JP6828656B2 - All solid state battery - Google Patents
All solid state battery Download PDFInfo
- Publication number
- JP6828656B2 JP6828656B2 JP2017215042A JP2017215042A JP6828656B2 JP 6828656 B2 JP6828656 B2 JP 6828656B2 JP 2017215042 A JP2017215042 A JP 2017215042A JP 2017215042 A JP2017215042 A JP 2017215042A JP 6828656 B2 JP6828656 B2 JP 6828656B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- solid
- state battery
- metal
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本開示は、全固体電池に関する。 The present disclosure relates to an all-solid-state battery.
リチウムイオン二次電池に関し、様々な構造を持つ集電体を採用する技術が知られている。例えば特許文献1には、少なくとも活物質層と接触する表面において、ステンレス製ワイヤを縦方向および横方向に織り込むことにより形成され、前記活物質層の少なくとも一部が内部に埋め込まれるメッシュ構造を有するリチウムイオン二次電池用の集電体が開示されている。 Regarding lithium ion secondary batteries, a technique for adopting a current collector having various structures is known. For example, Patent Document 1 has a mesh structure formed by weaving stainless steel wires in the vertical and horizontal directions at least on the surface in contact with the active material layer, and at least a part of the active material layer is embedded therein. A current collector for a lithium ion secondary battery is disclosed.
しかしながら、特許文献1に記載の集電体をリチウム全固体電池に用いた場合、放電時のLi溶出により、負極中のLiと固体電解質との間のLi伝導パスが途絶える結果、放電容量が低下するという問題があった。その推定メカニズムの詳細を以下説明する。 However, when the current collector described in Patent Document 1 is used in a lithium all-solid-state battery, the discharge capacity is reduced as a result of interruption of the Li conduction path between Li in the negative electrode and the solid electrolyte due to Li elution during discharge. There was a problem of doing. The details of the estimation mechanism will be described below.
図5(a)〜(c)は、従来の全固体電池において、放電容量が低下する推定メカニズムを説明する模式図である。ここでいう従来の全固体電池とは、ステンレスメッシュ構造を有する負極集電体を用いた電池を指す。図5(a)〜(c)は、いずれも全固体電池の負極側200aの断面模式図であり、具体的には、固体電解質11とステンレスメッシュ集電体13aとの界面近傍の断面構造を示した模式図である。なお、図5(a)〜(c)中の13aは、具体的には、ステンレスメッシュ集電体を構成する各ワイヤの断面を示す。また、これらの図中、「Li」と記載された図形は金属Liを示す。
図5(a)は、充電直後の全固体電池の負極側200aの断面模式図である。図5(a)に示すように、充電によって、ステンレスメッシュ集電体13aにおけるステンレスワイヤ表面に、金属Liが析出する。
図5(b)は、放電中の全固体電池の負極側200aの断面模式図である。放電中は、固体電解質11と金属Liとの界面において、金属Liのイオン化反応が進行する。Liイオンが固体電解質11を介して正極へ、電子がステンレスメッシュ集電体13aを介して外部負荷へ、それぞれ供給されることにより、放電反応が完了する。放電反応は当該界面から始まるため、当該界面における金属Liが優先的に消費される。Li拡散による当該界面への金属Liの補充が遅い場合、図5(b)に示すように、主に当該界面側の金属Li表面に空孔が生じる。
図5(c)は、放電後の全固体電池の負極側200aの断面模式図である。金属Li表面の空孔同士が繋がって、固体電解質11と金属Liとの界面に隙間が生じる結果、金属Liと固体電解質との接触が絶たれる。そのため、一部の金属Liが消費されることなくステンレスメッシュ集電体13a表面に残留する。
5 (a) to 5 (c) are schematic views illustrating an estimation mechanism in which the discharge capacity decreases in a conventional all-solid-state battery. The conventional all-solid-state battery referred to here refers to a battery using a negative electrode current collector having a stainless mesh structure. 5 (a) to 5 (c) are schematic cross-sectional views of the negative electrode side 200a of the all-solid-state battery. Specifically, the cross-sectional structure near the interface between the solid electrolyte 11 and the stainless mesh current collector 13a is shown. It is a schematic diagram shown. Note that 13a in FIGS. 5A to 5C specifically shows a cross section of each wire constituting the stainless mesh current collector. Further, in these figures, the figure described as "Li" indicates the metal Li.
FIG. 5A is a schematic cross-sectional view of the negative electrode side 200a of the all-solid-state battery immediately after charging. As shown in FIG. 5A, the metal Li is deposited on the surface of the stainless wire in the stainless mesh current collector 13a by charging.
FIG. 5B is a schematic cross-sectional view of the negative electrode side 200a of the all-solid-state battery being discharged. During the discharge, the ionization reaction of the metal Li proceeds at the interface between the solid electrolyte 11 and the metal Li. The discharge reaction is completed by supplying Li ions to the positive electrode via the solid electrolyte 11 and electrons to the external load via the stainless mesh current collector 13a. Since the discharge reaction starts at the interface, the metallic Li at the interface is preferentially consumed. When the replenishment of metal Li to the interface by Li diffusion is slow, as shown in FIG. 5B, vacancies are mainly generated on the surface of the metal Li on the interface side.
FIG. 5C is a schematic cross-sectional view of the negative electrode side 200a of the all-solid-state battery after discharge. As a result of the pores on the surface of the metal Li being connected to each other and a gap being formed at the interface between the solid electrolyte 11 and the metal Li, the contact between the metal Li and the solid electrolyte is cut off. Therefore, a part of the metal Li remains on the surface of the stainless mesh current collector 13a without being consumed.
このように、従来の全固体電池においては、充放電に寄与しない、不活性なリチウム金属が徐々に負極に蓄積される。これに伴い、当該電池においては、充放電に寄与するリチウムの量が徐々に減る。そのため、充放電回数を重ねる程、負極が不可逆的に劣化していく結果、全固体電池全体の放電容量が低下するという課題があった。
本開示は全固体電池に関する上記実情を鑑みて成し遂げられたものであり、本開示の目的は、放電容量の低下を抑制できる全固体電池を提供することである。
As described above, in the conventional all-solid-state battery, the inert lithium metal that does not contribute to charging / discharging is gradually accumulated in the negative electrode. Along with this, in the battery, the amount of lithium that contributes to charging and discharging gradually decreases. Therefore, as the number of charge / discharge cycles increases, the negative electrode deteriorates irreversibly, and as a result, there is a problem that the discharge capacity of the entire all-solid-state battery decreases.
The present disclosure has been achieved in view of the above circumstances regarding an all-solid-state battery, and an object of the present disclosure is to provide an all-solid-state battery capable of suppressing a decrease in discharge capacity.
本開示の全固体電池は、正極と、固体電解質と、負極とを有する全固体電池において、負極は、負極部材を備え、負極部材は、ステンレスメッシュの表面に、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属が被覆してなり、放電時に負極部材表面においてLiのイオン化反応が進行し、充電時に負極部材表面においてLiの析出反応が進行することを特徴とする。 The all-solid-state battery of the present disclosure is an all-solid-state battery having a positive electrode, a solid electrolyte, and a negative electrode. The negative electrode includes a negative electrode member, and the negative electrode member is made of Mg, Ag, Al, and Au on the surface of a stainless mesh. It is characterized in that at least one metal selected from the above group is coated, the ionization reaction of Li proceeds on the surface of the negative electrode member during discharge, and the precipitation reaction of Li proceeds on the surface of the negative electrode member during charging.
本開示によれば、負極部材がステンレスメッシュ表面にLiと固溶可能な金属を含むため、放電時に溶出したLiが当該金属内を拡散することができる結果、固体電解質との接触がない金属Liも当該金属内を拡散することができ、Li伝導パスが途絶えることがないため、全固体電池の放電容量の低下を抑えることができる。 According to the present disclosure, since the negative electrode member contains a metal that can be solidly dissolved with Li on the surface of the stainless mesh, Li eluted during discharge can be diffused in the metal, and as a result, the metal Li that does not come into contact with the solid electrolyte. However, since it can diffuse in the metal and the Li conduction path is not interrupted, it is possible to suppress a decrease in the discharge capacity of the all-solid-state battery.
本開示の全固体電池は、正極と、固体電解質と、負極とを有する全固体電池において、負極は、負極部材を備え、負極部材は、ステンレスメッシュの表面に、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属が被覆してなり、放電時に負極部材表面においてLiのイオン化反応が進行し、充電時に負極部材表面においてLiの析出反応が進行することを特徴とする。 The all-solid-state battery of the present disclosure is an all-solid-state battery having a positive electrode, a solid electrolyte, and a negative electrode. The negative electrode includes a negative electrode member, and the negative electrode member is made of Mg, Ag, Al, and Au on the surface of a stainless mesh. It is characterized in that at least one metal selected from the above group is coated, the ionization reaction of Li proceeds on the surface of the negative electrode member during discharge, and the precipitation reaction of Li proceeds on the surface of the negative electrode member during charging.
図1は、本開示の全固体電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。全固体電池100は、固体電解質1、正極2、負極3を備える。図1に示すように、固体電解質1の一方の面に正極2が存在し、固体電解質1の他方の面に負極3が存在する。
なお、本開示の全固体電池は、必ずしもこの例のみに限定されるものではない。
FIG. 1 is a diagram showing an example of the layer structure of the all-solid-state battery of the present disclosure, and is a diagram schematically showing a cross section cut in the stacking direction. The all-solid-state battery 100 includes a solid electrolyte 1, a positive electrode 2, and a negative electrode 3. As shown in FIG. 1, the positive electrode 2 is present on one surface of the solid electrolyte 1, and the negative electrode 3 is present on the other surface of the solid electrolyte 1.
The all-solid-state battery of the present disclosure is not necessarily limited to this example.
本開示の全固体電池においては、放電時に負極部材表面においてLiのイオン化反応が進行し、充電時に負極部材表面においてLiの析出反応が進行する。より具体的に、本開示の負極部材表面における放電反応及び充電反応は、下記式(I)に従い進行する。 In the all-solid-state battery of the present disclosure, the ionization reaction of Li proceeds on the surface of the negative electrode member during discharge, and the precipitation reaction of Li proceeds on the surface of the negative electrode member during charging. More specifically, the discharge reaction and the charge reaction on the surface of the negative electrode member of the present disclosure proceed according to the following formula (I).
図2(a)〜(c)は、本開示の全固体電池の一実施形態における、充放電の推定メカニズムを説明する模式図である。図2(a)〜(c)は、いずれも全固体電池の負極側100aの断面模式図であり、具体的には、固体電解質1と負極部材3Aとの界面近傍の断面構造を示した模式図である。図2(a)〜(c)中の固体電解質1及び負極3は、図1中の固体電解質1又は負極3にそれぞれ対応する。図2(a)〜(c)中の3Aは、具体的には、ステンレスメッシュを構成する各ワイヤに、金属層が被覆した状態の断面を示す。また、これらの図中、「Li」と記載された図形は金属Liを示す。なお、本開示の全固体電池は、必ずしもこの実施形態のみに限定されるものではない。
図2(a)は、充電直後の全固体電池の負極側100aの断面模式図である。負極3は負極部材3Aを備える。負極部材3Aは、ステンレスメッシュ3aの表面に、金属層3bが被覆してなる。金属層3bは、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属からなる。図2(a)に示すように、充電後の負極部材3A表面には、金属Liが析出している。
図2(b)は、放電中(初期)の全固体電池の負極側100aの断面模式図である。放電中は、固体電解質1と金属Liとの界面に加えて、負極部材3Aと金属Liとの界面において、金属Liのイオン化反応が進行する。その理由は、金属層3bに使用される金属(Mg、Ag、Al及びAu)がいずれもLiと固溶可能である結果、金属層3b中をLiイオンが拡散し得るためである。したがって、Liイオンが固体電解質1(及び必要な場合には金属層3b)を介して正極へ、電子が負極部材3Aを介して外部負荷へ、それぞれ供給されることにより、放電反応が完了する。放電反応は主にこれら2種類の界面から始まるが、Liイオンの移動経路がより短い分、固体電解質1と金属Liとの界面における金属Liが優先的に消費される。Li拡散による当該界面への金属Liの補充が遅い場合、図2(b)に示すように、主に当該界面側の金属Li表面に空孔が生じる。
2 (a) to 2 (c) are schematic views illustrating a charge / discharge estimation mechanism in one embodiment of the all-solid-state battery of the present disclosure. 2 (a) to 2 (c) are schematic cross-sectional views of the negative electrode side 100a of the all-solid-state battery, and specifically, a schematic cross-sectional structure in the vicinity of the interface between the solid electrolyte 1 and the negative electrode member 3A is shown. It is a figure. The solid electrolyte 1 and the negative electrode 3 in FIGS. 2A to 2C correspond to the solid electrolyte 1 or the negative electrode 3 in FIG. 1, respectively. 3A in FIGS. 2 (a) to 2 (c) specifically shows a cross section in a state where each wire constituting the stainless mesh is covered with a metal layer. Further, in these figures, the figure described as "Li" indicates the metal Li. The all-solid-state battery of the present disclosure is not necessarily limited to this embodiment.
FIG. 2A is a schematic cross-sectional view of the negative electrode side 100a of the all-solid-state battery immediately after charging. The negative electrode 3 includes a negative electrode member 3A. The negative electrode member 3A is formed by coating the surface of the stainless mesh 3a with a metal layer 3b. The metal layer 3b is made of at least one metal selected from the group consisting of Mg, Ag, Al and Au. As shown in FIG. 2A, metal Li is deposited on the surface of the negative electrode member 3A after charging.
FIG. 2B is a schematic cross-sectional view of the negative electrode side 100a of the all-solid-state battery being discharged (initial). During the discharge, the ionization reaction of the metal Li proceeds at the interface between the negative electrode member 3A and the metal Li in addition to the interface between the solid electrolyte 1 and the metal Li. The reason is that as a result of all the metals (Mg, Ag, Al and Au) used in the metal layer 3b being soluble in Li, Li ions can be diffused in the metal layer 3b. Therefore, the discharge reaction is completed by supplying Li ions to the positive electrode via the solid electrolyte 1 (and the metal layer 3b if necessary) and electrons to the external load via the negative electrode member 3A. The discharge reaction mainly starts from these two types of interfaces, but the metal Li at the interface between the solid electrolyte 1 and the metal Li is preferentially consumed because the movement path of Li ions is shorter. When the replenishment of metal Li to the interface by Li diffusion is slow, as shown in FIG. 2B, vacancies are mainly generated on the surface of the metal Li on the interface side.
図2(c)は、放電中(終盤)の全固体電池の負極側100aの断面模式図である。金属Li表面の空孔同士が繋がって、固体電解質1と金属Liとの界面に隙間が生じる結果、金属Liと固体電解質1との接触が絶たれる。しかし、負極部材3Aと金属Liとの界面は残る。
ここで、上述したように、金属層3bに使用される金属はいずれもLiと固溶可能であるため、金属層3b中をLiが拡散することができる。その結果、放電時に固体電解質1との接触が断たれた金属Liであっても、金属層3b中を拡散することにより、最終的に固体電解質1を介して正極に到達することができる。したがって、十分な量の金属Liを充放電反応に供することができると共に、Li伝導パスの断絶及びそれに伴うLiの不活性化を抑制することができる。
FIG. 2C is a schematic cross-sectional view of the negative electrode side 100a of the all-solid-state battery being discharged (final stage). As a result of the pores on the surface of the metal Li being connected to each other and a gap being formed at the interface between the solid electrolyte 1 and the metal Li, the contact between the metal Li and the solid electrolyte 1 is cut off. However, the interface between the negative electrode member 3A and the metal Li remains.
Here, as described above, since all the metals used in the metal layer 3b can be solid-solved with Li, Li can be diffused in the metal layer 3b. As a result, even the metal Li whose contact with the solid electrolyte 1 is cut off at the time of discharge can finally reach the positive electrode via the solid electrolyte 1 by diffusing in the metal layer 3b. Therefore, a sufficient amount of metallic Li can be subjected to the charge / discharge reaction, and the interruption of the Li conduction path and the accompanying inactivation of Li can be suppressed.
このように、本開示の全固体電池においては、不活性なリチウム金属の量が従来よりも少ないため、充放電に寄与するリチウムの量を常に一定以上確保することができる。そのため、充放電回数を重ねても、従来よりも負極が不可逆的に劣化しにくい結果、放電容量の低下を抑えることができる。 As described above, in the all-solid-state battery of the present disclosure, since the amount of the inert lithium metal is smaller than that in the conventional case, the amount of lithium that contributes to charging / discharging can always be secured at a certain level or more. Therefore, even if the number of charge / discharge cycles is repeated, the negative electrode is less likely to be irreversibly deteriorated than in the past, and as a result, a decrease in discharge capacity can be suppressed.
負極は、負極部材を備える。負極部材中のステンレスメッシュは、電池部材(例えば、負極集電体等)として通常使用されるものであれば特に限定されない。電池部材として通常使用されるステンレスメッシュは、金属Liと反応しない部材である。
ステンレスメッシュは市販品でもよく、例えば、SUS網(ニラコ社製、#640)等を使用することができる。
金属Liは充電時に主にステンレスメッシュの網目の中に析出し、放電時はこの網目の中から溶出する。このように、金属Liの析出及び溶出(イオン化反応)は網目の中で生じる。また、金属Liの析出量は、通常、網目の形状や構造を著しく変形させるには至らない。したがって、本開示の負極部材においては、充放電による金属Liの析出及び溶出(イオン化反応)に伴う膨張収縮が、実質的に存在しない。
The negative electrode includes a negative electrode member. The stainless mesh in the negative electrode member is not particularly limited as long as it is normally used as a battery member (for example, a negative electrode current collector). The stainless mesh normally used as a battery member is a member that does not react with metal Li.
The stainless mesh may be a commercially available product, and for example, a SUS net (manufactured by Niraco, # 640) or the like can be used.
Metallic Li precipitates mainly in the mesh of the stainless mesh during charging, and elutes from the mesh during discharging. As described above, the precipitation and elution (ionization reaction) of metallic Li occur in the network. Further, the amount of metal Li deposited does not usually significantly deform the shape and structure of the mesh. Therefore, in the negative electrode member of the present disclosure, expansion and contraction due to precipitation and elution (ionization reaction) of metallic Li due to charge and discharge are substantially not present.
ステンレスメッシュの表面には、4種類の金属(Mg、Ag、Al及びAu)の内少なくともいずれか1つが被覆されている。つまり、ステンレスメッシュを被覆する金属は、1種類のみであってもよいし、2種類以上であってもよい。ステンレスメッシュ表面の少なくとも一部に当該金属が存在していれば、放電容量の低下抑制の効果が発揮されるため(図2(a)〜(c)参照)、当該金属の被覆範囲は、ステンレスメッシュ表面の一部であってもよいし、全部であってもよい。また、金属による被覆の態様は特に限定されない。ステンレスメッシュと当該金属とは互いに接していてもよいし、ステンレスメッシュと当該金属との間に他の層が介在していてもよい。
ステンレスメッシュ表面への金属の被覆方法は、特に限定されない。被覆方法の一例としては、ステンレスメッシュに対し当該金属を蒸着する方法が挙げられる。蒸着によって、ステンレスメッシュを構成するワイヤ表面に、金属層を均一に形成することができる。
蒸着方法の例は以下の通りである。DCスパッタリング装置等の蒸着装置を用いて、ステンレスメッシュに対し、上記4種類の金属の内少なくともいずれか1つを蒸着させ、金属膜(金属層)を成膜する。ステンレスメッシュは脱脂洗浄済みであってもよい。製膜時の温度は、例えば、室温であってもよい。
以上の蒸着方法により、ステンレスメッシュ中の各ワイヤの表面に対し、目的とする平均厚さで金属層を形成することができる。
なお、目的とする金属層とステンレスメッシュとの密着性を向上させるため、予め他の金属(例えば、チタン等)がステンレスメッシュに被覆されていてもよい。
2種類以上の金属を被覆に用いる場合には、金属を順に1種類ずつ被覆させてもよいし、2種類以上の金属を同時に被覆させてもよいし、2種類以上の金属を含む合金を被覆させてもよい。
金属層の平均厚さは特に限定されない。金属Li及びLiイオンが十分拡散でき、かつ導電性を妨げないという理由から、金属層の平均厚さは、例えば0.1μmであってもよい。金属層の平均厚さは、例えば、金属層について10〜20点ほど測定点をとり、各測定点における厚さの平均から求めてもよい。蒸着装置を用いて金属膜を成膜する場合には、ステンレスメッシュ付近に設置した膜厚計により測定した膜厚を、その金属層の平均厚さとしてもよい。
The surface of the stainless mesh is coated with at least one of four types of metals (Mg, Ag, Al and Au). That is, the metal that covers the stainless mesh may be only one type or two or more types. If the metal is present on at least a part of the surface of the stainless mesh, the effect of suppressing the decrease in discharge capacity is exhibited (see FIGS. 2A to 2C). Therefore, the coating range of the metal is stainless steel. It may be a part or the whole of the mesh surface. Further, the mode of coating with metal is not particularly limited. The stainless mesh and the metal may be in contact with each other, or another layer may be interposed between the stainless mesh and the metal.
The method of coating the surface of the stainless steel mesh with metal is not particularly limited. An example of the coating method is a method of depositing the metal on a stainless steel mesh. By thin-film deposition, a metal layer can be uniformly formed on the surface of the wire constituting the stainless steel mesh.
An example of the vapor deposition method is as follows. Using a vapor deposition apparatus such as a DC sputtering apparatus, at least one of the above four types of metals is vapor-deposited on a stainless steel mesh to form a metal film (metal layer). The stainless mesh may have been degreased and washed. The temperature at the time of film formation may be, for example, room temperature.
By the above vapor deposition method, a metal layer can be formed on the surface of each wire in the stainless mesh with a desired average thickness.
In addition, in order to improve the adhesion between the target metal layer and the stainless mesh, another metal (for example, titanium or the like) may be previously coated on the stainless mesh.
When two or more kinds of metals are used for coating, the metals may be coated one by one in order, two or more kinds of metals may be coated at the same time, or an alloy containing two or more kinds of metals may be coated. You may let me.
The average thickness of the metal layer is not particularly limited. The average thickness of the metal layer may be, for example, 0.1 μm because the metal Li and Li ions can be sufficiently diffused and the conductivity is not hindered. The average thickness of the metal layer may be obtained from, for example, 10 to 20 measurement points for the metal layer and the average thickness at each measurement point. When a metal film is formed by using a vapor deposition apparatus, the film thickness measured by a film thickness meter installed near the stainless mesh may be the average thickness of the metal layer.
本開示の全固体電池は、単にめっきされた負極集電体を備える従来の電池とは、全く異なる。このような従来の電池においては、通常、負極に比較的高い作動電位の負極活物質(例えば、チタン酸リチウム(LTO)等(作動電位:1.5V vs.Li/Li+))が使用されることが多い。
これに対し、本開示の全固体電池は、金属Liのイオン化反応(溶出反応)及び析出反応を利用する電池であり、その作動電位は0V(vs.Li/Li+)である。このような比較的低い作動電位の全固体電池において、負極集電体に金属を被覆することは、通常は考えられない。特に、MgやAl等、酸化還元電位の低い(すなわち、イオン化傾向の高い)金属を負極集電体に被覆することは、従来技術の水準ではおよそ考えられない。
本開示では、従来の電池とは異なり、金属Liのイオン化反応(溶出反応)時に、負極中における金属Liの孤立化を抑える狙いがあってこそ、負極集電体に金属を被覆するという技術思想に至るものである。
The all-solid-state battery of the present disclosure is completely different from conventional batteries that simply include a plated negative electrode current collector. In such a conventional battery, a negative electrode active material having a relatively high working potential (for example, lithium titanate (LTO) or the like (working potential: 1.5 V vs. Li / Li + )) is usually used for the negative electrode. Often.
On the other hand, the all-solid-state battery of the present disclosure is a battery that utilizes the ionization reaction (elution reaction) and precipitation reaction of metal Li, and its operating potential is 0 V (vs. Li / Li + ). In such a relatively low operating potential all-solid-state battery, it is usually unthinkable to coat the negative electrode current collector with metal. In particular, it is almost unthinkable at the level of the prior art to coat the negative electrode current collector with a metal having a low redox potential (that is, having a high ionization tendency) such as Mg and Al.
In the present disclosure, unlike the conventional battery, the technical idea of coating the negative electrode current collector with metal only with the aim of suppressing the isolation of metallic Li in the negative electrode during the ionization reaction (eluting reaction) of metallic Li. It leads to.
正極は、通常、正極活物質を含む。正極活物質としては、例えば、リチウム化合物が挙げられる。リチウム化合物には、リチウム合金及びリチウム錯体が含まれる。リチウム化合物としては、例えば、LiNi1/3Co1/3Mn1/3O2等を用いることができる。 The positive electrode usually contains a positive electrode active material. Examples of the positive electrode active material include a lithium compound. Lithium compounds include lithium alloys and lithium complexes. As the lithium compound, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 or the like can be used.
正極は、必要であれば、さらに導電助剤及び固体電解質等を適宜含む。
導電助剤としては、例えば、短繊維状カーボン等の炭素材料や、金属材料等、全固体電池に通常使用されるものを用いることができる。
正極に使用される固体電解質としては、例えば、硫化物系固体電解質等を用いることができる。
The positive electrode further appropriately contains a conductive auxiliary agent, a solid electrolyte, and the like, if necessary.
As the conductive auxiliary agent, for example, a carbon material such as short fibrous carbon or a metal material or the like which is usually used for an all-solid-state battery can be used.
As the solid electrolyte used for the positive electrode, for example, a sulfide-based solid electrolyte or the like can be used.
正極の形成に使用される正極合材は、正極活物質、導電助剤及び固体電解質等を適宜混合することにより調製される。混合比は特に限定されないが、例えば、正極活物質:固体電解質:導電助剤=66:31:3(質量比)等が挙げられる。
正極合材の調製方法は特に限定されず、例えば、上記正極用の材料を混合する方法が挙げられる。
The positive electrode mixture used for forming the positive electrode is prepared by appropriately mixing a positive electrode active material, a conductive auxiliary agent, a solid electrolyte, and the like. The mixing ratio is not particularly limited, and examples thereof include a positive electrode active material: a solid electrolyte: a conductive auxiliary agent = 66: 31: 3 (mass ratio).
The method for preparing the positive electrode mixture is not particularly limited, and examples thereof include a method of mixing the materials for the positive electrode.
正極集電体の材料は、全固体電池に通常使用されるものであれば特に限定されず、例えば、鋼等が挙げられる。 The material of the positive electrode current collector is not particularly limited as long as it is usually used for an all-solid-state battery, and examples thereof include steel.
固体電解質は、正極と負極との間に存在する層である。固体電解質を介して、正極と負極との間にイオンが伝導する。
固体電解質の材料は、全固体電池に通常使用されるものであれば特に限定されず、例えば、硫化物系固体電解質等が挙げられる。
The solid electrolyte is a layer existing between the positive electrode and the negative electrode. Ions are conducted between the positive electrode and the negative electrode via the solid electrolyte.
The material of the solid electrolyte is not particularly limited as long as it is usually used for an all-solid-state battery, and examples thereof include a sulfide-based solid electrolyte.
全固体電池の製造方法の一例を以下説明する。まず、成型した固体電解質の一方の面に正極を形成する。次に、当該固体電解質の他方の面に負極部材を配置して成型し、全固体電池が完成する。 An example of a method for manufacturing an all-solid-state battery will be described below. First, a positive electrode is formed on one surface of the molded solid electrolyte. Next, the negative electrode member is arranged and molded on the other surface of the solid electrolyte, and the all-solid-state battery is completed.
1.全固体電池の製造
[実施例1]
(1)正極合材の調製
下記正極用の材料を有機溶媒中で湿式混合し、正極合材を調製した。
・正極活物質(LiNi1/3Co1/3Mn1/3O2) 66.2質量%
・硫化物系固体電解質 31.0質量%
・導電助剤(短繊維状カーボン) 2.8質量%
1. 1. Manufacture of all-solid-state battery [Example 1]
(1) Preparation of positive electrode mixture The following materials for the positive electrode were wet-mixed in an organic solvent to prepare a positive electrode mixture.
-Positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) 66.2% by mass
・ Sulfide-based solid electrolyte 31.0% by mass
-Conductive aid (short fibrous carbon) 2.8% by mass
(2)負極部材の作製
ステンレスメッシュとして、SUS網(ニラコ社製、#640)を準備した。このSUS網に対しMg層を以下の手順により蒸着させた。
複数のターゲットを備えるDCスパッタリング装置にて、脱脂洗浄済みのSUS網に対し、まずTiを蒸着させ、膜厚10nmのTi膜(Ti層)を製膜した。予めステンレスメッシュをTi膜により被覆した理由は、Mg層とSUSの密着性を向上させる為である。
次に、上記装置にて、Ti製膜後のSUS網に対し、Mgを蒸着させ、膜厚0.1μmのMg膜(Mg層)を製膜した。
なお、以上の製膜操作は全て室温にて行われた。また、Ti膜の膜厚、及びMg膜の膜厚は、いずれも、DCスパッタリング装置内の、SUS網付近に設置された水晶振動子式膜厚計にて測定した値である。
その結果、SUS網を構成する各ステンレスワイヤの表面に、平均厚さ0.1μmのMg層が被覆した負極部材が得られた。
(2) Preparation of Negative Electrode Member A SUS net (manufactured by Niraco, # 640) was prepared as a stainless steel mesh. The Mg layer was deposited on this SUS net by the following procedure.
In a DC sputtering apparatus equipped with a plurality of targets, Ti was first vapor-deposited on a SUS net that had been degreased and washed to form a Ti film (Ti layer) having a film thickness of 10 nm. The reason why the stainless mesh is coated with the Ti film in advance is to improve the adhesion between the Mg layer and the SUS.
Next, with the above apparatus, Mg was deposited on the SUS net after the Ti film formation to form an Mg film (Mg layer) having a film thickness of 0.1 μm.
All of the above film forming operations were performed at room temperature. The film thickness of the Ti film and the film thickness of the Mg film are both values measured by a crystal oscillator type film thickness meter installed near the SUS network in the DC sputtering apparatus.
As a result, a negative electrode member in which the surface of each stainless wire constituting the SUS net was coated with an Mg layer having an average thickness of 0.1 μm was obtained.
(3)積層体の成型
まず、粉末状の硫化物系固体電解質粉末を、アルミナ製円筒状ダイ(断面積:1cm2)に詰めた後、鋼製のパンチ棒を用いて荷重10kNで一軸圧縮成型することにより、固体電解質を成型した。
次に、成型後の固体電解質の一方の面上に正極合材を加えた後、パンチ棒を用いて荷重10kNで一軸圧縮成型することにより、正極と固体電解質との積層体を得た。
続いて、前記積層体において、固体電解質の他方の面上に負極部材を加えた後、パンチ棒を用いて荷重40kNで一軸圧縮成型することにより、正極、固体電解質及び負極部材が積層した、実施例1の全固体電池を得た。
(3) Molding of Laminated Body First, powdered sulfide-based solid electrolyte powder is packed in an alumina cylindrical die (cross-sectional area: 1 cm 2 ), and then uniaxially compressed with a load of 10 kN using a steel punch rod. By molding, a solid electrolyte was molded.
Next, a positive electrode mixture was added to one surface of the molded solid electrolyte, and then uniaxial compression molding was performed using a punch rod at a load of 10 kN to obtain a laminate of the positive electrode and the solid electrolyte.
Subsequently, in the laminated body, the negative electrode member was added on the other surface of the solid electrolyte, and then the positive electrode, the solid electrolyte, and the negative electrode member were laminated by uniaxial compression molding with a load of 40 kN using a punch rod. An all-solid-state battery of Example 1 was obtained.
[実施例2〜実施例4]
上記実施例1の「(2)負極部材の作製」において、Mgを、Ag(実施例2、Ag層の平均厚さ:0.1μm)、Al(実施例3、Al層の平均厚さ:0.1μm)、又はAu(実施例4、Au層の平均厚さ:0.1μm)に替えたこと以外は、実施例1と同様の工程により、実施例2〜実施例4の全固体電池を得た。
[Examples 2 to 4]
In "(2) Preparation of negative electrode member" of Example 1 above, Mg was added to Ag (Example 2, average thickness of Ag layer: 0.1 μm) and Al (Example 3, average thickness of Al layer: 0.1 μm). All-solid-state batteries of Examples 2 to 4 by the same steps as in Example 1 except that they were replaced with Au (0.1 μm) or Au (Average thickness of Au layer: 0.1 μm). Got
[比較例1]
上記実施例1において、「(2)負極部材の作製」を実施せず、かつ、「(3)全固体電池の製造」において、負極部材の替わりにSUS網(ニラコ社製、#640)を用いたこと以外は、実施例1と同様の工程により、比較例1の全固体電池を作製した。
[Comparative Example 1]
In Example 1 above, "(2) Fabrication of negative electrode member" was not carried out, and in "(3) Manufacture of all-solid-state battery", a SUS network (manufactured by Niraco, # 640) was used instead of the negative electrode member. An all-solid-state battery of Comparative Example 1 was produced by the same steps as in Example 1 except that it was used.
2.充放電試験
実施例1〜実施例4及び比較例1の全固体電池について、パンチ棒により積層方向に沿って荷重200Nを加えた状態で、パンチ棒を集電体としても使用しながら、以下の条件で充放電を9サイクル行い、放電容量を測定した。比較例1については、さらに10サイクル目の充放電を行い、放電容量を測定した。
・充放電レート: CC:1/10C → CV:1/100C
・充電電位:3.0Vから4.27Vまで
・放電電位:4.27Vから3.0Vまで
・温度:25℃
2. 2. Charge / Discharge Test For the all-solid-state batteries of Examples 1 to 4 and Comparative Example 1, the following, while using the punch rod as a current collector with a load of 200 N applied along the stacking direction by the punch rod. Under the conditions, charging and discharging were performed for 9 cycles, and the discharge capacity was measured. For Comparative Example 1, charging and discharging were further performed in the 10th cycle, and the discharge capacity was measured.
・ Charge / discharge rate: CC: 1 / 10C → CV: 1 / 100C
・ Charging potential: 3.0V to 4.27V ・ Discharging potential: 4.27V to 3.0V ・ Temperature: 25 ℃
3.考察
図3は、実施例1〜実施例4及び比較例1の全固体電池について、25℃、1/10Cで充放電サイクル試験を実施した際の放電容量維持率(%)の変化を示すグラフである。ここで、放電容量維持率とは、下記式Aにより示される値である。
式A: Rx=(Cx/C1)*100
(上記式A中、Rxは各全固体電池のxサイクル目の放電容量維持率(%)を、Cxは各全固体電池のxサイクル目の放電容量を、C1は各全固体電池の1サイクル目の放電容量を、それぞれ示す。なお、xは1〜10の自然数である。)
3. 3. Discussion FIG. 3 is a graph showing changes in the discharge capacity retention rate (%) when a charge / discharge cycle test is performed at 25 ° C. and 1/10 C for the all-solid-state batteries of Examples 1 to 4 and Comparative Example 1. Is. Here, the discharge capacity retention rate is a value represented by the following formula A.
Formula A: R x = (C x / C 1 ) * 100
(In the above formula A, R x is the discharge capacity retention rate (%) of each all-solid-state battery at the x-cycle, C x is the discharge capacity of each all-solid-state battery at the x-cycle, and C 1 is each all-solid-state battery. The discharge capacity of the first cycle of is shown respectively. X is a natural number of 1 to 10.)
まず、比較例1の全固体電池において、9サイクル目の放電容量維持率は20%を下回る。9サイクル目の放電容量維持率が20%未満となるのは、比較例1のみである。したがって、SUS網表面に金属リチウムが直接析出した負極を用いた場合、放電容量が著しく低下し、顕著なサイクル劣化を示すことが分かる。
これに対し、実施例1〜実施例4の全固体電池においては、9サイクルの充放電を経た後も、放電容量維持率が20%を超える。特に、実施例1(Mg層)の全固体電池、及び実施例3(Al層)の全固体電池は、9サイクル目の放電容量維持率が40%を超える。
以上の結果より、ステンレスメッシュ表面に金属が被覆してなる負極部材を用いた全固体電池(実施例1〜実施例4)は、ステンレスメッシュをそのまま負極とする全固体電池(比較例1)と比較して、サイクル劣化が抑えられることが実証された。
First, in the all-solid-state battery of Comparative Example 1, the discharge capacity retention rate in the 9th cycle is less than 20%. Only Comparative Example 1 has a discharge capacity retention rate of less than 20% in the 9th cycle. Therefore, it can be seen that when a negative electrode in which metallic lithium is directly deposited on the surface of the SUS net is used, the discharge capacity is remarkably reduced and a remarkable cycle deterioration is exhibited.
On the other hand, in the all-solid-state batteries of Examples 1 to 4, the discharge capacity retention rate exceeds 20% even after 9 cycles of charging and discharging. In particular, the all-solid-state battery of Example 1 (Mg layer) and the all-solid-state battery of Example 3 (Al layer) have a discharge capacity retention rate of more than 40% in the ninth cycle.
From the above results, the all-solid-state battery (Examples 1 to 4) using the negative electrode member in which the surface of the stainless mesh is coated with metal is different from the all-solid-state battery (Comparative Example 1) in which the stainless mesh is used as the negative electrode as it is. In comparison, it was demonstrated that cycle deterioration was suppressed.
図4は、実施例1と比較例1の全固体電池の2サイクル目の各充放電曲線を重ねて示したグラフである。
比較例1の充放電曲線によれば、充電容量が約130mAh/gであるのに対し、放電容量が100mAh/g未満である。すなわち、比較例1の全固体電池においては、放電容量が充電容量よりも30mAh/g程度小さい。
これに対し、実施例1の充放電曲線によれば、実施例1の全固体電池の充電容量及び放電容量は共に約150mAh/gである。実施例1の全固体電池においては、放電容量と充電容量の差が10mAh/g未満と小さい。
以上の結果より、ステンレスメッシュ表面に金属が被覆してなる負極部材を用いた全固体電池(実施例1)は、ステンレスメッシュをそのまま負極とする全固体電池(比較例1)と比較して、放電容量と充電容量の差が小さいため、負極において不可逆的に生じる劣化が小さいことが裏付けられる。
FIG. 4 is a graph showing the charge / discharge curves of the all-solid-state batteries of Example 1 and Comparative Example 1 in the second cycle superimposed.
According to the charge / discharge curve of Comparative Example 1, the charge capacity is about 130 mAh / g, while the discharge capacity is less than 100 mAh / g. That is, in the all-solid-state battery of Comparative Example 1, the discharge capacity is about 30 mAh / g smaller than the charge capacity.
On the other hand, according to the charge / discharge curve of Example 1, the charge capacity and the discharge capacity of the all-solid-state battery of Example 1 are both about 150 mAh / g. In the all-solid-state battery of Example 1, the difference between the discharge capacity and the charge capacity is as small as less than 10 mAh / g.
From the above results, the all-solid-state battery (Example 1) using the negative electrode member in which the surface of the stainless mesh is coated with metal is compared with the all-solid-state battery (Comparative Example 1) in which the stainless mesh is used as the negative electrode as it is. Since the difference between the discharge capacity and the charge capacity is small, it is supported that the irreversible deterioration in the negative electrode is small.
1 固体電解質
2 正極
3 負極
3A 負極部材
3a ステンレスメッシュ
3b 金属層
11 固体電解質
13a ステンレスメッシュ集電体
100 全固体電池
100a,200a 全固体電池の負極側
1 Solid electrolyte 2 Positive electrode 3 Negative electrode 3A Negative electrode member 3a Stainless mesh 3b Metal layer 11 Solid electrolyte 13a Stainless mesh current collector 100 All-solid-state battery 100a, 200a Negative electrode side of all-solid-state battery
Claims (1)
負極は、負極部材を備え、
負極部材は、ステンレスメッシュの表面に、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属が被覆してなり、
放電時に負極部材表面においてLiのイオン化反応が進行し、
充電時に負極部材表面においてLiの析出反応が進行することを特徴とする、全固体電池。 In an all-solid-state battery having a positive electrode, a solid electrolyte, and a negative electrode,
The negative electrode includes a negative electrode member and
The negative electrode member is formed by coating the surface of a stainless mesh with at least one metal selected from the group consisting of Mg, Ag, Al and Au.
During discharge, the ionization reaction of Li proceeds on the surface of the negative electrode member,
An all-solid-state battery characterized in that a Li precipitation reaction proceeds on the surface of a negative electrode member during charging.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017215042A JP6828656B2 (en) | 2017-11-07 | 2017-11-07 | All solid state battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017215042A JP6828656B2 (en) | 2017-11-07 | 2017-11-07 | All solid state battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2019087420A JP2019087420A (en) | 2019-06-06 |
| JP6828656B2 true JP6828656B2 (en) | 2021-02-10 |
Family
ID=66763247
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017215042A Active JP6828656B2 (en) | 2017-11-07 | 2017-11-07 | All solid state battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6828656B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7447396B2 (en) * | 2018-03-02 | 2024-03-12 | 株式会社Gsユアサ | alkali metal ion battery |
| JP7632352B2 (en) * | 2022-03-10 | 2025-02-19 | トヨタ自動車株式会社 | Solid-state batteries and solid-state battery systems |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06101335B2 (en) * | 1984-11-26 | 1994-12-12 | 株式会社日立製作所 | All-solid-state lithium battery |
| CN204441379U (en) * | 2013-05-07 | 2015-07-01 | 株式会社Lg化学 | Electrode for secondary battery, and secondary battery and cable-type secondary battery comprising same |
| JP6326272B2 (en) * | 2014-04-22 | 2018-05-16 | シャープ株式会社 | Battery case and metal-air battery |
-
2017
- 2017-11-07 JP JP2017215042A patent/JP6828656B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2019087420A (en) | 2019-06-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Meng | Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition | |
| Jung et al. | Cathodic deposition of polypyrrole enabling the one‐step assembly of metal–polymer hybrid electrodes | |
| JP5801957B2 (en) | Active material for rechargeable batteries | |
| JP4497899B2 (en) | Lithium secondary battery | |
| JP2009038036A (en) | Adjustment method for nonaqueous electrolyte secondary battery | |
| JP7096197B2 (en) | Coated positive electrode active material and all-solid-state battery | |
| KR20140127801A (en) | Methods and energy storage devices utilizing electrolytes having surface-smoothing additives | |
| KR20140120882A (en) | Methods and electrolytes for electrodeposition of smooth films | |
| US9350011B2 (en) | Secondary battery negative electrode material, secondary battery negative electrode, method for manufacturing secondary battery negative electrode material, and method for manufacturing secondary battery negative electrode | |
| JP6640434B1 (en) | Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery | |
| KR101953837B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
| JP6828656B2 (en) | All solid state battery | |
| US20220200002A1 (en) | All-solid-state battery comprising lithium storage layer having multilayer structure and method of manufacturing same | |
| Huang et al. | Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin | |
| JP2014500579A (en) | Si negative electrode material | |
| JP2016189341A (en) | Nonaqueous electrolyte secondary battery | |
| JP4953583B2 (en) | Lithium secondary battery | |
| JP2008243828A (en) | Negative electrode and manufacturing method for secondary battery | |
| WO2021016549A1 (en) | Multilayered anode and associated methods and systems | |
| JP2008047306A (en) | Nonaqueous electrolyte secondary battery | |
| Feinauer et al. | Unraveling the complex temperature-dependent performance and degradation of Li-ion batteries with silicon-graphite composite anodes | |
| Meng et al. | Atomic layer deposition of nanophase materials for electrical energy storage | |
| EP2312677A2 (en) | Composite Positive Active Material of Lithium Battery and Method for Manufacturing the Same | |
| JP2008066279A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
| WO2009084329A1 (en) | Positive electrode for nonaqueous electrolyte secondary battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200218 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201118 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201222 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210104 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 6828656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |