[go: up one dir, main page]

JP7064692B2 - A method for determining the state of a power storage device, a management device, and a power storage device. - Google Patents

A method for determining the state of a power storage device, a management device, and a power storage device. Download PDF

Info

Publication number
JP7064692B2
JP7064692B2 JP2017185064A JP2017185064A JP7064692B2 JP 7064692 B2 JP7064692 B2 JP 7064692B2 JP 2017185064 A JP2017185064 A JP 2017185064A JP 2017185064 A JP2017185064 A JP 2017185064A JP 7064692 B2 JP7064692 B2 JP 7064692B2
Authority
JP
Japan
Prior art keywords
power storage
temperature
storage element
storage device
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185064A
Other languages
Japanese (ja)
Other versions
JP2019061847A (en
Inventor
敦史 福島
芳彦 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2017185064A priority Critical patent/JP7064692B2/en
Publication of JP2019061847A publication Critical patent/JP2019061847A/en
Application granted granted Critical
Publication of JP7064692B2 publication Critical patent/JP7064692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本明細書に開示された技術は、蓄電装置の状態を判定する技術に関する。 The technique disclosed herein relates to a technique for determining the state of a power storage device.

自動車等の車両には、車載電装品の電源や、車両の駆動源として使用される蓄電装置が搭載されている。蓄電装置は、一般に複数の蓄電素子を備えており、これらの蓄電素子の劣化状態等は、蓄電素子の内部抵抗を測定することで推定することができる。このため、蓄電装置には、電流・電圧を測定することで内部抵抗を算定する管理装置が設けられていることがある。 Vehicles such as automobiles are equipped with a power source for in-vehicle electrical components and a power storage device used as a drive source for the vehicle. The power storage device generally includes a plurality of power storage elements, and the deterioration state of these power storage elements can be estimated by measuring the internal resistance of the power storage elements. For this reason, the power storage device may be provided with a management device that calculates the internal resistance by measuring the current and voltage.

蓄電素子の内部抵抗の測定値は蓄電素子の使用状況によって影響を受ける。例えば、大きな電流が流れているときには蓄電素子の温度が上昇し、蓄電素子の温度上昇に応じて内部抵抗の測定値も影響を受ける。通電が終了した直後では、蓄電素子内部の分極現象に起因して蓄電素子の端子電圧が正しい値からずれることが知られており、端子電圧のずれも内部抵抗の測定値の誤差要因となる。この分極現象は、大きな電流が流れなければ、時間の経過とともに消失して安定状態に至る。 The measured value of the internal resistance of the power storage element is affected by the usage status of the power storage element. For example, when a large current is flowing, the temperature of the power storage element rises, and the measured value of the internal resistance is affected by the temperature rise of the power storage element. Immediately after the energization is completed, it is known that the terminal voltage of the power storage element deviates from the correct value due to the polarization phenomenon inside the power storage element, and the deviation of the terminal voltage also causes an error in the measured value of the internal resistance. This polarization phenomenon disappears with the passage of time and reaches a stable state unless a large current flows.

従来、蓄電装置が無電流状態になったことを検出すると、蓄電装置が無電流状態になったことを検出した時点からタイマによって経過時間をカウントし、所定の時間が経過したことをもって、蓄電素子が安定状態に至ったとみなして内部抵抗を測定し、内部抵抗に基づき蓄電素子の状態を推定するという技術が開発されている(例えば特許文献1)。 Conventionally, when it is detected that the power storage device is in a non-current state, the elapsed time is counted by a timer from the time when the power storage device is detected to be in a non-current state, and when a predetermined time has elapsed, the power storage element A technique has been developed in which the internal resistance is measured on the assumption that the current has reached a stable state, and the state of the power storage element is estimated based on the internal resistance (for example, Patent Document 1).

特開2006-149070号公報Japanese Unexamined Patent Publication No. 2006-149070

上記の技術によると、蓄電素子が安定状態に至ったか否かを、蓄電装置が無電流状態になったことを検出した時点以前の蓄電素子の使用状況とは無関係に経過時間のカウントに基づいて判断している。短時間しか蓄電素子に通電されなかった場合には、短時間で蓄電素子が安定状態に戻るにもかかわらず、予め定められた時間が経過するまで待たなければならない。 According to the above technique, whether or not the power storage element has reached a stable state is determined based on the elapsed time count regardless of the usage status of the power storage element before the time when the power storage device is detected to be in a non-current state. Deciding. When the power storage element is energized only for a short time, it is necessary to wait until a predetermined time elapses even though the power storage element returns to a stable state in a short time.

本明細書に開示された技術は、タイマによる時間カウントに依拠しないで、蓄電素子が安定状態にあるか否かを判断可能にすることを目的とする。 The technique disclosed herein aims to make it possible to determine whether or not a power storage element is in a stable state without relying on time counting by a timer.

蓄電装置が2つの部位の温度をそれぞれ測定する第1及び第2の測温部を有し、管理装置が第1及び第2の測温部から取得した各温度の温度差に基づいて蓄電素子の状態を判定する。 The power storage device has first and second temperature measuring units that measure the temperatures of the two parts, respectively, and the power storage element is based on the temperature difference of each temperature acquired from the first and second temperature measuring units by the management device. Judge the state of.

本構成では、タイマによる時間カウントに依拠しないで、蓄電素子の状態が安定したことを判定することができる。 In this configuration, it can be determined that the state of the power storage element is stable without relying on the time count by the timer.

実施形態1における車両の側面図Side view of the vehicle in the first embodiment 蓄電装置の斜視図Perspective view of power storage device 蓄電装置の分解斜視図An exploded perspective view of the power storage device 蓄電装置の電気的構成を示すブロック図Block diagram showing the electrical configuration of the power storage device 蓄電素子の温度の安定状態を判定する処理の流れを示すフローチャートA flowchart showing the flow of processing for determining the stable state of the temperature of the power storage element. 実施形態2に係る蓄電装置の電気的構成を示すブロック図A block diagram showing an electrical configuration of the power storage device according to the second embodiment. 実施形態3に係る蓄電装置の電気的構成を示すブロック図A block diagram showing an electrical configuration of the power storage device according to the third embodiment. 実施形態4に係る蓄電装置の電気的構成を示すブロック図A block diagram showing an electrical configuration of the power storage device according to the fourth embodiment. 実施形態5に係る蓄電素子を示す一部切欠側面図Partial notch side view showing the power storage element according to the fifth embodiment 蓄電装置のうち、異なる2つの電池の温度の経時変化を示すグラフA graph showing the time course of the temperature of two different batteries in the power storage device.

<実施形態の概要>
本明細書で開示する蓄電装置は、蓄電装置の2つの部位の温度をそれぞれ測定する第1及び第2の測温部と、これらの第1及び第2の測温部から取得した各温度の温度差に基づいて蓄電素子の状態を判定する管理装置とを備える。
<Outline of Embodiment>
The power storage device disclosed in the present specification is a first and second temperature measuring unit that measures the temperature of two parts of the power storage device, respectively, and each temperature acquired from these first and second temperature measuring units. It is provided with a management device that determines the state of the power storage element based on the temperature difference.

蓄電装置の蓄電素子に電流が流れると、蓄電素子の内部において発熱が起こって内部温度が上昇する。電流が遮断されれば発熱は停止し、熱拡散と外部への放熱により、蓄電装置の全体は徐々に温度低下してゆく。この場合、蓄電装置の異なる部位では熱的な条件が様々に異なるから、温度が時間経過によりどのように変化するかは一様ではなく、場所によって温度差が大きいことがある。通電終了直後は場所による温度差が大きくても、時間の経過によってその温度差は縮小しつつ、最終的に全体が熱平衡に達する。 When a current flows through the power storage element of the power storage device, heat is generated inside the power storage element and the internal temperature rises. When the current is cut off, the heat generation stops, and the temperature of the entire power storage device gradually decreases due to heat diffusion and heat dissipation to the outside. In this case, since the thermal conditions are variously different in different parts of the power storage device, how the temperature changes with the passage of time is not uniform, and the temperature difference may be large depending on the place. Immediately after the end of energization, even if the temperature difference between places is large, the temperature difference decreases with the passage of time, and finally the whole reaches thermal equilibrium.

図10は、蓄電装置に所定時間通電した後に通電を停止し、蓄電装置を放置した場合における、蓄電装置の異なる部位にある2つの蓄電素子の温度の経時変化の例を示す。符号Pで示す曲線は、蓄電装置のうち比較的に放熱しにくい部位にある蓄電素子の温度変化を示す。符号Qで示す曲線は、比較的に放熱しやすい部位にある蓄電素子の温度変化を示す。 FIG. 10 shows an example of changes in temperature of two power storage elements at different parts of the power storage device when the power storage device is energized for a predetermined time, then the power supply is stopped, and the power storage device is left unattended. The curve indicated by the reference numeral P indicates a temperature change of the power storage element in a portion of the power storage device where heat is relatively difficult to dissipate. The curve indicated by the reference numeral Q indicates the temperature change of the power storage element in the portion where heat is relatively easily dissipated.

蓄電装置へ通電すると、放熱しにくい部位の蓄電素子の温度は、放熱しやすい部位にある蓄電素子の温度に比べて、速く上昇する。すなわち、放熱しにくい部位と、放熱しやすい部位との間には温度差が生じる。その後、通電による発熱量と、放熱量とが釣り合うことにより、各部位の温度は、温度差を残した状態で平衡に向かう。蓄電装置への通電を停止(符号Rで示す時刻)すると、熱拡散と外部への放熱により、各部位の温度は徐々に低下しながら、温度差が小さくなっていき、最終的に全体の温度が等しくなる熱平衡に向かう。 When the power storage device is energized, the temperature of the power storage element in the portion where heat is difficult to dissipate rises faster than the temperature of the power storage element in the portion where heat is easily dissipated. That is, a temperature difference occurs between a portion where heat is difficult to dissipate and a portion where heat is easily dissipated. After that, the amount of heat generated by energization and the amount of heat dissipated are balanced, so that the temperature of each part goes to equilibrium with a temperature difference left. When the energization of the power storage device is stopped (time indicated by the symbol R), the temperature of each part gradually decreases due to heat diffusion and heat dissipation to the outside, the temperature difference becomes smaller, and finally the overall temperature. Towards thermal equilibrium where are equal.

蓄電装置の2つの部位において第1及び第2の測温部により温度を測定し、第1及び第2の測温部の温度差が所定の範囲に到達したことに基づいて蓄電装置の蓄電素子の状態を判定することができる。 The temperature is measured by the first and second temperature measuring units at the two parts of the power storage device, and the power storage element of the power storage device is based on the fact that the temperature difference between the first and second temperature measuring units reaches a predetermined range. The state of can be determined.

長時間使用されていない蓄電装置が充放電を開始しても、第1及び第2の測温部の温度差が所定の範囲内に留まっているうちは、蓄電装置の蓄電素子が安定状態にあると判定することができる。短時間だけ蓄電素子に電流が流れて、蓄電装置内部の温度分布や蓄電素子内部の状態に大きな変化が生じていないときには、各測温部における温度差が大きくならないから、早期に安定状態であることを判定できる。 Even if the power storage device that has not been used for a long time starts charging / discharging, the power storage element of the power storage device remains stable as long as the temperature difference between the first and second temperature measuring units remains within a predetermined range. It can be determined that there is. When a current flows through the power storage element for a short time and there is no significant change in the temperature distribution inside the power storage device or the state inside the power storage element, the temperature difference in each temperature measuring unit does not increase, so the state is stable at an early stage. It can be determined.

第1及び第2の測温部の少なくとも一方を蓄電素子の温度を測定するように設ければ良く、他方は蓄電装置のうちの蓄電素子とは離れた部位の温度を測定してもよい。この構成によれば、蓄電素子の温度が、ここから離れた部位の温度、すなわち蓄電素子の環境温度に近くなると、両測温部の温度差が小さくなるから、両測温部の温度差に基づき蓄電素子の状態を判定することができる。 At least one of the first and second temperature measuring units may be provided so as to measure the temperature of the power storage element, and the other may measure the temperature of a portion of the power storage device separated from the power storage element. According to this configuration, when the temperature of the power storage element becomes close to the temperature of the part away from this, that is, the environmental temperature of the power storage element, the temperature difference between the two temperature measuring parts becomes small, so that the temperature difference between the two temperature measuring parts becomes Based on this, the state of the power storage element can be determined.

本構成によれば、蓄電装置の2つの部位の温度差に基づいて、蓄電素子の状態を判定するので、蓄電装置が無電流になってからの時間を継続的にカウントするためのタイマを不要にすることができる。車両の駐車中には蓄電装置の管理装置が低消費電力状態に移行しなくてならない場合でも、継続的に動作させる必要があるタイマを使用しないため、消費電力を抑えることができる。 According to this configuration, since the state of the power storage element is determined based on the temperature difference between the two parts of the power storage device, a timer for continuously counting the time after the power storage device becomes non-current is unnecessary. Can be. Even when the management device of the power storage device has to shift to the low power consumption state while the vehicle is parked, the power consumption can be suppressed because the timer that needs to be continuously operated is not used.

蓄電装置が外気温の影響を受けやすい箇所に設置されていたり、車両のエンジンが蓄電装置の近くにある等、不規則なあるいは蓄電装置に対して不均一な熱的影響を受ける箇所に蓄電装置が設けられる場合には、従来のようにタイマで監視するだけでは誤判定する可能性がある。例えば、外気温の影響やエンジンの熱的影響によって蓄電装置が配置された場所の温度条件が不規則に変化する場合には、タイマのカウントによって蓄電素子が安定状態に達したと判定されたとしても、蓄電素子の温度が未だ高く安定状態に達しているとはいえないことがある。また、外気温やエンジンの熱的影響によって蓄電装置のうちの一部分が他に比べてより高温になった場合には、タイマのカウントによって蓄電素子が安定状態に達したとみなされても、実際には蓄電素子の全体が熱的に安定したとは言えない。 The power storage device is installed in a place that is easily affected by the outside temperature, or the engine of the vehicle is near the power storage device. If is provided, there is a possibility of erroneous judgment just by monitoring with a timer as in the conventional case. For example, if the temperature condition of the place where the power storage device is placed changes irregularly due to the influence of the outside air temperature or the thermal influence of the engine, it is assumed that the power storage element has reached the stable state by the count of the timer. However, it may not be possible to say that the temperature of the power storage element is still high and has reached a stable state. In addition, when a part of the power storage device becomes hotter than the others due to the outside air temperature or the thermal influence of the engine, even if it is considered that the power storage element has reached a stable state by the timer count, it is actually It cannot be said that the entire power storage element is thermally stable.

本構成によれば、蓄電装置の2つの部位の温度差に基づいて蓄電素子の状態を判定するので、外部の不規則な熱的影響による誤判定が生じにくい。 According to this configuration, since the state of the power storage element is determined based on the temperature difference between the two parts of the power storage device, erroneous determination due to an irregular thermal influence from the outside is unlikely to occur.

安定状態であるとの判定に応じて蓄電素子の内部抵抗を推定し、さらに蓄電素子の温度補正をする場合には、ばらつきが少ない温度に基づいた温度補正を行うことができるから、温度補正の精度を向上させることができる。以下に、詳細に説明する。蓄電素子の内部抵抗は温度依存性があるので、蓄電素子の内部抵抗を推定する場合には温度補正を行うことが一般に行われている。複数の蓄電素子の温度が安定せず、各蓄電素子の温度にばらつきがある場合には、どの温度で補正すればよいのかが分からないため、蓄電素子の内部抵抗を推定する際の精度が低下する虞がある。本構成によれば、蓄電素子の温度が安定したか否かを判定することができるので、蓄電素子の内部抵抗の温度補正の精度を向上させることが可能となり、蓄電素子の内部抵抗を精度よく推定できる。 When the internal resistance of the power storage element is estimated according to the determination that it is in a stable state and the temperature of the power storage element is further corrected, the temperature correction can be performed based on the temperature with little variation. The accuracy can be improved. This will be described in detail below. Since the internal resistance of the power storage element is temperature-dependent, it is common practice to perform temperature correction when estimating the internal resistance of the power storage element. If the temperatures of multiple power storage elements are not stable and the temperature of each power storage element varies, the accuracy of estimating the internal resistance of the power storage elements will decrease because it is not known at which temperature the correction should be made. There is a risk of According to this configuration, it is possible to determine whether or not the temperature of the power storage element is stable, so that it is possible to improve the accuracy of temperature correction of the internal resistance of the power storage element, and the internal resistance of the power storage element can be accurately adjusted. Can be estimated.

上記の蓄電装置では、前記蓄電素子を複数個集積させて組電池を構成した場合、前記第1及び第2の各測温部が前記組電池のうちの異なる蓄電素子の温度を測定することができる。 In the above power storage device, when a plurality of the power storage elements are integrated to form an assembled battery, each of the first and second temperature measuring units may measure the temperature of a different power storage element among the assembled batteries. can.

本構成によれば、組電池全体の中での各蓄電素子の温度の偏りに基づいて蓄電素子の状態を判定できるから、特に組電池が同種・同一容量の蓄電素子を集積させて構成されている場合に、蓄電素子の状態をより正確に判定することができる。この場合、第1及び第2の測温部は、組電池の中央部に位置する蓄電素子と、組電池の端部に位置する蓄電素子とに設けることが好ましい。 According to this configuration, the state of the power storage element can be determined based on the bias of the temperature of each power storage element in the entire assembled battery. Therefore, the assembled battery is particularly configured by integrating the power storage elements of the same type and the same capacity. If so, the state of the power storage element can be determined more accurately. In this case, it is preferable that the first and second temperature measuring units are provided on the power storage element located at the center of the assembled battery and the power storage element located at the end of the assembled battery.

第1及び第2の各測温部は、同一の蓄電素子のうちの異なる部位に設けてもよい。同一の蓄電素子であっても、内部温度の偏りや、温度が時間経過によりどのように変化するかは蓄電素子の安定度と密接な関係があるから、同一の蓄電素子の異なる部位の温度差に基づいてその蓄電素子の状態を判定することができる。 The first and second temperature measuring units may be provided at different parts of the same power storage element. Even for the same power storage element, the deviation of the internal temperature and how the temperature changes over time are closely related to the stability of the power storage element, so the temperature difference between different parts of the same power storage element. The state of the power storage element can be determined based on the above.

蓄電装置が、クランキングにより始動される内燃機関を備えた車両に搭載される場合、前記管理装置は、内燃機関のクランキングを実行する信号を受けたことを条件に蓄電素子の状態を判定することが好ましい。 When the power storage device is mounted on a vehicle equipped with an internal combustion engine started by cranking, the management device determines the state of the power storage element on condition that a signal for executing cranking of the internal combustion engine is received. Is preferable.

上記構成によれば、クランキング直前に蓄電素子の状態を判定することになるから、このクランク直前の時点で蓄電素子が安定状態にあると判定されたときには、引き続くクランキング時に流れる電流を利用して内部抵抗を推定することができる。このため、大電流で内部抵抗を推定することになるから、蓄電素子の内部抵抗を推定する際の精度を、向上させることができる。 According to the above configuration, the state of the power storage element is determined immediately before cranking. Therefore, when it is determined that the power storage element is in a stable state immediately before the crank, the current flowing during the subsequent cranking is used. The internal resistance can be estimated. Therefore, since the internal resistance is estimated with a large current, the accuracy when estimating the internal resistance of the power storage element can be improved.

<実施形態1>
実施形態1について、図1~図5を参照して説明する。複数の同一部材については、一の部材にのみ符号を付し、他の部材については符号を省略することがある。
1.蓄電装置10の説明
車両1は、図1に示すように、蓄電装置10を備えている。蓄電装置10は、図2に示すように、箱形の電池ケース31を有しており、電池ケース31内には、複数の電池11(蓄電素子)からなる組電池14や制御基板38が収容されている。以下の説明において、図2および図3を参照する場合、電池ケース31が設置面に対して傾きなく水平に置かれた時の電池ケース31の上下方向をY方向とし、電池ケース31の長辺方向に沿う方向をX方向とし、電池ケース31の奥行き方向をZ方向として説明する。
<Embodiment 1>
The first embodiment will be described with reference to FIGS. 1 to 5. For a plurality of the same members, a reference numeral may be added to only one member, and the reference numerals may be omitted for the other members.
1. 1. Description of the power storage device 10 As shown in FIG. 1, the vehicle 1 includes a power storage device 10. As shown in FIG. 2, the power storage device 10 has a box-shaped battery case 31, and the battery case 31 houses an assembled battery 14 composed of a plurality of batteries 11 (power storage elements) and a control board 38. Has been done. In the following description, when referring to FIGS. 2 and 3, the vertical direction of the battery case 31 when the battery case 31 is placed horizontally without tilting with respect to the installation surface is the Y direction, and the long side of the battery case 31 is used. The direction along the direction will be described as the X direction, and the depth direction of the battery case 31 will be described as the Z direction.

電池ケース31は、図3に示すように、上方に開口するケース本体33と、複数の電池11を位置決めする位置決め部材34と、ケース本体33の上部に装着される中蓋35と、上蓋36とを備えて構成されている。ケース本体33内には、図3に示すように、各電池11が個別に収容される複数のセル室33AがX方向に並んで設けられている。 As shown in FIG. 3, the battery case 31 includes a case body 33 that opens upward, a positioning member 34 that positions a plurality of batteries 11, an inner lid 35 that is mounted on the upper part of the case body 33, and an upper lid 36. It is configured with. As shown in FIG. 3, a plurality of cell chambers 33A in which each battery 11 is individually housed are provided in the case main body 33 side by side in the X direction.

位置決め部材34は、図3に示すように、複数のバスバー37が上面に配置されており、位置決め部材34がケース本体33内に配置された複数の電池11の上部に配置されることで、複数の電池11が、位置決めされると共に複数のバスバー37によって直列に接続される。 As shown in FIG. 3, the positioning member 34 has a plurality of bus bars 37 arranged on the upper surface thereof, and the positioning member 34 is arranged on the upper portions of the plurality of batteries 11 arranged in the case main body 33, whereby a plurality of positioning members 34 are arranged. Batteries 11 are positioned and connected in series by a plurality of bus bars 37.

中蓋35は、図2に示すように、平面視略矩形状をなしている。中蓋35のX方向両端部には、図示しないハーネス端子が接続される一対の端子部32P、32Nが設けられている。一対の端子部32P、32Nは、例えば鉛合金等の金属からなり、32Pが正極側端子部、32Nが負極側端子部である。 As shown in FIG. 2, the inner lid 35 has a substantially rectangular shape in a plan view. A pair of terminal portions 32P and 32N to which harness terminals (not shown) are connected are provided at both ends of the inner lid 35 in the X direction. The pair of terminal portions 32P and 32N are made of a metal such as a lead alloy, 32P is a positive electrode side terminal portion and 32N is a negative electrode side terminal portion.

中蓋35の上面には、収容部35Aが設けられている。制御基板38は、中蓋35の収容部35Aの内部に収容されており、中蓋35がケース本体33に装着されることで、電池11と制御基板38とが接続される。また、上蓋36は、中蓋35の上部に装着され、制御基板38を収容した収容部35Aの上面を閉じる。 An accommodating portion 35A is provided on the upper surface of the inner lid 35. The control board 38 is housed inside the housing portion 35A of the inner lid 35, and the battery 11 and the control board 38 are connected by mounting the inner lid 35 on the case main body 33. Further, the upper lid 36 is attached to the upper part of the inner lid 35 and closes the upper surface of the accommodating portion 35A accommodating the control board 38.

図4を参照して、蓄電装置10の電気的構成を説明する。蓄電装置10は、電池11と、測温部15(第1の測温部に相当)と、参照測温部13(第2の測温部に相当)と、管理装置16と、を有する。 The electrical configuration of the power storage device 10 will be described with reference to FIG. The power storage device 10 includes a battery 11, a temperature measuring unit 15 (corresponding to a first temperature measuring unit), a reference temperature measuring unit 13 (corresponding to a second temperature measuring unit), and a management device 16.

組電池14は、直列接続された同一容量の複数(本実施形態では4つ)の電池11から構成されている。複数の電池11は並列方向(矢線Aで示す方向)に並んでいる。 The assembled battery 14 is composed of a plurality of (four in this embodiment) batteries 11 having the same capacity connected in series. The plurality of batteries 11 are arranged in a parallel direction (direction indicated by the arrow A).

電池11は例えば扁平な直方体形状をなしており、いわゆる角型電池とされる。電池11は金属製のケース12内に、図示しない蓄電要素が収容されている。電池11としては、例えば、正極にリン酸鉄系材料、負極にグラファイトを用いたリチウムイオン二次電池を用いることができるが、上記の構成に限定されない。 The battery 11 has, for example, a flat rectangular parallelepiped shape, and is a so-called square battery. The battery 11 contains a storage element (not shown) in a metal case 12. As the battery 11, for example, a lithium ion secondary battery using an iron phosphate-based material for the positive electrode and graphite for the negative electrode can be used, but the battery 11 is not limited to the above configuration.

電池11の電池電圧は約3.5V、組電池14の総電圧は約14Vであり、蓄電装置10の電圧階級は12Vである。蓄電装置10は車両駆動用の内燃機関であるエンジン2を始動するためのものとして例示してある。 The battery voltage of the battery 11 is about 3.5V, the total voltage of the assembled battery 14 is about 14V, and the voltage class of the power storage device 10 is 12V. The power storage device 10 is exemplified as a device for starting an engine 2 which is an internal combustion engine for driving a vehicle.

組電池14を構成する複数の電池11のうち、並列方向の一の端部(図4における上端部)に位置する電池11Aの外面には、参照測温部13が取り付けられている。組電池14を構成する複数の電池11のうち、並列方向の中央部に位置する電池11B(図4において、上端部から三番目であり且つ下端部から二番目)の外面には、測温部15が取り付けられている。参照測温部13、及び測温部15はサーミスタ、熱電対等、公知の測温部材を用いることができる。本実施形態ではサーミスタが用いられている。 A reference temperature measuring unit 13 is attached to the outer surface of the battery 11A located at one end (upper end in FIG. 4) in the parallel direction among the plurality of batteries 11 constituting the assembled battery 14. Of the plurality of batteries 11 constituting the assembled battery 14, the temperature measuring unit is on the outer surface of the battery 11B (third from the upper end and second from the lower end in FIG. 4) located at the center in the parallel direction. 15 is attached. As the reference temperature measuring unit 13 and the temperature measuring unit 15, known temperature measuring members such as a thermistor and a thermocouple can be used. A thermistor is used in this embodiment.

なお、組電池14の中央部とは、電池11の個数が奇数(2n-1個、nは自然数)である場合には、組電池14の双方の端部から数えてn番目の電池11をいい、電池11の個数が偶数(2n個、nは自然数)の場合には、組電池14の一方の端部から数えてn番目の電池11、及び、他方の端部から数えてn番目の電池11の少なくとも一方をいう。本実施形態においては、組電池14を構成する電池11の個数は4個(偶数)なので、図4において、組電池14の下端部から数えて二番目の電池11Bが、並列方向について中央部に位置するようになっている。 When the number of batteries 11 is an odd number (2n-1 and n is a natural number), the central portion of the assembled battery 14 refers to the nth battery 11 counted from both ends of the assembled battery 14. When the number of batteries 11 is an even number (2n, n is a natural number), the nth battery 11 counting from one end of the assembled battery 14 and the nth battery 11 counting from the other end. Refers to at least one of the batteries 11. In the present embodiment, the number of batteries 11 constituting the assembled battery 14 is four (even numbers), so that in FIG. 4, the second battery 11B counted from the lower end of the assembled battery 14 is located at the center in the parallel direction. It is designed to be located.

参照測温部13が取り付けられた電池11Aは、組電池14の端部に位置しているので、熱が外部に放散されやすい。このため、蓄電装置10に通電した時に、組電池14を構成する電池11の中で最も温度変化(低温側の平衡温度と高温側の平衡温度との差)が小さいものの一つとなっている。 Since the battery 11A to which the reference temperature measuring unit 13 is attached is located at the end of the assembled battery 14, heat is easily dissipated to the outside. Therefore, when the power storage device 10 is energized, the temperature change (difference between the equilibrium temperature on the low temperature side and the equilibrium temperature on the high temperature side) is the smallest among the batteries 11 constituting the assembled battery 14.

測温部15が取り付けられた電池11Bは、組電池14の中央部に位置しているので、通電時に発生した熱が放散されにくい。このため、蓄電装置10に通電した時に、組電池14を構成する電池11の中で最も温度変化(低温側の平衡温度と高温側の平衡温度との差)が大きいものの一つとなっている。 Since the battery 11B to which the temperature measuring unit 15 is attached is located in the central portion of the assembled battery 14, the heat generated during energization is less likely to be dissipated. Therefore, when the power storage device 10 is energized, it is one of the batteries 11 constituting the assembled battery 14 having the largest temperature change (difference between the equilibrium temperature on the low temperature side and the equilibrium temperature on the high temperature side).

蓄電装置10は、組電池14を管理する管理装置16を備える。管理装置16は、中央処理装置であるCPU17(コンピュータの一例)と、メモリ18と、通信部19と、を備える。 The power storage device 10 includes a management device 16 that manages the assembled battery 14. The management device 16 includes a CPU 17 (an example of a computer) which is a central processing device, a memory 18, and a communication unit 19.

上記した参照測温部13、及び測温部15は、信号線20によって、管理装置16に電気的に接続されている。参照測温部13によって測定された電池11Aの温度である参照温度と、測温部15によって測定された電池11Bの温度である測定温度は、管理装置16に取り込まれる。 The reference temperature measuring unit 13 and the temperature measuring unit 15 described above are electrically connected to the management device 16 by a signal line 20. The reference temperature, which is the temperature of the battery 11A measured by the reference temperature measuring unit 13, and the measured temperature, which is the temperature of the battery 11B measured by the temperature measuring unit 15, are taken into the management device 16.

メモリ18は、例えば、フラッシュメモリやEEPROM等の不揮発性メモリである。メモリ18には、電池11を管理するためのプログラムや、プログラムの実行に必要なデータが記憶されている。また、メモリ18には、参照温度と測定温度との間の温度差を算出し、参照温度と測定温度との間の温度差が所定の基準値よりも小さいかどうかを判断するプログラムや、上記の基準値が記憶されている。 The memory 18 is, for example, a non-volatile memory such as a flash memory or an EEPROM. The memory 18 stores a program for managing the battery 11 and data necessary for executing the program. Further, in the memory 18, a program that calculates a temperature difference between the reference temperature and the measured temperature and determines whether or not the temperature difference between the reference temperature and the measured temperature is smaller than a predetermined reference value, or the above-mentioned The reference value of is stored.

CPU17は、参照測温部13から参照温度を取得するとともに測温部15から測定温度を取得し、両温度の温度差を算出する。 The CPU 17 acquires the reference temperature from the reference temperature measuring unit 13 and the measured temperature from the temperature measuring unit 15, and calculates the temperature difference between the two temperatures.

蓄電装置10は、電源ライン22、グランドライン23を介して、セルモータ25、及び充電装置26と接続されている。セルモータ25、及び充電装置26は、車両ECU27(Electronic Control Unit)によって制御される。車両ECU27は、通信線28を介して管理装置16の通信部19と接続され、両者の間で通信可能である。 The power storage device 10 is connected to the starter motor 25 and the charging device 26 via the power supply line 22 and the ground line 23. The starter motor 25 and the charging device 26 are controlled by the vehicle ECU 27 (Electronic Control Unit). The vehicle ECU 27 is connected to the communication unit 19 of the management device 16 via the communication line 28, and communication is possible between the two.

セルモータ25は、イグニッションスイッチ24がオンされてクランキングを実行させるための信号が車両ECU27に与えられると、車両ECU27からの信号によって通電され、内燃機関であるエンジン2を始動させるためにクランキングを行う。 When the ignition switch 24 is turned on and a signal for executing cranking is given to the vehicle ECU 27, the starter motor 25 is energized by the signal from the vehicle ECU 27 and performs the cranking to start the engine 2 which is an internal combustion engine. conduct.

充電装置26は組電池14を充電する。本実施形態では、充電装置26は車両のエンジン2によって駆動される発電機を含む。充電装置26は、車両1の外部に配された外部電源から電力の供給を受けてもよい。 The charging device 26 charges the assembled battery 14. In this embodiment, the charging device 26 includes a generator driven by the engine 2 of the vehicle. The charging device 26 may receive electric power from an external power source arranged outside the vehicle 1.

管理装置16は、測温部15の出力と、参照測温部13の出力とに基づいて、以下に説明するように、電池11の状態を判定する。 The management device 16 determines the state of the battery 11 based on the output of the temperature measuring unit 15 and the output of the reference temperature measuring unit 13 as described below.

2.電池11の状態を判定する処理
図5は、管理装置16が電池11の状態を判定する処理のフローチャートである。イグニッションスイッチ24がオンされると、その信号を受けて車両ECU27は、セルモータ25を駆動することに先立ち、図5の処理を実行する。
2. 2. Process for determining the state of the battery 11 FIG. 5 is a flowchart of a process for determining the state of the battery 11 by the management device 16. When the ignition switch 24 is turned on, the vehicle ECU 27 receives the signal and executes the process of FIG. 5 prior to driving the starter motor 25.

CPU17は参照測温部13から参照温度T2を取得し(S10)、測温部15から測定温度T1を取得する(S20)。CPU17は測定温度T1と参照温度T2との温度差ΔT(=|T2-T1|)を計算し、この温度差ΔTを予めメモリ18に記憶されていた基準値Trefと比較する(S30)。 The CPU 17 acquires the reference temperature T2 from the reference temperature measuring unit 13 (S10), and acquires the measured temperature T1 from the temperature measuring unit 15 (S20). The CPU 17 calculates the temperature difference ΔT (= | T2-T1 |) between the measured temperature T1 and the reference temperature T2, and compares this temperature difference ΔT with the reference value Tref stored in the memory 18 in advance (S30).

温度差ΔTが基準値Tref以下の場合は、CPU17は各電池11間で温度の偏りがない安定状態に至っていると判定し、安定状態フラグを設定(S40)して処理を終える。基準値Trefを越えているときは、同フラグを立てることなく処理を終える。その後、CPU17は直ちにセルモータ25によってクランキングを実行させてエンジン2を始動させる。 When the temperature difference ΔT is equal to or less than the reference value Tref, the CPU 17 determines that the stable state has been reached with no temperature bias between the batteries 11, sets the stable state flag (S40), and ends the process. When the reference value Tref is exceeded, the process ends without setting the same flag. After that, the CPU 17 immediately executes cranking by the starter motor 25 to start the engine 2.

CPU17は、安定状態フラグが立てられている場合には、その後のクランキング時に流れる電流と、電池11の端子電圧を取得し、電池11の端子電圧に基づき電池11の内部抵抗を算定する。CPU17は、安定状態フラグが立てられた時点での電池11の温度T1,T2を取得済みであり、電池11の温度T1,T2の温度差ΔTは比較的小さい(ΔT≦Tref)から、電池11の温度T1又はT2を利用して、算定した内部抵抗を所定の標準温度における内部抵抗に換算(温度補正)して、標準温度における内部抵抗を算出する。この標準温度における内部抵抗は、電池11の劣化状態等を反映しているから、その標準温度における内部抵抗の情報を加味してCPU17は電池11ないし組電池14の劣化状態を判定し又は寿命の判定を行う。 When the stable state flag is set, the CPU 17 acquires the current flowing during subsequent cranking and the terminal voltage of the battery 11, and calculates the internal resistance of the battery 11 based on the terminal voltage of the battery 11. The CPU 17 has already acquired the temperatures T1 and T2 of the battery 11 at the time when the stable state flag is set, and the temperature difference ΔT between the temperatures T1 and T2 of the battery 11 is relatively small (ΔT ≦ Tref), so that the battery 11 The calculated internal resistance is converted into the internal resistance at a predetermined standard temperature (temperature correction) using the temperature T1 or T2 of the above, and the internal resistance at the standard temperature is calculated. Since the internal resistance at this standard temperature reflects the deteriorated state of the battery 11, the CPU 17 determines the deteriorated state of the battery 11 or the assembled battery 14 by taking into account the information of the internal resistance at the standard temperature, or the life of the battery 11. Make a judgment.

本構成によれば、管理装置16は、測定温度T1と参照温度T2との温度差ΔTに基づいて電池11の状態を判定するので、無電流状態になったことを検出して起動されるタイマによって所定時間が経過することを計測することなく、状態判定が可能である。 According to this configuration, the management device 16 determines the state of the battery 11 based on the temperature difference ΔT between the measured temperature T1 and the reference temperature T2, so that the timer is activated by detecting that the battery 11 has become a non-current state. It is possible to determine the state without measuring the elapse of a predetermined time.

従って、継続的にタイマを起動しておく必要がなく、必要なときに各温度T1,T2を取得すればよいから、蓄電装置10のシステムをオフにしたり、間欠的にあるいは何らかのイベントが生じたときに各温度T1,T2を取得したりする低消費電力状態にしておくこともできる。 Therefore, it is not necessary to continuously start the timer, and each temperature T1 and T2 may be acquired when necessary. Therefore, the system of the power storage device 10 may be turned off, or an event may occur intermittently or somehow. It is also possible to obtain a low power consumption state such as acquiring each temperature T1 and T2 at times.

本実施形態では、複数個の電池11を集積させて組電池14を構成しており、参照測温部13は組電池14を構成する電池11Aの温度を測定し、測温部15は電池11Aとは異なる電池11Bの温度を測定する。 In the present embodiment, a plurality of batteries 11 are integrated to form the assembled battery 14, the reference temperature measuring unit 13 measures the temperature of the battery 11A constituting the assembled battery 14, and the temperature measuring unit 15 measures the battery 11A. The temperature of the battery 11B different from that of the battery 11B is measured.

組電池14内の異なる位置に配された電池11の熱的な条件はそれぞれ異なる。このため、組電池14に通電されると異なる電池11間で温度差が生じる場合がある。本構成によれば、組電池14全体の中での電池11A,11B間の温度差に基づいて電池11の状態を判定できるから、特に組電池14が同種・同一容量の電池11を集積させて構成されている場合に、電池11の状態をより正確に判定することができる。 The thermal conditions of the batteries 11 arranged at different positions in the assembled battery 14 are different. Therefore, when the assembled battery 14 is energized, a temperature difference may occur between different batteries 11. According to this configuration, the state of the battery 11 can be determined based on the temperature difference between the batteries 11A and 11B in the entire assembled battery 14, so that the assembled battery 14 in particular integrates the batteries 11 of the same type and the same capacity. When configured, the state of the battery 11 can be determined more accurately.

本実施形態においては、参照測温部13は組電池14の端部に位置する電池11Aの温度を測定し、測温部15は組電池の中央部に位置する電池11Bの温度を測定する。上記したように、電池11Aは、蓄電装置10に通電した時に、組電池14を構成する電池11の中で最も高温になりやすい。一方、電池11Bは、蓄電装置10に通電した時に、組電池14を構成する電池11の中で最も高温になりにくい。このため、電池11Aと電池11Bとの間の温度差は、組電池14を構成する4個の電池11間の各種の温度差のうち最も大きいものと考えられる。 In the present embodiment, the reference temperature measuring unit 13 measures the temperature of the battery 11A located at the end of the assembled battery 14, and the temperature measuring unit 15 measures the temperature of the battery 11B located at the center of the assembled battery 14. As described above, the battery 11A tends to have the highest temperature among the batteries 11 constituting the assembled battery 14 when the power storage device 10 is energized. On the other hand, when the power storage device 10 is energized, the battery 11B is less likely to reach a high temperature among the batteries 11 constituting the assembled battery 14. Therefore, the temperature difference between the battery 11A and the battery 11B is considered to be the largest among the various temperature differences between the four batteries 11 constituting the assembled battery 14.

従って、他の電池11間の温度差を利用するより、正確に組電池14の状態を判断することができる。 Therefore, the state of the assembled battery 14 can be accurately determined by using the temperature difference between the other batteries 11.

電池11Aの参照温度T2と電池11Bの測定温度T1との温度差ΔTが基準値Tref以下になったと判定された場合には、組電池14を構成する電池11の温度の偏りが小さくなっていることを意味する。このため、管理装置16が取得した電池11Aの参照温度T2又は電池11Bの測定温度T1を用いることにより、電池11の内部抵抗の温度補正を精度よく行うことができる。 When it is determined that the temperature difference ΔT between the reference temperature T2 of the battery 11A and the measured temperature T1 of the battery 11B is equal to or less than the reference value Tref, the temperature bias of the battery 11 constituting the assembled battery 14 is small. Means that. Therefore, by using the reference temperature T2 of the battery 11A or the measured temperature T1 of the battery 11B acquired by the management device 16, the temperature correction of the internal resistance of the battery 11 can be accurately performed.

測定温度T1と参照温度T2との温度差ΔTの閾値となる所定の基準値Trefは、組電池14に含まれる電池11の個数、電池11の配列の仕方、電池11の構造、組電池14を冷却するための装置の有無等に応じて、適切な値が設定される。基準値Tref(閾値)は、予め実験を行うことにより設定することができる。本実施形態のように、組電池14のうち、並列方向の端部に参照測温部13が配され、中央位置に測温部15が配される構成においては、基準値Trefとしては、1℃以下が好ましく、0.5℃以下が更に好ましい。 The predetermined reference value Tref, which is the threshold of the temperature difference ΔT between the measurement temperature T1 and the reference temperature T2, is the number of batteries 11 included in the assembled battery 14, the arrangement of the batteries 11, the structure of the battery 11, and the assembled battery 14. An appropriate value is set according to the presence or absence of a device for cooling. The reference value Tref (threshold value) can be set by conducting an experiment in advance. As in the present embodiment, in the configuration in which the reference temperature measuring unit 13 is arranged at the end in the parallel direction and the temperature measuring unit 15 is arranged at the center position of the assembled battery 14, the reference value Trf is 1. ° C or lower is preferable, and 0.5 ° C or lower is even more preferable.

蓄電装置10は、クランキングにより始動されるエンジン2が搭載された車両1に搭載されており、管理装置16は、エンジン2のクランキングを実行する信号を受けたことを条件に、電池11の状態を判定する。これにより、管理装置16は、クランキング直前に電池11の状態を判定することになる。クランキング直前の時点で電池11が安定状態にあると判定された場合には、クランキング時に流れる電流を利用して内部抵抗を推定することが好ましい。 The power storage device 10 is mounted on the vehicle 1 on which the engine 2 started by cranking is mounted, and the management device 16 receives a signal for executing the cranking of the engine 2 of the battery 11. Determine the state. As a result, the management device 16 determines the state of the battery 11 immediately before cranking. When it is determined that the battery 11 is in a stable state immediately before cranking, it is preferable to estimate the internal resistance by using the current flowing during cranking.

エンジン2のクランキング時には、比較的に大きな電流が蓄電装置10に流れるので、電池11の内部抵抗を算出する際の精度を、向上させることができる。 Since a relatively large current flows through the power storage device 10 during cranking of the engine 2, the accuracy of calculating the internal resistance of the battery 11 can be improved.

電池11の状態が安定であると判定された場合には、車両1が走行中であっても、電池11の内部抵抗を精度よく推定することができる。 When it is determined that the state of the battery 11 is stable, the internal resistance of the battery 11 can be estimated accurately even when the vehicle 1 is running.

<変形例>
次に、本実施形態の変形例を説明する。イグニッションスイッチ24は、アクセサリー位置、オン位置、スタート位置を有する。イグニッションスイッチ24がアクセサリー位置にセットされると、ラジオ、オーディオ機器等の車載の付属機器の電源がオンされる。イグニッションスイッチ24がオン位置にセットされると、エンジン2の点火系機器の電源がオンされる。イグニッションスイッチ24がスタート位置にセットされると、クランキングを実行させる信号が送信される。
<Modification example>
Next, a modification of the present embodiment will be described. The ignition switch 24 has an accessory position, an on position, and a start position. When the ignition switch 24 is set to the accessory position, the power of an in-vehicle accessory device such as a radio or an audio device is turned on. When the ignition switch 24 is set to the on position, the power of the ignition system device of the engine 2 is turned on. When the ignition switch 24 is set to the start position, a signal for executing cranking is transmitted.

イグニッションスイッチ24がアクセサリー位置、又はオン位置にセットされると、車両ECU27は、管理装置16のCPU17に、電池11の状態を判定する処理を実行することを命令する。電池11の状態を判定する処理及び、その後の処理は前述した実施形態1と同様なので、重複する説明を省略する。 When the ignition switch 24 is set to the accessory position or the on position, the vehicle ECU 27 orders the CPU 17 of the management device 16 to execute a process of determining the state of the battery 11. Since the process for determining the state of the battery 11 and the subsequent processes are the same as those in the first embodiment, the overlapping description will be omitted.

このように、乗員がエンジン2を始動させず、イグニッションスイッチ24をアクセサリー位置又はオン位置にセットしてラジオ、オーディオ機器等を使用する状態において、電池11の状態を判定してもよい。 In this way, the state of the battery 11 may be determined in a state where the occupant does not start the engine 2 and the ignition switch 24 is set to the accessory position or the on position and the radio, audio equipment, or the like is used.

<実施形態2>
実施形態2について図6を参照して説明する。本実施形態に係る蓄電装置40においては、組電池14に対して矢線Bで示す方向に沿って、冷風が吹き付けられるようになっている。冷風は、車両1のエアコンディショナで生成された冷気から分流されたものであってもよく、専用の冷却装置からの冷風であってもよい。また、車両1の外部から導入した外気を用いてもよい。
<Embodiment 2>
The second embodiment will be described with reference to FIG. In the power storage device 40 according to the present embodiment, cold air is blown to the assembled battery 14 along the direction indicated by the arrow line B. The cold air may be separated from the cold air generated by the air conditioner of the vehicle 1, or may be cold air from a dedicated cooling device. Further, the outside air introduced from the outside of the vehicle 1 may be used.

図6における最上部に配された電池11Aは、冷風により最も冷却されやすいものとなっている。このため、蓄電装置40に通電した場合に、組電池14を構成する電池11の中で最も温度変化(温度が低下する速度)が小さい。この電池11Aの外面に参照測温部13が配されている。 The battery 11A arranged at the uppermost portion in FIG. 6 is most easily cooled by cold air. Therefore, when the power storage device 40 is energized, the temperature change (the speed at which the temperature drops) is the smallest among the batteries 11 constituting the assembled battery 14. A reference temperature measuring unit 13 is arranged on the outer surface of the battery 11A.

図6における最下部に配された電池11Cは、冷風の最も風下側に位置しているので、最も冷却効率が低い。このため、蓄電装置40に通電した場合に、組電池14を構成する電池11の中で最も温度変化(温度が低下する速度)が大きい。この電池11Cの外面に測温部15が配されている。 The battery 11C arranged at the lowermost part in FIG. 6 is located on the leeward side of the cold air, and therefore has the lowest cooling efficiency. Therefore, when the power storage device 40 is energized, the temperature change (the speed at which the temperature drops) is the largest among the batteries 11 constituting the assembled battery 14. A temperature measuring unit 15 is arranged on the outer surface of the battery 11C.

上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configurations other than the above are substantially the same as those in the first embodiment, the same members are designated by the same reference numerals, and duplicate description will be omitted.

本実施形態においては、電池11Aと電池11Cとの温度差は、組電池14を構成する電池11間の温度差のうちで最も大きいものとなる。本実施形態では、電池11Aと電池11Cとの温度差に基づいて電池11の状態を判定するので、電池11Aと電池11Cとの温度差が所定の基準値以下になったことを検出したときは、組電池14を構成する他の各電池11間の全ての温度差は所定の基準値よりも小さいことを意味する。従って、検出誤差や比較誤差等を考慮して基準値を比較的大きくとっても、各電池11の状態を正確に判断することができる。 In the present embodiment, the temperature difference between the battery 11A and the battery 11C is the largest among the temperature differences between the batteries 11 constituting the assembled battery 14. In the present embodiment, the state of the battery 11 is determined based on the temperature difference between the battery 11A and the battery 11C. Therefore, when it is detected that the temperature difference between the battery 11A and the battery 11C is equal to or less than a predetermined reference value, It means that all the temperature differences between the other batteries 11 constituting the assembled battery 14 are smaller than the predetermined reference value. Therefore, even if the reference value is set relatively large in consideration of the detection error, the comparison error, and the like, the state of each battery 11 can be accurately determined.

<実施形態3>
本実施形態に係る蓄電装置50においては、図7に示すように、参照測温部13は管理装置16に配されている。詳細には、管理装置16は蓄電装置50の電池ケース31内部に設けられており、管理装置16を構成する制御基板38上に参照測温部13が配されている。CPU17は、参照測温部13によって測定された管理装置16内部の温度T2を参照温度として取得する。
<Embodiment 3>
In the power storage device 50 according to the present embodiment, as shown in FIG. 7, the reference temperature measuring unit 13 is arranged in the management device 16. Specifically, the management device 16 is provided inside the battery case 31 of the power storage device 50, and the reference temperature measuring unit 13 is arranged on the control board 38 constituting the management device 16. The CPU 17 acquires the temperature T2 inside the management device 16 measured by the reference temperature measuring unit 13 as the reference temperature.

上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configurations other than the above are substantially the same as those in the first embodiment, the same members are designated by the same reference numerals, and duplicate description will be omitted.

管理装置16が蓄電装置50の電池ケース31内部に設けられている場合、管理装置16の温度環境は、組電池14の温度環境と略同一になる。組電池14が充放電によって温度が上昇しても、充放電が終了して組電池14の温度が低下すると、管理装置16の内部温度に近くなる。この結果、組電池14のうちの電池11に設けられた測温部15の温度は、管理装置16の内部温度を測定している参照測温部13の温度に近くなり、結局、測温部15と参照測温部13との温度差が小さくなるから、この温度差が基準値Tref以下になったときに組電池14が安定状態にあると判断される。 When the management device 16 is provided inside the battery case 31 of the power storage device 50, the temperature environment of the management device 16 is substantially the same as the temperature environment of the assembled battery 14. Even if the temperature of the assembled battery 14 rises due to charging / discharging, when the charging / discharging is completed and the temperature of the assembled battery 14 drops, the temperature becomes close to the internal temperature of the management device 16. As a result, the temperature of the temperature measuring unit 15 provided in the battery 11 of the assembled batteries 14 becomes close to the temperature of the reference temperature measuring unit 13 measuring the internal temperature of the management device 16, and eventually, the temperature measuring unit Since the temperature difference between 15 and the reference temperature measuring unit 13 becomes small, it is determined that the assembled battery 14 is in a stable state when the temperature difference becomes equal to or less than the reference value Tref.

この構成によると、例えば蓄電装置50の外部の環境温度が高いときには、組電池14や管理装置16の内部温度も同様に高くなり、両測温部13,15の温度差ΔTは環境温度の影響を排除した値になるから、電池11の状態判定の精度を高めることができる。 According to this configuration, for example, when the external environmental temperature of the power storage device 50 is high, the internal temperature of the assembled battery 14 and the management device 16 is also high, and the temperature difference ΔT between the temperature measuring units 13 and 15 is affected by the environmental temperature. Since the value is obtained by excluding the above, the accuracy of the state determination of the battery 11 can be improved.

<実施形態4>
実施形態4について、図8を参照して説明する。本実施形態に係る車両1は蓄電装置60を搭載した電気自動車であって、蓄電装置60からの電力によって駆動されるモータによって走行する。車両1にはエンジン2及びセルモータ25は搭載されていない。イグニッションスイッチ24に代わってパワースイッチ61が配されている。充電装置26は、車両1の外部に設けられた外部電源から電力の供給を受けて、蓄電装置60を充電する。
<Embodiment 4>
The fourth embodiment will be described with reference to FIG. The vehicle 1 according to the present embodiment is an electric vehicle equipped with a power storage device 60, and travels by a motor driven by electric power from the power storage device 60. The engine 2 and the starter motor 25 are not mounted on the vehicle 1. A power switch 61 is arranged in place of the ignition switch 24. The charging device 26 receives power from an external power source provided outside the vehicle 1 to charge the power storage device 60.

パワースイッチ61のオン操作により車両1のシステムが起動されると、車両ECU27は、管理装置16のCPU17に電池11の状態を判定する処理を実行することを命令する。 When the system of the vehicle 1 is activated by turning on the power switch 61, the vehicle ECU 27 orders the CPU 17 of the management device 16 to execute a process of determining the state of the battery 11.

上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configurations other than the above are substantially the same as those in the first embodiment, the same members are designated by the same reference numerals, and duplicate description will be omitted.

車両1のシステムがオンされると、実施形態1と同様に管理装置16は、測温部15から電池11Bの温度T1を取得し、参照測温部13から電池11Aの温度T2を取得する。管理装置16は、測温部15から取得した測定温度T1と、参照測温部13から取得した参照温度T2と、の温度差ΔTから、蓄電装置60の電池11の状態を判定する。その後、実施形態1と同様に、蓄電装置60が安定状態にあると判断されたときには、電池11の内部抵抗を推定し、電池11の温度補正を行う。 When the system of the vehicle 1 is turned on, the management device 16 acquires the temperature T1 of the battery 11B from the temperature measuring unit 15 and the temperature T2 of the battery 11A from the reference temperature measuring unit 13 as in the first embodiment. The management device 16 determines the state of the battery 11 of the power storage device 60 from the temperature difference ΔT between the measured temperature T1 acquired from the temperature measuring unit 15 and the reference temperature T2 acquired from the reference temperature measuring unit 13. After that, as in the first embodiment, when it is determined that the power storage device 60 is in a stable state, the internal resistance of the battery 11 is estimated and the temperature of the battery 11 is corrected.

<変形例>
上記実施形態4では、電気自動車のパワースイッチ61がオンされたときに蓄電装置60の状態を判定する構成としたが、以下に述べる実施形態4の変形例では蓄電装置60が充電される直前に、電池11の状態を判定するようにしている。
<Modification example>
In the fourth embodiment, the state of the power storage device 60 is determined when the power switch 61 of the electric vehicle is turned on. However, in the modification of the fourth embodiment described below, immediately before the power storage device 60 is charged. , The state of the battery 11 is determined.

充電装置26に外部電源が接続されると、車両ECU27は、蓄電装置60の充電が可能な状態になったと判断し、管理装置16に、蓄電装置60の電池11の状態を判定する処理を実行することを命令する。これにより、実施形態4と同様に、温度T1、T2を取得して温度差ΔTを計算し、ΔTを予めメモリ18に記憶されていた基準値Trefと比較する。温度差ΔTが基準値Tref以下である場合には、安定状態フラグを設定して処理を終え、基準値Trefを越えているときは、同フラグを立てることなく処理を終える。その後、CPU17は充電装置26によって蓄電装置60を充電させる。 When the external power supply is connected to the charging device 26, the vehicle ECU 27 determines that the power storage device 60 is in a chargeable state, and executes a process of determining the state of the battery 11 of the power storage device 60 in the management device 16. Order to do. Thereby, as in the fourth embodiment, the temperatures T1 and T2 are acquired, the temperature difference ΔT is calculated, and the ΔT is compared with the reference value Tref stored in the memory 18 in advance. When the temperature difference ΔT is equal to or less than the reference value Tref, the stable state flag is set to end the process, and when the temperature difference ΔT exceeds the reference value Tref, the process ends without setting the same flag. After that, the CPU 17 charges the power storage device 60 by the charging device 26.

本実施形態によれば、管理装置16は、蓄電装置60を充電する直前に電池11の状態を判定することになる。この充電直前の時点で電池11が安定状態にあると判定された場合には、充電時に流れる電流を利用して内部抵抗を推定することができる。蓄電装置60の充電時には、比較的に大きな電流が蓄電装置60に流れるので、電池11の内部抵抗を推定する際の精度を向上させることができる。 According to the present embodiment, the management device 16 determines the state of the battery 11 immediately before charging the power storage device 60. If it is determined that the battery 11 is in a stable state immediately before charging, the internal resistance can be estimated by using the current flowing during charging. When charging the power storage device 60, a relatively large current flows through the power storage device 60, so that the accuracy of estimating the internal resistance of the battery 11 can be improved.

<実施形態5>
実施形態5について、図9を参照しつつ説明する。本実施形態の電池71は、ケース72の内部に蓄電要素74が収容されている。参照測温部73は、電池71のケース72の上壁の外面に取り付けられて電池71の外面の温度T2を測定する。
<Embodiment 5>
The fifth embodiment will be described with reference to FIG. In the battery 71 of the present embodiment, the power storage element 74 is housed inside the case 72. The reference temperature measuring unit 73 is attached to the outer surface of the upper wall of the case 72 of the battery 71 and measures the temperature T2 of the outer surface of the battery 71.

測温部75は、電池71のケース72の内部に取り付けられている。測温部75は、ケース72の下壁よりもやや上方の位置に配されている。測温部75は、ケース72の内部の任意の部位に、必要に応じて配置することができる。測温部75は、電池71の内部の温度T1を測定する。測温部75は、蓄電要素74の温度を測定してもよいし、ケース72の内面の温度を測定してもよい。測温部75は、ケース72の内部に配された任意の部材の温度を測定することになる。 The temperature measuring unit 75 is attached to the inside of the case 72 of the battery 71. The temperature measuring unit 75 is arranged at a position slightly above the lower wall of the case 72. The temperature measuring unit 75 can be arranged at any part inside the case 72 as needed. The temperature measuring unit 75 measures the temperature T1 inside the battery 71. The temperature measuring unit 75 may measure the temperature of the power storage element 74 or may measure the temperature of the inner surface of the case 72. The temperature measuring unit 75 measures the temperature of any member arranged inside the case 72.

1つの電池71であっても部位ごとに発熱量や放熱性は異なるので、通電直後においては、内部温度に偏りが生じたり、内部温度と外部温度との間に温度差が生じたりする。内部温度の偏りや、内部と外部との温度差は、通電終了後、時間が経過することにより温度差は縮小し、最終的に熱平衡に達する。 Even with one battery 71, the calorific value and heat dissipation are different for each part, so that the internal temperature may be biased or a temperature difference may occur between the internal temperature and the external temperature immediately after energization. The bias in the internal temperature and the temperature difference between the inside and the outside are reduced by the passage of time after the end of energization, and finally reach thermal equilibrium.

電池71の内部温度の偏りや、電池71の温度が時間経過によりどのように変化するかは電池71の安定状態と密接な関係があるから、同一の電池71の異なる部位の温度を測定し、その温度差に基づいて電池71の状態を判定することができる。 Since the bias of the internal temperature of the battery 71 and how the temperature of the battery 71 changes with the passage of time are closely related to the stable state of the battery 71, the temperature of different parts of the same battery 71 is measured. The state of the battery 71 can be determined based on the temperature difference.

<他の実施形態>
本明細書に開示された技術は上記記述及び図面によって説明した実施形態に限定されるものではない。例えば次のような実施形態も本明細書に開示された技術の範囲に含まれる。
<Other embodiments>
The techniques disclosed herein are not limited to the embodiments described above and in the drawings. For example, the following embodiments are also included in the scope of the art disclosed herein.

(1)実施形態1~4では、1個の蓄電装置を構成する複数の蓄電素子のうち、異なる2個の蓄電素子に第1及び第2の測温部が配される構成としたが、これに限られず、1個の蓄電装置を構成する複数の蓄電素子のうち、異なる3個以上の蓄電素子のそれぞれに測温部を配し、測温部が配された3個以上の蓄電素子の中から選ばれた2個の蓄電素子の温度差に基づいて蓄電素子の状態を判定してもよい。2個の蓄電素子の温度差に基づくとは、前述した実施形態において示したように温度差ΔTと基準値Trefとの大小関係を判断するに限らず、例えば温度差ΔTに数学的処理を加えた値を算出し、その値に基づいて判断することを含む。 (1) In the first to fourth embodiments, the first and second temperature measuring units are arranged in two different power storage elements among the plurality of power storage elements constituting one power storage device. Not limited to this, among the plurality of power storage elements constituting one power storage device, a temperature measuring unit is arranged for each of three or more different power storage elements, and three or more power storage elements in which the temperature measuring unit is arranged are arranged. The state of the power storage element may be determined based on the temperature difference between the two power storage elements selected from the above. The fact that it is based on the temperature difference between the two power storage elements is not limited to determining the magnitude relationship between the temperature difference ΔT and the reference value Tref as shown in the above-described embodiment, and for example, mathematical processing is added to the temperature difference ΔT. It includes calculating the value and making a judgment based on the value.

(2)第1及び第2の測温部は、NTCサーミスタや、PTCサーミスタ、熱電対等でもよく、非接触タイプの温度センサであってもよよい。 (2) The first and second temperature measuring units may be an NTC thermistor, a PTC thermistor, a thermoelectric pair, or the like, or may be a non-contact type temperature sensor.

(3)実施形態1~5に係る蓄電素子は、角型であったが、これに限られず、円筒型、ラミネートフィルムを接合してなる袋形状でもよい。 (3) The power storage element according to the first to fifth embodiments has a square shape, but is not limited to this, and may be a cylindrical shape or a bag shape formed by joining a laminated film.

(4)実施形態1~3に係る蓄電装置10、40、60は動力源としてエンジン2が用いられる車両1に搭載される構成とし、実施形態4に係る蓄電装置50は動力源としてモータが用いられる車両1に搭載される構成としたが、これに限られず、本明細書に開示された技術は、動力源としてエンジンとモータが用いられる車両(例えば、HEV)、又はフォークリフト、電動工具、スマートフォン、PCなど、電池が使われる装置等において、電池の安定状態判定が必要なシステムに適用することができる。 (4) The power storage devices 10, 40, and 60 according to the first to third embodiments are configured to be mounted on the vehicle 1 in which the engine 2 is used as a power source, and the power storage device 50 according to the fourth embodiment is used by a motor as a power source. However, the technique disclosed in the present specification is not limited to this, and the technique disclosed in the present specification is a vehicle (for example, HEV) in which an engine and a motor are used as a power source, or a forklift, an electric tool, and a smartphone. , PC, and other devices that use batteries, and can be applied to systems that require battery stability determination.

(5)実施形態1~5に係る蓄電装置は、4個の蓄電素子を備える構成としたが、これに限られず、1個の蓄電装置は、1個の蓄電素子を備える構成としてもよく、また、2個~3個又は5個以上の蓄電素子を備える構成としてもよい。 (5) The power storage device according to the first to fifth embodiments is configured to include four power storage elements, but the present invention is not limited to this, and one power storage device may be configured to include one power storage element. Further, the configuration may include two to three or five or more power storage elements.

(6)蓄電装置のうち、ハーネス端子が接続される端子部、制御基板、バスバーなど、蓄電素子の充放電によって温度が変化する2つの部位の温度を測定し、2つの部位の温度差に基づいて蓄電素子の状態を判定してもよい。 (6) Measure the temperature of two parts of the power storage device whose temperature changes depending on the charge and discharge of the power storage element, such as the terminal part to which the harness terminal is connected, the control board, and the bus bar, and based on the temperature difference between the two parts. The state of the power storage element may be determined.

(7)実施例2においては、組電池14の電池11に冷風を吹き付けることによって電池11を冷却したが、これに限られず、ペルチェ素子、水冷ジャケットなど、電池11に接触させて電池11を冷却する装置を用いてもよい。 (7) In the second embodiment, the battery 11 is cooled by blowing cold air on the battery 11 of the assembled battery 14, but the battery 11 is not limited to this, but the battery 11 is cooled by contacting the battery 11 with a Pelche element, a water-cooled jacket, or the like. You may use the device to do.

(8)実施形態1~5では、タイマで時間をカウントせずに蓄電素子の状態を判定する構成としたが、これに限られず、蓄電素子の状態を判定する際にタイマを併用してもよい。例えば、蓄電装置の2つの部位の温度差が、判定基準と同じか又はわずかに小さいと判断された場合には、所定の時間だけタイマによって限定的に時間をカウントし、所定の時間が経過した後に再度、蓄電装置の2つの部位の温度差に基づいて蓄電素子の状態を判定してもよい。 (8) In the first to fifth embodiments, the state of the power storage element is determined without counting the time by the timer, but the present invention is not limited to this, and the timer may be used in combination when determining the state of the power storage element. good. For example, when it is determined that the temperature difference between the two parts of the power storage device is the same as or slightly smaller than the criterion, the timer counts the time for a predetermined time in a limited manner, and the predetermined time has elapsed. Later, the state of the power storage element may be determined again based on the temperature difference between the two parts of the power storage device.

(9)本明細書に開示された技術は、蓄電素子を備えた蓄電装置が有するコンピュータに、蓄電装置の2つの部位の温度の温度差情報に基づいて蓄電素子の状態を判定する処理を実行させる蓄電装置の状態判定プログラムに適用してもよい。
また、本明細書に開示された技術は、上記の状態判定プログラムを記憶した、コンピュータに読み取り可能な記憶媒体に適用してもよい。
(9) The technique disclosed in the present specification executes a process of determining the state of the power storage element based on the temperature difference information of the temperatures of the two parts of the power storage device in the computer of the power storage device provided with the power storage element. It may be applied to the state determination program of the power storage device.
Further, the technique disclosed in the present specification may be applied to a computer-readable storage medium in which the above-mentioned state determination program is stored.

1: 車両
2:エンジン(内燃機関の一例)
10,40,50,60: 蓄電装置
11、71: 電池
11A: 電池
11B: 電池
11C: 電池
13: 参照測温部(第2の測温部の一例)
14: 組電池
15: 測温部(第1の測温部の一例)
16: 管理装置
1: Vehicle 2: Engine (an example of an internal combustion engine)
10, 40, 50, 60: Power storage device 11, 71: Battery 11A: Battery 11B: Battery 11C: Battery 13: Reference temperature measuring unit (an example of the second temperature measuring unit)
14: Batteries 15: Temperature measuring part (an example of the first temperature measuring part)
16: Management device

Claims (11)

蓄電素子を備えた蓄電装置であって、
蓄電装置の2つの部位の温度をそれぞれ測定する第1及び第2の測温部と、
前記第1及び第2の各測温部から取得した各温度の温度差に基づいて前記蓄電素子の安定状態を判定する管理装置と、を備え、
前記蓄電素子が複数個集積して組電池を構成し、前記第1及び第2の各測温部は、前記組電池のうちの異なる蓄電素子の温度を測定し、
前記第1の測温部は、前記組電池のうちの放熱しやすい蓄電素子の温度を測定し、
前記第2の測温部は、前記組電池のうちの放熱しにくい蓄電素子の温度を測定し、
前記管理装置は、前記第1及び第2の各測温部により放熱しやすい前記蓄電素子と放熱しにくい前記蓄電素子のみ温度を取得し、取得した2つの前記蓄電素子の温度差に基づいて、前記蓄電素子の安定状態を判定する、蓄電装置。
It is a power storage device equipped with a power storage element.
The first and second temperature measuring units that measure the temperature of the two parts of the power storage device, respectively,
A management device for determining the stable state of the power storage element based on the temperature difference of each temperature acquired from the first and second temperature measuring units is provided.
A plurality of the storage elements are integrated to form an assembled battery, and each of the first and second temperature measuring units measures the temperature of a different storage element among the assembled batteries.
The first temperature measuring unit measures the temperature of the power storage element that easily dissipates heat in the assembled battery, and measures the temperature.
The second temperature measuring unit measures the temperature of the power storage element of the assembled battery, which is difficult to dissipate heat.
The management device acquires the temperature only of the power storage element that easily dissipates heat by the first and second temperature measuring units and the power storage element that does not easily dissipate heat, and based on the temperature difference between the two acquired power storage elements, the management device obtains the temperature. A power storage device that determines the stable state of the power storage element .
請求項1に記載の蓄電装置であって、前記第1の測温部は前記組電池の端部に位置する前記蓄電素子の温度を測定し、前記第2の測温部は前記組電池の中央部に位置する前記蓄電素子の温度を測定する蓄電装置。 The power storage device according to claim 1 , wherein the first temperature measuring unit measures the temperature of the power storage element located at the end of the assembled battery, and the second temperature measuring unit is the assembled battery. A power storage device that measures the temperature of the power storage element located in the center. 請求項1又は請求項2に記載の蓄電装置であって、
前記管理装置は、前記温度差とタイマを併用して、前記蓄電素子の安定状態を判定する蓄電装置。
The power storage device according to claim 1 or 2 .
The management device is a power storage device that determines the stable state of the power storage element by using the temperature difference and a timer in combination.
請求項1から請求項3のいずれか一項に記載の蓄電装置であって、
前記管理装置は、前記蓄電素子が安定状態の場合、前記蓄電素子の劣化状態又は寿命を判定する蓄電装置。
The power storage device according to any one of claims 1 to 3 .
The management device is a power storage device that determines the deterioration state or the life of the power storage element when the power storage element is in a stable state.
請求項1から請求項4のいずれか一項に記載の蓄電装置であって、クランキングにより始動される内燃機関を備えた車両に搭載されており、
前記管理装置は、前記内燃機関の前記クランキングを実行する信号を受けたことを条件に前記蓄電素子の安定状態を判定する蓄電装置。
The power storage device according to any one of claims 1 to 4 , which is mounted on a vehicle including an internal combustion engine started by cranking.
The management device is a power storage device that determines a stable state of the power storage element on condition that a signal for executing the cranking of the internal combustion engine is received.
蓄電素子を備えた蓄電装置の状態を判定する方法であって、
蓄電装置の異なる2つの部位の温度をそれぞれ測定し、前記2つの部位の温度の温度差情報に基づいて前記蓄電素子の安定状態を判定し、
前記蓄電装置の異なる2つの部位として、複数個集積した前記蓄電素子のうち、放熱しやすい蓄電素子と放熱しにくい蓄電素子のみ温度を測定し、測定した2つの前記蓄電素子の温度差に基づいて、前記蓄電素子の安定状態を判定する、蓄電装置の状態判定方法。
It is a method of determining the state of a power storage device equipped with a power storage element.
The temperature of each of the two different parts of the power storage device is measured, and the stable state of the power storage element is determined based on the temperature difference information of the temperatures of the two parts.
Of the plurality of integrated power storage elements, the temperature of only the power storage element that easily dissipates heat and the power storage element that does not easily dissipate heat are measured as two different parts of the power storage device, and the temperature is based on the temperature difference between the two measured power storage elements. , A method for determining a state of a power storage device, which determines a stable state of the power storage element .
請求項6に記載の蓄電装置の状態判定方法であって、
前記温度差とタイマを併用して、前記蓄電素子の安定状態を判定する、蓄電装置の状態判定方法。
The method for determining the state of the power storage device according to claim 6 .
A method for determining the state of a power storage device, which determines the stable state of the power storage element by using the temperature difference and a timer in combination.
請求項6又は請求項7に記載の蓄電装置の状態判定方法であって、
前記蓄電素子が安定状態の場合、前記蓄電素子の劣化状態又は寿命を判定する、蓄電装置の状態判定方法。
The method for determining the state of the power storage device according to claim 6 or 7 .
A method for determining a state of a power storage device, which determines a deteriorated state or a life of the power storage element when the power storage element is in a stable state.
蓄電素子を管理する管理装置であって、
前記蓄電素子を備えた蓄電装置の異なる2つの部位の温度をそれぞれ測定する第1及び第2の測温部から取得した各温度の温度差に基づいて前記蓄電素子の安定状態を判定し、
前記蓄電装置の異なる2つの部位として、複数個集積した前記蓄電素子のうち放熱しやすい蓄電素子と放熱しにくい蓄電素子のみ前記第1及び第2の測温部により温度を測定し、前記第1及び第2の測温部から取得した2つの前記蓄電素子の温度差に基づいて、前記蓄電素子の安定状態を判定する、管理装置。
It is a management device that manages power storage elements.
The stable state of the power storage element is determined based on the temperature difference of each temperature acquired from the first and second temperature measuring units that measure the temperatures of two different parts of the power storage device provided with the power storage element.
As two different parts of the power storage device, among the plurality of integrated power storage elements, only the power storage element that easily dissipates heat and the power storage element that does not easily dissipate heat are measured by the first and second temperature measuring units, and the temperature is measured by the first and second temperature measuring units. And a management device for determining the stable state of the power storage element based on the temperature difference between the two power storage elements acquired from the second temperature measuring unit.
請求項9に記載の管理装置であって、
前記温度差とタイマを併用して、前記蓄電素子の安定状態を判定する、管理装置。
The management device according to claim 9 .
A management device that determines the stable state of the power storage element by using the temperature difference and a timer together.
請求項9又は請求項10に記載の管理装置であって、
前記蓄電素子が安定状態の場合、前記蓄電素子の劣化状態又は寿命を判定する、管理装置。
The management device according to claim 9 or 10.
A management device that determines the deterioration state or the life of the power storage element when the power storage element is in a stable state.
JP2017185064A 2017-09-26 2017-09-26 A method for determining the state of a power storage device, a management device, and a power storage device. Active JP7064692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185064A JP7064692B2 (en) 2017-09-26 2017-09-26 A method for determining the state of a power storage device, a management device, and a power storage device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185064A JP7064692B2 (en) 2017-09-26 2017-09-26 A method for determining the state of a power storage device, a management device, and a power storage device.

Publications (2)

Publication Number Publication Date
JP2019061847A JP2019061847A (en) 2019-04-18
JP7064692B2 true JP7064692B2 (en) 2022-05-11

Family

ID=66178202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185064A Active JP7064692B2 (en) 2017-09-26 2017-09-26 A method for determining the state of a power storage device, a management device, and a power storage device.

Country Status (1)

Country Link
JP (1) JP7064692B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102684241B1 (en) * 2019-12-26 2024-07-12 에스엘 주식회사 Battery management device
KR102684231B1 (en) * 2019-12-26 2024-07-11 에스엘 주식회사 Battery management device
KR102684226B1 (en) * 2019-12-26 2024-07-11 에스엘 주식회사 Battery management device
JP7490609B2 (en) * 2021-03-29 2024-05-27 ダイムラー トラック エージー Vehicle Battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181907A (en) 2000-12-13 2002-06-26 Nissan Motor Co Ltd Battery state detection device for automotive battery
JP2007223386A (en) 2006-02-21 2007-09-06 Fujitsu Ten Ltd Monitoring device for vehicle battery and method therefor
JP2013057542A (en) 2011-09-07 2013-03-28 Gs Yuasa Corp State determination device and state determination method for battery pack
JP2014022282A (en) 2012-07-20 2014-02-03 Sharp Corp Secondary battery abnormality detector, secondary battery, and method for detecting secondary battery abnormality
JP2015035299A (en) 2013-08-08 2015-02-19 株式会社Gsユアサ State detecting method of lead storage battery, device thereof and vehicle
JP2017076481A (en) 2015-10-13 2017-04-20 株式会社デンソー Battery pack
JP2017523395A (en) 2014-05-28 2017-08-17 ボルボトラックコーポレーション Method for determining the reliability of degradation state parameter values

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181907A (en) 2000-12-13 2002-06-26 Nissan Motor Co Ltd Battery state detection device for automotive battery
JP2007223386A (en) 2006-02-21 2007-09-06 Fujitsu Ten Ltd Monitoring device for vehicle battery and method therefor
JP2013057542A (en) 2011-09-07 2013-03-28 Gs Yuasa Corp State determination device and state determination method for battery pack
JP2014022282A (en) 2012-07-20 2014-02-03 Sharp Corp Secondary battery abnormality detector, secondary battery, and method for detecting secondary battery abnormality
JP2015035299A (en) 2013-08-08 2015-02-19 株式会社Gsユアサ State detecting method of lead storage battery, device thereof and vehicle
JP2017523395A (en) 2014-05-28 2017-08-17 ボルボトラックコーポレーション Method for determining the reliability of degradation state parameter values
JP2017076481A (en) 2015-10-13 2017-04-20 株式会社デンソー Battery pack

Also Published As

Publication number Publication date
JP2019061847A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP7064692B2 (en) A method for determining the state of a power storage device, a management device, and a power storage device.
JP7382586B2 (en) power system
JP6760119B2 (en) Battery temperature estimation device, battery temperature estimation method and computer program
WO2019244489A1 (en) Battery system
JP4929597B2 (en) Battery module warm-up device
TW201610454A (en) Battery pack, control circuit, and control method
JP2019087458A (en) Management device of power storage element and management method
JP2001313092A (en) Cooling device for secondary battery
CN104344909A (en) Method and device for identifying an increase in temperature in a plurality of electrochemical storage cells
JP6696311B2 (en) Charging rate estimation device
CN111655534B (en) Apparatus and method for estimating SOC
US12049156B2 (en) Management apparatus, management method, and vehicle
JP2020008480A (en) Temperature sensor abnormality determination device and temperature sensor abnormality determination method
US8977510B2 (en) System and method for determining charging and discharging power levels for a battery pack
JP2014187807A (en) Power storage system
EP1052757A2 (en) Charge control apparatus for a battery pack
JP7087610B2 (en) Battery control device
JP2010058635A (en) Battery cooling device
JP2001076769A (en) Battery internal temperature detector
JP6369429B2 (en) Battery cooling control method
JP7576529B2 (en) Battery unit
JP2010160026A (en) Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
US20230081030A1 (en) Protection system for electromagnetic relay
JP2020064810A (en) Cooling system
JP7527897B2 (en) Secondary battery and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7064692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150