 計測画像取得制御部
20 励起光照射部
30 撮像部
101 計測対象部材
D 計測画像
D1 応力発光量データ
D2 関係データ
D3 励起光量データ
D4 計測画像データ
E1 蛍光領域
E2 燐光領域
f1,f2 関係
L0 励起光
L0a 励起光量
L1 自然放出光
L2 応力発光
La 自然放出光量
LM0 励起光量
LM1 自然放出光量
LM2 応力発光量
Lmax 最大光量
LMS 応力発光量
P 力
S 応力
SS 基準応力
t1,t2,t3,t4 時点
ΔL 光量差
DESCRIPTION OF SYMBOLS 1 Stress luminescence measuring device 2 Stress luminescent paint 10 Apparatus main body 11 Input / output part 12 Storage part 13 Control part 14 Stress luminescence amount acquisition part 15 Relation acquisition part 16 Excitation light quantity determination part 17 Irradiation control part 18 Measurement image acquisition control part 20 Excitation light Irradiation unit 30 Imaging unit 101 Measurement target member D Measurement image D1 Stress emission amount data D2 Relationship data D3 Excitation light amount data D4 Measurement image data E1 Fluorescence region E2 Phosphorescence region f1, f2 Relationship L0 Excitation light L0a Excitation amount L1 Spontaneous emission light L2 Stress Light emission La Spontaneous emission light LM0 Excitation light quantity LM1 Spontaneous emission light quantity LM2 Stress light emission quantity Lmax Maximum light quantity LMS Stress light emission quantity P force S Stress SS Reference stress t1, t2, t3, t4 Time ΔL Light quantity difference

Claims (6)

応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測装置であって、
前記応力発光塗料に励起光を連続照射する励起光照射部と、
前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得部と、
前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得部と、
前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定部と、
前記励起光照射部に対して前記励起光量決定部が決定した励起光量の励起光を連続して照射させる照射制御部と、
を備えたことを特徴とする応力発光計測装置。
A stress luminescence measuring apparatus that irradiates a stress luminescent coating material including a stress luminescent material with excitation light to bring the stress luminescent material into an excited state and measures stress luminescence according to the stress applied to the stress luminescent material at indefinite time intervals. There,
An excitation light irradiating unit for continuously irradiating the stress luminescent paint with excitation light;
A stress light emission amount acquisition unit for acquiring in advance a stress light emission amount corresponding to a reference stress applied to the stress light emitter;
A relationship acquisition unit that acquires in advance the relationship of the amount of spontaneous emission with respect to the amount of excitation light that excites the stress illuminant;
An excitation light amount determination unit for determining an excitation light amount at which a ratio of the stress light emission amount to the spontaneous emission light amount is a predetermined value or more;
An irradiation control unit that continuously irradiates the excitation light with the excitation light amount determined by the excitation light amount determination unit to the excitation light irradiation unit;
A stress luminescence measuring apparatus comprising:
前記励起光量決定部は、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする請求項1に記載の応力発光計測装置。   The excitation light amount determination unit determines that a ratio of the stress light emission amount to the spontaneous emission light amount is equal to or greater than a predetermined value when the stress light emission amount is equal to or greater than a predetermined stress light emission amount exceeding a stress light emission amount corresponding to the reference stress. The stress light emission measuring device according to claim 1, wherein an excitation light amount that enables stress light emission of the predetermined stress light emission amount is determined. 前記応力発光塗料の発光を撮像する撮像部を備えたことを特徴とする請求項1又は2に記載の応力発光計測装置。   The stress luminescence measuring apparatus according to claim 1, further comprising an imaging unit that images the luminescence of the stress luminescent paint. 応力発光体を含む応力発光塗料に励起光を照射して前記応力発光体を励起状態にし、不定な時間間隔で前記応力発光体に加えられる応力に応じた応力発光を計測する応力発光計測方法であって、
前記応力発光体に加えられる基準応力に応じた応力発光量を予め取得する応力発光量取得ステップと、
前記応力発光体を励起する励起光量に対する自然放出光量の関係を予め取得する関係取得ステップと、
前記自然放出光量に対する前記応力発光量の比が所定値以上となる励起光量を決定する励起光量決定ステップと、
前記励起光量決定ステップが決定した励起光量の励起光を連続して照射させる照射制御ステップと、
を含むことを特徴とする応力発光計測方法。
A stress luminescence measuring method that irradiates a stress luminescent coating material including a stress luminescent material with excitation light to bring the stress luminescent material into an excited state and measures stress luminescence according to the stress applied to the stress luminescent material at indefinite time intervals. There,
A stress light emission amount obtaining step for obtaining in advance a stress light emission amount corresponding to a reference stress applied to the stress light emitter;
A relationship acquisition step of acquiring in advance the relationship of the spontaneous emission light amount to the excitation light amount for exciting the stress illuminant;
An excitation light amount determination step for determining an excitation light amount at which a ratio of the stress light emission amount to the spontaneous emission light amount is a predetermined value or more;
An irradiation control step of continuously irradiating excitation light of the excitation light amount determined by the excitation light amount determination step;
A stress luminescence measuring method comprising:
前記励起光量決定ステップは、前記応力発光量が前記基準応力に応じた応力発光量を超える所定応力発光量以上となった場合、前記自然放出光量に対する前記応力発光量の比が所定値以上であって、前記所定応力発光量の応力発光を可能にする励起光量を決定することを特徴とする請求項4に記載の応力発光計測方法。   In the excitation light amount determination step, when the stress light emission amount is equal to or greater than a predetermined stress light emission amount exceeding the stress light emission amount according to the reference stress, a ratio of the stress light emission amount to the spontaneous emission light amount is equal to or greater than a predetermined value. The stress light emission measuring method according to claim 4, wherein an excitation light amount that enables stress light emission of the predetermined stress light emission amount is determined. 前記応力発光塗料の発光を撮像する撮像ステップを含むことを特徴とする請求項4又は5に記載の応力発光計測方法。   The stress luminescence measurement method according to claim 4, further comprising an imaging step of imaging luminescence of the stress luminescent paint.
JP2018161972A 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method Active JP6470863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161972A JP6470863B1 (en) 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161972A JP6470863B1 (en) 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method

Publications (2)

Publication Number Publication Date
JP6470863B1 true JP6470863B1 (en) 2019-02-13
JP2020034450A JP2020034450A (en) 2020-03-05

Family

ID=65358136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161972A Active JP6470863B1 (en) 2018-08-30 2018-08-30 Stress luminescence measuring apparatus and stress luminescence measuring method

Country Status (1)

Country Link
JP (1) JP6470863B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176943A (en) * 2019-04-19 2020-10-29 株式会社トヨタプロダクションエンジニアリング Stress luminescence measuring device and stress luminescence measuring method
JPWO2020246461A1 (en) * 2019-06-06 2020-12-10
JPWO2020246460A1 (en) * 2019-06-06 2020-12-10
JPWO2020246462A1 (en) * 2019-06-06 2020-12-10

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327030B1 (en) * 1999-08-06 2001-12-04 University Of Florida System, method, and coating for strain analysis
US7127950B2 (en) * 2003-11-05 2006-10-31 Innovative Scientific Solutions, Inc. Method for determining a surface contact force
JP4942083B2 (en) * 2006-03-13 2012-05-30 公益財団法人鉄道総合技術研究所 Pressure distribution measurement system and calibration probe
JP5234546B2 (en) * 2009-02-20 2013-07-10 独立行政法人産業技術総合研究所 Stress light emission analysis apparatus, stress light emission analysis method, stress light emission analysis program, and recording medium
JP2015075477A (en) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 Stress light emission evaluation apparatus and stress light emission evaluation method
JP6654159B2 (en) * 2017-01-24 2020-02-26 株式会社トヨタプロダクションエンジニアリング Distortion amount calculation device, distortion amount calculation method, and distortion amount calculation program
CN108398420B (en) * 2018-01-31 2021-01-19 华南理工大学 Detection device for luminescence properties of luminescent materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176943A (en) * 2019-04-19 2020-10-29 株式会社トヨタプロダクションエンジニアリング Stress luminescence measuring device and stress luminescence measuring method
JP7184704B2 (en) 2019-04-19 2022-12-06 株式会社トヨタプロダクションエンジニアリング Mechanoluminescence measurement device and mechanoluminescence measurement method
JPWO2020246461A1 (en) * 2019-06-06 2020-12-10
JPWO2020246460A1 (en) * 2019-06-06 2020-12-10
JPWO2020246462A1 (en) * 2019-06-06 2020-12-10
JP7054125B2 (en) 2019-06-06 2022-04-13 国立研究開発法人産業技術総合研究所 Stress luminescence measuring device and stress luminescence measuring method
JP7054124B2 (en) 2019-06-06 2022-04-13 国立研究開発法人産業技術総合研究所 Strain measuring device and strain measuring method
JP7054123B2 (en) 2019-06-06 2022-04-13 国立研究開発法人産業技術総合研究所 Strain measuring device and strain measuring method

Also Published As

Publication number Publication date
JP2020034450A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6470864B1 (en) Stress luminescence measuring apparatus and stress luminescence measuring method
JP6499363B1 (en) Stress luminescence measuring apparatus and stress luminescence measuring method
JP6470863B1 (en) Stress luminescence measuring apparatus and stress luminescence measuring method
Haro‐González et al. High‐sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots
JP6654159B2 (en) Distortion amount calculation device, distortion amount calculation method, and distortion amount calculation program
Kamimura et al. Development of new elasticoluminescent material SrMg2 (PO4) 2: Eu
Chandra et al. Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals
CN105723246B (en) Radiation detectors with stable light output for imaging applications
Chithambo et al. Time-resolved optically stimulated luminescence and spectral emission features of α-Al2O3: C
JP2010190865A (en) Stress light emission analyzer, stress light emission analysis method, stress light emission analysis program, and recording medium
Kalita et al. Comprehensive kinetic analysis of thermoluminescence peaks of α-Al2O3: C, Mg
JP2015075477A (en) Stress light emission evaluation apparatus and stress light emission evaluation method
JP7213695B2 (en) Mechanoluminescence measurement device and mechanoluminescence measurement method
Kalita et al. Temperature dependence of persistent luminescence in CaAl2O4: Eu2+, Nd3+ related to beta irradiation and optical excitation
JP2020169936A (en) Stress luminescence measuring device and stress luminescence measuring method
WO2021187536A1 (en) State identification device, state identification method, and state identification program
Bartram et al. Hole traps in Lu2O3: Eu ceramic scintillators. II. Radioluminescence and thermoluminescence
JP2020085446A (en) Estimation detection method of stress-induced luminescence amount
JP7184704B2 (en) Mechanoluminescence measurement device and mechanoluminescence measurement method
JP2018163084A (en) Measuring system, measuring method and measuring program
JP7054123B2 (en) Strain measuring device and strain measuring method
WO2025126686A1 (en) Stress light emission measurement device and stress light emission measurement method
Vezzoli et al. An ensemble-based method to assess the quality of a sample of nanocrystals as single photon emitters
JP2010500595A (en) Method and detector for measuring and / or judging afterglow of ceramic materials
JP2020190431A (en) Mechanoluminescence data processing device, mechanoluminescence data processing method, mechanoluminescence measurement device and mechanoluminescence test system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190118

R150 Certificate of patent or registration of utility model

Ref document number: 6470863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250