JP6893830B2 - Lighting device - Google Patents
Lighting device Download PDFInfo
- Publication number
- JP6893830B2 JP6893830B2 JP2017103367A JP2017103367A JP6893830B2 JP 6893830 B2 JP6893830 B2 JP 6893830B2 JP 2017103367 A JP2017103367 A JP 2017103367A JP 2017103367 A JP2017103367 A JP 2017103367A JP 6893830 B2 JP6893830 B2 JP 6893830B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- output
- emitting means
- light
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 81
- 238000003745 diagnosis Methods 0.000 claims description 9
- 238000005286 illumination Methods 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 3
- 230000010356 wave oscillation Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 239000002872 contrast media Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
本発明は、観察や診断などで使用される照明装置に関し、特に、長時間安定した光出力や色温度が求められる照明装置に関するものである。 The present invention relates to a lighting device used for observation, diagnosis, etc., and more particularly to a lighting device that requires stable light output and color temperature for a long period of time.
医療用顕微鏡に用いられる照明では、現在、キセノンランプを光源としたものが主流である。キセノンランプは、それ以前に主流のハロゲンランプより明るいというメリットがあるが、ランプであるため寿命が短いだけでなく時間の経過とともに光出力の低下や色温度の変化など、医療用としての観察や診断に対して不安定な要素があった。 Currently, the mainstream of lighting used in medical microscopes is a xenon lamp as a light source. Xenon lamps have the advantage of being brighter than the mainstream halogen lamps before that, but because they are lamps, they not only have a short life, but also have a decrease in light output and changes in color temperature over time, which can be observed for medical purposes. There was an unstable factor for the diagnosis.
一方、最近では、LEDや固体レーザーなどの半導体素子が照明の光源に用いられるようになり、ランプ系照明と比較して寿命の飛躍的向上とともに、出力だけでなく色温度の制御も容易となり、長時間安定した光出力が得られる。 On the other hand, recently, semiconductor elements such as LEDs and solid-state lasers have come to be used as light sources for lighting, which dramatically improves the service life as compared with lamp-based lighting and makes it easier to control not only the output but also the color temperature. A stable light output can be obtained for a long time.
このような従来例として、複数のレーザー光源を用い、これら複数のレーザー光源の光出力を制御する手法である(例えば、特許文献1参照)。これは、複数の光源から単一出力を得た後、1つのセンサーで検出する構成である。 As such a conventional example, there is a method of controlling the light output of a plurality of laser light sources by using a plurality of laser light sources (see, for example, Patent Document 1). This is a configuration in which a single output is obtained from a plurality of light sources and then detected by one sensor.
しかしながら、上述した従来例では、複数の光源の出力を単一出力に集約した後、1つのセンサーで検出する構成のため、通常の使用状態では複数センサーの出力を個々に検出することはできない。この構成において、個々の光源の出力を検出して、出力の調整や光源の確認を行うためには、複数の光源を時分割で発光させた上で、それぞれの発光状態に対応した光出力を時系列的に検出する必要がある。 However, in the above-mentioned conventional example, since the outputs of the plurality of light sources are aggregated into a single output and then detected by one sensor, the outputs of the plurality of sensors cannot be individually detected under normal use conditions. In this configuration, in order to detect the output of each light source, adjust the output, and check the light source, multiple light sources are made to emit light in a time-division manner, and then the light output corresponding to each light emission state is generated. It needs to be detected in chronological order.
つまり、光出力の調整や内部検査を、例えば、調整モードのような特別な状態を設けて実施することになり、使用者が観察や診断に影響なく行うことができないという問題があった。 That is, there is a problem that the adjustment of the light output and the internal inspection are carried out by providing a special state such as an adjustment mode, and the user cannot perform the adjustment without affecting the observation and the diagnosis.
また、個々の光源の出力を検出する目的で複数のセンサーを備える場合、個々のセンサーの波長検出特性によっては、意図しない近傍の光出力も含めて検出してしまうことがある。この場合、制御出力に誤差が含まれることになり、精度のよい光出力制御ができないなどの課題がある。 Further, when a plurality of sensors are provided for the purpose of detecting the output of each light source, depending on the wavelength detection characteristics of each sensor, light output in the vicinity which is not intended may be detected. In this case, an error is included in the control output, and there is a problem that accurate optical output control cannot be performed.
本発明は、上記の問題に鑑みてなされたものであり、波長の異なる複数の光源を用いる照明において、光出力や色温度の検出や調整を使用者への影響を最小限に精度よく行うことができる照明装置を提供することを目的とする。 The present invention has been made in view of the above problems, and in lighting using a plurality of light sources having different wavelengths, detection and adjustment of light output and color temperature should be performed with minimal influence on the user and with high accuracy. It is an object of the present invention to provide a lighting device capable of performing.
本発明に係る照明装置は、観察や診断に使用される照明装置であって、複数の波長帯域の光を発光させる複数の発光手段と、前記複数の発光手段の出力を検出する複数の検出手段と、前記複数の検出手段の出力に基づき前記複数の発光手段の出力を制御する制御手段とを備え、前記複数の検出手段の出力に基づいてクロストーク誤差を抽出し、クロストーク補正をかけるための演算を行う演算手段をさらに備え、前記制御手段は、予め設定された照明出力と色温度となるよう前記複数の発光手段を制御して出力の調整を行うとともに、前記演算手段の演算結果に基づいて前記クロストーク補正をかけるために前記複数の発光手段を制御して前記出力の調整を行うものである。
また、本発明に係る照明装置は、観察や診断に使用される照明装置であって、複数の波長帯域の光を発光させる複数の発光手段と、前記複数の発光手段の出力を検出する複数の検出手段と、前記複数の検出手段の出力に基づき前記複数の発光手段の出力を制御する制御手段とを備え、前記制御手段は、予め設定された照明出力と色温度となるよう前記複数の発光手段を制御して出力の調整を行うとともに、予め決められた単色調光期間において前記複数の発光手段を個別に発光させ、前記単色調光期間において前記複数の発光手段が個別に発光した際の前記複数の検出手段のそれぞれの出力に基づいてクロストーク誤差を抽出し、クロストーク補正をかけるための演算を行う演算手段をさらに備え、前記制御手段は、前記演算手段の演算結果に基づいてクロストーク補正をかけるため前記複数の発光手段を制御して前記出力の調整を行うものである。
The lighting device according to the present invention is a lighting device used for observation and diagnosis, and is a plurality of light emitting means for emitting light in a plurality of wavelength bands and a plurality of detecting means for detecting the output of the plurality of light emitting means. And a control means for controlling the output of the plurality of light emitting means based on the output of the plurality of detection means, and for extracting the cross talk error based on the output of the plurality of detection means and applying the cross talk correction. The control means further comprises a calculation means for performing the calculation of the above, and the control means controls the plurality of light emitting means so as to have a preset illumination output and a color temperature to adjust the output, and the calculation result of the calculation means. Based on this, the output is adjusted by controlling the plurality of light emitting means in order to apply the crosstalk correction .
Further, the lighting device according to the present invention is a lighting device used for observation and diagnosis, and is a plurality of light emitting means for emitting light in a plurality of wavelength bands and a plurality of light emitting means for detecting the output of the plurality of light emitting means. A detection means and a control means for controlling the output of the plurality of light emitting means based on the output of the plurality of detection means are provided, and the control means emits light so as to have a preset illumination output and a color temperature. When the means are controlled to adjust the output, the plurality of light emitting means are individually emitted during a predetermined monochromatic dimming period, and the plurality of light emitting means are individually emitted during the monochromatic dimming period. A calculation means for extracting a cross talk error based on the output of each of the plurality of detection means and performing a calculation for applying the cross talk correction is further provided, and the control means crosses based on the calculation result of the calculation means. The output is adjusted by controlling the plurality of light emitting means in order to apply the talk correction.
本発明によれば、波長帯域の異なる複数の発光手段を用いる照明装置において、光出力や色温度の検出や調整を使用者への影響を最小限に精度よく行うことができる。 According to the present invention, in a lighting device using a plurality of light emitting means having different wavelength bands, it is possible to detect and adjust the light output and the color temperature with the minimum and accuracy with the minimum influence on the user.
実施の形態1.
以下、本発明の実施の形態1に係る照明装置について図面を参照して説明する。図1は本発明の実施の形態1に係る照明装置のブロック構成図である。また、図2は本発明の実施の形態1に係る照明装置の説明に供するもので、発光波長と検出波長の特性図である。 Hereinafter, the lighting device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block configuration diagram of a lighting device according to a first embodiment of the present invention. Further, FIG. 2 is provided for explaining the lighting apparatus according to the first embodiment of the present invention, and is a characteristic diagram of an emission wavelength and a detection wavelength.
図1に示すように、本発明の実施の形態1に係る照明装置は、青色波長帯域の発光を制御する青色発光制御部2、青色波長帯域を発光する青色発光部3、緑色波長帯域の発光を制御する緑色発光制御部4、緑色波長帯域を発光する緑色発光部5、赤色波長帯域の発光を制御する赤色発光制御部6、赤色波長帯域を発光する赤色発光部7、青色発光部3と緑色発光部5及び赤色発光部7からの光出力を合成する光出力合成部8、光出力を検出するために採取する光出力採取部10、光出力を外部に出力するための光出力端子11、光出力採取部10を介して採取された光出力を検出する光出力検出ブロック9、光出力検出ブロック9からの出力に基づいて青色発光制御部2、緑色発光制御部4、赤色発光制御部6を制御して青色、緑色、赤色波長帯域の発光を制御する制御部1を備えている。
As shown in FIG. 1, the lighting apparatus according to the first embodiment of the present invention has a blue light
ここで、光出力検出ブロック9は、青色帯域フィルター12、青色帯域検出部15、緑色帯域フィルター13、緑色帯域検出部16、赤色帯域フィルター14、赤色帯域検出部17、検出合成部18を備えている。
Here, the optical
次に、本発明の実施の形態1に係る照明装置の動作について説明する。制御部1は、システムが電源投入されたのち一定時間後に照明機能をONさせる。つまり、青色発光制御部2と緑色発光制御部4及び赤色発光制御部6を制御して、青色発光部3と緑色発光部5と赤色発光部7の全てを発光させる。
Next, the operation of the lighting device according to the first embodiment of the present invention will be described. The
このとき、光出力検出ブロック9により、青色帯域出力は青色帯域フィルター12と青色帯域検出部15を通して、緑色帯域出力は緑色帯域フィルター13と緑色帯域検出部16を通して、赤色帯域出力は赤色帯域フィルター14と赤色帯域検出部17を通して、それぞれ検出される。
At this time, due to the optical
制御部1は、予め設定された照明出力と色温度となるよう青色発光制御部2と緑色発光制御部4と赤色発光制御部6とを制御して出力の調整を行う。この例では、図2のように、青色出力21aは0.5、緑色出力23は1.0、赤色出力25は0.5とそれぞれ設定されている。なお、図2において、20は青色帯域フィルター特性、22は緑色帯域フィルター特性、24は赤色帯域フィルター特性を示している。
The
図1に示す実施の形態1では、複数の光源が存在するが、個々の光源に対応した検出部を備えているため、使用者の通常使用状態においてもリアルタイムに検出を行うことができ、常に最良の状態の確認や調整を行うため全体制御が可能となる。これにより、使用者が観察や診断に適した長時間安定した照明機能を実現できる。 In the first embodiment shown in FIG. 1, there are a plurality of light sources, but since the detection unit corresponding to each light source is provided, detection can be performed in real time even in the normal use state of the user, and the detection is always performed. Overall control is possible to check and adjust the best condition. As a result, a long-term stable lighting function suitable for observation and diagnosis by the user can be realized.
上述した実施の形態1では、3つの光源と3つの検出部であるが、数量はこれに留まらないことは言うまでもなく、通常使用状態においてもリアルタイムに検出を行うことができるなら光源と検出部が1対1でなくともよい。この場合、調整誤差が含まれる可能性があるが、実使用上問題ないレベルであれば許容可能である。 In the first embodiment described above, there are three light sources and three detection units, but it goes without saying that the quantity is not limited to this, and if detection can be performed in real time even in a normal use state, the light source and the detection unit can be used. It does not have to be one-to-one. In this case, adjustment error may be included, but it is acceptable as long as there is no problem in actual use.
また、可視光発光手段として光の3原色を使用しているが、前述の波長に限るものではなく、発光デバイスもレーザーに限らずLEDもしくはキセノンなどのいずれかの光源を使用してもよいのは言うまでもない。 Further, although the three primary colors of light are used as the visible light emitting means, the light emitting device is not limited to the above-mentioned wavelength, and any light source such as LED or xenon may be used as the light emitting device. Needless to say.
また、光源の発光方法についても、連続波発振動作(Continuous Wave Operation:CW Operation)による発光であってもパルス発振動作(Pulsed Operation)であってもよく、同様の効果が得られる条件下では、いずれの動作であってもよいのは言うまでもない。
さらに、内視鏡やその他可視光とともに蛍光造影剤のための励起光を発光する光源を必要とする機器などに幅広く利用できることは言うまでもない。
Further, the light emitting method of the light source may be a continuous wave oscillation operation (CW Operation) or a pulse oscillation operation (Pulsed Operation), and under the condition that the same effect can be obtained. Needless to say, any operation may be used.
Furthermore, it goes without saying that it can be widely used in endoscopes and other devices that require a light source that emits excitation light for a fluorescence contrast agent together with visible light.
実施の形態2.
次に、本発明の実施の形態2に係る照明装置について図面を参照して説明する。図3は本発明の実施の形態2に係る照明装置のブロック構成図である。また、図4は本発明の実施の形態2に係る照明装置の説明に供するもので、発光波長と検出波長の特性図である。また、図5から図7は本発明の実施の形態2に係る照明装置の説明に供するもので、順次検出モード制御例、検出モード結果例、出力制御補正例をそれぞれ示す説明図である。 Next, the lighting device according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a block configuration diagram of the lighting device according to the second embodiment of the present invention. Further, FIG. 4 is provided for explaining the lighting apparatus according to the second embodiment of the present invention, and is a characteristic diagram of an emission wavelength and a detection wavelength. Further, FIGS. 5 to 7 are provided for explaining the lighting device according to the second embodiment of the present invention, and are explanatory views showing a sequential detection mode control example, a detection mode result example, and an output control correction example, respectively.
図3に示すように、本発明の実施の形態2に係る照明装置は、図1に示す実施の形態1の構成と同様に、制御部1、青色発光制御部2、青色発光部3、緑色発光制御部4、緑色発光部5、赤色発光制御部6、赤色発光部7、光出力合成部8、光出力採取部10、光出力端子11、光出力検出ブロック9を備えている。
As shown in FIG. 3, the lighting device according to the second embodiment of the present invention has the
また、新たな構成として、光出力検出ブロック9からの出力に基づいてクロストーク誤差を抽出しクロストーク補正をかけるための演算を行う演算調整部19をさらに備えており、制御部1は、演算調整部19の演算結果に基づいてクロストーク補正をかけるための検出値や設定値への調整を行うようになされている。
Further, as a new configuration, a
なお、光出力検出ブロック9は、図1に示す実施の形態1の構成と同様に、青色帯域フィルター12、青色帯域検出部15、緑色帯域フィルター13、緑色帯域検出部16、赤色帯域フィルター14、赤色帯域検出部17、検出合成部18を備えている。
The optical
次に、本発明の実施の形態2に係る照明装置の動作について説明する。制御部1は、システムが電源投入されたのち一定時間後に照明機能をONさせる。つまり、青色発光制御部2と緑色発光制御部4と赤色発光制御部6とを制御して、青色発光部3と緑色発光部5と赤色発光部7の全てを発光させる。
Next, the operation of the lighting device according to the second embodiment of the present invention will be described. The
このとき、光出力検出ブロック9により、青色帯域出力は青色帯域フィルター12と青色帯域検出部15を通して、緑色帯域出力は緑色帯域フィルター13と緑色帯域検出部16を通して、赤色帯域出力は赤色帯域フィルター14と赤色帯域検出部17を通して、それぞれ検出される。
At this time, due to the optical
ここで、たとえば、青色出力が図4に示す波長特性21bのような場合、青色帯域フィルター特性20を有する青色帯域検出部15だけでなく、意図しない緑色帯域フィルター特性22を有する緑色帯域検出部16からも検出されてしまう。これらの検出結果をそのまま表すと図7となり、緑色検出結果27が想定値より高くなる。このままでは、制御部1により調整を行うと、緑色検出結果27に緑色検出クロストーク誤差29が含まれるため設定値1.0より高くなり、制御部1により緑色を抑える方向へ動作してしまい、結果的に誤差を含む調正を行うことになる。なお、図7において、26は青色検出結果、28は赤色検出結果を示している。
Here, for example, when the blue output is the wavelength characteristic 21b shown in FIG. 4, not only the blue
そこで、演算調整部19は、調整前にこの誤差を抽出し調整時に補正をかける。制御部1は、電源投入時の1回のみ一定期間だけ図5のような特殊発光動作を行うための検出モード例を設け、つまり、図5のような、青色検出モード制御40による青色発光動作、緑色検出モード制御41による緑色発光動作、赤色検出モード制御42による赤色発光動作を順次行うことで、演算調整部19での誤算抽出をための制御を行う。その検出モードとは、時系列的にそれぞれの発光部だけの発光期間に各検出部が検出を行い、検出値マトリクスを生成する。これが図6及び図7の検出モード結果例である。
Therefore, the
この結果例では、図6及び図7に示すように、青色の発光が緑色帯域検出部16の緑色検出結果27に0.2のクロストーク誤差29として検出されることがわかる。演算調整部19は、これに基づき以下のようなマトリクス演算を行うことで、このクロストーク誤差を把握したうえで検出や設定値への調整が可能となる。
In this result example, as shown in FIGS. 6 and 7, it can be seen that blue light emission is detected as a
今、照明が持つ同一色内に存在する波長帯域数をnとし、発光を行う各色をそれぞれRn、Gn、Bnとする。各色の発光は、パルス駆動にて各色毎に発光、各波長帯域毎に発光を行い、演算調整部19において、下式(1)、(2)、(3)から各色の真の受光値を算出する。
Now, let n be the number of wavelength bands existing in the same color of the illumination, and let Rn, Gn, and Bn be the respective colors that emit light. The light emission of each color is pulse-driven to emit light for each color and for each wavelength band, and the
光検出機器における各色の真の受光値(この場合、青色出力23は0.5、緑色出力25は1.0、赤色出力0.5をそれぞれPRn、PGn、PBnとする。また、各色のクロストーク値をXTRn、XTGn、XTBnとする。そして、光検出機器における各色の受光感度をそれぞれSRn、SGn、SBnとする。
The true light receiving value of each color in the photodetector (in this case, the blue output 23 is 0.5, the
PRn=SRn×(Rn−(XTRn_G+XTRn_B))・・・(1)
PGn=SGn×(Gn−(XTGn_R+XTGn_B))・・・(2)
PBn=SBn×(Bn−(XTBn_R+XTBn_G))・・・(3)
PRn = SRn × (Rn− (XTRn_G + XTRn_B)) ... (1)
PGn = SGn × (Gn- (XTGn_R + XTGn_B)) ... (2)
PBn = SBn × (Bn- (XTBn_R + XTBn_G)) ... (3)
また、図3に示すような光反射素子等の光学部品(光出力採取部10)によって、光検出機器へ光を照射する場合、その素子における各色の光透過率をTRRn、TRGn、TRBnとする。その場合、下式(4)、(5)、(6)から各色の真の受光値を算出する。 Further, when the photodetector is irradiated with light by an optical component (light output sampling unit 10) such as a light reflecting element as shown in FIG. 3, the light transmittance of each color in the element is set to TRRn, TRGn, and TRBn. .. In that case, the true light receiving value of each color is calculated from the following equations (4), (5), and (6).
PRn=(1/TRRn)×SRn×(Rn−(XTRn_G+XTRn_B))
・・・(4)
PGn=(1/TRGn)×SGn×(Gn−(XTGn_R+XTGn_B))
・・・(5)
PBn=(1/TRBn)×SBn×(Bn−(XTBn_R+XTBn_G))
・・・(6)
PRn = (1 / TRRn) x SRn x (Rn- (XTRn_G + XTRn_B))
... (4)
PGn = (1 / TRGn) × SGn × (Gn- (XTGn_R + XTGn_B))
... (5)
PBn = (1 / TRBn) x SBn x (Bn- (XTBn_R + XTBn_G))
... (6)
上記の算出結果を各色毎で用い、制御量を算出し、それを各色毎の駆動部へ伝えることで、各色が正確な出力および安定したホワイトバランスの制御が可能となる。 By using the above calculation result for each color, calculating the control amount, and transmitting it to the drive unit for each color, it is possible to accurately output each color and control the stable white balance.
これにより、電源投入時に誤差を把握しているため、通常使用状態にてリアルタイムにでも正確な検出を行うことができ、常に最良の状態の確認や調整を行うため全体制御が可能となる。これにより使用者が観察や診断に適した長時間安定した照明機能を実現できる。 As a result, since the error is grasped when the power is turned on, accurate detection can be performed even in real time in the normal use state, and overall control is possible because the best state is always confirmed and adjusted. This makes it possible for the user to realize a long-term stable lighting function suitable for observation and diagnosis.
このような制御により、青色発光部3から青色波長帯域の光を発光し、緑色発光部5から青色波長帯域を含まない緑色波長帯域の光を発光し、赤色発光部7から青色波長帯域と緑色波長帯域を含まない赤色波長帯域の光を発光することになる。
By such control, the blue
上述した実施の形態2では、3つの光源と3つの検出部であるが、数量はこれに留まらないことは言うまでもなく、通常使用状態においてもリアルタイムに検出を行うことができるなら光源と検出部が1対1でなくともよい。この場合、調整誤差が含まれる可能性があるが、実使用上問題ないレベルであれば許容可能である。 In the second embodiment described above, there are three light sources and three detection units, but it goes without saying that the quantity is not limited to this, and if detection can be performed in real time even in a normal use state, the light source and the detection unit can be used. It does not have to be one-to-one. In this case, adjustment error may be included, but it is acceptable as long as there is no problem in actual use.
また、可視光発光手段として光の3原色を使用しているが、前述の波長に限るものではなく、発光デバイスもレーザーに限らずLEDもしくはキセノンなどのいずれかの光源を使用してもよいのは言うまでもない。 Further, although the three primary colors of light are used as the visible light emitting means, the light emitting device is not limited to the above-mentioned wavelength, and any light source such as LED or xenon may be used as the light emitting device. Needless to say.
また、光源の発光方法についても、連続波発振動作(Continuous Wave Operation:CW Operation)による発光であってもパルス発振動作(Pulsed Operation)であってもよく、同様の効果が得られる条件下では、いずれの動作であってもよいのは言うまでもない。
さらに、内視鏡やその他可視光とともに蛍光造影剤のための励起光を発光する光源を必要とする機器などに幅広く利用できることは言うまでもない。
Further, the light emitting method of the light source may be a continuous wave oscillation operation (CW Operation) or a pulse oscillation operation (Pulsed Operation), and under the condition that the same effect can be obtained. Needless to say, any operation may be used.
Furthermore, it goes without saying that it can be widely used in endoscopes and other devices that require a light source that emits excitation light for a fluorescence contrast agent together with visible light.
さらに、内視鏡やその他可視光とともに蛍光造影剤のための励起光を発光する光源を必要とする機器などに幅広く利用できることは言うまでもない。 Furthermore, it goes without saying that it can be widely used in endoscopes and other devices that require a light source that emits excitation light for a fluorescence contrast agent together with visible light.
上述した各実施の形態によれば、単一出力の状態であっても、複数の発光手段の個々の出力を通常の連続発光状態においてリアルタイムに検出可能である。 According to each of the above-described embodiments, even in a single output state, the individual outputs of the plurality of light emitting means can be detected in real time in a normal continuous light emitting state.
また、検出モードと演算手段により、制御誤差となる意図しない波長出力を検出することができる。 In addition, the detection mode and the calculation means can detect an unintended wavelength output that causes a control error.
さらに、発光手段に固体光源を使用することで、細かな制御が可能となるとともに、長時間安定した性能を確保できる。 Further, by using a solid-state light source as the light emitting means, fine control is possible and stable performance can be ensured for a long time.
1 制御部
2 青色発光制御部
3 青色発光部
4 緑色発光制御部
5 緑青色発光部
6 赤色発光制御部
8 光出力合成部
9 光検出ブロック
12 演算調整部
20 青色帯域フィルター特性
22 緑色帯域フィルター特性
24 赤色帯域フィルター特性
21a 青色出力1
21b 青色出力2
26 青色検出結果
27 緑色検出結果
28 赤色検出結果
29 緑色検出クロストーク誤差
40 青色検出モード制御
41 緑色検出モード制御
42 赤色検出モード制御
1
21b
26 Blue detection result 27
Claims (7)
複数の波長帯域の光を発光させる複数の発光手段と、
前記複数の発光手段の出力を検出する複数の検出手段と、
前記複数の検出手段の出力に基づき前記複数の発光手段の出力を制御する制御手段と
を備え、
前記複数の検出手段の出力に基づいてクロストーク誤差を抽出し、クロストーク補正をかけるための演算を行う演算手段をさらに備え、
前記制御手段は、
予め設定された照明出力と色温度となるよう前記複数の発光手段を制御して出力の調整を行うとともに、
前記演算手段の演算結果に基づいて前記クロストーク補正をかけるために前記複数の発光手段を制御して前記出力の調整を行う
ことを特徴とする照明装置。 A lighting device used for observation and diagnosis.
Multiple light emitting means for emitting light in multiple wavelength bands,
A plurality of detecting means for detecting the output of the plurality of light emitting means, and
A control means for controlling the output of the plurality of light emitting means based on the output of the plurality of detection means is provided.
A calculation means for extracting a crosstalk error based on the outputs of the plurality of detection means and performing a calculation for applying crosstalk correction is further provided.
The control means
The output is adjusted by controlling the plurality of light emitting means so that the illumination output and the color temperature are set in advance .
A lighting device characterized in that the output is adjusted by controlling the plurality of light emitting means in order to apply the crosstalk correction based on the calculation result of the calculation means.
複数の波長帯域の光を発光させる複数の発光手段と、
前記複数の発光手段の出力を検出する複数の検出手段と、
前記複数の検出手段の出力に基づき前記複数の発光手段の出力を制御する制御手段と
を備え、
前記制御手段は、予め設定された照明出力と色温度となるよう前記複数の発光手段を制御して出力の調整を行うとともに、予め決められた単色調光期間において前記複数の発光手段を個別に発光させ、
前記単色調光期間において前記複数の発光手段が個別に発光した際の前記複数の検出手段のそれぞれの出力に基づいてクロストーク誤差を抽出し、クロストーク補正をかけるための演算を行う演算手段をさらに備え、
前記制御手段は、前記演算手段の演算結果に基づいてクロストーク補正をかけるため前記複数の発光手段を制御して前記出力の調整を行う
ことを特徴とする照明装置。 A lighting device used for observation and diagnosis.
Multiple light emitting means for emitting light in multiple wavelength bands,
A plurality of detecting means for detecting the output of the plurality of light emitting means, and
A control means for controlling the output of the plurality of light emitting means based on the output of the plurality of detection means is provided.
The control means controls the plurality of light emitting means so as to have a preset illumination output and a color temperature to adjust the output, and individually controls the plurality of light emitting means in a predetermined monochromatic dimming period. Make it emit light
An arithmetic means for extracting a crosstalk error based on the output of each of the plurality of detection means when the plurality of light emitting means individually emits light in the monochromatic dimming period and performing an operation for applying crosstalk correction. Further prepare
The lighting device is characterized in that the control means controls the plurality of light emitting means to adjust the output in order to apply crosstalk correction based on the calculation result of the calculation means.
第一の波長帯域の光を発光させる第一発光手段と、
第二の波長帯域の光を発光させる第二発光手段と、
第三の波長帯域の光を発光させる第三発光手段と
を有するとともに、
前記複数の検出手段は、
前記第一発光手段の出力を検出する第一検出手段と、
前記第二発光手段の出力を検出する第二検出手段と、
前記第三発光手段の出力を検出する第三検出手段と
を有し、
前記制御手段は、前記第一検出手段、前記第二検出手段及び前記第三検出手段の出力に基づき前記第一発光手段、前記第二発光手段及び前記第三発光手段の出力を制御する
ことを特徴とする請求項1または2に記載の照明装置。 The plurality of light emitting means
The first light emitting means for emitting light in the first wavelength band,
A second light emitting means that emits light in the second wavelength band,
To together as having a third light-emitting means for emitting light of a third wavelength band,
The plurality of detection means
The first detecting means for detecting the output of the first light emitting means and
The second detecting means for detecting the output of the second light emitting means and
It has a third detecting means for detecting the output of the third light emitting means.
The control means controls the outputs of the first light emitting means, the second light emitting means, and the third light emitting means based on the outputs of the first detecting means, the second detecting means, and the third detecting means. The lighting device according to claim 1 or 2.
ことを特徴とする請求項3に記載の照明装置。 The calculating means, <br/> said first detecting means, extracts the crosstalk error based on an output of the second detecting means and said third detecting means performs an operation for applying the crosstalk correction The lighting device according to claim 3.
ことを特徴とする請求項3または4に記載の照明装置。 3. The control means according to claim 3 or 4 , wherein the control means controls the outputs of the first light emitting means, the second light emitting means, and the third light emitting means by driving by a continuous wave oscillation operation or a pulse oscillation operation. The lighting device described.
ことを特徴とする請求項3から5までのいずれか1項に記載の照明装置。 The lighting device according to any one of claims 3 to 5 , wherein an LED light source is used for the first light emitting means, the second light emitting means, and the third light emitting means.
ことを特徴とする請求項3から5までのいずれか1項に記載の照明装置。 The lighting device according to any one of claims 3 to 5 , wherein a laser light source is used for the first light emitting means, the second light emitting means, and the third light emitting means.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017103367A JP6893830B2 (en) | 2017-05-25 | 2017-05-25 | Lighting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017103367A JP6893830B2 (en) | 2017-05-25 | 2017-05-25 | Lighting device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2018198189A JP2018198189A (en) | 2018-12-13 |
| JP6893830B2 true JP6893830B2 (en) | 2021-06-23 |
Family
ID=64663415
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017103367A Active JP6893830B2 (en) | 2017-05-25 | 2017-05-25 | Lighting device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6893830B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7547647B2 (en) * | 2021-09-14 | 2024-09-09 | オリンパス株式会社 | Light source device and endoscope system including the same |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011104239A (en) * | 2009-11-20 | 2011-06-02 | Hoya Corp | Scanning medical probe and medical observation system |
| JP5507376B2 (en) * | 2010-07-28 | 2014-05-28 | 三洋電機株式会社 | Imaging device |
| US20170272720A1 (en) * | 2014-12-09 | 2017-09-21 | Sony Corporation | Illuminating device, control method for illuminating device, and image acquisition system |
-
2017
- 2017-05-25 JP JP2017103367A patent/JP6893830B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018198189A (en) | 2018-12-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12232706B2 (en) | Endoscopic light source and imaging system | |
| US7744242B2 (en) | Spotlight for shooting films and videos | |
| JP6010255B2 (en) | Light source device and method of operating light source device | |
| JP5408278B2 (en) | Projection apparatus, projection method, and program | |
| JP4589713B2 (en) | Light source control system adapted to reproduce the colors of known light sources | |
| WO2016125334A1 (en) | Endoscope device | |
| WO2015005277A1 (en) | Light source device | |
| US10145738B2 (en) | Optical filter system and fluorescence detection system | |
| JP4642157B2 (en) | Fluorescence observation equipment | |
| JP5364520B2 (en) | Endoscope apparatus and method for operating endoscope apparatus | |
| CN102722076B (en) | Projection device and projection method | |
| WO2016056477A1 (en) | Light source device | |
| CN109715042B (en) | Light source device | |
| JP2013182142A (en) | Multi-screen display device | |
| CN114026396A (en) | Spectral reconstruction of detector sensitivity | |
| US11278183B2 (en) | Light source device and imaging system | |
| JP6893830B2 (en) | Lighting device | |
| JP2011247743A (en) | Fluorescence measurement apparatus | |
| JP4715244B2 (en) | Projection device | |
| JP7596596B2 (en) | Light source device, observation system, and color balance correction method | |
| JP5016427B2 (en) | LED lighting device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200121 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201116 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201124 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210120 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210511 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210602 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6893830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |