JP6414444B2 - Ultrasonic flaw detection method - Google Patents
Ultrasonic flaw detection method Download PDFInfo
- Publication number
- JP6414444B2 JP6414444B2 JP2014225210A JP2014225210A JP6414444B2 JP 6414444 B2 JP6414444 B2 JP 6414444B2 JP 2014225210 A JP2014225210 A JP 2014225210A JP 2014225210 A JP2014225210 A JP 2014225210A JP 6414444 B2 JP6414444 B2 JP 6414444B2
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- ultrasonic
- reflected wave
- incident angle
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
本発明は超音波探傷方法に関し、特に被探傷材表面からの反射波到達時間を精度良く求めることができる超音波探傷方法に関するものである。 The present invention relates to an ultrasonic flaw detection method, and more particularly to an ultrasonic flaw detection method capable of accurately obtaining the reflected wave arrival time from the surface of a flaw detection material.
特許文献1には探査対象領域たる溶接部等の断面画像を得られる超音波探傷方法が示されている。ここでは、異なる複数の入射角で被探傷材の探査対象領域を走査して超音波の受発振を行い、各入射角毎の反射波から非線形画像を得てこれを上記探査対象領域の断面形状に合わせたフレーム変換画像とし、これらフレーム変換画像を重ね合わせて非線形探査画像を生成することによって、探査対象領域の断面画像を得ている。 Patent Document 1 discloses an ultrasonic flaw detection method capable of obtaining a cross-sectional image of a welded portion or the like that is an exploration target region. Here, the target area of the material to be scanned is scanned at a plurality of different incident angles to receive and oscillate the ultrasonic wave, and a non-linear image is obtained from the reflected wave at each incident angle, and this is the cross-sectional shape of the target area. A cross-sectional image of the search target region is obtained by generating a non-linear search image by superimposing these frame conversion images.
ところで上記従来の方法では、入射角を変更しても、超音波センサから被探傷材表面までの距離(通常は水中に置かれるため水距離)は変わらないものとして処理を行っている。この水距離は、超音波の発振から被探傷材表面での反射波が到達するまでの時間tによって知ることができる。しかし実際には、被探傷材表面への超音波の入射角を変更すると、被探傷材表面からの反射波画像は異なったものとなる。これを図8、図9で説明する。 By the way, in the above-described conventional method, even if the incident angle is changed, the distance from the ultrasonic sensor to the surface of the flaw detection material (usually the water distance because it is placed in water) is assumed to be unchanged. This water distance can be known from the time t from when the ultrasonic wave oscillates until the reflected wave arrives at the surface of the flaw detection material. However, actually, when the incident angle of the ultrasonic wave on the surface of the flaw detection material is changed, the reflected wave image from the surface of the flaw detection material becomes different. This will be described with reference to FIGS.
図8は入射角が0°の時の被探傷材表面からの反射波画像であり、図9は入射角が8°の時の被探傷材表面からの反射波画像である。入射角を8°にすると、入射角0°の場合に比して被探傷材表面からの反射波画像の幅が拡がるとともに、反射波到達時間tが短くなり、したがって水距離が短くなってしまう。この原因は、超音波センサの受発振面が一定の長さを有しかつ超音波を一定距離で収束させるために凹曲面となっているからである。 8 is a reflected wave image from the surface of the flaw detection material when the incident angle is 0 °, and FIG. 9 is a reflected wave image from the surface of the flaw detection material when the incident angle is 8 °. When the incident angle is 8 °, the width of the reflected wave image from the surface of the flaw detection material is widened and the reflected wave arrival time t is shortened and therefore the water distance is shortened as compared with the incident angle of 0 °. . This is because the receiving and oscillating surface of the ultrasonic sensor has a certain length and is a concave curved surface in order to converge the ultrasonic wave at a certain distance.
このように、受発振面の中央位置から板状被探傷材の表面までの水距離を常に一定の値にするように超音波センサの位置を調整したとしても、入射角が変化すると、受発振面上の一方の端部から被探傷材表面までの水距離は変動して短くなり、これに応じて反射波到達時間tが短くなる結果、正確な欠陥画像が得られない。 Thus, even if the position of the ultrasonic sensor is adjusted so that the water distance from the center position of the receiving and oscillating surface to the surface of the plate-shaped flaw detection material is always a constant value, The water distance from one end on the surface to the surface of the flaw detection object fluctuates and shortens, and as a result, the reflected wave arrival time t is shortened. As a result, an accurate defect image cannot be obtained.
そこで、本発明はこのような課題を解決するもので、超音波の入射角を変えても被探傷材表面からの反射波到達時間を精度良く求めることができる超音波探傷方法を提供することを目的とする。 Therefore, the present invention solves such a problem, and provides an ultrasonic flaw detection method capable of accurately obtaining the reflected wave arrival time from the surface of the flaw detection material even if the incident angle of the ultrasonic wave is changed. Objective.
本第1発明では、被探傷材に対し所定の入射角で超音波センサの受発振面から超音波を発振し、前記受発振面で前記超音波の反射波を受振して反射波データを得る超音波探傷方法において、前記入射角において前記被探傷材の表面までの距離が最も短くなる前記受発振面の端部位置から被探傷材表面までの発振方向に沿った距離に基づいて前記入射角における被探傷材表面からの反射波到達時間を補正する。 In the first aspect of the invention, the ultrasonic wave is oscillated from the receiving and oscillating surface of the ultrasonic sensor at a predetermined incident angle with respect to the flaw detection material, and the reflected wave of the ultrasonic wave is received by the receiving and oscillating surface to obtain reflected wave data. In the ultrasonic flaw detection method, the incident angle is based on the distance along the oscillation direction from the end position of the receiving oscillation surface to the surface of the flaw detection material where the distance to the surface of the flaw detection material is the shortest at the incident angle. The arrival time of the reflected wave from the surface of the flaw detection material is corrected.
本第1発明においては、受発振面上の端部位置から被探傷材表面までの距離に基づいて所定の入射角における被探傷材表面からの反射波到達時間が補正される。したがって、前記反射波到達時間を精度良く求めることができる。 In the first aspect of the invention, the reflected wave arrival time from the surface of the flaw detection material at a predetermined incident angle is corrected based on the distance from the end position on the receiving / oscillating surface to the surface of the flaw detection material. Accordingly, the reflected wave arrival time can be obtained with high accuracy.
本第2発明では、前記被探傷材の表面に前記超音波センサを対向させて前記表面に沿う方向へ前記超音波センサを走査し、異なる複数の入射角での走査で得られる、前記補正された表面反射波到達時間に基づく反射波データをそれぞれ断面画像化し、それぞれの断面画像を合成して合成断面画像を得る。 In the second aspect of the invention, the correction is obtained by scanning the ultrasonic sensor in a direction along the surface with the ultrasonic sensor facing the surface of the flaw detection material, and scanning at a plurality of different incident angles. The reflected wave data based on the arrival time of the surface reflected wave is converted into cross-sectional images, and the cross-sectional images are combined to obtain a combined cross-sectional image.
本第2発明においては、異なる複数の入射角での走査で得られた反射波データをそれぞれ画像化し、それぞれの断面画像を合成することによって精度の高い断面画像を得ることができる。 In the second invention, reflected wave data obtained by scanning at a plurality of different incident angles are respectively imaged, and the cross-sectional images with high accuracy can be obtained by synthesizing the respective cross-sectional images.
以上のように、本発明の超音波探傷方法によれば、被探傷材表面からの反射波到達時間を精度良く求めることができる。 As described above, according to the ultrasonic flaw detection method of the present invention, the reflected wave arrival time from the surface of the flaw detection material can be obtained with high accuracy.
なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。 The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.
図1には超音波センサの受発振面RSのみを模擬的に示す。受発振面RSは発振された超音波が一定距離で収束するように所定の曲率半径rで湾曲する円弧状凹面となっている。ここで、受発振面RSの円弧長をDとすると、角度αはα(°)=90D/πrである。 FIG. 1 schematically shows only the receiving and oscillating surface RS of the ultrasonic sensor. The receiving and oscillating surface RS is an arcuate concave surface that is curved with a predetermined radius of curvature r so that the oscillated ultrasonic waves converge at a constant distance. Here, if the arc length of the receiving and oscillating surface RS is D, the angle α is α (°) = 90D / πr.
図1は板状被探傷材の表面Sに対して超音波を入射角0°で入射させた状態を示し、受発振面RSの中央Cから被探傷材表面Sまでの水距離はWPに設定されている。したがって、受発振面RSの中央Cから発振されて被探傷材表面Sで反射され再び受発振面RSに戻る超音波の路程(図1中の太矢印)は2WPである。 FIG. 1 shows a state in which an ultrasonic wave is incident on the surface S of the plate-shaped flaw detection material at an incident angle of 0 °, and the water distance from the center C of the receiving and oscillating surface RS to the flaw detection material surface S is set to WP. Has been. Therefore, the ultrasonic path (thick arrow in FIG. 1) that oscillates from the center C of the receiving and oscillating surface RS, reflects off the surface S of the flaw detection material, and returns to the receiving and oscillating surface RS is 2WP.
上記受発振面RSを、図2に示すように超音波の入射点Inを中心に旋回変位させれば、被探傷材表面Sに対する超音波入射角がθ°に変化しても、受発振面RSの中央Cから被探傷材表面Sまでの水距離はWPに保たれ、受発振面RSの中央Cからの超音波の路程(図2中の太矢印)は2WPに維持される。 If the receiving and oscillating surface RS is rotationally displaced about the ultrasonic incident point In as shown in FIG. 2, even if the ultrasonic incident angle with respect to the flaw detection material surface S changes to θ °, the receiving and oscillating surface The water distance from the center C of the RS to the flaw detection material surface S is maintained at WP, and the path of ultrasonic waves from the center C of the oscillation surface RS (thick arrow in FIG. 2) is maintained at 2WP.
ところが、受発振される超音波の路程が最も短い、受発振面RSの一方の端部E1から発振される超音波の路程について考えると、図3に示すように被探傷材表面Sへの超音波の入射角を0°とした時には、上記端部E1から発振されて被探傷材表面Sで反射され再び受発振面RSに戻る超音波の路程(図3中の太矢印)は、2・(r−(r−WP)/cosα))となる。 However, considering the path of ultrasonic waves oscillated from one end E1 of the receiving and oscillating surface RS with the shortest path of ultrasonic waves to be received and oscillated, as shown in FIG. When the incident angle of the sound wave is 0 °, the ultrasonic path (thick arrow in FIG. 3) oscillated from the end E1, reflected by the surface S of the flaw detection material and returning to the receiving surface RS again is 2 · (R- (r-WP) / cosα)).
これに対して図4に示すように超音波センサが上記端部E1方向へ旋回変位させられて被探傷材表面Sに対する超音波入射角がθ(°)に変化すると、上記端部E1から発振されて被探傷材表面Sで反射され再び受発振面RSに戻る超音波の路程(図4中の太矢印)は2・(r−y1)(ここでy1=(r−WP)cosθ/cos(θ+α))となって角度θに応じて短くなるように変化する。なお、請求項1に記載の「所定の入射角において被探傷材の表面までの距離が最も短くなる受発振面の端部位置から被探傷材表面までの発振方向に沿った距離」とは(r−y1)に相当する。 On the other hand, as shown in FIG. 4, when the ultrasonic sensor is turned and displaced in the direction of the end E1, and the ultrasonic incident angle with respect to the surface S to be inspected changes to θ (°), it oscillates from the end E1. Then, the path of the ultrasonic wave (reflected by the thick arrow in FIG. 4) reflected from the surface S to be detected and returned to the oscillation surface RS again is 2 · (r−y1) (where y1 = (r−WP) cos θ / cos). (θ + α)) and changes so as to become shorter according to the angle θ. The “distance along the oscillation direction from the end position of the receiving surface where the distance to the surface of the flaw detection material is the shortest at the predetermined incident angle to the surface of the flaw detection material” in claim 1 is ( r-y1).
ここで、入射角θに応じた上記端部E1からの超音波の路程2・(r−y1)を、水中での超音波の速度(温度に応じて変化する)で除して時間に換算し、入射角0°の時の路程2・(r−(r−WP)/cosα))の時間との差をとったグラフを図5に示す。図中、線xは理論値、線yは実験値であり、実験値は、ほぼ理論値に沿ったものとなっている。なお、負の時間差は路程が短くなることを示している。 Here, the path length 2 · (r−y1) of the ultrasonic wave from the end E1 corresponding to the incident angle θ is divided by the ultrasonic wave velocity in water (which changes according to the temperature) and converted to time. FIG. 5 is a graph showing the difference between the path length 2 · (r− (r−WP) / cos α)) and the time when the incident angle is 0 °. In the figure, the line x is the theoretical value, the line y is the experimental value, and the experimental value is almost in line with the theoretical value. Note that a negative time difference indicates that the path is shortened.
そこで、上記グラフの理論値によって、各入射角θの時に得られた反射波の到達時間tを入射角0°の時の反射波到達時間本来の時間軸へ補正する(図5のグラフ中の矢印線)。 Therefore, the arrival time t of the reflected wave obtained at each incident angle θ is corrected to the original time axis of the reflected wave arrival time at the incident angle 0 ° based on the theoretical value of the above graph (in the graph of FIG. 5). Arrow line).
このようにして、各入射角での走査で得られた反射波データにおいて反射波到達時間の補正を行い、時間補正された反射波到達時間tに基づいた反射波のデータをそれぞれ断面画像化し、それぞれの断面画像を合成することによって、精度の高い合成断面画像を得ることができる。このようにして得られた合成断面画像F1を図6に示す。合成断面画像F1は円形欠陥の形状を良く示すとともに輝度も相対的に高い。これに対して時間補正されていない反射波データから得られた合成断面画像F2は図7に示すように円形欠陥の形状が崩れるとともに輝度も相対的に低く、精度の高い合成断面画像が得られない。 In this way, the reflected wave arrival time is corrected in the reflected wave data obtained by scanning at each incident angle, and the reflected wave data based on the time-corrected reflected wave arrival time t is cross-sectional imaged respectively. By synthesizing the respective cross-sectional images, a highly accurate synthetic cross-sectional image can be obtained. The composite cross-sectional image F1 thus obtained is shown in FIG. The combined cross-sectional image F1 shows the shape of the circular defect well and has a relatively high luminance. On the other hand, the synthetic cross-sectional image F2 obtained from the reflected wave data that has not been time-corrected has the shape of the circular defect collapsed and the luminance is relatively low as shown in FIG. Absent.
なお、上記実施形態において、超音波センサを被探傷材に対して走査するスキャナの誤差を補償するために、校正用の被探傷材テストピースを使用して上記補正グラフを得るようにすれば、さらに精度の高い合成断面画像を得ることが可能である。 In the above embodiment, in order to compensate for an error of a scanner that scans the flaw detection material with respect to the flaw detection material, if the flaw detection material test piece for calibration is used to obtain the correction graph, Further, it is possible to obtain a synthesized cross-sectional image with high accuracy.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014225210A JP6414444B2 (en) | 2014-11-05 | 2014-11-05 | Ultrasonic flaw detection method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014225210A JP6414444B2 (en) | 2014-11-05 | 2014-11-05 | Ultrasonic flaw detection method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2016090392A JP2016090392A (en) | 2016-05-23 |
| JP6414444B2 true JP6414444B2 (en) | 2018-10-31 |
Family
ID=56016792
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014225210A Active JP6414444B2 (en) | 2014-11-05 | 2014-11-05 | Ultrasonic flaw detection method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6414444B2 (en) |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55175861U (en) * | 1979-06-06 | 1980-12-17 | ||
| JPS6342463A (en) * | 1986-08-09 | 1988-02-23 | Tokyo Keiki Co Ltd | Detection system for incidence angle variation of probe rotation type tube ultrasonic flaw detection device |
| JPH0481657A (en) * | 1990-07-25 | 1992-03-16 | Hitachi Ltd | Supersonic flaw detector |
| EP2182351A1 (en) * | 2008-10-29 | 2010-05-05 | National Research Council Of Canada | Method and apparatus for ultrasonic characterization of scale-dependent bulk material heterogeneities |
| JP5421633B2 (en) * | 2009-03-30 | 2014-02-19 | 中央精機株式会社 | Ultrasonic exploration method and ultrasonic exploration apparatus |
| JP5662873B2 (en) * | 2011-05-26 | 2015-02-04 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic flaw detection method |
-
2014
- 2014-11-05 JP JP2014225210A patent/JP6414444B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2016090392A (en) | 2016-05-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102232195B (en) | Method for optically scanning and measuring an object | |
| JP2013145235A (en) | Calibration member and calibration method | |
| US20160202214A1 (en) | Structural deformation detecting device | |
| JP2012533748A5 (en) | ||
| JP2016096914A5 (en) | ||
| JP2016035394A (en) | Terahertz wave imaging device and terahertz wave imaging method | |
| US10775164B2 (en) | Measurement system, machining system, measurement method, and computer-readable recording medium | |
| JP6203109B2 (en) | Optical scanning image forming apparatus and optical scanning image forming method | |
| US10234427B2 (en) | Noncontact deformation detecting device with inclination measurement | |
| US20180024240A1 (en) | Underwater detection apparatus | |
| JP6414444B2 (en) | Ultrasonic flaw detection method | |
| JP2014067035A (en) | Scanner correction system and correction method therefor | |
| JP2016512792A5 (en) | ||
| JP2017207345A (en) | Calibration method of ultrasonic flaw detection | |
| JP5876345B2 (en) | Optical deflector | |
| JP2017096770A5 (en) | ||
| JP6553183B2 (en) | Driving condition setting device for optical scanning device | |
| JP2016099615A (en) | Illumination device and laser microscope | |
| JP2014233402A5 (en) | ||
| JP6109780B2 (en) | Ultrasonic flaw detection method | |
| JP2009258089A (en) | Shape measuring apparatus | |
| US20200000431A1 (en) | Position Control Device, Position Control Method, and Ultrasonic Imaging System | |
| WO2018008393A1 (en) | Laser radar device | |
| JP5268063B2 (en) | Ultrasonic measuring device | |
| JP7405541B2 (en) | Survey data processing device, survey data processing method, and survey data processing program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170913 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170913 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170913 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180822 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180905 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180918 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6414444 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |