JP6806503B2 - Horizontal axis rotor - Google Patents
Horizontal axis rotor Download PDFInfo
- Publication number
- JP6806503B2 JP6806503B2 JP2016175235A JP2016175235A JP6806503B2 JP 6806503 B2 JP6806503 B2 JP 6806503B2 JP 2016175235 A JP2016175235 A JP 2016175235A JP 2016175235 A JP2016175235 A JP 2016175235A JP 6806503 B2 JP6806503 B2 JP 6806503B2
- Authority
- JP
- Japan
- Prior art keywords
- base
- chord length
- view
- blade
- horizontal axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 description 29
- 230000000694 effects Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Wind Motors (AREA)
- Hydraulic Turbines (AREA)
Description
本発明は、横軸ロータに係り、特に水力発電機用の回転効率の高い横軸ロータに関する。 The present invention relates to a horizontal shaft rotor, and particularly relates to a horizontal shaft rotor having high rotational efficiency for a hydroelectric generator.
水力発電機用のロータにおける揚力型ブレードとしては、ブレードの翼端部の幅を大としたものが、例えば特許文献1に開示されている。
As a lift type blade in a rotor for a hydroelectric generator, for example, a blade having a large width at the tip of the blade is disclosed in
前記、特許文献1に記載のブレードでは、受流面積は広いが、その反面、抵抗が大きいため、回転効率が悪い。
本発明は、ブレードの翼端部分の幅は小とするとともに、後縁方向へ傾斜させて横向傾斜部とすることによって、横向傾斜部に当たる流体を、放射外方向ではなく、回転半径内へ通過させることによって、基部に沿う流体と合流させて回転効率を高めたブレードを有する、横軸ロータを提供することを目的としている。
The blade described in
In the present invention, the width of the blade tip portion is made small, and the blade is inclined toward the trailing edge to form a laterally inclined portion, so that the fluid hitting the laterally inclined portion passes through the radius of gyration instead of the outside radiation direction. It is an object of the present invention to provide a horizontal axis rotor having a blade which is fused with a fluid along a base to improve rotational efficiency.
本発明の具体的な内容は、次の通りである。 The specific contents of the present invention are as follows.
(1) ロータのハブに固定された揚力型ブレードにおける正面視で、翼長のほぼ中央部を最大弦長部とし、該最大弦長部から翼根の方を基部として、ハブとの境界へかけて弦長を次第に小とするとともに、前記最大弦長部から翼端へかけて先細として該最大弦長部を基点として後縁方向へ大きく屈曲させた横向傾斜部を形成し、該横向傾斜部は側面視で前記基部との境界から翼端へかけての正面を、前記最大弦長部を基点として前記基部の正面に対して前方向へ前向傾斜させてある横軸ロータ。 (1) in front view at the hub in a fixed lift type blade rotor, the central portions middle nearly spanwise the maximum chord length portion, towards the blade root from the maximum chord length portion as a base portion, the hub with a progressively chord length over the boundary small, to form a sideways inclined portion greatly bent to the trailing edge direction as a base point of said maximum chord length portion as tapered over the blade tip from the maximum chord length portion, said The laterally inclined portion is a horizontal axis rotor in which the front surface from the boundary with the base portion to the wing tip is inclined forward with respect to the front surface of the base portion with the maximum chord length portion as a base point in a side view.
(2) 前記揚力型ブレードの正面視で、該揚力型ブレードの長さのほぼ中心部で弦長の中央部Oを通る前記基部の幅の中央線Sと、前記横向傾斜部の幅の中央線Tとが、120度〜140度の範囲で交差し、前記基部を直立させた状態の平面視で、前記横向傾斜部は翼端を先細として、前記最大弦長部を基点として前記基部の後縁よりも前方斜めに突出してある前記(1)に記載の横軸ロータ。 (2) previously in KiAge force type blade front view of a center line S of the width of the base passing through the central portion O of the chord length at substantially the center portion of the length of該揚force type blade, the width of the lateral direction inclined portion of the center line T, intersect at a range of 120 degrees to 14 0 °, in plan view in a state of upright the base, the lateral direction inclined portion and a tapering tip, the maximum chord length portion The horizontal axis rotor according to ( 1 ) above, which projects diagonally forward from the trailing edge of the base as a base point .
(3) 前記揚力型ブレードの正面視において、前記基部の幅の中央線Sと交叉する前記横向傾斜部の幅の中央線Tに対して、前記横向傾斜部の前縁は、その長さの中間部分が外側に突出した弧曲面とされている前記(1)または(2)に記載の横軸ロータ。 (3) in a front view of the front KiAge force type blade, with respect to the center line T of the width of the lateral direction inclined section intersecting the center line S of the width of the base portion, the leading edge of the horizontal direction inclined portion, a length The horizontal axis rotor according to (1) or ( 2 ) above, wherein the middle portion of the dimension is an arc curved surface protruding outward .
(4) 前記揚力型ブレードの枚数が3枚を超える偶数の時において、片面に大きく膨らむ凸面がある揚力型ブレードを、回転方向の前後において、前記凸面のある面とない面を正面視で交互に形成して配設する前記(1)〜(3)のいずれかに記載の横軸ロータ。 (4) Before KiAge force type Oite when the number of blades is even more than three, the lift type blade is largely swell convex on one side, in the front and back in the direction of rotation, the front free face and a said convex surface The horizontal axis rotor according to any one of (1) to ( 3 ) above, which is formed and arranged alternately visually .
本発明によると、次のような効果が奏せられる。 According to the present invention, the following effects can be achieved.
前記(1)に記載の横軸ロータは、揚力型ブレードが正面視で、翼長のほぼ中間点から翼端へかけて、後縁方向へ、大きく横向き屈曲しているので、正面に受ける流体によって回転すると、基部の正面に当たる流体は、横向傾斜部の方向に移動し、横向傾斜部によって移動が抑止され、前縁部分から後縁へかけて傾斜する横向傾斜部の正面に沿って回転半径内へ入り、基部正面の前縁から後縁へかけての傾斜面に沿って通過する流体と合流して高速で通過し、回転効率を高める。また、揚力型ブレードにおける横向傾斜部は、基部との境界部から翼端を、正面の前方向きに前傾斜させてあるので、回転時に、翼根方向から翼端方向へ移動する流体は、横向傾斜部に当たって正面方向に移動するため、ブレードに対する流体圧が高まり、回転効率を高める。 In the horizontal axis rotor described in (1) above, the lift type blade is bent laterally in the trailing edge direction from approximately the midpoint of the blade length to the blade tip in front view, so that the fluid received in the front is received. When rotated by, the fluid that hits the front of the base moves in the direction of the laterally inclined portion, the movement is restrained by the laterally inclined portion, and the rotation radius is along the front of the laterally inclined portion that is inclined from the front edge portion to the trailing edge portion. It goes in and joins the fluid passing along the inclined surface from the front edge to the trailing edge of the front of the base and passes at high speed to improve the rotation efficiency. Further, in the laterally inclined portion of the lift type blade, the blade tip is tilted forward from the boundary portion with the base portion in the frontward direction, so that the fluid moving from the blade root direction to the blade tip direction during rotation is laterally inclined. Since it hits the inclined portion and moves in the front direction, the fluid pressure on the blade increases, and the rotation efficiency is improved .
前記(2)に記載の横軸ロータにおいて、前記揚力型ブレードの基部の中央線Sと、横向傾斜部の幅の中央線Tとが、120度〜140度の範囲で交差し、翼端を正面視で先細とするので、回転時の抵抗を減少させて、回転効率を高める効果がある。 On the horizontal axis rotor according to (2), and center line S of the base of the lift type blade, a center line T of the width of the lateral direction inclined portion, intersect in the range of 1 20 degrees to 1 40 degrees, the wing Since the end is tapered in front view, it has the effect of reducing resistance during rotation and increasing rotation efficiency.
前記(3)に記載の前記揚力型ブレードは、前記揚力型ブレードの正面視において、前記基部の幅の中央線Sと交叉する前記横向傾斜部の幅の中央線Tに対して、前記横向傾斜部の前縁は、その長さの中間部分が外側に突出した弧曲面とされているので、回転時に前記横向傾斜部の前縁にあたる気流は滑らかにブレードの後縁方向へ通過し、回転効率を高める。 Wherein the lift-type blade according to (3), the front in a front view of KiAge force type blade, with respect to the center line T of the width of the lateral direction inclined section intersecting the center line S of the width of said base portion, said Since the front edge of the laterally inclined portion has an arc curved surface in which the middle portion of the length protrudes outward, the airflow corresponding to the front edge of the laterally inclined portion smoothly passes in the direction of the trailing edge of the blade during rotation. Increase rotation efficiency .
前記(4)に記載の発明においては、揚力型ブレードの枚数が3枚を超える偶数の時に、正面と後面において、膨出の強い凸面を前後交互に形成して配設するので、回転方向の前後の揚力型ブレードによって生じる流体の向きが、交互に前後方向を向くため、流体の干渉が生じにくい効果がある。 In the invention described in ( 4 ) above, when the number of lift type blades is an even number exceeding three, convex surfaces with strong bulging are alternately formed and arranged on the front surface and the rear surface in the rotation direction. Since the directions of the fluid generated by the front and rear lift blades alternately face the front and rear directions, there is an effect that fluid interference is unlikely to occur.
本発明の実施形態を、図面を参照して説明する。横軸ロータ1は、正面視でハブ2の周面に揚力型ブレード3(以下単にブレードという)が3枚、均等間隔で配設されている。ブレード3の枚数が少ないと、受流面積が小となり、枚数が多いと、回転時に、流動する流体の干渉による乱流を生じて、回転効率が低下する。
Embodiments of the present invention will be described with reference to the drawings. The
ブレード3の正面3Cにおいて、長さのほぼ中心部で弦長の中央部を点Oとし、点Oより翼根部を基部3Aとし、点Oから翼端部は、回転後方向へ向かって、大きく屈曲して、横向傾斜部3Bが形成されている。
前縁3Eに沿う長さは後縁3Eに沿う長さよりも長いが、回転半径は前縁3D及び後縁3Eの長さより小となっている。
In the
The length along the
ブレード3の長さ方向の、ほぼ中間の中央点Oから翼根方向の基部3Aの中央線Sと、中央点Oより翼端方向の横向傾斜部3Bの中央線Tとの交差角は、図1においては125度としてあるが、120度〜140度の範囲で任意に設定される。
交差角がこれより小さいと、半径内に流体を通過させにくくなり、大きいと、直線に近くなり、横向傾斜部3Bを作る意味が薄れる。
The intersection angle between the center line S of the
If the intersection angle is smaller than this, it becomes difficult for the fluid to pass within the radius, and if it is large, it becomes closer to a straight line, and the meaning of forming the laterally
基部3Aは、翼根から中央点O方向へ、次第に弦長を大となるようにしてあり、前記中央線Sと中央線Tの交差する部分の弦長を、最大弦長部3Fとして形成されている。これは、翼根から横向傾斜部3Bへ流体が移動して集合するためであり、集合した流体は、後縁3E方向へ円弧を描いて通過し、その反作用として、ブレード3を前縁方向へ回転させ、回転効率を高める。
The
側面視で、図2に示すように、基部3Aの境界部分から横向傾斜部3Bを、正面3C前方に向けて傾斜させて、前向傾斜部3Hとしてある。図2における前傾の傾斜角度は、基部3Aに対して約25度前向傾斜としてあるが、20度〜45度の範囲で任意に設定される。
In a side view, as shown in FIG. 2, the laterally
正面視で前縁3Dにおける、基部3Aと横向傾斜部3Bとの屈曲角度よりも、後縁3Dにおける基部3Aと、横向傾斜部3Bとの屈曲角度の方が、大角度となっている。これによって、横向傾斜部3Bの前縁3Dに当たる流体は、小さな抵抗で後縁3E方向へ通過し、かつ、基部3Aにおける後縁3Eと、横向傾斜部3Bにおける後縁3Eとが交差する中間の、U矢示線方向へ通過する。
When viewed from the front, the bending angle between the
また図9に示すように、横向傾斜部3Bにおいては、前縁3Dから後縁3Eへ抜ける流体は、V矢示方向に流れ、半径線Xより内側を流れることになる。
その流速は、回転半径の違いによって、基部3AにおけるU矢示線より内側の流速より高速となり、その反作用は、V矢示線の反対方向へ作用して、ブレード3の回転効率を高める。
Further, as shown in FIG. 9, in the laterally
The flow velocity becomes higher than the flow velocity inside the U arrow line at the
これにより、前記U矢示線方向に、基部3Aの後縁3Eを通過する流体と、横向傾斜部3Bの後縁3Eを通過する流体は、U矢示線方向で集合して通過し、その反作用として、V矢示線の反対方向の回転力を得て、ブレード3を効率良く回転させる。
As a result, the fluid passing through the
図3〜図8は、図1におけるブレード3の、各横断面の拡大横断面図である。
横向傾斜部3Bの先端における正面3Cの前縁3Dから、後縁3Eへかけて傾斜する先端勾配線Gは、図3〜図8ともに同じであるが、各断面の端面において、前縁3Dから後縁3Eへかけて傾斜する中間勾配線Eは、それぞれの部位によって異なっている。
3 to 8 are enlarged cross-sectional views of each cross section of the
The tip slope line G that slopes from the
すなわち先端勾配線Gと中間勾配線Eとの交差角度は、図3において約32度、図4においては約32度、図5においては約30度、図6においては約30度、図7においては約28度、図8においては約25度となっている。 That is, the intersection angle between the tip gradient line G and the intermediate gradient line E is about 32 degrees in FIG. 3, about 32 degrees in FIG. 4, about 30 degrees in FIG. 5, about 30 degrees in FIG. 6, and in FIG. 7. Is about 28 degrees, and in FIG. 8, it is about 25 degrees.
これは、正面3Cにおける後縁3E部分が、基部3Aの翼根部分から横向傾斜部3Bの翼端へかけて、次第に正面の前方向へ移動していることを示している。しかし、これは横傾斜部3Bが横方向へ傾斜しているのに、基部3Aと同じ横断をしているためで、図10に示すように、先端勾配線Gと中間勾配線Eの間を流体は通過することになる。
This indicates that the
図3〜図8の横断面に示すように、正面3Cよりも後面Gの方が大きく膨らむ凸面を有しており、前縁3Dから後縁3Eまでの距離は、正面3Cのそれよりも大きくなっている。その結果、正面3Cに当たる流体は、ブレード3を前縁3D方向へ押して回転させる。
As shown in the cross sections of FIGS. 3 to 8, the rear surface G has a convex surface that bulges more than the
また、正面3Cに沿って通過する流体の速度よりも、大きな凸面の後面3Gに沿って通過する流体の速度の方が大となり、流速が大である方が、流体圧が低下するので、正面3Cと後面3Gの流体圧の差によって、ブレード3は、流体圧の低い前縁3D方向へ押されて、回転効率を高める。
Further, the velocity of the fluid passing along the
図11は、別の実施形態の横軸ロータの正面図である。前例と同じ部材には、同じ符号を付して説明を省略する。この実施形態では、ハブ2の周面に、ブレード3を4枚配設してある。ブレード3の形は前例と基本的に同じものであるが、正面3Cを後面3Gとし、後面3Gを正面3Cとしたものと、図1に示すブレードとを交互に配設してある。
FIG. 11 is a front view of the horizontal axis rotor of another embodiment. The same members as in the previous example are designated by the same reference numerals, and the description thereof will be omitted. In this embodiment, four
このように、ブレード3の数が4枚、6枚などと増加すると、前後のブレード3から、コアンダ効果によって高速で通過する流体が、前後面方向へ分かれ、高速回転時に、流体の干渉が生じにくいという効果が生じる。なお、本発明の横軸ロータは、風力発電機、水力発電機に活用することができる。
In this way, when the number of
翼端に横向傾斜部が形成されているので、回転時に翼根から翼端方向へ移動する流体は、横向傾斜部で抑制されて、直径円内方向へ通過するため、回転効率が高まり、発電効率の高い水力発電に利用される。 Since the laterally inclined portion is formed at the blade tip, the fluid moving from the blade root to the blade tip during rotation is suppressed by the laterally inclined portion and passes in the inner direction of the diameter circle, so that the rotation efficiency is increased and power generation is performed. It is used for highly efficient hydroelectric power generation.
1.横軸ロータ
2.ハブ
3.揚力型ブレード
3A.基部
3B.横向傾斜部
3C.正面
3D.前縁
3E.後縁
3F.最大弦長部
3G.後面
3H.前向傾斜面
4.ロータ軸
E.中間勾配線
G.先端勾配線
O.中央点
S.基部弦中央線
T.横傾斜部弦中央線
U.中間の流体通過方向
V.横向傾斜部の流体通過方向
X.回転半径線
1. 1.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016175235A JP6806503B2 (en) | 2016-09-08 | 2016-09-08 | Horizontal axis rotor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016175235A JP6806503B2 (en) | 2016-09-08 | 2016-09-08 | Horizontal axis rotor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2018040304A JP2018040304A (en) | 2018-03-15 |
| JP6806503B2 true JP6806503B2 (en) | 2021-01-06 |
Family
ID=61625578
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016175235A Expired - Fee Related JP6806503B2 (en) | 2016-09-08 | 2016-09-08 | Horizontal axis rotor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6806503B2 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6426869B1 (en) * | 2018-06-08 | 2018-11-21 | 株式会社グローバルエナジー | Horizontal axis rotor |
| CA3110574A1 (en) * | 2018-09-04 | 2020-03-12 | Biomerenewables Inc. | Fluidic turbine structure |
| KR102202269B1 (en) * | 2019-04-26 | 2021-01-12 | 중앙대학교 산학협력단 | Blades for micro wind power generation and duct unit for micro wind power generation comprising the same |
| WO2024101372A1 (en) * | 2022-11-10 | 2024-05-16 | 好高 河野 | Wind-powered electricity generating device propeller, and wind-powered electricity generating device employing same |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012251448A (en) * | 2011-06-01 | 2012-12-20 | Toru Fukushima | Configurational form for blade noise reduction for propeller-type wind power generator of 10 m or larger diameter |
| US20120321481A1 (en) * | 2011-06-15 | 2012-12-20 | Dejesus Ben L | Spinnable Bladed Device For Operation In Air, Water Or Other Fluid Medium |
| JP6189088B2 (en) * | 2013-05-28 | 2017-08-30 | テラル株式会社 | Rotor |
| JP6158019B2 (en) * | 2013-09-27 | 2017-07-05 | 株式会社東芝 | Axial turbine generator |
-
2016
- 2016-09-08 JP JP2016175235A patent/JP6806503B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018040304A (en) | 2018-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6806503B2 (en) | Horizontal axis rotor | |
| JP4740580B2 (en) | Horizontal axis wind turbine blades and horizontal axis wind turbine | |
| JP7049050B2 (en) | Rotor blade | |
| US20150285217A1 (en) | Rotor | |
| JP5925997B2 (en) | Blade of rotor for fluid equipment | |
| JP2015031227A (en) | Wind mill | |
| JP2018091280A (en) | Horizontal shaft rotor | |
| EP3472456B1 (en) | Wind turbine blade with tip end serrations | |
| KR20130055573A (en) | Stepped surface propeller | |
| TW201641810A (en) | Propeller rotor | |
| JP7007841B2 (en) | Rotor blade and horizontal axis turbine equipped with it | |
| JP6426869B1 (en) | Horizontal axis rotor | |
| JP2007239631A (en) | Windmill | |
| JP4173773B2 (en) | Rotating wheel and rotating wheel | |
| KR20110008789A (en) | Wings for wind power generation and wind power generator using the same | |
| JP2018091281A (en) | Horizontal shaft rotor | |
| JP2018178917A (en) | Vertical axis wind turbine and wind turbine | |
| JP6997580B2 (en) | Vertical blade and vertical axis rotor | |
| JP2006226148A (en) | Horizontal-shaft windmill and propeller | |
| RU2376202C2 (en) | Rotor blade | |
| WO2022054800A1 (en) | Vertical-axis wind turbine and vertical-axis wind turbine power generator | |
| JP2022178342A (en) | rotor blade | |
| CN104838147A (en) | Geometric description of a rotor blade | |
| JP2019070367A (en) | Horizontal shaft windmill |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190209 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190826 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200609 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200721 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201110 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201204 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6806503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| LAPS | Cancellation because of no payment of annual fees |