[go: up one dir, main page]

JP6708496B2 - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP6708496B2
JP6708496B2 JP2016131892A JP2016131892A JP6708496B2 JP 6708496 B2 JP6708496 B2 JP 6708496B2 JP 2016131892 A JP2016131892 A JP 2016131892A JP 2016131892 A JP2016131892 A JP 2016131892A JP 6708496 B2 JP6708496 B2 JP 6708496B2
Authority
JP
Japan
Prior art keywords
seal ring
rotary
sleeve
fluid
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016131892A
Other languages
Japanese (ja)
Other versions
JP2018003967A (en
Inventor
博之 坂倉
博之 坂倉
兼史 藤田
兼史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2016131892A priority Critical patent/JP6708496B2/en
Publication of JP2018003967A publication Critical patent/JP2018003967A/en
Application granted granted Critical
Publication of JP6708496B2 publication Critical patent/JP6708496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Description

本発明は、例えばビーズミルや攪拌機等の回転機器に装備されるメカニカルシールに関するものである。 The present invention relates to a mechanical seal equipped in a rotating device such as a bead mill or a stirrer.

従来、メカニカルシールの一例である端面接触形のメカニカルシールとして、例えば、特許文献1に開示される如く、機内領域である被密封流体領域と機外領域である大気領域とを機内側の一次シールと機外側の二次シールとの間に形成された非密封流体領域を介してシールするように構成された軸封装置において、一次シールとして使用されているものが公知である。 BACKGROUND ART Conventionally, as an end-face contact type mechanical seal which is an example of a mechanical seal, for example, as disclosed in Patent Document 1, a sealed fluid region which is an internal region and an atmospheric region which is an external region are primary seals inside the aircraft. It is known to be used as a primary seal in a shaft sealing device configured to seal via a non-sealing fluid region formed between the and a secondary seal on the outside of the machine.

すなわち、この一次シールとして使用されているメカニカルシール(以下「従来メカニカルシール」という)は、特許文献1の図1に示される如く、シールケースに軸線方向移動可能に保持された静止密封環と回転軸に固定された回転密封環との対向端面である密封端面が接触しながら相対回転することにより当該密封端面の外周側領域である被密封流体領域とその内周側領域である非密封流体領域とを遮蔽するように構成されたものである。一次シールと二次シールとでシールされた非密封流体領域には、水等の冷却液が循環供給される。 That is, as shown in FIG. 1 of Patent Document 1, a mechanical seal used as this primary seal (hereinafter referred to as “conventional mechanical seal”) is rotated by a stationary seal ring that is axially movable in a seal case. The sealed end face, which is the end face opposite to the rotary seal ring fixed to the shaft, makes relative rotation while contacting the sealed end face, which is the outer peripheral region of the sealed end face, and the non-sealed fluid region, which is the inner peripheral side region thereof. It is configured to shield and. A cooling liquid such as water is circulated and supplied to the non-sealed fluid region sealed by the primary seal and the secondary seal.

而して、従来メカニカルシールにあっては、回転密封環がセラミックス又は超硬合金で一体成形されたものであって、回転軸に固定した金属製(ステンレス鋼等)のスリーブにこれとの対向周面間をOリングでシールした状態で嵌合されると共に当該スリーブに対する相対回転を回り止め機構により阻止されている。 Thus, in the conventional mechanical seal, the rotary seal ring is integrally formed of ceramics or cemented carbide, and is opposed to a metal (stainless steel) sleeve fixed to the rotary shaft. The peripheral surfaces are fitted with each other in an O-ring sealed state, and relative rotation with respect to the sleeve is prevented by a rotation stopping mechanism.

ところで、従来メカニカルシールにあっては、回転密封環の構成材であるセラミックスや超硬合金に比してスリーブの構成材であるステンレス鋼等の金属の熱膨張率(線膨張係数)が大きいため、被密封流体が高温流体である場合、回転密封環をスリーブに接触した状態で嵌合させておくと、高温流体による回転密封環の内径の熱膨張量(以下「内径拡大量」という)に比してスリーブの外径の熱膨張量(以下「外径拡大量」という)が大きいため、回転密封環の内周部に、当該回転密封環の内径がスリーブにより押し広げられることによる引張応力が作用することになる。その結果、回転密封環の構成材であるセラミックスや超硬合金が圧縮強度に優れるものの、引張強度に劣るものであることから、回転密封環が遠心力の作用とも相俟って破損するおそれがある。 By the way, in conventional mechanical seals, the coefficient of thermal expansion (linear expansion coefficient) of metals such as stainless steel, which is a constituent material of the sleeve, is larger than that of ceramics and cemented carbide, which are constituent materials of the rotary seal ring. If the fluid to be sealed is a high temperature fluid, if the rotary seal ring is fitted in contact with the sleeve, the thermal expansion amount of the inner diameter of the rotary seal ring due to the high temperature fluid (hereinafter referred to as "inner diameter expansion amount") In comparison, the thermal expansion amount of the outer diameter of the sleeve (hereinafter referred to as the “outer diameter expansion amount”) is large, so the internal stress of the inner diameter of the rotary seal ring is expanded by the sleeve. Will work. As a result, although ceramics and cemented carbide, which are components of the rotary seal ring, have excellent compressive strength but poor tensile strength, the rotary seal ring may be damaged due to the action of centrifugal force. is there.

そこで、従来メカニカルシールを高温条件下で使用する場合には、スリーブの外径及び回転密封環の内径を回転密封環がスリーブに非接触となる状態で嵌合するように設計しておくことが提案されている。すなわち、高温流体との接触による回転密封環の内径拡大量とスリーブの外径拡大量とを予測して、当該予測結果に基づいて、運転停止時(メカニカルシール組み立て時)における回転密封環の内周面とスリーブの外周面との間に環状隙間(以下「設計隙間」という)を形成することによって、回転密封環とスリーブとが高温流体(被密封流体)にて熱変形(熱膨張)する運転状況下においても上記設計隙間の形成により回転密封環にスリーブによる引張応力が作用することがない。 Therefore, when the conventional mechanical seal is used under high temperature conditions, it is necessary to design the outer diameter of the sleeve and the inner diameter of the rotary seal ring so that the rotary seal ring fits in the sleeve in a non-contact state. Proposed. That is, the inner diameter expansion amount of the rotary seal ring and the outer diameter expansion amount of the sleeve due to contact with the high temperature fluid are predicted, and based on the prediction result, the inner diameter of the rotary seal ring at the time of operation stop (during mechanical seal assembly) is predicted. By forming an annular gap (hereinafter referred to as "design gap") between the peripheral surface and the outer peripheral surface of the sleeve, the rotary seal ring and the sleeve are thermally deformed (thermally expanded) by a high temperature fluid (sealed fluid). Even under operating conditions, the formation of the design gap prevents the rotary seal ring from being subjected to tensile stress due to the sleeve.

特開2009−197945号公報JP, 2009-197945, A

しかし、運転時におけるスリーブの外径拡大量は、高温流体の温度に依存することから、ある程度正確に予測することができるが、運転時における回転密封環の内径拡大量は、高温流体の温度に加え、回転密封環の密封端面で発生する摩擦熱及び回転密封環の内周面に接触する冷却液による冷却をも考慮する必要があり、正確に予測することは極めて困難である。 However, since the outer diameter expansion amount of the sleeve during operation depends on the temperature of the high temperature fluid, it can be predicted with some accuracy, but the inner diameter expansion amount of the rotary seal ring during operation depends on the temperature of the high temperature fluid. In addition, it is necessary to consider the frictional heat generated at the sealing end surface of the rotary seal ring and the cooling by the cooling liquid that contacts the inner peripheral surface of the rotary seal ring, which is extremely difficult to accurately predict.

したがって、設計隙間が運転時における回転密封環の内径拡大量とスリーブの外径拡大量との差に比して過小であると、運転時において回転密封環にスリーブによる引張応力が作用して、上記問題(引張応力による回転密封環の破損)が生じる。 Therefore, if the design gap is too small compared to the difference between the inner diameter expansion amount of the rotary seal ring and the outer diameter expansion amount of the sleeve during operation, tensile stress due to the sleeve acts on the rotary seal ring during operation, The above problem (damage of the rotary seal ring due to tensile stress) occurs.

一方、設計隙間が回転密封環の内径拡大量とスリーブの外径拡大量との差に比して過大であると、運転時においては、回転密封環とスリーブとの対向周面間に大きな隙間が生じるため、相手密封環(静止密封環)との相対回転摺接によるトルクの作用や回転軸の振動等により、回転密封環がスリーブに対して大きく偏心する虞れがある。そして、回転密封環が大きく偏心すると、回転密封環の密封端面と相手密封環の密封端面との同心性が損なわれて、両密封端面の接触が適正に行われず、シール機能が良好に発揮されなくなるおそれがある。 On the other hand, if the design clearance is too large compared to the difference between the inner diameter expansion amount of the rotary seal ring and the outer diameter expansion amount of the sleeve, during operation, a large gap is created between the opposing peripheral surfaces of the rotary seal ring and the sleeve. Therefore, there is a possibility that the rotary seal ring may be largely eccentric with respect to the sleeve due to the action of torque due to relative rotational sliding contact with the mating seal ring (stationary seal ring), vibration of the rotary shaft, and the like. Then, if the rotary seal ring is largely eccentric, the concentricity between the seal end face of the rotary seal ring and the seal end face of the mating seal ring is impaired, the two seal end faces are not properly contacted, and the sealing function is well exhibited. It may disappear.

ところで、従来メカニカルシールにあっては、前記回り止め機構が、スリーブに固定した金属製のキーと回転密封環の内周面に形成したキー溝とからなり、キーをキー溝に係合させることにより回転密封環のスリーブに対する相対回転を阻止するように構成されている。而して、このような回り止め機構を採用するメカニカルシールにあっては、設計隙間が運転時における回転密封環の内径拡大量とスリーブの外径拡大量との差に比して過大であると、上記した如く、回転密封環がスリーブに対して大きく偏心することにより、設計隙間が当該内外拡大量の差に比して過小である場合と同様に、回転密封環が破損するおそれがある。 By the way, in the conventional mechanical seal, the detent mechanism comprises a metal key fixed to the sleeve and a key groove formed on the inner peripheral surface of the rotary seal ring, and the key is engaged with the key groove. Is configured to prevent relative rotation of the rotary seal ring with respect to the sleeve. Therefore, in the mechanical seal that employs such a rotation preventing mechanism, the design clearance is excessive compared to the difference between the inner diameter expansion amount of the rotary seal ring and the outer diameter expansion amount of the sleeve during operation. As described above, since the rotary seal ring is largely eccentric with respect to the sleeve, the rotary seal ring may be damaged as in the case where the design clearance is too small compared to the difference between the inner and outer expansion amounts. ..

すなわち、スリーブに固定されたキーと回転密封環の内周面に形成されたキー溝とは、両者の係合機能が回転密封環のスリーブ(回転軸)に対する相対回転を阻止するためにすぎないものであること及び回転密封環のスリーブへの固定作業の容易性を図ること等の理由から、密に係合されておらず、キーとキー溝とはその間にある程度の隙間が生じた状態で係合されている。また、回転密封環は、焼結材であるセラミックス又は超硬合金で構成されていることから、凹凸のない円形をなす断面形状部分においてはトルクに対する強度が高いものであるが、破壊靭性が内部の局所的な欠陥構造に左右され易い脆性材であり、キー溝のように一部に凹凸を有する非円形をなす断面形状部分においてはトルクによる応力集中によって凹凸箇所から破壊される可能性がある。 That is, the key fixed to the sleeve and the key groove formed on the inner peripheral surface of the rotary seal ring merely prevent the rotary seal ring from rotating relative to the sleeve (rotary shaft). The key and the key groove are not tightly engaged with each other for the reason of being easy to fix the rotary seal ring to the sleeve, etc. Engaged. Further, since the rotary seal ring is made of a ceramic material such as a sintered material or a cemented carbide, it has a high strength against torque in a circular cross-sectional shape portion without unevenness, but has a high fracture toughness. It is a brittle material that is easily affected by the local defect structure of No. 3, and in a non-circular cross-sectional shape part with unevenness such as a key groove, it may be destroyed from the uneven part due to stress concentration due to torque ..

したがって、回転密封環がスリーブに対して偏心しないか或は偏心してもその偏心量が小さいときは、キーがキー溝に面接触して、キー溝にはキーとの接触部分に応力が集中することはないが、回転密封環がスリーブに対して大きく偏心した場合には、キーがキー溝に面接触せず線接触することになり、その結果、回転密封環にはキーの接触部分に相手密封環との接触状態での相対回転によるトルクにより大きな応力が集中して、回転密封環が破損するおそれがある。 Therefore, if the rotary seal ring is not eccentric with respect to the sleeve, or if the amount of eccentricity is small even if eccentric, the key comes into surface contact with the key groove, and stress concentrates at the key groove in the contact portion with the key. However, if the rotary seal ring is largely eccentric with respect to the sleeve, the key will come into line contact with the keyway without making surface contact, and as a result, the rotary seal ring will come into contact with the key contact portion. Large torque may be concentrated due to the torque due to relative rotation in the contact state with the seal ring, and the rotary seal ring may be damaged.

本発明は、このような問題を解決すべくなされたもので、運転時における回転密封環の破損を可及的に防止して、長期に亘って良好なシール機能を発揮しうるメカニカルシールを提供することを目的とするものである。 The present invention has been made to solve such a problem, and provides a mechanical seal capable of exhibiting a good sealing function for a long period of time by preventing damage to the rotary sealing ring during operation as much as possible. The purpose is to do.

本発明は、シールケースに軸線方向への移動が可能な状態で保持された静止密封環と、シールケースを貫通する回転軸に固定された回転密封環と、を備え、前記静止密封環と回転密封環との対向端面である密封端面が接触しながら相対回転することにより当該密封端面の外周側領域である被密封流体領域とその内周側領域である非密封流体領域とを遮蔽シールするメカニカルシールであって、前記非密封流体領域の流体(以下「非密封流体」という)が被密封流体領域の流体(以下「被密封流体」という)より低温であり、回転密封環が、セラミックス又は超硬合金で形成され、回転軸に固定された金属製のスリーブにこれとの対向周面間をシール部材でシールした非接触の状態で嵌合されると共に、当該スリーブと回転密封環との相対回転が回り止め機構により阻止されており、回転密封環の内周面にダイヤモンド膜を形成したメカニカルシールを提案するものである。 The present invention comprises a stationary seal ring held in a seal case so as to be movable in the axial direction, and a rotary seal ring fixed to a rotary shaft penetrating the seal case. A mechanical device that shields a sealed fluid region, which is an outer peripheral side region of the sealed end face, and a non-sealed fluid region, which is an inner peripheral side region thereof, by relatively rotating while a sealing end face that is an end face facing the sealing ring is in contact with the sealing ring. A seal, wherein the fluid in the non-sealing fluid region (hereinafter referred to as “non-sealing fluid”) has a lower temperature than the fluid in the sealed fluid region (hereinafter referred to as “sealing fluid”), and the rotary sealing ring is made of ceramic or super The sleeve is made of hard alloy and is fixed to the rotating shaft. The sleeve is fitted in a non-contact state in which the space between the opposing peripheral surfaces is sealed by a seal member, and the sleeve and the rotary seal ring are opposed to each other. The present invention proposes a mechanical seal in which rotation is blocked by a rotation stop mechanism and a diamond film is formed on the inner peripheral surface of a rotary seal ring.

本発明のメカニカルシールの好ましい実施に形態にあっては、前記被密封流体が、前記回転密封環及びスリーブを熱膨張させる温度の流体であり、前記回り止め機構が、スリーブの外周部に固定した金属製のキーを回転密封環の内周部に形成されたキー溝に係合させてなる。 In a preferred embodiment of the mechanical seal of the present invention, the sealed fluid is a fluid having a temperature at which the rotary seal ring and the sleeve are thermally expanded, and the rotation preventing mechanism is fixed to an outer peripheral portion of the sleeve. A metal key is engaged with a key groove formed in the inner peripheral portion of the rotary seal ring.

また、本発明のメカニカルシールにあっては、非密封流体が接触する回転密封環の表面部分に前記ダイヤモンド膜に連なるダイヤモンド膜を形成しておくことが好ましい。また、回転密封環の密封端面に、前記ダイヤモンド膜と分離した形態でダイヤモンド膜を形成しておくことが好ましい。さらに、前記ダイヤモンド膜の厚さは1μm以上であることが好ましい。 Further, in the mechanical seal of the present invention, it is preferable to form a diamond film continuous with the diamond film on the surface portion of the rotary sealing ring with which the non-sealing fluid comes into contact. Further, it is preferable that a diamond film is formed on the sealing end surface of the rotary sealing ring in a form separated from the diamond film. Further, the diamond film preferably has a thickness of 1 μm or more.

本発明のメカニカルシールにあっては、被密封流体より低温の液体(非密封流体)と接触する回転密封環の内周面に、当該密封環の構成材であるセラミックスや超硬合金に比して熱膨張率の極めて低いダイモンド膜を形成しているから、非密封流体との接触による当該ダイヤモンド膜への伝熱(冷却)により、当該内周面への密封端面で発生する摩擦熱による伝熱及び非密封流体より高温の被密封流体との接触による伝熱を効果的に遮断し得て、運転時における当該内周部分の温度上昇を可及的に防止でき、内周面を含む回転密封環の内周部分の温度が非密封流体の温度に略支配されることになる。したがって、運転時における回転密封環の内径の熱膨張量(内径拡大量)を非密封流体の温度に基づいてある程度正確に予測することができ、運転停止時(メカニカルシール組み立て時)における回転密封環とスリーブとの対向周面間に形成される環状隙間(設計隙間)を、運転時における当該対向周面間に環状隙間(以下「運転時隙間」という)が生じ且つ当該運転時隙間が可及的に小さくなるように設計しておくことができる。その結果、運転時において、回転密封環にスリーブの熱膨張による引張応力が作用することがなく、また回転密封環がスリーブに対して大きく偏心するようなことがなく、長期に亘って良好なシール機能を発揮させることができる。 In the mechanical seal of the present invention, the inner surface of the rotary seal ring, which is in contact with a liquid (unsealed fluid) whose temperature is lower than that of the sealed fluid, is higher than that of the constituent material of the seal ring, such as ceramics or cemented carbide. Since a diamond film with a very low coefficient of thermal expansion is formed, heat transfer (cooling) to the diamond film by contact with a non-sealing fluid causes transfer of frictional heat generated at the sealed end surface to the inner peripheral surface. The heat transfer due to the contact with the sealed fluid having a temperature higher than that of the heat and the non-sealed fluid can be effectively blocked, the temperature rise of the inner peripheral portion can be prevented as much as possible during operation, and the rotation including the inner peripheral surface can be prevented. The temperature of the inner peripheral portion of the sealing ring is substantially controlled by the temperature of the non-sealing fluid. Therefore, the thermal expansion amount (inner diameter expansion amount) of the inner diameter of the rotary seal ring during operation can be predicted to some extent accurately based on the temperature of the non-sealing fluid, and the rotary seal ring during operation stop (mechanical seal assembly) can be predicted. The annular clearance (designed clearance) formed between the opposing peripheral surfaces of the sleeve and the sleeve is an annular clearance (hereinafter referred to as “operating clearance”) between the opposing peripheral surfaces during operation, and the operational clearance is possible. It can be designed to be small. As a result, during operation, tensile stress due to thermal expansion of the sleeve does not act on the rotary seal ring, and the rotary seal ring does not become largely eccentric with respect to the sleeve. It can exert its function.

本発明に係るメカニカルシールの一例を示す断面図である。It is sectional drawing which shows an example of the mechanical seal which concerns on this invention. 図1の要部を拡大して示す詳細図である。It is a detailed view which expands and shows the principal part of FIG. 図2のIII −III 線に沿う要部の断面図である。FIG. 3 is a sectional view of a main part taken along the line III-III in FIG. 2. 本発明に係るメカニカルシールの変形例を示す図2相当の要部の断面図である。It is sectional drawing of the principal part equivalent to FIG. 2 which shows the modification of the mechanical seal which concerns on this invention. 本発明に係るメカニカルシールの他の変形例を示す図2相当の要部の断面図である。It is sectional drawing of the principal part equivalent to FIG. 2 which shows the other modification of the mechanical seal which concerns on this invention.

以下、本発明を実施するための形態を図面に基づいて具体的に説明する。 Hereinafter, a mode for carrying out the present invention will be specifically described with reference to the drawings.

図1は本発明に係るメカニカルシールを一次シールとして装備した軸封装置の一例を示す断面図であり、図2は図1の要部を拡大して示す詳細図であり、図3は図2のIII −III 線に沿う要部の断面図である。なお、以下の説明において、前後とは図1及び図2における左右を意味するものとする。 FIG. 1 is a sectional view showing an example of a shaft sealing device equipped with a mechanical seal according to the present invention as a primary seal, FIG. 2 is a detailed view showing an enlarged main part of FIG. 1, and FIG. FIG. 3 is a sectional view of a main part taken along line III-III of FIG. In the following description, front and rear mean left and right in FIGS. 1 and 2.

図1に示す軸封装置は、回転機器のハウジング1とこれを貫通する回転軸2との間に一次シール3と二次シール4とを軸線方向(前後方向)に縦列配置して、機内領域である被密封領域Aと機外領域である大気領域Bとを両シール3,4間に形成された非密封流体領域Cを介してシールするように構成されたものであり、被密封流体領域Aの流体(被密封流体)が後述する回転密封環6及びスリーブ8を熱膨張させる温度(例えば、75度以上)の高温流体であり且つ非密封流体領域Bの流体(非密封流体)が被密封流体より低温の冷却液Sである条件下で使用されるものである。 In the shaft sealing device shown in FIG. 1, a primary seal 3 and a secondary seal 4 are arranged in a row in an axial direction (front-rear direction) between a housing 1 of a rotating device and a rotating shaft 2 penetrating the housing 1 to provide an in-machine region. The sealed area A, which is a non-sealed area, and the atmospheric area B, which is an outboard area, are sealed via a non-sealed fluid area C formed between the seals 3 and 4. The fluid A (sealed fluid) is a high-temperature fluid at a temperature (for example, 75 degrees or more) that thermally expands the rotary seal ring 6 and the sleeve 8 described later, and the fluid in the unsealed fluid region B (unsealed fluid) is covered. It is used under the condition that the cooling liquid S has a temperature lower than that of the sealed fluid.

なお、以下の説明において、軸線とは回転軸2の中心線をいい、軸線方向とは軸線と同一方向をいう。 In the description below, the axis means the center line of the rotary shaft 2, and the axis direction means the same direction as the axis.

図1に示す如く、一次シール3は本発明の端面接触形メカニカルシールであって、ハウジング1に取り付けられたシールケース5と、回転軸2に固定された回転密封環6と、シールケース5に軸線方向(前後方向)に移動可能に保持された静止密封環7と、静止密封環7を回転密封環6に押圧した状態で接触させるべく附勢するスプリング部材8とを具備し、両密封環6,7の対向端面たる密封端面6a,7aが接触しながら相対回転することにより当該密封端面6a,7aの外周側領域である被密封流体領域Aとその内周側領域である非密封流体領域Cとを遮蔽シールするように構成されている。 As shown in FIG. 1, the primary seal 3 is the end face contact type mechanical seal of the present invention, and includes a seal case 5 attached to the housing 1, a rotary seal ring 6 fixed to the rotary shaft 2, and a seal case 5. The stationary seal ring 7 held so as to be movable in the axial direction (front-back direction) and the spring member 8 for urging the stationary seal ring 7 to contact the rotary seal ring 6 in a pressed state. The sealed end surfaces 6a, 7a, which are the opposite end surfaces of 6, and 7 relatively rotate while being in contact with each other, so that the sealed fluid area A that is the outer peripheral side area of the sealed end surfaces 6a, 7a and the non-sealed fluid area that is the inner peripheral side area thereof. It is configured to shield and seal C and C.

図1に示す如く、シールケース5は円筒構造をなすもので、本体部5aとその先端部(後端部)に取り付けられたフランジ部5bとその内周部に一体形成されたスプリング保持部5cとその先端部(後端部)に一体形成された密封環保持部5dとからなり、本体部5a及びフランジ部5bが、スプリング保持部5c及び密封環保持部5dがハウジング1内に位置した状態で、ハウジング1に取り付けられている。 As shown in FIG. 1, the seal case 5 has a cylindrical structure, and includes a main body portion 5a, a flange portion 5b attached to a front end portion (rear end portion) of the main body portion 5a, and a spring holding portion 5c integrally formed on an inner peripheral portion thereof. And a seal ring holding portion 5d integrally formed at the front end portion (rear end portion) of the main body portion 5a and the flange portion 5b, and the spring holding portion 5c and the seal ring holding portion 5d are located inside the housing 1. It is attached to the housing 1.

シールケース5の本体部5aには、図1に示す如く、非密封流体領域Cに連通する冷却液Sの給液通路5e及び排液通路5fが設けられていて、被密封流体より低温且つ高圧の冷却液Sを非密封流体領域Cに封液(非密封流体)として循環供給するように構成されている。冷却液Sとしては、常温の液体又は給排液通路5e,5fを連結する冷却液循環路に配設した冷却手段により常温以下に冷却された液体であって、被密封流体への混入及び大気領域Bへの漏洩に支障のない清水、溶剤等が使用されており、その温度は略一定に保持されている。 As shown in FIG. 1, the main body portion 5a of the seal case 5 is provided with a supply passage 5e and a discharge passage 5f for the cooling liquid S which communicate with the non-sealing fluid region C, and are lower in temperature and higher in pressure than the sealed fluid. The cooling liquid S is circulated and supplied to the non-sealed fluid region C as a sealed liquid (non-sealed fluid). The cooling liquid S is a liquid at room temperature or a liquid cooled to a temperature below room temperature by a cooling means arranged in a cooling liquid circulation path connecting the supply/drainage liquid passages 5e and 5f. Fresh water, a solvent, etc., which does not hinder the leakage to the region B, are used, and the temperature thereof is kept substantially constant.

回転軸2は、例えばステンレス等の金属製のもので、シールケース5を同心状に貫通している。回転軸2には、図1に示す如く、ステンレス鋼等の金属からなる円筒状のスリーブ9が固定されている。スリーブ9は、先端部(前端部)をシールケース5の本体部5aから大気領域B側へ突出させると共に基端部(後端部)をシールケース5の密封環保持部5dからハウジング1内に突出させた状態で、先端部に嵌合させた固定リング10及びセットスクリュー11a,11bにより回転軸2に固定されている。 The rotary shaft 2 is made of metal such as stainless steel, and penetrates the seal case 5 concentrically. As shown in FIG. 1, a cylindrical sleeve 9 made of metal such as stainless steel is fixed to the rotary shaft 2. The sleeve 9 has a tip (front end) protruding from the main body 5a of the seal case 5 to the atmosphere region B side, and a base end (rear end) from the seal ring holding portion 5d of the seal case 5 into the housing 1. In the projected state, it is fixed to the rotary shaft 2 by the fixing ring 10 and the set screws 11a and 11b fitted to the tip portion.

図1及び図2に示す如く、回転密封環6は、炭化珪素等のセラミックス又は超硬合金で一体成形されたものであり、先端面(前端面)を軸線に直交する円環状の平滑面である密封端面6aに形成された先端部6bと、内周面6eを先端部6bの内周面6dより大径とした基端部6cとからなる外径一定の円環状体である。回転密封環6は、ハウジング1内であってシールケース5の密封環保持部5dより被密封流体領域A側(後側)に配して、回転軸2にスリーブ9、シール材の一例としてのOリング12及びキー13を介して固定されている。 As shown in FIGS. 1 and 2, the rotary seal ring 6 is integrally formed of ceramics such as silicon carbide or cemented carbide, and has a tip end surface (front end surface) of an annular smooth surface orthogonal to the axis. It is an annular body having a constant outer diameter, which includes a tip portion 6b formed on a certain sealed end surface 6a and a base end portion 6c having an inner peripheral surface 6e larger in diameter than the inner peripheral surface 6d of the tip portion 6b. The rotary seal ring 6 is disposed in the housing 1 on the sealed fluid region A side (rear side) of the seal ring holding portion 5d of the seal case 5, and the rotary shaft 2 has a sleeve 9 and an example of a seal material. It is fixed via an O-ring 12 and a key 13.

すなわち、図1〜図3に示す如く、回転密封環6は、スリーブ9に当該スリーブ9との対向周面間をパーフロロゴム等のゴム材製のOリング12でシールした非接触の状態で嵌合されると共に、スリーブ9に対する相対回転が回り止め機構により阻止されている。この例では、回り止め機構が、スリーブ9の外周部に固定した金属製のキー13を回転密封環6の先端部6bの内周面6dに形成したキー溝6fに係合させてなる。
なお、回り止め機構としては、本実施形態において説明したキー13およびキー溝6fの組み合わせ以外にも、ドライブピンと係合孔との組み合わせ等を採用することができる。また、シール材としては、Oリング12に限定されず、Vリングシール等の回転密封環6とスリーブ9とのシール機能を発揮できるものであれば、その種類は問わない。
That is, as shown in FIGS. 1 to 3, the rotary seal ring 6 is fitted in a sleeve 9 in a non-contact state in which a peripheral surface between the sleeve 9 and the sleeve 9 is sealed by an O-ring 12 made of a rubber material such as perfluoro rubber. At the same time, the relative rotation with respect to the sleeve 9 is prevented by the rotation stopping mechanism. In this example, the anti-rotation mechanism engages the metal key 13 fixed to the outer peripheral portion of the sleeve 9 with the key groove 6f formed on the inner peripheral surface 6d of the tip portion 6b of the rotary seal ring 6.
As the rotation preventing mechanism, a combination of a drive pin and an engagement hole or the like can be adopted in addition to the combination of the key 13 and the key groove 6f described in the present embodiment. Further, the seal material is not limited to the O-ring 12, and any kind of seal material such as a V-ring seal can be used as long as it can exhibit the sealing function between the rotary seal ring 6 and the sleeve 9.

図2に示す如く、Oリング12は、回転密封環6の基端部6cの内周面6eとこれに対向するスリーブ9の外周面9aとの間に圧縮状態で装填されて当該内外周面6e,9a間をシールすると共に、回転密封環6を摩擦による係合力によってスリーブ9に固定する。なお、上記内外周面6e,9a間におけるOリング装填空間は、軸線方向において、回転密封環9の基端部6cの内周面6eから内方に突出する先端部6bの内周側部分6gと、スリーブ9の基端に形成された環状突起9bとで閉塞されている。 As shown in FIG. 2, the O-ring 12 is loaded in a compressed state between the inner peripheral surface 6e of the base end portion 6c of the rotary seal ring 6 and the outer peripheral surface 9a of the sleeve 9 facing the inner peripheral surface 6e. 6e and 9a are sealed, and the rotary seal ring 6 is fixed to the sleeve 9 by frictional engagement force. The O-ring loading space between the inner and outer peripheral surfaces 6e and 9a is an inner peripheral side portion 6g of the tip portion 6b protruding inward from the inner peripheral surface 6e of the base end portion 6c of the rotary seal ring 9 in the axial direction. And an annular projection 9b formed at the base end of the sleeve 9 are closed.

図2及び図3に示す如く、キー13は、軸線に平行する断面形状及び軸線に直交する断面形状を方形とするステンレス鋼等の金属製の平行キーであり、基端部13aをスリーブ9に形成した軸線方向に延びるキー溝9cに嵌合させることにより、先端部13bをスリーブ9の外周面9aから突出させた状態でスリーブ9に固定されている。 As shown in FIG. 2 and FIG. 3, the key 13 is a parallel key made of metal such as stainless steel having a rectangular sectional shape parallel to the axis and a sectional shape orthogonal to the axis, and the base end portion 13 a is attached to the sleeve 9. By fitting into the formed key groove 9c extending in the axial direction, the tip portion 13b is fixed to the sleeve 9 in a state of protruding from the outer peripheral surface 9a of the sleeve 9.

キー13の先端部13bは、図2及び図3に示す如く、回転密封環6の先端部6bに形成されたキー溝6fに回転密封環6の周方向及び径方向に若干の余裕を持った状態で係合されて、回転密封環6のスリーブ9に対する相対回転を阻止している。なお、この例では、キー13の先端面及びこれに対向するキー溝6fの底面は、図3に示す如く、軸線に直交する断面形状において円弧面をなしている。また、スリーブ9には、図1及び図2に示す如く、キー13に接触させた状態でスナップリング14が取り付けられている。 As shown in FIGS. 2 and 3, the tip portion 13b of the key 13 has a slight allowance in the circumferential direction and the radial direction of the rotary seal ring 6 in the key groove 6f formed in the tip portion 6b of the rotary seal ring 6. Are engaged with each other to prevent relative rotation of the rotary seal ring 6 with respect to the sleeve 9. In this example, the front end surface of the key 13 and the bottom surface of the key groove 6f facing the front end surface are arcuate surfaces in a sectional shape orthogonal to the axis, as shown in FIG. Further, as shown in FIGS. 1 and 2, a snap ring 14 is attached to the sleeve 9 while being in contact with the key 13.

而して、回転密封環6の内径はスリーブ9の外径より所定量大きく設定されていて、回転密封環6はスリーブ9に非接触の状態で嵌合されている。すなわち、運転停止時(メカニカルシール組み立て時)において、図2に示す如く、回転密封環6の先端部6bの内周面6dとスリーブ9の外周面9aとの間、及び回転密封環6の基端部6cの内周面6eとスリーブ9の環状突起9bの外周面9dとの間には所定の間隔を有する環状隙間(以下「設計隙間」という)が形成されている。この設計隙間は、後述する如く、回転密封環6及びスリーブ9の構成材の熱膨張率(線膨張係数)並びに被密封流体及び冷却液Sの温度を勘案して、運転時における回転密封環5の内径の熱膨張量(内径拡大量)及びスリーブ9の外径の熱膨張量(外径拡大量)を予測し、運転時において回転密封環5の内周面6d,6eとスリーブ9の外周面9a,9dとが接触せず且つ可及的に近接するように、設定されている。 Thus, the inner diameter of the rotary seal ring 6 is set larger than the outer diameter of the sleeve 9 by a predetermined amount, and the rotary seal ring 6 is fitted in the sleeve 9 in a non-contact state. That is, when the operation is stopped (when the mechanical seal is assembled), as shown in FIG. 2, between the inner peripheral surface 6d of the tip portion 6b of the rotary seal ring 6 and the outer peripheral surface 9a of the sleeve 9 and the base of the rotary seal ring 6. Between the inner peripheral surface 6e of the end portion 6c and the outer peripheral surface 9d of the annular protrusion 9b of the sleeve 9, an annular clearance (hereinafter referred to as "design clearance") having a predetermined interval is formed. As will be described later, this design clearance takes into consideration the thermal expansion coefficient (linear expansion coefficient) of the components of the rotary seal ring 6 and the sleeve 9 and the temperatures of the sealed fluid and the cooling liquid S, and the rotary seal ring 5 during operation. Of the inner peripheral surface 6d, 6e of the rotary seal ring 5 and the outer periphery of the sleeve 9 during operation by predicting the thermal expansion amount of the inner diameter (inner diameter expansion amount) and the outer diameter of the sleeve 9 (outer diameter expansion amount). The surfaces 9a and 9d are set so as not to come into contact with each other and to be as close to each other as possible.

図1及び図2に示す如く、静止密封環7は、炭化珪素等のセラミックス又は超硬合金製の円環状体であり、先端面(後端面)に軸線に直交する円環状の平滑面である密封端面7aが形成されシールケース5の密封環保持部5bの内周部にOリング15を介して軸線方向に移動可能に嵌合されている。静止密封環7は、その内周部に形成した凹部7bにスプリング保持部5cに突設したドライブピン16を係合させることにより、軸線方向への移動を所定範囲で許容しつつシールケース5に対する相対回転が阻止されている。 As shown in FIGS. 1 and 2, the stationary sealing ring 7 is an annular body made of ceramics such as silicon carbide or cemented carbide, and has a circular annular smooth surface orthogonal to the axis at the front end surface (rear end surface). The sealing end surface 7a is formed and is fitted to the inner peripheral portion of the sealing ring holding portion 5b of the seal case 5 via the O-ring 15 so as to be movable in the axial direction. The stationary seal ring 7 is allowed to move in the axial direction within a predetermined range by engaging the drive pin 16 protruding from the spring holding portion 5c with the recess 7b formed in the inner peripheral portion of the stationary seal ring 7 relative to the seal case 5. Relative rotation is blocked.

スプリング部材8は、図1に示す如く、静止密封環7とシールケース5のスプリング保持部5cとの間に装填された複数のコイルバネで構成されており、静止密封環7を回転密封環6へと押圧させるべく附勢するものである。なお、静止密封環7の密封端面7aは、外径を回転密封環6の密封端面6aの外径と同一とすると共に、内径を当該密封端面6aの内径より大きくしたものであり、スプリング部材8により当該密封端面6aの外周側部分に押圧された状態で接触される。 As shown in FIG. 1, the spring member 8 is composed of a plurality of coil springs loaded between the stationary seal ring 7 and the spring holding portion 5 c of the seal case 5, and the stationary seal ring 7 is connected to the rotary seal ring 6. It is urged to press. The outer diameter of the sealing end surface 7a of the stationary sealing ring 7 is the same as the outer diameter of the sealing end surface 6a of the rotary sealing ring 6, and the inner diameter is larger than the inner diameter of the sealing end surface 6a. Is brought into contact with the outer peripheral side portion of the sealed end surface 6a while being pressed.

而して、図1〜図3に示す如く、上記したメカニカルシールとしての一次シール3にあっては、回転密封環6の内周面6d,6eに、キー溝6fの内周面を含めた全面に亘ってダイヤモンド膜17が一連に形成してある。ダイヤモンド膜17の形成は、例えば、熱フィラメント化学蒸着法、マイクロ波プラズマ化学蒸着法、高周波プラズマ法、直流放電プラズマ法、アーク放電プラズマジェット法、燃焼炎法等の方法によって行われる。 As shown in FIGS. 1 to 3, in the primary seal 3 as the mechanical seal described above, the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 include the inner peripheral surface of the key groove 6f. A diamond film 17 is formed in series over the entire surface. The diamond film 17 is formed by, for example, a hot filament chemical vapor deposition method, a microwave plasma chemical vapor deposition method, a high frequency plasma method, a direct current discharge plasma method, an arc discharge plasma jet method, a combustion flame method, or the like.

なお、以下の説明において、回転密封環6とこれに形成されたダイヤモンド膜17とを区別する必要があるときは、前者を「密封環母材」という。 In the following description, when it is necessary to distinguish between the rotary seal ring 6 and the diamond film 17 formed on the rotary seal ring 6, the former is referred to as a “sealing ring base material”.

ダイヤモンド膜17の厚さは、1μm以上であることが好ましく、1μm〜25μmであることがより好ましい。ダイヤモンド膜17の厚さが1μm未満では後述する伝熱、冷却効果を効果的に発揮することが困難であり、25μmを超えるとダイヤモンドによる層強度を十分に確保することが困難である。 The thickness of the diamond film 17 is preferably 1 μm or more, and more preferably 1 μm to 25 μm. If the thickness of the diamond film 17 is less than 1 μm, it is difficult to effectively exert the heat transfer and cooling effects described later, and if it exceeds 25 μm, it is difficult to sufficiently secure the layer strength of diamond.

図1に示す如く、二次シール4は、一次シール3と同様の端面接触形メカニカルシールであって、一次シール3の大気領域側(前側)に配置されており、シールケース5の本体部5aに嵌合された状態で固定されたケース側密封環18と、スリーブ9にOリング19を介して軸線方向に移動可能に保持された軸側密封環20と、軸側密封環20をケース側密封環18へと押圧しつつ附勢するスプリング部材21とを具備する。この二次シール4は、両密封環18,20の対向端面たる密封端面18a,20aが接触しながら相対回転することにより当該密封端面18a,20aの外周側領域である非密封流体領域Cと、その内周側領域である大気領域(機外領域)Bとを遮蔽シールするように構成される。なお、軸側密封環20は、スリーブ9に固定したスプリング保持環22に係合させたドライブピン23により所定範囲での軸線方向への移動を許容される状態で回転軸2に対する相対回転が阻止されている。また、スプリング部材21は、軸側密封環20とスプリング保持環22との間に装填されて、軸側密封環20をケース側密封環18に押圧接触させるべく附勢する。また、スプリング保持環22には、当該スリーブ保持環22より被密封流体領域側の非密封流体領域部分の冷却液Sを当該スリーブ保持環22より大気領域側の非密封流体領域部分へと強制流動させるポンピング孔22aが形成されている。 As shown in FIG. 1, the secondary seal 4 is an end face contact type mechanical seal similar to the primary seal 3, and is arranged on the atmosphere region side (front side) of the primary seal 3 and has a main body portion 5 a of the seal case 5. The case side sealing ring 18 fixed in a state of being fitted to the shaft side, the shaft side sealing ring 20 held by the sleeve 9 movably in the axial direction via the O ring 19, and the shaft side sealing ring 20 on the case side. A spring member 21 is provided for urging the seal ring 18 while pressing it. The secondary seal 4 has a non-sealing fluid region C, which is an outer peripheral region of the sealed end faces 18a and 20a, when the sealed end faces 18a and 20a, which are opposed end faces of the two sealed rings 18 and 20, are relatively rotated while contacting each other. It is configured so as to shield and seal the atmosphere area (outside the machine area) B that is the inner peripheral side area. The shaft-side seal ring 20 is prevented from rotating relative to the rotary shaft 2 in a state where the drive pin 23 engaged with the spring holding ring 22 fixed to the sleeve 9 is allowed to move in the axial direction within a predetermined range. Has been done. Further, the spring member 21 is loaded between the shaft-side seal ring 20 and the spring holding ring 22, and urges the shaft-side seal ring 20 into pressure contact with the case-side seal ring 18. Further, in the spring retaining ring 22, the cooling liquid S in the non-sealing fluid region portion on the sealed fluid region side of the sleeve retaining ring 22 is forced to flow to the non-sealing fluid region portion on the atmosphere region side of the sleeve retaining ring 22. A pumping hole 22a is formed to allow it.

以上のように構成されたメカニカルシールとしての一次シール3にあっては、相手密封端面(静止密封環7の密封端面7a)と接触しながらの相対回転によって回転密封環6の密封端面6aに発生する摩擦熱により、回転密封環6が加熱され、高温となる。すなわち、回転密封環6は、非密封流体や冷却液Sよりも高温流体である被密封流体との接触による加熱に加えて、密封端面6a,7a同士の摩擦により生じる摩擦熱によって高温になる。 In the primary seal 3 as a mechanical seal configured as described above, it is generated in the sealing end surface 6a of the rotary sealing ring 6 by relative rotation while being in contact with the mating sealing end surface (sealing end surface 7a of the stationary sealing ring 7). The frictional heat that is generated heats the rotary seal ring 6 to a high temperature. That is, the rotary seal ring 6 is heated to a high temperature by the frictional heat generated by the friction between the sealed end faces 6a and 7a in addition to the heating due to the contact with the sealed fluid which is a higher temperature fluid than the unsealed fluid or the cooling liquid S.

しかし、回転密封環6の内周面6d,6eには、ダイヤモンド膜17が形成されていて、このダイヤモンド膜17が被密封流体より低温の冷却液Sに接触していることから、回転密封環6の内周面6d,6eの温度上昇は可及的に防止される。 However, since the diamond film 17 is formed on the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 and the diamond film 17 is in contact with the cooling liquid S whose temperature is lower than that of the fluid to be sealed, the rotary seal ring 6 is formed. The temperature rise of the inner peripheral surfaces 6d and 6e of 6 is prevented as much as possible.

すなわち、ダイヤモンド膜17の構成材であるダイヤモンドは、回転密封環(密封環母材)6の構成材である炭化珪素等のセラミックスや超硬合金に比して熱伝導率が極めて高いものである(例えば、炭化珪素の熱伝導率が70〜120W/mKであるのに対し、ダイヤモンドの熱伝導率は1000〜2000W/mKである)から、ダイヤモンド膜17には、冷却液Sに接触している部分(当該ダイヤモンド膜17におけるOリング12の接触箇所より非密封流体領域C側の部分)から瞬時に冷却液Sの温度が伝熱される。そして、この伝熱(以下「冷却液伝熱」という)は摩擦熱が発生する回転密封環6の密封端面6aから密封環母材を伝って回転密封環6の内周面6d,6eに至る伝熱(以下「摩擦伝熱」という)及び高温流体(被密封流体)との接触により加熱される回転密封環6の外周面から密封環母材を伝って当該内周面6d,6eに至る伝熱(以下「高温流体伝熱」という)に先行して行われることになる。このため、回転密封環6の内周面6d,6eへの摩擦伝熱及び高温流体伝熱は、冷却液伝熱により冷却されたダイヤモンド膜17によって可及的且つ効果的に遮断されることになる。 That is, diamond, which is a constituent material of the diamond film 17, has extremely high thermal conductivity as compared with ceramics such as silicon carbide and cemented carbide which are constituent materials of the rotary seal ring (sealing ring base material) 6. (For example, the thermal conductivity of silicon carbide is 70 to 120 W/mK, whereas the thermal conductivity of diamond is 1000 to 2000 W/mK). Therefore, the diamond film 17 is in contact with the cooling liquid S. The temperature of the cooling liquid S is instantaneously transferred from the existing portion (the portion on the non-sealing fluid region C side of the contact point of the O-ring 12 in the diamond film 17). This heat transfer (hereinafter referred to as "cooling liquid heat transfer") reaches the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 from the seal end surface 6a of the rotary seal ring 6 where frictional heat is generated, along the seal ring base material. The heat transfer (hereinafter referred to as "friction heat transfer") and the outer peripheral surface of the rotary seal ring 6 heated by contact with a high-temperature fluid (sealed fluid) travels through the seal ring base material to reach the inner peripheral surfaces 6d, 6e. It is performed prior to heat transfer (hereinafter referred to as "high temperature fluid heat transfer"). Therefore, the frictional heat transfer and the high temperature fluid heat transfer to the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 are blocked as effectively and effectively as possible by the diamond film 17 cooled by the cooling liquid heat transfer. Become.

その結果、回転密封環6の内周部分の摩擦伝熱及び高温流体伝熱による温度上昇が可及的に防止されることになり、当該内周部分の温度、つまりダイヤモンド膜17が形成された内周面6d,6e及びその周辺の温度は冷却液Sの温度に略支配されることになる。 As a result, temperature rise due to frictional heat transfer and high temperature fluid heat transfer in the inner peripheral portion of the rotary seal ring 6 is prevented as much as possible, and the temperature of the inner peripheral portion, that is, the diamond film 17 is formed. The temperatures of the inner peripheral surfaces 6d and 6e and their surroundings are substantially controlled by the temperature of the cooling liquid S.

このように、回転密封環6の内周面6d,6eを含む内周部分の温度が冷却液Sの温度に略支配されることから、運転時における回転密封環6の内周面6d,6eの熱膨張量(回転密封環6の内径拡大量)は密封端面6aで発生する摩擦熱及び高温流体である被密封流体の温度を考慮することなく、密封環母材の熱膨張率(線膨張係数)及び冷却液Sの温度からある程度正確に予測することができる。一方、スリーブ9の外周面9a,9dの熱膨張量(スリーブ9の外径拡大量)は、スリーブ9の構成材の熱膨張率(線膨張係数)及び被密封流体の温度から正確に予測することできる。 As described above, the temperature of the inner peripheral portion including the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 is substantially governed by the temperature of the cooling liquid S, so that the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 during operation are controlled. The amount of thermal expansion (the amount of expansion of the inner diameter of the rotary seal ring 6) is not taken into consideration without considering the heat of friction generated at the seal end surface 6a and the temperature of the sealed fluid which is a high temperature fluid, and the coefficient of thermal expansion (linear expansion of the seal ring base material). It can be predicted to some extent from the coefficient) and the temperature of the cooling liquid S. On the other hand, the thermal expansion amount of the outer peripheral surfaces 9a and 9d of the sleeve 9 (the outer diameter expansion amount of the sleeve 9) is accurately predicted from the thermal expansion coefficient (linear expansion coefficient) of the constituent material of the sleeve 9 and the temperature of the sealed fluid. You can do it.

したがって、運転停止時(メカニカルシール組み立て時)における回転密封環6の内周面6d,6eとスリーブ9の外周面9a,9dとの間の環状隙間(設計隙間)を、運転時に回転密封環6及びスリーブ9が熱膨張して当該回転密封環6の内径及びスリーブ9の外径が拡大変形した場合において、回転密封環6とスリーブ9との対向周面間に環状隙間(運転時隙間)が生じ且つ当該運転時隙間が可及的に小さくなるように、設定しておくことができる。 Therefore, an annular clearance (design clearance) between the inner peripheral surfaces 6d and 6e of the rotary seal ring 6 and the outer peripheral surfaces 9a and 9d of the sleeve 9 when the operation is stopped (mechanical seal assembly) is set to the rotary seal ring 6 during operation. When the sleeve 9 is thermally expanded and the inner diameter of the rotary seal ring 6 and the outer diameter of the sleeve 9 are expanded and deformed, an annular gap (during operation gap) is formed between the opposing peripheral surfaces of the rotary seal ring 6 and the sleeve 9. It can be set so that it will occur and the gap during operation will be as small as possible.

而して、本発明の一次シール3に採用されるメカニカルシールにあっては、設計隙間をこのように運転時隙間が生じるように設定しておくことができるから、運転時において熱膨張したスリーブ9により回転密封環6の内径が押し広げられるようなことがなく、回転密封環6にはこれを破損させるような引張力が作用しない。 Thus, in the mechanical seal used in the primary seal 3 of the present invention, the design clearance can be set so that such a clearance is created during operation, so that the sleeve thermally expanded during operation. The inner diameter of the rotary seal ring 6 is not expanded by 9 and the tensile force that damages the rotary seal ring 6 does not act on the rotary seal ring 6.

また、設計隙間を運転時隙間が可及的に小さくなるように設定しておくことができ、運転時において回転密封環6がスリーブ9に対して偏心することがないか、或は仮に偏心してもその偏心量が僅かであることから、回転密封環6の密封端面6aと相手密封環7の密封端面7aとの同心性が損なわれることがなく、両密封端面6a,7aの接触が適正に行われて良好なシール機能を発揮させることができる。 Further, the design clearance can be set so that the clearance during operation is as small as possible, and the rotary seal ring 6 will not be eccentric with respect to the sleeve 9 during operation, or will be temporarily eccentric. Since the amount of eccentricity is small, the concentricity between the sealing end surface 6a of the rotary sealing ring 6 and the sealing end surface 7a of the mating sealing ring 7 is not impaired, and the contact between the both sealing end surfaces 6a, 7a is proper. It can be performed to exert a good sealing function.

また、スリーブ9に固定したキー13を回転密封環6に形成したキー溝6fに係合させてなる回り止め機構により回転密封環6のスリーブ9に対する相対回転を阻止するように構成した場合においては、上記した如く、回転密封環6がスリーブ9に対して偏心しないか或は仮に偏心してもその偏心量が僅かであることから、回転密封環6のキー溝6fにスリーブ9のキー13が線接触するようなことがなく、面接触するので、キー溝6fにおけるキー13との接触部分に応力集中を生じることがなく、応力集中による回転密封環6の破損が確実に防止される。 Further, in the case where the relative rotation of the rotary seal ring 6 with respect to the sleeve 9 is prevented by the rotation stopping mechanism formed by engaging the key 13 fixed to the sleeve 9 with the key groove 6f formed in the rotary seal ring 6, As described above, since the rotary seal ring 6 is not eccentric with respect to the sleeve 9 or even if it is eccentric, the eccentric amount is small, so that the key 13 of the sleeve 9 is linearly aligned with the key groove 6f of the rotary seal ring 6. Since there is no such contact and surface contact is made, stress concentration does not occur at the contact portion with the key 13 in the key groove 6f, and damage to the rotary seal ring 6 due to stress concentration is reliably prevented.

したがって、本発明の一次シール3に採用されるメカニカルシールによれば、回転密封環6及びスリーブ9が熱膨張するような高温条件下においても、回転密封環6が破損されることなく、長期に亘って良好なシール機能を発揮させることができる。 Therefore, according to the mechanical seal adopted in the primary seal 3 of the present invention, the rotary seal ring 6 is not damaged even under high temperature conditions such that the rotary seal ring 6 and the sleeve 9 are thermally expanded, and the mechanical seal can be used for a long period of time. A good sealing function can be exerted throughout.

なお、本発明の構成は上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲において、適宜に改良、変更することができる。 The configuration of the present invention is not limited to the above-described embodiments, and can be appropriately improved and changed without departing from the basic principle of the present invention.

すなわち、上述したようなダイヤモンド膜は、回転密封環6の表面部分であって冷却液Sに接触する部分に内周面6d,6eを含めて一連に形成しておくことができる。例えば、上記した形状の回転密封環6においては、図4に示す如く、密封端面6aの内周側部分であって相手密封端面(静止密封環7の密封端面)7aと接触しない部分に前記ダイヤモンド膜17に連なるダイヤモンド膜17aを一連に形成しておくことができる。このように、内周面6d,6e以外の冷却液接触面にもダイヤモンド膜17aを形成しておくと、冷却液Sとの接触面積の増加により回転密封環6の内周部分の冷却がより効果的に行われる。 That is, the diamond film as described above can be formed in series including the inner peripheral surfaces 6d and 6e at the surface portion of the rotary seal ring 6 that is in contact with the cooling liquid S. For example, in the rotary seal ring 6 having the above-described shape, as shown in FIG. 4, the diamond is provided at a portion that is on the inner peripheral side of the seal end face 6a and does not contact the mating seal end face (sealing end face of the stationary seal ring 7) 7a. A diamond film 17a connected to the film 17 can be formed in series. In this way, if the diamond film 17a is formed on the cooling liquid contact surface other than the inner peripheral surfaces 6d and 6e as well, the contact area with the cooling liquid S increases, so that the inner peripheral portion of the rotary seal ring 6 is cooled more. Done effectively.

また、図5に示す如く、回転密封環6の密封端面6aにも、ダイヤモンド膜17bを形成しておくことができる。このようにしておくと、極めて硬質のものであり、摩擦係数がセラミックスや超硬合金等のあらゆる密封環構成材に比して極めて低い(一般に、ダイヤモンドの摩擦係数(μ)は0.03であり、あらゆる密封環構成材に比して遥かに低摩擦係数のポリテトラフルオロエチレン(PTFE)よりも低い)ものであることから、ダイヤモンド膜17bで被覆された密封端面6aは相手密封端面7aとの相対回転摺接によって生じる発熱及び摩耗が極めて少なくなり、密封端面6aで発生する摩擦熱による回転密封環6の内周部分への影響がより小さくなる。なお、密封端面6aに形成するダイヤモンド膜17bは、内周面6d,6eに形成したダイヤモンド膜17(これに連なる内周面6d,6e以外の冷却液接触面に形成するダイヤモンド膜を含む)と分離した形態で形成しておくことが好ましい。ダイヤモンド膜17bが冷却液Sに接触するダイヤモンド膜17に連なる場合は、密封端面6aで発生する摩擦熱がこれに形成されたダイヤモンド膜17bにより回転密封環6の内周面6d,6eへと伝熱されて、当該内周面6d,6eにダイヤモンド膜17を形成したことによる冷却効果が低減するからである。 Further, as shown in FIG. 5, a diamond film 17b can be formed on the sealing end surface 6a of the rotary sealing ring 6 as well. By doing so, it is extremely hard, and the coefficient of friction is extremely low compared to all sealing ring constituent materials such as ceramics and cemented carbide (generally, the coefficient of friction (μ) of diamond is 0.03). Since it has a coefficient of friction much lower than that of polytetrafluoroethylene (PTFE), which is much lower than that of any sealing ring constituent material, the sealing end surface 6a covered with the diamond film 17b is the same as the mating sealing end surface 7a. The heat generation and wear caused by the relative rotary sliding contact are extremely reduced, and the influence of the frictional heat generated on the sealing end surface 6a on the inner peripheral portion of the rotary sealing ring 6 is further reduced. The diamond film 17b formed on the sealed end surface 6a is the same as the diamond film 17 formed on the inner peripheral surfaces 6d and 6e (including the diamond film formed on the cooling liquid contact surface other than the inner peripheral surfaces 6d and 6e connected thereto). It is preferable to form them separately. When the diamond film 17b is continuous with the diamond film 17 that is in contact with the cooling liquid S, the friction heat generated at the sealing end surface 6a is transferred to the inner peripheral surfaces 6d, 6e of the rotary seal ring 6 by the diamond film 17b formed on the sealing end surface 6a. This is because the cooling effect by heating and forming the diamond film 17 on the inner peripheral surfaces 6d and 6e is reduced.

また、上記した実施の形態では、本発明を非密封流体を被密封流体より高圧且つ低温の冷却液(封液)Sとして使用する軸封装置(ダブルシール)の一次シール3に適用したが、本発明は、例えば、非密封流体として被密封流体より低圧の冷却液Sを使用する条件下において使用される軸封装置の一次シールや二次シールとしてメカニカルシールを使用しない軸封装置の一次シールにも適用することができる。すなわち、本発明は、両密封環6,7の密封端面6a,7aの内周側領域(非密封流体領域)Bを被密封流体領域Aより低温の液体領域とする条件下で使用されるメカニカルシールであれば、その構造、形式、使用条件に拘らず、上記実施の形態と同様に好適に適用することができる。 Further, in the above-described embodiment, the present invention is applied to the primary seal 3 of the shaft sealing device (double seal) that uses the non-sealing fluid as the cooling liquid (sealing liquid) S that has a higher pressure and lower temperature than the sealed fluid. The present invention is, for example, a primary seal for a shaft sealing device used under conditions where a cooling liquid S having a lower pressure than a sealed fluid is used as an unsealed fluid, and a primary seal for a shaft sealing device that does not use a mechanical seal as a secondary seal. Can also be applied to. That is, the present invention is a mechanical system that is used under the condition that the inner peripheral side regions (non-sealing fluid regions) B of the sealing end faces 6a, 7a of both sealing rings 6, 7 are liquid regions having a lower temperature than the sealed fluid region A. If it is a seal, it can be suitably applied as in the above-mentioned embodiment regardless of the structure, type, and use conditions.

1 ハウジング
2 回転軸
3 一次シール(メカニカルシール)
5 シールケース
6 回転密封環
6a 密封端面
6f キー溝
7 静止密封環
7a 密封端面
9 スリーブ
12 Oリング(シール部材)
13 キー
17 ダイヤモンド膜
17a ダイヤモンド膜
17b ダイヤモンド膜
A 被密封流体領域
C 非密封流体領域
S 冷却液(非密封流体)
1 Housing 2 Rotating shaft 3 Primary seal (Mechanical seal)
5 Seal Case 6 Rotating Seal Ring 6a Sealing End Face 6f Key Groove 7 Stationary Seal Ring 7a Sealing End Face 9 Sleeve 12 O Ring (Seal Member)
13 key 17 diamond film 17a diamond film 17b diamond film A sealed fluid region C non-sealed fluid region S cooling liquid (non-sealed fluid)

Claims (3)

シールケースに軸線方向への移動が可能な状態で保持された静止密封環と、シールケースを貫通する回転軸に固定された回転密封環と、を備え、
前記静止密封環と回転密封環との対向端面である密封端面が接触しながら相対回転することにより、当該密封端面の外周側領域である被密封流体領域とその内周側領域である非密封流体領域とを遮蔽シールするメカニカルシールであって、
前記非密封流体領域の流体が被密封流体領域の流体より低温であり、
回転密封環が、セラミックス又は超硬合金で形成され、回転軸に固定された金属製のスリーブにこれとの対向周面間をシール材によりシールした非接触の状態で嵌合されると共に、当該スリーブと回転密封環との相対回転がスリーブの外周部に設けられた金属製のキーを回転密封環の内周部に形成されたキー溝に係合させてなる回り止め機構により阻止されており、
非密封流体領域の流体が接触する回転密封環の表面部分であって前記キー溝を含む部分に、当該回転密封環の密封端面を除いて、一連のダイヤモンド膜を形成したメカニカルシール。
A stationary seal ring held in the seal case in a state capable of moving in the axial direction; and a rotary seal ring fixed to a rotary shaft penetrating the seal case,
By the relative rotation of the sealing end faces, which are the facing end faces of the stationary sealing ring and the rotating sealing ring, in contact with each other, the sealed fluid region which is the outer peripheral side region of the sealing end face and the non-sealing fluid which is the inner peripheral side region thereof. A mechanical seal that shields the area from the
The fluid in the unsealed fluid region is colder than the fluid in the sealed fluid region,
The rotary seal ring is formed of ceramics or cemented carbide, and is fitted in a non-contact state in which a metal sleeve fixed to the rotary shaft is sealed with a sealing material between the peripheral surfaces facing the rotary sleeve. Relative rotation between the sleeve and the rotary seal ring is prevented by a detent mechanism formed by engaging a metal key provided on the outer peripheral part of the sleeve with a key groove formed on the inner peripheral part of the rotary seal ring. ,
A mechanical seal in which a series of diamond films are formed on a surface portion of a rotary sealing ring which is in contact with a fluid in a non-sealing fluid region and which includes the key groove except a sealing end surface of the rotary sealing ring .
前記被密封流体領域の流体が、前記回転密封環及びスリーブを熱膨張させる温度であって75度以上の流体である請求項1に記載のメカニカルシール。 The mechanical seal according to claim 1, wherein the fluid in the sealed fluid region is a fluid having a temperature at which the rotary sealing ring and the sleeve are thermally expanded and having a temperature of 75 degrees or higher . 前記ダイヤモンド膜の厚さが1μm以上である請求項1又は2に記載のメカニカルシール。 Mechanical seal according to claim 1 or 2 thick Ru der than 1μm of the diamond film.
JP2016131892A 2016-07-01 2016-07-01 mechanical seal Active JP6708496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016131892A JP6708496B2 (en) 2016-07-01 2016-07-01 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131892A JP6708496B2 (en) 2016-07-01 2016-07-01 mechanical seal

Publications (2)

Publication Number Publication Date
JP2018003967A JP2018003967A (en) 2018-01-11
JP6708496B2 true JP6708496B2 (en) 2020-06-10

Family

ID=60947755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131892A Active JP6708496B2 (en) 2016-07-01 2016-07-01 mechanical seal

Country Status (1)

Country Link
JP (1) JP6708496B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217650Y2 (en) * 1981-02-10 1987-05-07
JP2014185691A (en) * 2013-03-22 2014-10-02 Jtekt Corp mechanical seal
DE102013005926B4 (en) * 2013-04-04 2015-12-03 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal assembly with different hard sliding surfaces

Also Published As

Publication number Publication date
JP2018003967A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
CN109328279B (en) Mechanical shaft seal
JP6471006B2 (en) Free ring type mechanical seal
TW201638504A (en) Multiple flow path rotary joint
US5340121A (en) Face seal with integral fluorocarbon polymer bellows
JP6422378B2 (en) End contact type mechanical seal
JP6434830B2 (en) End contact type mechanical seal
JP6708496B2 (en) mechanical seal
JP6446296B2 (en) Non-contact gas seal
US2963306A (en) Mechanical seal assembly
JP6452503B2 (en) Dry contact seal
JP6730409B2 (en) Floating ring type mechanical seal
JP6612092B2 (en) mechanical seal
JP6022385B2 (en) mechanical seal
JP7165097B2 (en) Shaft seal device
JP2017207147A (en) mechanical seal
JP6470596B2 (en) Mechanical seal for slurry
JP4528762B2 (en) Non-contact mechanical seal
JP2018003961A (en) Mechanical seal
JP6490992B2 (en) Rotary joint
JP6446294B2 (en) Double mechanical seal
JP6783568B2 (en) mechanical seal
JP2017201180A (en) mechanical seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R150 Certificate of patent or registration of utility model

Ref document number: 6708496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350