[go: up one dir, main page]

JP6839394B2 - Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level gauge for liquid hydrogen - Google Patents

Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level gauge for liquid hydrogen Download PDF

Info

Publication number
JP6839394B2
JP6839394B2 JP2018511980A JP2018511980A JP6839394B2 JP 6839394 B2 JP6839394 B2 JP 6839394B2 JP 2018511980 A JP2018511980 A JP 2018511980A JP 2018511980 A JP2018511980 A JP 2018511980A JP 6839394 B2 JP6839394 B2 JP 6839394B2
Authority
JP
Japan
Prior art keywords
superconducting wire
liquid
superconducting
liquid level
liquid hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018511980A
Other languages
Japanese (ja)
Other versions
JPWO2017179488A1 (en
Inventor
茂之 石田
茂之 石田
佳則 土屋
佳則 土屋
馬渡 康徳
康徳 馬渡
中納 暁洋
暁洋 中納
洋 永崎
洋 永崎
吉田 良行
良行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2017179488A1 publication Critical patent/JPWO2017179488A1/en
Application granted granted Critical
Publication of JP6839394B2 publication Critical patent/JP6839394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、高精度に液体水素の液面高さを計測する液体水素液面計に適する超伝導線材、該超伝導線材を備える液体水素用液面センサ素子及び液体水素用液面計に関する。 The present invention relates to a superconducting wire suitable for a liquid hydrogen level gauge that measures the liquid level of liquid hydrogen with high accuracy, a liquid hydrogen level sensor element provided with the superconducting wire, and a liquid hydrogen level gauge.

近年、クリーンエネルギー導入の観点から水素燃料が注目されている。水素の貯蔵方法としては、貯蔵密度が大きいことから、液体水素とすることは有効な利用形態の一つである。液体水素を貯蔵・運搬する際、液量の把握及び安全管理の面から、容器内の液面を計測できる液面センサ素子及び液面計が必要である。 In recent years, hydrogen fuel has been attracting attention from the viewpoint of introducing clean energy. As a hydrogen storage method, liquid hydrogen is one of the effective usage forms because of its high storage density. When storing and transporting liquid hydrogen, a liquid level sensor element and a liquid level gauge capable of measuring the liquid level in the container are required from the viewpoint of grasping the amount of liquid and safety management.

超伝導体であるMgB2は39Kの臨界温度を有するため、大気圧下で約20Kの沸点を有する液体水素中で超伝導状態を発現できる。そこで、これまでに、MgB2系超伝導体を液体水素用液面センサ素子として用い、貯蔵容器内における液体水素の量を外部から計測できる液体水素用液面計が提案されている(特許文献1、2参照)。特許文献1では、液体水素の液面を検出するための液面センサであって、液体水素の沸点で超伝導状態となる超伝導線材と、超伝導線材を被覆するシースとを備える液面センサが示され、超伝導線材としてMgB2が挙げられている。その他にLSCO(La2-xSrxCuO4)が挙げられている。特許文献1では、シースは、超伝導線材を被覆し、超伝導線材よりも熱伝導率が低い材料で形成される。例えば、シースがセラミックス及び/又はステンレス鋼で形成される。 Since MgB 2, which is a superconductor, has a critical temperature of 39K, it can exhibit a superconducting state in liquid hydrogen having a boiling point of about 20K under atmospheric pressure. Therefore, so far, a liquid hydrogen level gauge that can measure the amount of liquid hydrogen in a storage container from the outside by using an MgB 2 superconductor as a liquid hydrogen level sensor element has been proposed (Patent Documents). See 1 and 2). In Patent Document 1, a liquid level sensor for detecting the liquid level of liquid hydrogen, which includes a superconducting wire that is in a superconducting state at the boiling point of liquid hydrogen and a sheath that covers the superconducting wire. Is shown, and MgB 2 is mentioned as a superconducting wire. In addition, LSCO (La 2-x Sr x CuO 4 ) is mentioned. In Patent Document 1, the sheath is coated with a superconducting wire and is formed of a material having a lower thermal conductivity than the superconducting wire. For example, the sheath is made of ceramics and / or stainless steel.

本願に関連した先行技術文献調査によれば、鉄系超伝導体(超伝導材料および超伝導線材)に関して、次のような文献が公知である(特許文献3、4、非特許文献1、2参照)。いずれの文献も、高磁場発生マグネット応用を課題とし、優れた臨界電流特性を有することを特徴としている。 According to the prior art literature search related to the present application, the following documents are known regarding iron-based superconductors (superconducting materials and superconducting wires) (Patent Documents 3 and 4, Non-Patent Documents 1 and 2). reference). Both documents are characterized by having an excellent critical current characteristic for the application of a high magnetic field generating magnet.

特許文献3では、組成が(Ba,K)Fe2As2または(Sr,K)Fe2As2で代表される、いわゆる122系超伝導体に関し、優れた臨界電流特性を実現する製造方法が開示されている。特許文献3では、組成が(Ba,K)Fe2As2または(Sr,K)Fe2As2は、最高で38K程度のTcを示すThCr2Si2型結晶構造をもつ122系化合物であると説明されている。In Patent Document 3, a manufacturing method that realizes excellent critical current characteristics is described for a so-called 122-series superconductor whose composition is represented by (Ba, K) Fe 2 As 2 or (Sr, K) Fe 2 As 2. It is disclosed. In Patent Document 3, (Ba, K) Fe 2 As 2 or (Sr, K) Fe 2 As 2 is a 122-based compound having a ThCr 2 Si type 2 crystal structure showing a maximum Tc of about 38K. It is explained.

特許文献4は、臨界電流密度の磁場角度依存性が小さい、鉄系超伝導材料、及びこれを用いた超伝導層や、当該超伝導層を備えた低温、高磁場で利用可能な線材の提供を目的とするものである。特許文献4には、ThCr2Si2の結晶構造を持つ鉄系超伝導体と、BaXO3(XはZr、Sn、Hf、Tiのうち1種又は2種以上を表す)で示される粒径30nm以下のナノ粒子とを有し、前記ナノ粒子が1×1021-3以上の体積密度で分散している鉄系超伝導材料が開示されている。Patent Document 4 provides an iron-based superconducting material having a small dependence of the critical current density on the magnetic field angle, a superconducting layer using the superconducting material, and a wire rod provided with the superconducting layer that can be used at a low temperature and a high magnetic field. Is the purpose. Patent Document 4 describes an iron-based superconductor having a ThCr 2 Si 2 crystal structure and a particle size represented by BaXO 3 (X represents one or more of Zr, Sn, Hf, and Ti). An iron-based superconducting material having nanoparticles of 30 nm or less and in which the nanoparticles are dispersed at a volume density of 1 × 10 21 m -3 or more is disclosed.

非特許文献1には、BaFe1.8Co0.2As2が22Kにおいて超伝導状態に遷移することの発見に関して報告されている。非特許文献2には、Ba(Fe1-xCox)2As2の超伝導臨界温度が、含有されるCo濃度xの値により0〜25Kの範囲で変化すること等に関して報告されている。Non-Patent Document 1 reports on the discovery that BaFe 1.8 Co 0.2 As 2 transitions to a superconducting state at 22K. Non-Patent Document 2 reports that the superconducting critical temperature of Ba (Fe 1-x Co x ) 2 As 2 changes in the range of 0 to 25 K depending on the value of the contained Co concentration x. ..

特開2009−175034号公報Japanese Unexamined Patent Publication No. 2009-175034 特開2014−98659号公報Japanese Unexamined Patent Publication No. 2014-98656 特開2014−240521号公報Japanese Unexamined Patent Publication No. 2014-240521 特開2014−227329号公報Japanese Unexamined Patent Publication No. 2014-227329

“Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals”, Phys. Rev. Lett. 101, 117004, 2008.“Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals”, Phys. Rev. Lett. 101, 117004, 2008. “Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1-xCox)2Asx single crystals” Phys. Rev. B 78, 214515, 2008.“Effects of Co Substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba (Fe1-xCox) 2Asx single crystals” Phys. Rev. B 78, 214515, 2008.

近年、液体水素の液面高さを高精度で計測することが望まれている。高精度な液体水素用液面計を提供するためには、液面センサ素子となる超伝導線材が、次の3条件を兼ね備えることが望ましい。
(条件1) 超伝導状態に遷移する(電気抵抗がゼロになる)臨界温度が液体水素の温度20Kに近いこと。
(条件2) 電気抵抗が下がり始める温度と臨界温度の差(以下、遷移幅という。)が小さいこと。
(条件3) 常伝導状態における電気抵抗の温度依存性が小さいこと。
In recent years, it has been desired to measure the liquid level of liquid hydrogen with high accuracy. In order to provide a high-precision liquid hydrogen level gauge, it is desirable that the superconducting wire that serves as the liquid level sensor element has the following three conditions.
(Condition 1) The critical temperature for transitioning to the superconducting state (electrical resistance becomes zero) is close to the temperature of liquid hydrogen of 20K.
(Condition 2) The difference between the temperature at which the electrical resistance begins to decrease and the critical temperature (hereinafter referred to as the transition width) is small.
(Condition 3) The temperature dependence of electrical resistance in the normal conduction state is small.

しかしながら、従来のMgB2系水素液面計では、次の(1)〜(4)の問題がある。
(1) 超伝導臨界温度が液体水素の沸点20Kに対して高過ぎて(例えば25Kを超える)、液体水素に浸かっていない部分(非浸漬部)まで超伝導化してしまうため、液面を実際よりも高く見積もってしまう。測定精度を向上させるため、ヒーター等により非浸漬部を加熱するなどして完全に常伝導化する必要がある。
(2) MgB2にCやAlなどを添加することにより、臨界温度を20〜25Kに調整することも可能であるが、遷移幅が大きくなってしまい、測定精度が低下する。
(3) 添加したCやAlの濃度が同じ場合でも、超伝導線材の臨界温度や遷移幅が圧延加工過程(例えば加工後の線材の直径)に依存し、再現性が低下する。
(4) 常伝導状態の電気抵抗の温度依存性が比較的大きく、気体中の温度分布により非浸漬部の電気抵抗が変化するため、測定精度が低下する。
However, the conventional MgB 2 hydrogen level gauge has the following problems (1) to (4).
(1) The superconducting critical temperature is too high for the boiling point of liquid hydrogen of 20K (for example, exceeding 25K), and the liquid surface is actually superconducted to the part not immersed in liquid hydrogen (non-immersed part). Will overestimate. In order to improve the measurement accuracy, it is necessary to make the non-immersed part completely normal by heating the non-immersed part with a heater or the like.
(2) It is possible to adjust the critical temperature to 20 to 25K by adding C, Al, or the like to MgB 2, but the transition width becomes large and the measurement accuracy decreases.
(3) Even when the added concentrations of C and Al are the same, the critical temperature and transition width of the superconducting wire depend on the rolling process (for example, the diameter of the wire after processing), and the reproducibility is lowered.
(4) The temperature dependence of the electrical resistance in the normal conduction state is relatively large, and the electrical resistance of the non-immersed portion changes depending on the temperature distribution in the gas, so that the measurement accuracy is lowered.

本発明は、これらの問題を解決しようとするものであり、本発明は、液体水素の液面高さを高精度で計測することができる液面センサ素子に適する超伝導線材を、提供することを目的とする。また、本発明は、前記超伝導線材を備える液体水素用液面センサ素子、及び該液面センサ素子を備える液体水素用液面計を提供することを目的とする。 The present invention is intended to solve these problems, and the present invention provides a superconducting wire material suitable for a liquid level sensor element capable of measuring the liquid level height of liquid hydrogen with high accuracy. With the goal. Another object of the present invention is to provide a liquid hydrogen level sensor element including the superconducting wire and a liquid hydrogen level gauge including the liquid level sensor element.

本発明は、前記目的を達成するために、以下の特徴を有するものである。 The present invention has the following features in order to achieve the above object.

(1) 本発明は、超伝導部を備える超伝導線材であって、前記超伝導部は、組成が化学式Ba(Fe1-xCox)2As2で表され、xが0.06以上で0.10以下の範囲にあり、電気抵抗がゼロとなる臨界温度が20K以上で25K以下であり、電気抵抗が臨界温度に向けて下がり始める時の温度と臨界温度との差である遷移幅が2K以下であることを特徴とする。
(2) 前記(1)に記載の超伝導線材において、温度300Kでの電気抵抗率をρ(300K)、温度30Kでの電気抵抗率をρ(30K)とするとき、1−(ρ(30K)/ρ(300K))で表される常伝導状態での電気抵抗率の温度依存性の値が0.5以下であることを特徴とする。
(3) 前記(1)又は(2)に記載の超伝導線材において、前記超伝導線材は、直径が2mm以下であることを特徴とする。
(4) 前記(1)乃至(3)のいずれか1に記載の超伝導線材は、液体水素用液面センサ素子用であることを特徴とする。
(5) 本発明は、液体水素用液面センサ素子であって、前記(1)乃至(3)のいずれか1に記載の超伝導線材を備える。
(6) 本発明は、液体水素の液面を計測する液体水素用液面計であって、前記(1)乃至(3)のいずれか1に記載された超伝導線材を備える液体水素用液面センサ素子と、電流源と、電圧計とで構成され、測定された電圧に基づいて液面の高さを求めることを特徴とする。
(1) The present invention is a superconducting wire having a superconducting portion, and the composition of the superconducting portion is represented by the chemical formula Ba (Fe 1-x Co x ) 2 As 2 , and x is 0.06 or more. The transition width is the difference between the temperature at which the critical temperature at which the electric resistance becomes zero is 20 K or more and 25 K or less, and the electric resistance starts to decrease toward the critical temperature. Is 2K or less.
(2) In the superconducting wire rod according to (1) above, when the electrical resistivity at a temperature of 300K is ρ (300K) and the electrical resistivity at a temperature of 30K is ρ (30K), 1- (ρ (30K) ) / Ρ (300K)), the value of the temperature dependence of the electrical resistivity in the normal conduction state is 0.5 or less.
(3) The superconducting wire according to (1) or (2), wherein the superconducting wire has a diameter of 2 mm or less.
(4) The superconducting wire according to any one of (1) to (3) above is for a liquid level sensor element for liquid hydrogen.
(5) The present invention is a liquid level sensor element for liquid hydrogen, and includes the superconducting wire according to any one of (1) to (3) above.
(6) The present invention is a liquid hydrogen voltmeter for measuring the liquid level of liquid hydrogen, which comprises the superconducting wire according to any one of (1) to (3) above. It is composed of a surface sensor element, a current source, and a voltmeter, and is characterized in that the height of the liquid level is obtained based on the measured voltage.

本発明の超伝導線材によれば、液体水素の液面高さを高精度で測定することができる液面センサ素子を実現し、かつ、加熱装置を必要としないので、より小型で簡単な構造の液面計を提供できる。 According to the superconducting wire of the present invention, a liquid level sensor element capable of measuring the liquid level of liquid hydrogen with high accuracy is realized, and a heating device is not required, so that the structure is smaller and simpler. Liquid level gauge can be provided.

本発明によれば、超伝導線材を構成する超伝導体Ba(Fe1-xCox)2As2は、Coの含有量xにより超伝導臨界温度が変化するので、Coの含有量を制御することにより、臨界温度を20〜25Kの任意の温度に調整することができる。また、本発明の超伝導線材を構成する超伝導体は、臨界温度の最大値が25K程度であるため、20〜25Kの範囲では、遷移幅が2K以下と非常に小さい。According to the present invention, the superconductor Ba (Fe 1-x Co x ) 2 As 2 constituting the superconducting wire material controls the Co content because the superconducting critical temperature changes depending on the Co content x. By doing so, the critical temperature can be adjusted to any temperature of 20 to 25K. Further, since the maximum value of the critical temperature of the superconductor constituting the superconducting wire of the present invention is about 25K, the transition width is very small, 2K or less, in the range of 20 to 25K.

また、本発明の超伝導線材は、MgB2に比べて常伝導状態の電気抵抗の温度依存性が小さい。よって、本発明の超伝導線材は、液体水素液面センサ素子用超伝導線材に求められる3つの条件を同時に満たすので、高精度かつ簡便な設計の液体水素液面計が得られる。Further, the superconducting wire rod of the present invention has a smaller temperature dependence of the electrical resistance in the normal conduction state than that of MgB 2. Therefore, since the superconducting wire of the present invention simultaneously satisfies the three conditions required for the superconducting wire for a liquid hydrogen level sensor element, a liquid hydrogen level gauge with high accuracy and a simple design can be obtained.

また、本発明の超伝導線材によれば、ヒーター加熱を行う必要がなく、また少ない通電電流で計測可能であるため、測定時の水素の蒸発を押さえられる。 Further, according to the superconducting wire of the present invention, it is not necessary to heat the heater and the measurement can be performed with a small energizing current, so that the evaporation of hydrogen at the time of measurement can be suppressed.

また、本発明の超伝導線材において、熱処理等を施して、常伝導状態における電気抵抗の温度依存性をさらに小さくすることもできる。例えば、1−(ρ(30K)/ρ(300K))の値で0.5以下を達成することができた。 Further, the superconducting wire of the present invention can be subjected to heat treatment or the like to further reduce the temperature dependence of the electrical resistance in the normal conduction state. For example, a value of 1- (ρ (30K) / ρ (300K)) could be achieved to be 0.5 or less.

実際に、液体水素を用いた性能検証を実施したところ、超伝導体Ba(Fe1-xCox)2As2の特性を反映して、ヒーターによる非浸漬部の過熱を行わなくても、電圧と液面高さに再現性の良い直線比例関係が得られ、特にx=0.09の組成では1:1対応が得られた。Indeed, was subjected to a performance verification using liquid hydrogen, to reflect the characteristics of the superconductor Ba (Fe 1-x Co x ) 2 As 2, even without overheating the non-immersed portion by the heater, A linear proportional relationship with good reproducibility was obtained between the voltage and the liquid level, and a 1: 1 correspondence was obtained particularly with the composition of x = 0.09.

本発明の超伝導線材の超伝導部における鉄系超伝導体の結晶構造を示す図である。It is a figure which shows the crystal structure of the iron-based superconductor in the superconducting part of the superconducting wire of this invention. 本発明の実施の形態における超伝導線材の断面図である。It is sectional drawing of the superconducting wire rod in embodiment of this invention. 本発明の実施の形態の液面計の概念図である。It is a conceptual diagram of the liquid level gauge of embodiment of this invention. 本発明の実施の形態における超伝導線材の電気抵抗の温度依存性(超伝導転移近傍)を示す図である。It is a figure which shows the temperature dependence (near superconducting transition) of the electric resistance of the superconducting wire in the embodiment of this invention. 本発明の実施の形態における超伝導線材の臨界温度のCo含有量依存性を示す図である。It is a figure which shows the Co content dependence of the critical temperature of the superconducting wire in the embodiment of this invention. 本発明の実施の形態における超伝導線材の電気抵抗の温度依存性(超伝導転移近傍から300(K)まで)を示す図である。It is a figure which shows the temperature dependence (from the vicinity of a superconducting transition to 300 (K)) of the electric resistance of the superconducting wire in the embodiment of this invention. 本発明の実施の形態における、目視による読み取り液面位置と規格化した電気抵抗測定値の関係を示す図である。It is a figure which shows the relationship between the reading liquid level position by visual observation, and the standardized electric resistance measurement value in embodiment of this invention.

本発明の実施の形態について以下説明する。 Embodiments of the present invention will be described below.

本発明者は、超伝導線材を用いる液面計に適する超伝導体として鉄系超伝導体に着目して研究開発を行い、液面計用に優れた特性を有する超伝導線材を得るに到ったものである。 The present inventor has conducted research and development focusing on iron-based superconductors as superconductors suitable for liquid level gauges using superconducting wire rods, and has come to obtain superconducting wire rods having excellent characteristics for liquid level gauges. It was.

122系化合物の一例として知られるBa(Fe1-xCox)2As2は、超伝導臨界温度が20K近傍にある。Ba(Fe1-xCox)2As2は、Coの含有量xにより臨界温度が変化するが、その最大値が25K程度であるため、20〜25Kの範囲では遷移幅が0.7Kや0.8Kのように、0.5〜2Kであり非常に小さくなる。また、この物質群はMgB2に比べて常伝導状態の電気抵抗の温度依存性が小さい。従って、鉄系超伝導体Ba(Fe1-xCox)2As2を超伝導部の超伝導材料に採用することにより、液体水素液面センサ素子用超伝導線材に求められる3つの要件を、同時に満たす。Ba known as an example of a 122-based compound (Fe 1-x Co x) 2 As 2 is superconducting critical temperature is 20K vicinity. The critical temperature of Ba (Fe 1-x Co x ) 2 As 2 changes depending on the Co content x, but the maximum value is about 25K, so the transition width is 0.7K or more in the range of 20 to 25K. Like 0.8K, it is 0.5 to 2K, which is very small. In addition, this group of substances has a smaller temperature dependence of electrical resistance in the normal conduction state than MgB 2. Therefore, by employing the iron-based superconductors Ba (Fe 1-x Co x ) 2 As 2 superconducting material of the superconducting portion, the three requirements for a superconducting wire for liquid hydrogen level sensor element , Meet at the same time.

図1に、本発明の前提とする超伝導線材のThCr2Si型結晶構造を示す。図1に、Ba、Fe、Asの配置を示したが、Ba(Fe1-xCox)2As2では、Feの一部がCoで置換される。 FIG. 1 shows the ThCr 2 Si type 2 crystal structure of the superconducting wire rod which is the premise of the present invention. Although the arrangement of Ba, Fe, and As is shown in FIG. 1, in Ba (Fe 1-x Co x ) 2 As 2 , a part of Fe is replaced by Co.

図2に、液面センサ素子を構成する超伝導線材の構造を示す。図2の(a)(b)(c)に示すように、超伝導線材は、少なくとも、超伝導体からなる長尺の棒状体のコア1と、該コア1を被覆する金属製(Ag、Ag−Sn合金等)のシース管2とからなる。図2(a)は、超伝導線材を、超伝導体のコア1と、シース管2とで構成した例である。図2(b)は、金属製のシース管の外側に補強用被覆層3(FeやSUS(ステンレス鋼)等)を配置した例である。図2(c)は、超導電性線材を複数本束ねて撚り線とした例である。また、樹脂等で絶縁一体成形してもよい。 FIG. 2 shows the structure of the superconducting wire constituting the liquid level sensor element. As shown in FIGS. 2A, 2B, and 2C, the superconducting wire has at least a long rod-shaped core 1 made of a superconductor and a metal (Ag, which covers the core 1). It is composed of a sheath tube 2 of Ag—Sn alloy or the like). FIG. 2A is an example in which the superconducting wire is composed of the core 1 of the superconductor and the sheath tube 2. FIG. 2B is an example in which the reinforcing coating layer 3 (Fe, SUS (stainless steel), etc.) is arranged on the outside of the metal sheath tube. FIG. 2C shows an example in which a plurality of superconductive wires are bundled to form a stranded wire. Further, the insulation may be integrally molded with a resin or the like.

本実施形態の超伝導線材の構造は、図2に示すような、金属シース中に鉄系超伝導材料が超伝導コアとして充填された構造であってもよいし、図示しないが、金属テープ基材上に鉄系超伝導層が形成された鉄系超伝導テープ線材でもよい。金属テープ基材は、通常の超伝導線材の基材として知られているものを用いることができ、金属テープ基材上に、中間層を介して鉄系超伝導層をパルスレーザー堆積法(PLD法)等により形成する。例えば、Ni系合金等の金属テープ基材上に、界面反応を防ぐ層(ベッド層、Y23等)や薄膜の結晶配向性を改善する層(配向層、MgO等)を中間層として設けた後、超伝導層を形成し、該超伝導層上に、過電流保護や化学反応抑制のための安定化層を適宜設けるとよい。The structure of the superconducting wire of the present embodiment may be a structure in which an iron-based superconducting material is filled as a superconducting core in a metal sheath as shown in FIG. 2, or a metal tape group (not shown). An iron-based superconducting tape wire rod having an iron-based superconducting layer formed on the material may also be used. As the metal tape base material, what is known as a base material for ordinary superconducting wires can be used, and an iron-based superconducting layer is deposited on the metal tape base material via an intermediate layer by a pulse laser deposition method (PLD). Formed by law) etc. For example, on a metal tape substrate such as Ni-based alloy, prevent interfacial reaction layer (bed layer, Y 2 O 3, etc.) or a layer for improving the crystal orientation of the film (orientation layer, MgO, etc.) as an intermediate layer After the provision, a superconducting layer may be formed, and a stabilizing layer for overcurrent protection and suppression of chemical reaction may be appropriately provided on the superconducting layer.

本実施形態における超伝導線材は、直径が2mm以下であることが好ましい。直径を細くするほど必要な通電電流を抑えることができ、また熱容量も小さくなるので応答が良くなる。後述する実施形態では、0.5mm−2mmで作製したが、0.5mm以下であってもよい。また、線材の強度の観点からは、0.1mm以上が好ましい。 The superconducting wire in the present embodiment preferably has a diameter of 2 mm or less. The smaller the diameter, the more the required energizing current can be suppressed, and the smaller the heat capacity, the better the response. In the embodiment described later, the size is 0.5 mm-2 mm, but the size may be 0.5 mm or less. Further, from the viewpoint of the strength of the wire rod, 0.1 mm or more is preferable.

超伝導線材を用いる液面センサ素子及び液面計について、図3を参照して説明する。図3は、液面計の概略図である。本実施の形態の液面計は、液体水素用の液面センサ素子10と、前記液面センサ素子に電流を流す電源と、前記液面センサ素子の略両端(計測対象の液面高さを測定可能な長さで決定される)における電圧を測定する電圧計を備える。液面センサ素子10は、本発明の超伝導線材から構成される。液面センサ素子を、液体水素が貯蔵された容器内に設置する。液面センサ素子10のうち、液体水素12中にある部分(超伝導状態)と、液体水素外にある部分(理想的には常伝導状態)とで、抵抗値が異なることを原理的に利用したものである。液体水素12に一部浸漬した状態の液面センサ素子10に、電流を流した際の電圧を電圧計で測定することにより、液面11レベルを検出する。超伝導線材が超伝導状態になる領域と、常伝導状態にある領域との長さが、液面レベルに応じて異なるので、線材の電圧を検出して電気抵抗を検出することにより、液面レベルが測定できる。 A liquid level sensor element and a liquid level gauge using a superconducting wire will be described with reference to FIG. FIG. 3 is a schematic view of the liquid level gauge. The liquid level meter of the present embodiment has a liquid level sensor element 10 for liquid hydrogen, a power source for passing a current through the liquid level sensor element, and substantially both ends of the liquid level sensor element (the liquid level height to be measured). A voltmeter is provided to measure the voltage at (determined by measurable length). The liquid level sensor element 10 is composed of the superconducting wire rod of the present invention. The liquid level sensor element is installed in a container in which liquid hydrogen is stored. In principle, the resistance value differs between the part of the liquid level sensor element 10 in the liquid hydrogen 12 (superconducting state) and the part outside the liquid hydrogen (ideally in the normal conducting state). It was done. The liquid level 11 level is detected by measuring the voltage when a current is passed through the liquid level sensor element 10 in a state of being partially immersed in the liquid hydrogen 12 with a voltmeter. Since the length of the region where the superconducting wire is in the superconducting state and the region where it is in the normal conduction state differs depending on the liquid level, the liquid level is detected by detecting the voltage of the wire and the electrical resistance. The level can be measured.

(第1の実施の形態)
本実施の形態では、超伝導線材としてBa(Fe1-xCox)2As2を用いる場合を、図4、5、6、7を参照して説明する。
(First Embodiment)
In this embodiment, the case of using Ba (Fe 1-x Co x ) 2 As 2 as superconducting wire will be described with reference to FIG. 4, 5, 6, 7.

[Ba(Fe1-xCox)2As2多結晶体の作製]
Co含有量xが0.05−0.11の範囲であるBa(Fe1-xCox)2As2多結晶体を作製した。原料試薬(Ba、Fe、Co、As)をBa:Fe:Co:As=1:(2−2x):2x:2の比で混合し、900℃、48〜72時間で焼成してBa(Fe1-xCox)2As2多結晶体を作製する。または、前駆体BaAs、Fe2As、Co2Asをあらかじめ作製した後、BaAs:Fe2As:Co2As=1:(1−x):xの比で混合し、900℃で48〜72時間で焼成してもよい。BaAs、Fe2As、Co2Asは、それぞれBa:As=1:1、Fe:As=2:1、Co:As=2:1の比で混合し、それぞれ650℃、800℃、850℃で焼成することで得られる。いずれの場合も、焼成の際には、石英管に真空封入するか、不活性ガス(窒素、アルゴン等)中で金属管内に封入する。
[Ba (Fe 1-x Co x) Preparation of 2 As 2 polycrystals]
A Ba (Fe 1-x Co x ) 2 As 2 polycrystal having a Co content x in the range of 0.05 to 0.11 was prepared. The raw material reagents (Ba, Fe, Co, As) are mixed at a ratio of Ba: Fe: Co: As = 1: (2-2x): 2x: 2 and calcined at 900 ° C. for 48 to 72 hours to obtain Ba (Ba (2-2x): 2x: 2). producing Fe 1-x Co x) 2 As 2 polycrystal. Alternatively, the precursors BaAs, Fe 2 As, and Co 2 As are prepared in advance , mixed at a ratio of BaAs: Fe 2 As: Co 2 As = 1: (1-x): x, and 48 to 72 at 900 ° C. It may be fired in time. Ba As, Fe 2 As, and Co 2 As are mixed at a ratio of Ba: As = 1: 1, Fe: As = 2: 1, and Co: As = 2: 1, respectively, and are mixed at 650 ° C, 800 ° C, and 850 ° C, respectively. Obtained by firing in. In either case, at the time of firing, the quartz tube is vacuum-sealed or the metal tube is sealed in an inert gas (nitrogen, argon, etc.).

[超伝導線材の作製]
超伝導線材は種々の方法により製造することができ、特定の製造方法に限定されない。以下にパウダーインチューブ法による製造方法を例示する。
Ba(Fe1-xCox)2As2多結晶体粉末を銀等の金属製パイプ(例、銀シース)に詰めて、圧延やスエージング等により伸線加工し、熱処理を行う。銀シースを使用する場合は、熱処理の際にシースとBa(Fe1-xCox)2As2との反応がないので、より好ましい。また、必要に応じて、銀シースの外側にさらに補強用被覆層を設けることもできる。また、線材を複数本束ねて撚り線としたり、樹脂等で絶縁一体成形してもよい。
加工前の銀シースの寸法は、例えば外径6mm、内径4mmである。これを段階的に伸線加工することにより、断面の直径が0.5mm−2mm、長さ1000mm以上の線材を得る。その後、これに800℃〜900℃の熱処理を10時間〜20時間施すことにより、所望の超伝導線材が得られる。
[Manufacturing of superconducting wire]
The superconducting wire can be manufactured by various methods and is not limited to a specific manufacturing method. The production method by the powder in-tube method is illustrated below.
Ba (Fe 1-x Co x ) 2 As 2 polycrystal powder metal pipe such as silver (eg, silver-sheathed) packed in, wire drawing by rolling or swaging or the like, a heat treatment is performed. When using silver sheath, since sheath and Ba (Fe 1-x Co x ) has no reaction with 2 As 2 during the heat treatment, more preferable. Further, if necessary, a reinforcing coating layer may be further provided on the outside of the silver sheath. Further, a plurality of wire rods may be bundled to form a stranded wire, or insulation may be integrally molded with a resin or the like.
The dimensions of the silver sheath before processing are, for example, an outer diameter of 6 mm and an inner diameter of 4 mm. By wire drawing this step by step, a wire rod having a cross-sectional diameter of 0.5 mm-2 mm and a length of 1000 mm or more can be obtained. Then, the desired superconducting wire is obtained by subjecting it to a heat treatment at 800 ° C. to 900 ° C. for 10 hours to 20 hours.

[超伝導線材の超伝導特性の評価]
Co含有量xが0.05−0.11の範囲で異なるBa(Fe1-xCox)2As2からなる超伝導線材を、評価のために4cm程度に切断・短尺化し、四端子法を用いた電気抵抗測定を行った。図4は、超伝導線材の超伝導転移近傍における電気抵抗の測定結果を示す図である。図に、Co含有量xの代表的値として0.07、0.08、0.09、0.10のそれぞれの場合において、およそ19から26.5の範囲の温度(K)に対応して、抵抗がゼロあるいは0.28−0.40mΩ程度の値をとることを示した。Co含有量を0.06以上0.10以下に調整することより、臨界温度Tcを20K−25Kの任意の温度に調整することが可能であることがわかる。
図5は、本実施の形態の超伝導線材における臨界温度のCo含有量依存性を示す図である。図中の点線は、液体水素温度(略20K)を示す線である。図からもわかるように、xが0.06以上0.10以下で、臨界温度が液体水素温度を超える。また、x=0.06では21K程度である。ただし、x=0.07以下では、低濃度側に向かって、Tcが大きく低下するため、x=0.07以上の組成でTcを調整する場合よりも、精密な組成制御が必要になる。低濃度側では、Tcの調整は難しくなるが、後述する、常伝導状態における1−(ρ(30K)/ρ(300K))が、より小さくなるという利点がある。
0.06以上0.10以下の範囲以外の場合(x<0.06、0.10<x)では、Tcが20Kを下回り、液体水素中においても超伝導状態に遷移しないため、水素液面計として用いることはできない。遷移幅は、0.5K−2Kの範囲内であり、従来のMgB線材に比べ非常に鋭い超伝導転移を示した。
また、長尺線材の複数の異なる箇所について測定したところ、臨界温度や遷移幅に有意な差は見られず、均質性の高い線材を得ることができた。
[Evaluation of superconducting properties of superconducting wires]
A superconducting wire consisting of Ba (Fe 1-x Co x ) 2 As 2 having a Co content x different in the range of 0.05 to 0.11 is cut and shortened to about 4 cm for evaluation, and the four-terminal method is used. The electrical resistance was measured using. FIG. 4 is a diagram showing the measurement results of the electrical resistance in the vicinity of the superconducting transition of the superconducting wire. In the figure, in each case of 0.07, 0.08, 0.09, and 0.10 as typical values of Co content x, corresponding to the temperature (K) in the range of about 19 to 26.5. , It was shown that the resistance takes a value of about zero or 0.28-0.40 mΩ. By adjusting the Co content to 0.06 or more and 0.10 or less, it can be seen that the critical temperature Tc can be adjusted to an arbitrary temperature of 20K-25K.
FIG. 5 is a diagram showing the Co content dependence of the critical temperature in the superconducting wire rod of the present embodiment. The dotted line in the figure is a line indicating the liquid hydrogen temperature (approximately 20K). As can be seen from the figure, x is 0.06 or more and 0.10 or less, and the critical temperature exceeds the liquid hydrogen temperature. Further, when x = 0.06, it is about 21K. However, when x = 0.07 or less, Tc decreases significantly toward the low concentration side, so that more precise composition control is required than when adjusting Tc with a composition of x = 0.07 or more. On the low concentration side, it is difficult to adjust Tc, but there is an advantage that 1- (ρ (30K) / ρ (300K)) in the normal conduction state, which will be described later, becomes smaller.
In cases other than the range of 0.06 or more and 0.10 or less (x <0.06, 0.10 <x), Tc falls below 20K and does not transition to the superconducting state even in liquid hydrogen, so the hydrogen liquid level It cannot be used as a total. Transition width is in the range of 0.5 K-2K, it showed a very sharp superconducting transition than the conventional MgB 2 wire material.
Moreover, when measurements were made at a plurality of different points of the long wire rod, no significant difference was observed in the critical temperature and the transition width, and a highly homogeneous wire rod could be obtained.

[超伝導線材の常伝導特性の評価]
例えば、銀シースを用いる場合は次のように考えられる。銀シースとBa(Fe1-xCox)2As超伝導体コアからなる超伝導線材では、常伝導状態のBa(Fe1-xCox)2As2の電気抵抗率は、銀と比較して約100倍大きいため、常伝導状態で超伝導線材の電気抵抗を測定すれば、銀の特性を反映すると考えられる。銀の電気抵抗は低温で非常に小さくなる。このように、銀シースを使用した超伝導線材は、常伝導状態と超伝導状態の電気抵抗の変化が小さくなり、液面計としては精度が出ないことが予想される。
本発明の実施の形態では、超伝導線材を伸線加工した後、適宜熱処理を施している。熱処理温度を850℃以上とすることにより、常伝導状態の抵抗の温度依存性をより小さくすることができる。
図6に、Co含有量x=0.09の場合の、約10(K)から300(K)の範囲における抵抗値を示す。常伝導抵抗の温度依存の程度を「1−(ρ(30K)/ρ(300K))」と定義するとき、その値が0.5以下になる。
[Evaluation of normal conduction characteristics of superconducting wires]
For example, when a silver sheath is used, it can be considered as follows. In a superconducting wire consisting of a silver sheath and a Ba (Fe 1-x Co x ) 2 As 2 superconductor core, the electrical resistivity of Ba (Fe 1-x Co x ) 2 As 2 in the normal conduction state is silver. Since it is about 100 times larger than that, it is considered that the characteristics of silver are reflected if the electrical resistance of the superconducting wire is measured in the normal conduction state. The electrical resistance of silver becomes very small at low temperatures. As described above, the superconducting wire using the silver sheath is expected to have a small change in electrical resistance between the normal conduction state and the superconducting state, and the accuracy as a liquid level gauge is not obtained.
In the embodiment of the present invention, the superconducting wire is drawn and then heat-treated as appropriate. By setting the heat treatment temperature to 850 ° C. or higher, the temperature dependence of the resistance in the normal conduction state can be further reduced.
FIG. 6 shows the resistance value in the range of about 10 (K) to 300 (K) when the Co content x = 0.09. When the degree of temperature dependence of the normal conduction resistance is defined as "1- (ρ (30K) / ρ (300K))", the value is 0.5 or less.

[長尺超伝導線材を用いた液体水素用の液面計の作製]
200mm−500mm程度の長尺の超伝導線材からなる液面センサ素子に、電流リード線および測定線を半田付け等して、電流電源及び電圧計と接続して、液体水素用液面計を作製した。ヒーター等は設置していない。
[Manufacturing of liquid level gauge for liquid hydrogen using long superconducting wire]
A liquid hydrogen level gauge is manufactured by soldering a current lead wire and a measurement wire to a liquid level sensor element made of a long superconducting wire of about 200 mm to 500 mm and connecting it to a current power source and a voltmeter. did. No heaters are installed.

[液体水素用の液面計の性能検証]
作製した液面計を、液体水素中に入れ、液面センサ素子の電気抵抗(出力電圧)と、スケールを用いた実際の液面高さとを比較した。図7に、比較結果の、目視による読み取り液面(mm)と規格化した電気抵抗測定値との関係を示す。図中、x=0.09の組成の場合を黒丸印で示し、x=0.08の組成の場合を白丸印で示し、理想的な特性線を点線で示す。x=0.09でTcが21.6Kの線材では、実際の液面の位置と電気抵抗を液面位置に換算した値が良く一致した。また、x=0.08のTcが23.5Kでは、40%程度(例えば実際の液面位置が100mmの場合、液面計は140mmを指示する)過大評価することがわかった。x=0.08の場合も電気抵抗が液面位置に対して直線的に変化しているので、簡単な較正により使用できる。このことから、本実施形態の超伝導線材の場合は、従来必要としたヒーターを使用せずに、高精度で液面が検知できることがわかる。
[Performance verification of liquid level gauge for liquid hydrogen]
The prepared liquid level gauge was placed in liquid hydrogen, and the electric resistance (output voltage) of the liquid level sensor element was compared with the actual liquid level using a scale. FIG. 7 shows the relationship between the visually read liquid level (mm) and the normalized electrical resistance measurement value of the comparison result. In the figure, the case of the composition of x = 0.09 is indicated by a black circle, the case of the composition of x = 0.08 is indicated by a white circle, and the ideal characteristic line is indicated by a dotted line. In the wire rod with x = 0.09 and Tc of 21.6K, the actual liquid level position and the value obtained by converting the electrical resistance into the liquid level position were in good agreement. Further, it was found that when the Tc of x = 0.08 is 23.5 K, the evaluation is overestimated by about 40% (for example, when the actual liquid level position is 100 mm, the liquid level gauge indicates 140 mm). Even when x = 0.08, the electrical resistance changes linearly with respect to the liquid level position, so that it can be used by simple calibration. From this, it can be seen that in the case of the superconducting wire of the present embodiment, the liquid level can be detected with high accuracy without using the heater conventionally required.

超伝導線材のCo含有量xが0.07〜0.10の場合の、臨界温度、遷移幅、常伝導抵抗の温度依存の程度「1−(ρ(30K)/ρ(300K))」について調べた結果を表1にまとめて示す。 Regarding the degree of temperature dependence of the critical temperature, transition width, and normal conduction resistance when the Co content x of the superconducting wire is 0.07 to 0.10 "1- (ρ (30K) / ρ (300K))" The results of the investigation are summarized in Table 1.

Figure 0006839394
Figure 0006839394

なお、上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。 It should be noted that the examples shown in the above-described embodiments and the like are described for the purpose of making the invention easier to understand, and are not limited to this embodiment.

本発明の超伝導線材は、液体水素の液面高さを測定する超伝導式の液面センサに適し、高精度の測定性能を有するとともに、簡単な構造の液面計を実現できる。よって、例えば、液体水素の製造・貯蔵・輸送時に使用される容器(定置式液体水素タンク、液体水素輸送用ローリー車・船舶等)に広く適用でき、産業上有用である。 The superconducting wire rod of the present invention is suitable for a superconducting liquid level sensor that measures the liquid level of liquid hydrogen, has high-precision measurement performance, and can realize a liquid level gauge having a simple structure. Therefore, for example, it can be widely applied to containers (stationary liquid hydrogen tanks, lorry vehicles for liquid hydrogen transportation, ships, etc.) used during the production, storage, and transportation of liquid hydrogen, and is industrially useful.

1 超伝導コア
2 シース管
3 補強用被覆層
10 液体水素用液面センサ素子
11 液面
12 液体水素

1 Superconducting core 2 Sheath tube 3 Reinforcing coating layer 10 Liquid hydrogen liquid level sensor element 11 Liquid level 12 Liquid hydrogen

Claims (5)

超伝導部を備える超伝導線材であって、
前記超伝導部は、組成が化学式Ba(Fe1-xCox)2As2で表され、xが0.06以上で0.10以下の範囲にあり、電気抵抗がゼロとなる臨界温度が20K以上で25K以下であり、電気抵抗が臨界温度に向けて下がり始める時の温度と臨界温度との差である遷移幅が2K以下であり、
液体水素用液面センサ素子用であることを特徴とする、超伝導線材。
A superconducting wire with a superconducting part
The composition of the superconducting portion is represented by the chemical formula Ba (Fe 1-x Co x ) 2 As 2 , the x is in the range of 0.06 or more and 0.10 or less, and the critical temperature at which the electric resistance becomes zero is high. and at 25K or less 20K or more, transition width electrical resistance is the difference between the temperature and the critical temperature at which begins to fall toward the critical temperature of Ri der less 2K,
A superconducting wire rod characterized by being used for a liquid level sensor element for liquid hydrogen.
前記超伝導線材は、温度300Kでの電気抵抗率をρ(300K)、温度30Kでの電気抵抗率をρ(30K)とするとき、1−(ρ(30K)/ρ(300K))で表される常伝導状態での電気抵抗率の温度依存性の値が0.5以下であることを特徴とする請求項1記載の超伝導線材。 The superconducting wire is represented by 1- (ρ (30K) / ρ (300K)) when the electrical resistivity at a temperature of 300K is ρ (300K) and the electrical resistivity at a temperature of 30K is ρ (30K). The superconducting wire according to claim 1, wherein the value of the temperature dependence of the electrical resistivity in the normal conduction state is 0.5 or less. 前記超伝導線材は、直径が2mm以下であることを特徴とする請求項1又は2記載の超伝導線材。 The superconducting wire according to claim 1 or 2, wherein the superconducting wire has a diameter of 2 mm or less. 請求項1乃至3のいずれか1項記載の超伝導線材を備える液体水素用液面センサ素子。 A liquid level sensor element for liquid hydrogen comprising the superconducting wire according to any one of claims 1 to 3. 液体水素の液面を計測する液体水素用液面計であって、請求項1乃至3のいずれか1項に記載された超伝導線材を備える液体水素用液面センサ素子と、電流源と、電圧計とで構成され、測定された電圧に基づいて液面の高さを求めることを特徴とする液体水素用液面計。 A liquid hydrogen level gauge for measuring the liquid level of liquid hydrogen, the liquid hydrogen level sensor element for liquid hydrogen provided with the superconducting wire according to any one of claims 1 to 3, a current source, and the like. A liquid hydrogen level gauge composed of a voltmeter and characterized in that the height of the liquid level is obtained based on the measured voltage.
JP2018511980A 2016-04-14 2017-04-06 Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level gauge for liquid hydrogen Active JP6839394B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016081394 2016-04-14
JP2016081394 2016-04-14
PCT/JP2017/014396 WO2017179488A1 (en) 2016-04-14 2017-04-06 Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level meter for liquid hydrogen

Publications (2)

Publication Number Publication Date
JPWO2017179488A1 JPWO2017179488A1 (en) 2019-03-28
JP6839394B2 true JP6839394B2 (en) 2021-03-10

Family

ID=60042440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511980A Active JP6839394B2 (en) 2016-04-14 2017-04-06 Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level gauge for liquid hydrogen

Country Status (2)

Country Link
JP (1) JP6839394B2 (en)
WO (1) WO2017179488A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707805B (en) * 2018-05-03 2021-03-23 北京科技大学 A preparation method of iron-based superconducting material based on directional solidification technology
CN112504386A (en) * 2020-11-17 2021-03-16 北京航天试验技术研究所 Liquid hydrogen superconducting level gauge and calibration method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969908B2 (en) * 2006-05-15 2012-07-04 独立行政法人物質・材料研究機構 Liquid hydrogen level sensor element

Also Published As

Publication number Publication date
JPWO2017179488A1 (en) 2019-03-28
WO2017179488A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
Kofstad et al. On the defect structure of ZrO2 and HfO2
Heremans et al. Thermal and electronic properties of rare-earth Ba 2 Cu 3 O x superconductors
Ni et al. Anisotropic thermodynamic and transport properties of single-crystalline Ba 1− x K x Fe 2 As 2 (x= 0 and 0.45)
Goodrich et al. Method for determining the irreversible strain limit ofNb3Sn wires
JP6839394B2 (en) Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level gauge for liquid hydrogen
Serquis et al. Large field generation with a hot isostatically pressed powder-in-tubeMgB2 coil at 25 K
Soulen Jr et al. Explanation of the dissipation observed in several high-temperature superconductors using a modified Ambegaokar-Halperin model
Lu et al. Critical current scaling laws for advancedNb3Sn superconducting strands for fusion applications with six free parameters
Li et al. Transport Critical Current Densities and $ n $-Values of Multifilamentary $\hbox {MgB} _ {2} $ Wires at Various Temperatures and Magnetic Fields
Schoop et al. Pressure-restored superconductivity in Cu-substituted FeSe
Han et al. Resistive transition and fluctuation conductivity in Bi 2 Sr 2 CaCu 2 O 8+ δ single crystals
Gajda et al. Indication of the measuring method for accurately determining the critical current and n value in superconducting wires and tapes used in superconducting coils
Shi et al. Anisotropic connectivity and its influence on critical currentdensities, irreversibility fields, and flux creep in in situ processedMgB2 strands
Senatore et al. Enhanced Connectivity and Percolation in Binary and Doped In Situ ${\rm MgB} _ {2} $ Wires After Cold High Pressure Densification
Ricci et al. Structural phase transition and superlattice misfit strain of R FeAsO (R= La, Pr, Nd, Sm)
Costa et al. Synthesis of YBa2Cu3O7− x polycrystalline superconductors from Ba peroxide: First physico-chemical characterization
Imaduddin et al. The doping effects of SiC and carbon nanotubes on the manufacture of superconducting monofilament MgB2 Wires
US10128024B2 (en) MgB2-based superconducting wire for a liquid hydrogen level sensor, a liquid hydrogen level sensor, and a liquid hydrogen level gauge
Zhukov et al. Microwave surface resistance of MgB 2
Silva et al. Excess conductivity of overdoped Bi 2 Sr 2 CaCu 2 O 8+ x crystals well above T c
JP7681363B2 (en) Superconductor, manufacturing method of superconductor, liquid hydrogen level sensor, and liquid hydrogen level gauge
JP7736363B1 (en) Superconductor, method for manufacturing superconductor, liquid hydrogen level sensor, and liquid hydrogen level gauge
WO2025074897A1 (en) Superconductor, method for producing superconductor, liquid level sensor for liquid hydrogen, and liquid level gauge for liquid hydrogen
Nizhankovskiy et al. BKT transition observed in magnetic and electric properties of YBa 2 Cu 3 O 7− δ single crystals
Nagao et al. Periodic oscillations of Josephson-vortex flow resistance in oxygen-deficient Y Ba 2 Cu 3 O x

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210127

R150 Certificate of patent or registration of utility model

Ref document number: 6839394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250