[go: up one dir, main page]

JP7099989B2 - Method of manufacturing secondary batteries and secondary batteries - Google Patents

Method of manufacturing secondary batteries and secondary batteries Download PDF

Info

Publication number
JP7099989B2
JP7099989B2 JP2019096039A JP2019096039A JP7099989B2 JP 7099989 B2 JP7099989 B2 JP 7099989B2 JP 2019096039 A JP2019096039 A JP 2019096039A JP 2019096039 A JP2019096039 A JP 2019096039A JP 7099989 B2 JP7099989 B2 JP 7099989B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
electrode
plate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019096039A
Other languages
Japanese (ja)
Other versions
JP2020191239A (en
Inventor
祐輔 ▲高▼士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2019096039A priority Critical patent/JP7099989B2/en
Publication of JP2020191239A publication Critical patent/JP2020191239A/en
Application granted granted Critical
Publication of JP7099989B2 publication Critical patent/JP7099989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、充放電により発熱する二次電池及び二次電池の製造方法に関する。 The present invention relates to a secondary battery that generates heat by charging and discharging, and a method for manufacturing the secondary battery.

周知のように、携帯用の電子機器の電源として、また、電気自動車やハイブリッド自動車などの電源として、リチウムイオン二次電池等の二次電池が用いられている。例えば、リチウムイオン二次電池は、正極板と負極板とがセパレータを介して複数枚積層された極板群を、リチウム含有電解質を含む非水系電解液とともに電池ケースに収納して構成される。 As is well known, a secondary battery such as a lithium ion secondary battery is used as a power source for portable electronic devices and as a power source for electric vehicles and hybrid vehicles. For example, a lithium ion secondary battery is configured by accommodating a group of electrode plates in which a positive electrode plate and a negative electrode plate are laminated via a separator in a battery case together with a non-aqueous electrolyte solution containing a lithium-containing electrolyte.

こうした、二次電池は、環境温度が高くなることで放熱性が低下したり、大電流での充放電によって発熱量が増加したりすることで電池温度が上昇すると電池性能が低下する。そこで、放熱性の高められた二次電池の一例が特許文献1に記載されている。 The battery performance of such a secondary battery deteriorates when the battery temperature rises due to a decrease in heat dissipation due to a high environmental temperature or an increase in the amount of heat generated by charging / discharging with a large current. Therefore, Patent Document 1 describes an example of a secondary battery having improved heat dissipation.

特許文献1に記載の二次電池は、積層型電池であって、正極板と負極板とがセパレータを介して交互に積層されて構成される極板群(電極積層体)を有している。電池ケース(外装)は、この極板群とともに電解液(電解質)を密封して収納する。極板群は、積層方向において上面側と下面側とを貫通する貫通部を備えている。電池ケースは、収納する極板群の貫通部と対応した位置に、この貫通部の貫通方向へと窪んだ凹部を備えている。 The secondary battery described in Patent Document 1 is a laminated battery, and has a group of electrode plates (electrode laminated body) in which positive electrode plates and negative electrode plates are alternately laminated via a separator. .. The battery case (exterior) seals and stores the electrolytic solution (electrolyte) together with the electrode plates. The electrode plate group includes a penetrating portion that penetrates the upper surface side and the lower surface side in the stacking direction. The battery case is provided with a recess recessed in the penetrating direction of the penetrating portion at a position corresponding to the penetrating portion of the electrode plate group to be stored.

特開2007-18917号公報Japanese Unexamined Patent Publication No. 2007-18917

近年、車両駆動用の電源は、電池性能として、電池容量の維持・拡大とともに、利用環境の拡大や、大きな充放電が可能であることが求められている。
特許文献1に記載の二次電池等は、放熱性が高められるが、極板群に設けられた貫通孔による電極合材の減少に応じて電池容量が低下するおそれがある。一方、二次電池等は、電池容量を維持させるために貫通孔を小さくしたり、減らしたりすると、放熱性が低下して電池温度の上昇が大きくなり電池性能が低下するおそれがある。
In recent years, as a battery performance, a power source for driving a vehicle is required to be able to maintain and expand the battery capacity, expand the usage environment, and perform large charge / discharge.
The secondary battery or the like described in Patent Document 1 has improved heat dissipation, but there is a risk that the battery capacity will decrease as the electrode mixture decreases due to the through holes provided in the electrode plate group. On the other hand, in a secondary battery or the like, if the through hole is made smaller or smaller in order to maintain the battery capacity, the heat dissipation property is lowered, the battery temperature rises significantly, and the battery performance may be lowered.

本発明は、このような実情に鑑みてなされたものであり、その目的は、電池容量を維持しつつ、電池温度の上昇による電池性能の低下を抑制可能な二次電池及び二次電池の製造方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to manufacture a secondary battery and a secondary battery capable of suppressing a decrease in battery performance due to an increase in battery temperature while maintaining a battery capacity. To provide a method.

上記課題を解決する二次電池は、第1電極板と、前記第1電極板と電気的に対となる第2電極板とがセパレータを介して交互に積層された極板群を有する二次電池であって、前記第1電極板は、第1基材の一部に第1電極合材層を有し、前記第2電極板は、第2基材の一部に第2電極合材層を有し、前記第1基材の板面は、前記第2基材の板面よりも広く、前記第2電極板を挟む2つの前記第1電極板は、面方向に偏倚して積層されることで積層方向に不一致となる非対応範囲を有するとともに、前記2つの前記第1電極合材層が前記積層方向に一致する重複範囲中に前記2つの前記第1電極板に挟まれる前記第2電極板の前記第2電極合材層の全範囲が含まれる。 The secondary battery that solves the above-mentioned problems has a secondary electrode plate group in which a first electrode plate and a second electrode plate that is electrically paired with the first electrode plate are alternately laminated via a separator. In the battery, the first electrode plate has a first electrode mixture layer on a part of the first base material, and the second electrode plate has a second electrode mixture on a part of the second base material. The plate surface of the first base material having a layer is wider than the plate surface of the second base material, and the two first electrode plates sandwiching the second electrode plate are laminated unevenly in the surface direction. The two first electrode mixture layers are sandwiched between the two first electrode plates in an overlapping range that coincides with the stacking direction. The entire range of the second electrode mixture layer of the second electrode plate is included.

上記課題を解決する二次電池の製造方法は、第1電極板と、前記第1電極板と電気的に対となる第2電極板とがセパレータを介して交互に積層された極板群を有する二次電池の製造方法であって、前記第1電極板は、第1基材の一部に第1電極合材層を有し、前記第2電極板は、第2基材の一部に第2電極合材層を有し、前記第1電極板の板面は、前記第2電極板の板面よりも広く、前記第2電極板を挟む2つの前記第1電極板を、前記2つの前記第1電極合材層が積層方向に一致する重複範囲中に前記2つの前記第1電極板に挟まれる前記第2電極板の前記第2電極合材層の全範囲を含むようにしつつ、面方向に偏倚させて積層することで前記積層方向に不一致となる非対応範囲を設ける積層工程を備える。 A method for manufacturing a secondary battery for solving the above problems is to form a group of electrode plates in which a first electrode plate and a second electrode plate electrically paired with the first electrode plate are alternately laminated via a separator. A method for manufacturing a secondary battery, wherein the first electrode plate has a first electrode mixture layer as a part of a first base material, and the second electrode plate is a part of a second base material. The first electrode plate has a second electrode mixture layer, and the plate surface of the first electrode plate is wider than the plate surface of the second electrode plate. The entire range of the second electrode mixture layer of the second electrode plate sandwiched between the two first electrode plates is included in the overlapping range in which the two first electrode mixture layers coincide with each other in the stacking direction. At the same time, it is provided with a laminating step of providing a non-corresponding range in which the laminating direction does not match by laminating with a bias in the plane direction.

通常、極板群において、第1電極板等は外周が積層方向に揃うように積層されることにより、積層方向に略真っ直ぐに積み重ねられる。
これに対し、このような構成又は方法によれば、2つの第1電極板の板面が偏倚して積層されている、つまり、横にずれて積み重ねられる。よって、隣り合う2つの第1電極板は積層方向に不一致となる非対応範囲を有する。この非対応範囲は、積層方向において、板面の少なくとも一方向が他の板面に対向していない開放された範囲となるため、他の板面に対向する範囲に比べて高い放熱性能を有するようになる。よって、電池容量を維持しつつ、電池温度の上昇による電池性能の低下を抑制可能になる。
Usually, in the electrode plate group, the first electrode plates and the like are stacked so that the outer circumferences are aligned in the stacking direction, so that the first electrode plates and the like are stacked substantially straight in the stacking direction.
On the other hand, according to such a configuration or method, the plate surfaces of the two first electrode plates are unevenly stacked, that is, stacked laterally. Therefore, the two adjacent first electrode plates have a non-correspondence range in which they do not match in the stacking direction. This non-corresponding range is an open range in which at least one direction of the plate surface does not face the other plate surface in the stacking direction, and therefore has higher heat dissipation performance than the range facing the other plate surface. Will be. Therefore, it is possible to suppress the deterioration of the battery performance due to the increase in the battery temperature while maintaining the battery capacity.

また、2つの第1電極板が横にずれて積層されたとしても、その間に挟まれる第2電極板の第2電極合材層の全範囲が、両方の第1電極板の第1電極合材層に対向するため、第1電極板と第2電極板との間で、従来と同様のイオン移動が可能であるため、電池性能が低下するおそれもない。 Further, even if the two first electrode plates are laterally offset and laminated, the entire range of the second electrode mixture layer of the second electrode plate sandwiched between them covers the first electrode combination of both first electrode plates. Since it faces the material layer, ion transfer can be performed between the first electrode plate and the second electrode plate in the same manner as in the conventional case, so that there is no possibility that the battery performance is deteriorated.

好ましい構成として、3つ以上の前記第1電極板は、前記積層方向から見たとき、各前記第1電極板が同じ方向にずれて偏倚している。
このような構成によれば、複数の第1電極板が積層方向から見て一定方向にずれて偏倚する。つまり、第1電極板が横ずれを有してずれて積み重ねられる。これにより、各第1電極板に非対応範囲が確保されて電池温度の上昇が抑えられる。
As a preferred configuration, the three or more first electrode plates are offset and deviated in the same direction when viewed from the stacking direction.
According to such a configuration, the plurality of first electrode plates are displaced and deviated in a certain direction when viewed from the stacking direction. That is, the first electrode plates have lateral displacement and are displaced and stacked. As a result, a non-corresponding range is secured for each first electrode plate, and an increase in battery temperature is suppressed.

好ましい構成として、前記第1電極板が負極板であり、前記第2電極板が正極板である。
このような構成によれば、正極板よりも負極板が大きい二次電池において、負極板による放熱性が高められるようになる。
As a preferred configuration, the first electrode plate is a negative electrode plate and the second electrode plate is a positive electrode plate.
According to such a configuration, in a secondary battery in which the negative electrode plate is larger than the positive electrode plate, the heat dissipation property of the negative electrode plate can be enhanced.

好ましい構成として、前記第1電極板を挟む2つの前記セパレータは、各外辺が前記積層方向に揃うように積層されている。
このような構成によれば、1つの第1電極板(例えば1つの負極板)と、2つのセパレータとを一組として扱うことができる。例えば、セパレータに収容した第1電極板を、横偏倚を有するように積層させることができる。
As a preferred configuration, the two separators sandwiching the first electrode plate are laminated so that their outer sides are aligned in the stacking direction.
According to such a configuration, one first electrode plate (for example, one negative electrode plate) and two separators can be treated as a set. For example, the first electrode plates housed in the separator can be laminated so as to have lateral deviation.

好ましい構成として、前記第1電極板を挟む2つの前記セパレータは、前記積層方向に不一致となる非対応範囲を有するように表面が面方向に偏倚して積層されている。
このような構成によれば、第1電極板とともにセパレータも偏倚を有するように積層されることで、セパレータの大きさを、セパレータを挟む第1電極板と第2電極板との絶縁の確保に必要である大きさに抑えることができる。
As a preferred configuration, the two separators sandwiching the first electrode plate are laminated with their surfaces deviated in the plane direction so as to have a non-corresponding range in which they do not match in the stacking direction.
According to such a configuration, the separator is laminated together with the first electrode plate so as to have an deviation, so that the size of the separator can be adjusted to secure the insulation between the first electrode plate and the second electrode plate sandwiching the separator. It can be reduced to the required size.

好ましい構成として、前記極板群は、前記積層方向の中央から端部に位置する前記第1電極板が同じ方向にずれて偏倚している。
このような構成によれば、極板群が中央から両端にそれぞれ同じ方向に偏倚するかたち、いわゆるV字状になる。これにより、極板群の有する偏倚量が中央から端部までの積算となるため、一方の端部から他方の端部に向かって連続する偏倚の積算よりも偏倚量を抑えられるとともに、放熱性能を確保することができる。
As a preferable configuration, in the electrode plate group, the first electrode plate located at the end from the center in the stacking direction is displaced in the same direction and is deviated.
According to such a configuration, the electrode plates are biased from the center to both ends in the same direction, that is, a so-called V-shape. As a result, the amount of deviation of the electrode plate group is integrated from the center to the end, so that the amount of deviation can be suppressed compared to the integration of continuous deviation from one end to the other, and heat dissipation performance. Can be secured.

好ましい方法として、前記積層工程はさらに、前記第2電極板、及び、前記セパレータの少なくとも一方を前記2つの前記第1電極板と同じ方向に偏倚させて積層する。
このような方法によれば、第2電極板及びセパレータの少なくとも一方が第1電極板と同じ方向に偏倚することから、複数の第1電極板を、偏倚を有するように積層させることが容易である。また、積層された極板群の端部の積層方向に対する傾きがなだらかになる。
As a preferred method, in the laminating step, at least one of the second electrode plate and the separator is further biased and laminated in the same direction as the two first electrode plates.
According to such a method, since at least one of the second electrode plate and the separator is biased in the same direction as the first electrode plate, it is easy to stack a plurality of first electrode plates so as to have the deviation. be. In addition, the inclination of the end portions of the laminated electrode plates with respect to the stacking direction becomes gentle.

この発明によれば、電池容量を維持しつつ、電池温度の上昇による電池性能の低下を抑制可能になる。 According to the present invention, it is possible to suppress a decrease in battery performance due to an increase in battery temperature while maintaining a battery capacity.

二次電池を具体化した一実施形態について、その斜視構造の概略を示す図。The figure which shows the outline of the perspective structure about one Embodiment which embodied the secondary battery. 同実施形態における極板群の構造を説明する模式図。The schematic diagram explaining the structure of the electrode plate group in the same embodiment. 同実施形態における二次電池の図1の3-3切断線における断面図。FIG. 3 is a cross-sectional view taken along the line 3-3 of FIG. 1 of the secondary battery in the same embodiment. 同実施形態における極板群の構造を説明する図3の部分断面図。FIG. 3 is a partial cross-sectional view of FIG. 3 for explaining the structure of the electrode plate group in the same embodiment. 同実施形態における極板群の放熱性能を示す図。The figure which shows the heat dissipation performance of the electrode plate group in the same embodiment. 同実施形態における極板群の放熱性能の測定を説明する模式図。The schematic diagram explaining the measurement of the heat dissipation performance of the electrode plate group in the same embodiment.

図1~図6を参照して、二次電池の一実施形態について説明する。以下では、二次電池をリチウムイオン二次電池に具体化した例について説明する。
図1に示すように、二次電池11は、開口部を有するケース12と、ケース12の開口部を封止する蓋部13とを備える。ケース12及び蓋部13が電池ケースを構成する。ケース12及び蓋部13は、金属材料から形成されている。蓋部13には、正極端子21を含む正極集電部20と、負極端子31を含む負極集電部30とが設けられている。ケース12には、直方体状の極板群14及び電解液が収納されている。蓋部13には、電池ケースの内圧に応じて電池ケース内の気体を放出する放出部32と、電解液を注入する注入孔33とが設けられている。
An embodiment of the secondary battery will be described with reference to FIGS. 1 to 6. In the following, an example in which the secondary battery is embodied as a lithium ion secondary battery will be described.
As shown in FIG. 1, the secondary battery 11 includes a case 12 having an opening and a lid portion 13 for sealing the opening of the case 12. The case 12 and the lid 13 form a battery case. The case 12 and the lid 13 are made of a metal material. The lid portion 13 is provided with a positive electrode current collector 20 including a positive electrode terminal 21 and a negative electrode current collector 30 including a negative electrode terminal 31. The case 12 contains a rectangular cuboid plate group 14 and an electrolytic solution. The lid portion 13 is provided with a discharge portion 32 for discharging the gas in the battery case according to the internal pressure of the battery case, and an injection hole 33 for injecting the electrolytic solution.

図2に示すように、極板群14は、複数の正極板15と複数の負極板16とが、セパレータ17を介して交互に積層された積層体である。負極板16が第1電極板を構成し、正極板15が負極板16と電気的に対となる第2電極板を構成する。 As shown in FIG. 2, the electrode plate group 14 is a laminated body in which a plurality of positive electrode plates 15 and a plurality of negative electrode plates 16 are alternately laminated via a separator 17. The negative electrode plate 16 constitutes a first electrode plate, and the positive electrode plate 15 constitutes a second electrode plate that is electrically paired with the negative electrode plate 16.

正極板15は、矩形状であって4辺の外周辺を有しているとともに、第2基材としての正極基材18と、正極基材18の両面の一部に設けられた第2電極合材層を構成する正極合材層19とを含む。正極基材18は、金属箔(又は薄い金属板)から形成され、長方形状(矩形状)に成形されている。正極基材18は、長辺に対応する上端及び下端のうち、上端から延出される正極タブ18A(集電タブ)を有している。正極タブ18Aには、正極合材は設けられていない。正極タブ18Aは、上端のうち、長辺の中心から、一側方(図2中左側)に向かって所定距離だけずれた位置に設けられている。 The positive electrode plate 15 has a rectangular shape and has four outer periphery, and also has a positive electrode base material 18 as a second base material and a second electrode provided on a part of both sides of the positive electrode base material 18. The positive electrode mixture layer 19 constituting the mixture layer is included. The positive electrode base material 18 is formed of a metal foil (or a thin metal plate) and is formed into a rectangular shape (rectangular shape). The positive electrode base material 18 has a positive electrode tab 18A (current collecting tab) extending from the upper end of the upper end and the lower end corresponding to the long side. The positive electrode tab 18A is not provided with a positive electrode mixture. The positive electrode tab 18A is provided at a position of the upper end deviated from the center of the long side by a predetermined distance toward one side (left side in FIG. 2).

正極基材18を構成する材料は、例えば、アルミニウムやアルミニウム合金を含む。正極合材を構成する材料は、正極活物質であるリチウム含有複合酸化物や、結着剤や、導電剤等を含む。 The material constituting the positive electrode base material 18 includes, for example, aluminum or an aluminum alloy. The material constituting the positive electrode mixture includes a lithium-containing composite oxide which is a positive electrode active material, a binder, a conductive agent and the like.

負極板16は、矩形状であって4辺の外周辺を有しているとともに、第1基材としての負極基材23と、負極基材23の両面の一部に設けられた第1電極合材層を構成する負極合材層24とを含む。負極基材23は、金属箔(又は薄い金属板)から形成され、長方形状(矩形状)に成形されている。負極基材23は、長辺に対応する上端及び下端のうち、上端から延出される負極タブ23A(集電タブ)を有している。負極タブ23Aには、負極合材は設けられていない。負極タブ23Aは、上端のうち、長辺の中心から、他側方(図2中右側)に向かって所定距離だけずれた位置に設けられている。 The negative electrode plate 16 has a rectangular shape and has four outer periphery, and also has a negative electrode base material 23 as a first base material and a first electrode provided on a part of both sides of the negative electrode base material 23. The negative electrode mixture layer 24 constituting the mixture layer is included. The negative electrode base material 23 is formed of a metal foil (or a thin metal plate) and is formed into a rectangular shape (rectangular shape). The negative electrode base material 23 has a negative electrode tab 23A (current collector tab) extending from the upper end of the upper end and the lower end corresponding to the long side. The negative electrode tab 23A is not provided with a negative electrode mixture. The negative electrode tab 23A is provided at a position of the upper end deviated from the center of the long side by a predetermined distance toward the other side (right side in FIG. 2).

負極基材23を構成する材料は、例えば、銅やニッケルを含む。負極合材を構成する材料は、負極活物質を含む粒子や、結着剤や、導電剤等を含む。負極活物質は、リチウムを吸蔵・放出可能な材料であり、例えば、黒鉛などの炭素、金属リチウム、リチウム合金である。 The material constituting the negative electrode base material 23 includes, for example, copper and nickel. The material constituting the negative electrode mixture includes particles containing a negative electrode active material, a binder, a conductive agent, and the like. The negative electrode active material is a material that can occlude and release lithium, and is, for example, carbon such as graphite, metallic lithium, or a lithium alloy.

正極板15は、正極タブ18Aの位置を揃えた状態で積層される。つまり、正極タブ18Aが、正極基材18の上端であって且つ幅方向の中央から一側方に寄った位置に配置するように重ねられる。よって、複数の正極板15の正極タブ18Aは、束状に集められて、正極タブ群を構成する。 The positive electrode plates 15 are laminated in a state where the positions of the positive electrode tabs 18A are aligned. That is, the positive electrode tabs 18A are stacked so as to be arranged at the upper end of the positive electrode base material 18 and at a position closer to one side from the center in the width direction. Therefore, the positive electrode tabs 18A of the plurality of positive electrode plates 15 are collected in a bundle to form a positive electrode tab group.

負極板16は、負極タブ23Aの位置を揃えた状態で積層される。つまり、負極タブ23Aが、負極基材23の上端であって且つ幅方向の中央から他側方に寄った位置に配置するように重ねられる。よって、複数の負極板16の負極タブ23Aは、束状に集められて、負極タブ群を構成する。 The negative electrode plates 16 are laminated in a state where the positions of the negative electrode tabs 23A are aligned. That is, the negative electrode tabs 23A are stacked so as to be arranged at the upper end of the negative electrode base material 23 and at a position closer to the other side from the center in the width direction. Therefore, the negative electrode tabs 23A of the plurality of negative electrode plates 16 are collected in a bundle to form a negative electrode tab group.

このように、正極タブ群及び負極タブ群を極板群14の同じ端部に位置させることにより、捲回型の電極体のように集電タブを異なる端部にそれぞれ設けるよりも、正極タブ群及び負極タブ群が占有するスペースを縮小することができる。なお、極板群14には、正極タブ群及び負極タブ群は含まれない。 In this way, by locating the positive electrode tab group and the negative electrode tab group at the same end of the electrode plate group 14, the positive electrode tab is not provided at different ends as in the case of a wound type electrode body. The space occupied by the group and the negative electrode tab group can be reduced. The electrode plate group 14 does not include the positive electrode tab group and the negative electrode tab group.

また、負極板16の板面は、正極板15の板面よりも広い。よって、負極基材23は、正極基材18よりも大きい外形を有している。また、負極合材層24は、正極合材層19よりも広い。 Further, the plate surface of the negative electrode plate 16 is wider than the plate surface of the positive electrode plate 15. Therefore, the negative electrode base material 23 has a larger outer shape than the positive electrode base material 18. Further, the negative electrode mixture layer 24 is wider than the positive electrode mixture layer 19.

セパレータ17は、絶縁材料からなる矩形状のシートからなる膜であり、4辺の外周辺を有しているとともに、正極板15及び負極板16よりも大きい外形を有している。セパレータ17は、正極板15及び負極板16の間に電解液を保持するための多孔性ポリオレフィン膜、及び多孔性ポリ塩化ビニル膜等の多孔性ポリマー膜、又は、リチウムイオンもしくはイオン導電性ポリマー電解質膜を、単独、又は組み合わせて使用することもできる。セパレータ17は、極板群14のうち積層方向における最前の層と最後の層にも配置される。 The separator 17 is a film made of a rectangular sheet made of an insulating material, has outer periphery on four sides, and has an outer shape larger than that of the positive electrode plate 15 and the negative electrode plate 16. The separator 17 is a porous polyolefin film for holding an electrolytic solution between the positive electrode plate 15 and the negative electrode plate 16, a porous polymer film such as a porous polyvinyl chloride film, or a lithium ion or ionic conductive polymer electrolyte. The membranes can also be used alone or in combination. The separator 17 is also arranged in the frontmost layer and the last layer in the stacking direction in the electrode plate group 14.

電解液は、リチウム含有電解質を含む非水系電解液であって、非水溶媒に支持塩が含有された組成物である。非水溶媒としては、プロピレンカーボネート(PC)等を用いることができる。支持塩としては、LiPF等のリチウム化合物(リチウム塩)を用いることができる。 The electrolytic solution is a non-aqueous electrolyte solution containing a lithium-containing electrolyte, and is a composition in which a supporting salt is contained in a non-aqueous solvent. As the non-aqueous solvent, propylene carbonate (PC) or the like can be used. As the supporting salt, a lithium compound (lithium salt) such as LiPF 6 can be used.

図3及び図4を参照して、極板群14の構造について説明する。なお、図3及び図4では、図示の便宜上、正極板15とセパレータ17との間、及び、負極板16とセパレータ17との間にそれぞれ空間が設けられているが、極板群14として積層された正極板15とセパレータ17と、及び、負極板16とセパレータ17とはそれぞれ接している。 The structure of the electrode plate group 14 will be described with reference to FIGS. 3 and 4. In FIGS. 3 and 4, for convenience of illustration, spaces are provided between the positive electrode plate 15 and the separator 17 and between the negative electrode plate 16 and the separator 17, but they are laminated as the electrode plate group 14. The positive electrode plate 15 and the separator 17 are in contact with each other, and the negative electrode plate 16 and the separator 17 are in contact with each other.

図3に示すように、極板群14は、積層方向断面において、下側にケース12の底面121に対向する下端部141を備え、上側に蓋部13に対向する上端部145を備える。下端部141は、積層方向の中央BCに最下点142を有し、中央BCから積層方向の端部に向かって上がる形状L11,L12、いわゆるV字形状を有している。同様に、上端部145は、積層方向の中央BCに最下点146を有し、中央BCから積層方向の端部に向かって上がる形状L21,L22、いわゆるV字形状を有している。つまり、極板群14を構成する正極板15や負極板16、セパレータ17は、上方を板面方向に所定のずれ量だけ偏倚して積層されている。また、極板群14の中央BCから積層方向の端部の間では、変位する方向が同じ方向であるとともに、隣接する2つの負極板16の偏倚量、隣接する2つの正極板15の偏倚量、及び隣接する2つのセパレータ17の偏倚量が同じである。 As shown in FIG. 3, the electrode plate group 14 includes a lower end portion 141 facing the bottom surface 121 of the case 12 on the lower side and an upper end portion 145 facing the lid portion 13 on the upper side in the cross section in the stacking direction. The lower end portion 141 has a lowest point 142 at the central BC in the stacking direction, and has shapes L11 and L12 rising from the central BC toward the end portion in the stacking direction, so-called V-shaped shapes. Similarly, the upper end portion 145 has a lowest point 146 at the central BC in the stacking direction, and has shapes L21 and L22 rising from the central BC toward the end portion in the stacking direction, so-called V-shaped shapes. That is, the positive electrode plate 15, the negative electrode plate 16, and the separator 17 constituting the electrode plate group 14 are laminated with the upper side deviated by a predetermined amount of deviation in the plate surface direction. Further, between the central BC of the electrode plate group 14 and the end portion in the stacking direction, the displacement directions are the same, the deviation amount of the two adjacent negative electrode plates 16 and the deviation amount of the two adjacent positive electrode plates 15. , And two adjacent separators 17 have the same displacement.

例えば、二次電池11の製造工程では、正極板15を挟むように2つの負極板16を積層させることで極板群14が製造される(積層工程)。
詳述すると、積層工程では、正極板15を挟む2つの負極板16を、2つの負極合材層24が積層方向に一致する重複範囲を有するように偏倚させて積層する。また、重複範囲中には、2つの負極板16に挟まれる正極板15の正極合材層19の全範囲を含むようにする。これにより、2つの負極板16で積層方向に不一致となる非対応範囲を設ける。非対応範囲は、負極基材23のうち負極合材層24の設けられていない部分であると好ましい。
For example, in the manufacturing process of the secondary battery 11, the electrode plate group 14 is manufactured by laminating two negative electrode plates 16 so as to sandwich the positive electrode plate 15 (lamination step).
More specifically, in the laminating step, the two negative electrode plates 16 sandwiching the positive electrode plate 15 are deviated and laminated so that the two negative electrode mixture layers 24 have an overlapping range that coincides with the laminating direction. Further, the overlapping range includes the entire range of the positive electrode mixture layer 19 of the positive electrode plate 15 sandwiched between the two negative electrode plates 16. As a result, the two negative electrode plates 16 are provided with a non-corresponding range in which they do not match in the stacking direction. The non-corresponding range is preferably a portion of the negative electrode base material 23 where the negative electrode mixture layer 24 is not provided.

また、この積層工程では、正極板15及びセパレータ17を、2つの負極板16と同じ方向に偏倚させて積層する。
図4は、極板群14の一部を拡大したものである。説明の便宜上、図4の左から右方向へ順に、第1正極板151、第1セパレータ171、第1負極板161、第2セパレータ172、第2正極板152、第3セパレータ173、第2負極板162とする。よって、第1セパレータ171を介して第1正極板151と第1負極板161とが積層され、第2セパレータ172を介して第1負極板161と第2正極板152とが積層され、第3セパレータ173を介して第2正極板152と第2負極板162とが積層されている。例えば、極板群14は、2つの負極板16としての第1負極板161及び第2負極板162が、第2正極板152を挟む構造を有している。
Further, in this laminating step, the positive electrode plate 15 and the separator 17 are laminated in the same direction as the two negative electrode plates 16.
FIG. 4 is an enlarged view of a part of the electrode plate group 14. For convenience of explanation, the first positive electrode plate 151, the first separator 171 and the first negative electrode plate 161 and the second separator 172, the second positive electrode plate 152, the third separator 173, and the second negative electrode are arranged in this order from the left to the right in FIG. It is a plate 162. Therefore, the first positive electrode plate 151 and the first negative electrode plate 161 are laminated via the first separator 171 and the first negative electrode plate 161 and the second positive electrode plate 152 are laminated via the second separator 172. The second positive electrode plate 152 and the second negative electrode plate 162 are laminated via the separator 173. For example, the electrode plate group 14 has a structure in which the first negative electrode plate 161 and the second negative electrode plate 162 as the two negative electrode plates 16 sandwich the second positive electrode plate 152.

第1正極板151及び第2正極板152は、ラインL12Pに沿う下端の配置位置と、ラインL22Pに沿う上端の配置位置とを有する。ラインL12Pは、極板群14の下端部141に平行、かつ、上方に設けられている。ラインL22Pは、極板群14の上端部145に平行、かつ、下方に設けられている。第1正極板151と第2正極板152とは、縦方向に同じ長さである。つまり、第2正極板152の下端P12が第1正極板151の下端P11に対して正極ずれ量PSだけ上方にずれて積層されている。同様に、第2正極板152の上端P22が第1正極板151の上端P21に対して正極ずれ量PSだけ上方にずれて積層されている。 The first positive electrode plate 151 and the second positive electrode plate 152 have an arrangement position of the lower end along the line L12P and an arrangement position of the upper end along the line L22P. The line L12P is provided parallel to and above the lower end portion 141 of the electrode plate group 14. The line L22P is provided parallel to and below the upper end portion 145 of the electrode plate group 14. The first positive electrode plate 151 and the second positive electrode plate 152 have the same length in the vertical direction. That is, the lower end P12 of the second positive electrode plate 152 is laminated with the lower end P11 of the first positive electrode plate 151 displaced upward by the positive electrode deviation amount PS. Similarly, the upper end P22 of the second positive electrode plate 152 is laminated with the upper end P21 of the first positive electrode plate 151 displaced upward by the positive electrode deviation amount PS.

第1負極板161及び第2負極板162は、ラインL12Mに沿う下端の配置位置と、ラインL22Mに沿う上端の配置位置とを有する。ラインL12Mは、極板群14の下端部141に平行、かつ、上方に設けられている。ラインL22Mは、極板群14の上端部145に平行、かつ、下方に設けられている。第1負極板161と第2負極板162とは、縦方向に同じ長さである。つまり、第2負極板162の下端M12が第1負極板161の下端M11に対して負極ずれ量MSだけ上方にずれて積層されている。同様に、第2負極板162の上端M22が第1負極板161の上端M21に対して負極ずれ量MSだけ上方にずれて積層されている。 The first negative electrode plate 161 and the second negative electrode plate 162 have an arrangement position of the lower end along the line L12M and an arrangement position of the upper end along the line L22M. The line L12M is provided parallel to and above the lower end portion 141 of the electrode plate group 14. The line L22M is provided parallel to and below the upper end portion 145 of the electrode plate group 14. The first negative electrode plate 161 and the second negative electrode plate 162 have the same length in the vertical direction. That is, the lower end M12 of the second negative electrode plate 162 is laminated with the lower end M11 of the first negative electrode plate 161 displaced upward by the negative electrode deviation amount MS. Similarly, the upper end M22 of the second negative electrode plate 162 is laminated with the upper end M21 of the first negative electrode plate 161 displaced upward by the negative electrode deviation amount MS.

なお、負極ずれ量MSは、正極ずれ量PSと同じである。
第1負極板161は、下端右側が右隣の第2負極板162の下端に対して負極ずれ量MSだけずれているとともに、右にある他の負極板16の下端にも積層方向に重ならない。よって、第1負極板161は、下端に負極ずれ量MSに対応する非対応範囲を有する。第2負極板162の下端についても同様に非対応範囲が設けられている。非対応範囲は、2つの第1負極板161及び第2負極板162の間において、偏倚して積層されることで積層方向に不一致となる範囲である。
The negative electrode deviation amount MS is the same as the positive electrode deviation amount PS.
The right side of the lower end of the first negative electrode plate 161 is deviated from the lower end of the second negative electrode plate 162 adjacent to the right by the negative electrode deviation amount MS, and does not overlap with the lower ends of the other negative electrode plates 16 on the right in the stacking direction. .. Therefore, the first negative electrode plate 161 has a non-corresponding range corresponding to the negative electrode deviation amount MS at the lower end. Similarly, a non-corresponding range is provided for the lower end of the second negative electrode plate 162. The non-corresponding range is a range in which the two first negative electrode plates 161 and the second negative electrode plates 162 are stacked unevenly so that they do not match in the stacking direction.

第2負極板162は、上端左側が左隣の第1負極板161の上端に対して負極ずれ量MSだけずれているとともに、左にある他の負極板16の上端にも積層方向に重ならない。よって、第2負極板162は、上端に負極ずれ量MSに対応する非対応範囲を有する。第1負極板161の上端についても同様に非対応範囲が設けられている。 The left upper end of the second negative electrode plate 162 is displaced by the negative electrode deviation amount MS from the upper end of the first negative electrode plate 161 adjacent to the left, and does not overlap with the upper ends of the other negative electrode plates 16 on the left in the stacking direction. .. Therefore, the second negative electrode plate 162 has a non-corresponding range corresponding to the negative electrode deviation amount MS at the upper end. Similarly, a non-corresponding range is provided for the upper end of the first negative electrode plate 161.

ところで、非対応範囲は、第1負極板161や第2負極板162の板面の少なくとも一方向が他の負極板16の板面に対向していない開放された範囲となる。開放された範囲は、両面が他の負極板16の板面に対向している開放されていない範囲に比べて高い放熱性能を有する。 By the way, the non-corresponding range is an open range in which at least one direction of the plate surface of the first negative electrode plate 161 and the second negative electrode plate 162 does not face the plate surface of the other negative electrode plate 16. The open range has higher heat dissipation performance than the unopened range in which both sides face the plate surface of the other negative electrode plate 16.

また、極板群14は、第1負極板161の負極合材層24及び第2負極板162の負極合材層24が積層方向に一致する重複範囲を有する。また、極板群14は、この積層方向に一致する重複範囲中に、第1負極板161及び第2負極板162に挟まれる第2正極板152の正極合材層19の全範囲が含まれている。 Further, the electrode plate group 14 has an overlapping range in which the negative electrode mixture layer 24 of the first negative electrode plate 161 and the negative electrode mixture layer 24 of the second negative electrode plate 162 coincide with each other in the stacking direction. Further, the electrode plate group 14 includes the entire range of the positive electrode mixture layer 19 of the second positive electrode plate 152 sandwiched between the first negative electrode plate 161 and the second negative electrode plate 162 in the overlapping range corresponding to the stacking direction. ing.

第1セパレータ171~第3セパレータ173は、下端の配置位置が極板群14の下端部141の形状L12に沿い、上端の配置位置が極板群14の上端部145の形状L22に沿う。第1セパレータ171~第3セパレータ173は、縦方向に同じ長さである。つまり、第2セパレータ172が第1セパレータ171に対してセパレータずれ量SS1だけ上方にずれて積層されているとともに、第3セパレータ173が第2セパレータ172に対してセパレータずれ量SS2だけ上方にずれて積層されている。第1セパレータ171の下端のセパレータずれ量SS1が非対応範囲を構成し、第2セパレータ172の下端のセパレータずれ量SS2が非対応範囲を構成する。ここでの非対応範囲は、2つのセパレータ17の間において、偏倚して積層されることで積層方向に不一致となる範囲である。 In the first separator 171 to the third separator 173, the arrangement position of the lower end is along the shape L12 of the lower end portion 141 of the electrode plate group 14, and the arrangement position of the upper end is along the shape L22 of the upper end portion 145 of the electrode plate group 14. The first separator 171 to the third separator 173 have the same length in the vertical direction. That is, the second separator 172 is laminated with the separator deviation amount SS1 displaced upward with respect to the first separator 171 and the third separator 173 is displaced upward by the separator deviation amount SS2 with respect to the second separator 172. It is laminated. The separator deviation amount SS1 at the lower end of the first separator 171 constitutes the non-corresponding range, and the separator deviation amount SS2 at the lower end of the second separator 172 constitutes the non-corresponding range. The non-corresponding range here is a range in which the two separators 17 are stacked unevenly so that they do not match in the stacking direction.

セパレータずれ量SS1とセパレータずれ量SS2とを加算した長さは、正極ずれ量PSや負極ずれ量MSと同じ長さである。例えば、セパレータずれ量SS1の長さとセパレータずれ量SS2の長さとの比が1:1であれば、それぞれが正極ずれ量PSの半分の長さである。なお、セパレータずれ量SS1の長さとセパレータずれ量SS2の長さとの比は、正極板15の厚さと負極板16の厚さとの比を考慮して変更してもよい。 The length obtained by adding the separator deviation amount SS1 and the separator deviation amount SS2 is the same as the positive electrode deviation amount PS and the negative electrode deviation amount MS. For example, if the ratio of the length of the separator deviation amount SS1 to the length of the separator deviation amount SS2 is 1: 1, each is half the length of the positive electrode deviation amount PS. The ratio between the length of the separator deviation amount SS1 and the length of the separator deviation amount SS2 may be changed in consideration of the ratio between the thickness of the positive electrode plate 15 and the thickness of the negative electrode plate 16.

図5及び図6を参照して、極板群14の温度について説明する。
極板群14は、充放電によって温度が上昇するが、放熱性能が高ければ温度が低く維持され、放熱性能が低ければ温度が高く維持される。このとき、極板群14の放熱性能が、第1負極板161や第2負極板162が積層されたときの偏倚量、いわゆる、ずらし幅によって変化することが見出された。
The temperature of the electrode plate group 14 will be described with reference to FIGS. 5 and 6.
The temperature of the electrode plate group 14 rises due to charging and discharging, but if the heat dissipation performance is high, the temperature is kept low, and if the heat dissipation performance is low, the temperature is kept high. At this time, it was found that the heat dissipation performance of the electrode plate group 14 changes depending on the amount of deviation when the first negative electrode plate 161 and the second negative electrode plate 162 are laminated, that is, the so-called shift width.

図4に示すように、ずらし幅は、負極ずれ量MSに対応し、放熱性能が高く確保される負極板16の非対応範囲の広さを規定する。極板群14は、ずらし幅が大きくなれば、非対応範囲が広くなることに応じて放熱性能が高くなり、逆に、ずらし幅が小さくなれば、非対応範囲が狭くなることに応じて放熱性能が低くなる。 As shown in FIG. 4, the shift width corresponds to the negative electrode deviation amount MS, and defines the width of the non-corresponding range of the negative electrode plate 16 in which high heat dissipation performance is ensured. When the shift width is large, the electrode plate group 14 has higher heat dissipation performance as the non-correspondence range becomes wider, and conversely, when the shift width becomes smaller, heat dissipation corresponds to the narrower non-correspondence range. Performance will be low.

図5を参照して、ずらし幅が「0mm」のとき、負極板16を偏倚させずに積層させた極板群14であり、いわゆる従来の極板群14である。ずらし幅が「0mm」である負極板16は、負極板16の下端や上端が積層方向に揃っている。ずらし幅が「0.5mm」のとき、負極板16が「0.5mm」ずつ偏倚して積層された極板群14であり、負極板16の下端や上端が板面方向に「0.5mm」ずつ偏倚している。ずらし幅が「1.0mm」のとき、負極板16が「1.0mm」ずつ偏倚して積層された極板群14であり、負極板16の下端や上端が板面方向に「1.0mm」ずつ偏倚している。 With reference to FIG. 5, when the shift width is “0 mm”, the negative electrode plates 16 are laminated without being biased, which is the so-called conventional electrode plate group 14. In the negative electrode plate 16 having a shift width of "0 mm", the lower ends and the upper ends of the negative electrode plate 16 are aligned in the stacking direction. When the shift width is "0.5 mm", the negative electrode plates 16 are the electrode plate group 14 in which the negative electrode plates 16 are deviated by "0.5 mm" and laminated, and the lower and upper ends of the negative electrode plates 16 are "0.5 mm" in the plate surface direction. It is biased one by one. When the shift width is "1.0 mm", the negative electrode plates 16 are a group of electrode plates 14 in which the negative electrode plates 16 are deviated by "1.0 mm" and laminated, and the lower and upper ends of the negative electrode plates 16 are "1.0 mm" in the plate surface direction. It is biased one by one.

そして、ずらし幅の相違する各極板群14について、高温環境に保管した後、低温環境に所定時間おいた後の温度の測定結果を得た。
図5に示すように、「15分後温度」の温度測定結果として、ずらし幅が「0mm」のとき、「35.2℃」、ずらし幅が「0.5mm」のとき、「34.6℃」、ずらし幅が「1.0mm」のとき、「34.1℃」が得られた。
Then, the temperature measurement results of each of the electrode plate groups 14 having different shift widths were obtained after being stored in a high temperature environment and then placed in a low temperature environment for a predetermined time.
As shown in FIG. 5, as a temperature measurement result of "temperature after 15 minutes", when the shift width is "0 mm", it is "35.2 ° C", and when the shift width is "0.5 mm", it is "34.6". When "° C." and the shift width were "1.0 mm", "34.1 ° C." was obtained.

これによれば、「15分後温度」は、ずらし幅「0.5mm」のとき、ずらし幅「0mm」に対して「0.6℃」低くなり、相対温度差に対して「2%」の温度低下となった。換言すると、放熱性能が相対温度差に対して「2%」高くなった。 According to this, when the shift width is "0.5 mm", the "temperature after 15 minutes" is "0.6 ° C" lower than the shift width "0 mm" and "2%" with respect to the relative temperature difference. The temperature dropped. In other words, the heat dissipation performance was "2%" higher than the relative temperature difference.

また、「15分後温度」は、ずらし幅「1.0mm」のとき、ずらし幅「0mm」に対して「1.1℃」低くなり、相対温度差に対して「3.7%」の温度低下となった。換言すると、放熱性能が相対温度差に対して「3.7%」高くなった。 Further, the "temperature after 15 minutes" is "1.1 ° C" lower than the shift width "0 mm" when the shift width is "1.0 mm", and is "3.7%" with respect to the relative temperature difference. The temperature has dropped. In other words, the heat dissipation performance was "3.7%" higher than the relative temperature difference.

図6を参照して、測定方法について詳述する。
1枚の負極板16の左右に、それぞれ一組の極板を配置して温度測定用の極板群14を作成した。なお一組の極板とは、セパレータ17、正極板15、セパレータ17、及び負極板16を積層させたものである。
The measuring method will be described in detail with reference to FIG.
A set of electrode plates was arranged on the left and right sides of one negative electrode plate 16 to prepare a group of electrode plates 14 for temperature measurement. The set of electrode plates is a stack of a separator 17, a positive electrode plate 15, a separator 17, and a negative electrode plate 16.

そして、温度測定用の極板群14をナイロン袋40に収容する。ナイロン袋40に収容した温度測定用の極板群14を、まず、55℃の恒温槽50内で30分間にわたって保管した。続いて、相対温度差が30℃である25℃の恒温槽50内で15分後にわたって保管したときの温度を、温度測定用の極板群14の積層方向中央36で測定し、これを温度測定結果として得た。 Then, the electrode plate group 14 for temperature measurement is housed in the nylon bag 40. The plate group 14 for temperature measurement housed in the nylon bag 40 was first stored in a constant temperature bath 50 at 55 ° C. for 30 minutes. Subsequently, the temperature when stored for 15 minutes in a constant temperature bath 50 at 25 ° C. having a relative temperature difference of 30 ° C. was measured at the center 36 in the stacking direction of the electrode plate group 14 for temperature measurement, and this was measured. Obtained as a measurement result.

本実施形態の効果について説明する。
(1)2つの負極板16の板面が偏倚して積層されている、つまり、横にずれて積み重ねられる。よって、隣り合う2つの負極板16は積層方向に不一致となる非対応範囲を有する。この非対応範囲は、積層方向において、板面の少なくとも一方向が他の板面に対向していない開放された範囲となるため、他の板面に対向する範囲に比べて高い放熱性能を有する。よって、電池容量を維持しつつ、電池温度の上昇による電池性能の低下を抑制可能になる。
The effect of this embodiment will be described.
(1) The plate surfaces of the two negative electrode plates 16 are unevenly stacked, that is, they are stacked laterally. Therefore, the two adjacent negative electrode plates 16 have a non-corresponding range in which they do not match in the stacking direction. This non-corresponding range is an open range in which at least one direction of the plate surface does not face the other plate surface in the stacking direction, and therefore has higher heat dissipation performance than the range facing the other plate surface. .. Therefore, it is possible to suppress the deterioration of the battery performance due to the increase in the battery temperature while maintaining the battery capacity.

また、2つの負極板16が横にずれて積層されたとしても、その間に挟まれる正極板15の正極合材層19の全範囲が、両方の負極板16の負極合材層24に対向するため、負極板16と正極板15との間で、従来と同様のイオン移動が可能であるため、電池性能が低下するおそれもない。 Further, even if the two negative electrode plates 16 are laterally offset and laminated, the entire range of the positive electrode mixture layer 19 of the positive electrode plate 15 sandwiched between them faces the negative electrode mixture layer 24 of both negative electrode plates 16. Therefore, since the same ion transfer as in the conventional case is possible between the negative electrode plate 16 and the positive electrode plate 15, there is no possibility that the battery performance is deteriorated.

(2)複数の負極板16が積層方向から見て一定方向にずれて偏倚する。つまり、負極板16が横ずれを有してずれて積み重ねられる。これにより、各負極板16に非対応範囲が確保されて電池温度の上昇が抑えられる。 (2) The plurality of negative electrode plates 16 are displaced and biased in a certain direction when viewed from the stacking direction. That is, the negative electrode plates 16 have lateral displacement and are displaced and stacked. As a result, a non-corresponding range is secured for each negative electrode plate 16, and an increase in battery temperature is suppressed.

(3)正極板15よりも負極板16が大きい二次電池11において、負極板16による放熱性が高められるようになる。
(4)負極板16とともにセパレータ17も偏倚を有するように積層されることで、セパレータ17の大きさを、セパレータ17を挟む負極板16と正極板15との絶縁の確保に必要である大きさに抑えることができる。
(3) In the secondary battery 11 in which the negative electrode plate 16 is larger than the positive electrode plate 15, the heat dissipation property of the negative electrode plate 16 can be enhanced.
(4) The separator 17 is laminated together with the negative electrode plate 16 so as to have an deviation, so that the size of the separator 17 is the size necessary for ensuring the insulation between the negative electrode plate 16 sandwiching the separator 17 and the positive electrode plate 15. Can be suppressed to.

(5)極板群14が、中央BCから両端にそれぞれ同じ方向に偏倚するかたち、いわゆるV字状になる。これにより、極板群14の有する偏倚量が中央BCから端部までの積算となるため、一方の端部から他方の端部に向かって連続する偏倚の積算よりも偏倚量を抑えられるとともに、放熱性能を確保することができる。 (5) The electrode plate group 14 has a so-called V-shape that is biased in the same direction from the central BC to both ends. As a result, the amount of deviation of the electrode plate group 14 is integrated from the central BC to the end, so that the amount of deviation can be suppressed as compared with the accumulation of continuous deviation from one end to the other. The heat dissipation performance can be ensured.

(6)正極板15及びセパレータ17の少なくとも一方が負極板16と同じ方向に偏倚することから、複数の負極板16を、偏倚を有するように積層させることが容易である。また、積層された極板群14の端部の積層方向に対する傾きがなだらかになる。 (6) Since at least one of the positive electrode plate 15 and the separator 17 is biased in the same direction as the negative electrode plate 16, it is easy to stack the plurality of negative electrode plates 16 so as to have the bias. Further, the inclination of the end portion of the laminated electrode plate group 14 with respect to the stacking direction becomes gentle.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、積層工程では、正極板15、及び、セパレータ17を2つの負極板16と同じ方向に偏倚させて積層する場合について例示した。しかしこれに限らず、正極板、及び、セパレータの少なくとも一方が積層されるとき、一部の積層で負極板と同じ方向に偏倚されない場合があってもよい。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-In the above embodiment, in the laminating step, a case where the positive electrode plate 15 and the separator 17 are deviated in the same direction as the two negative electrode plates 16 and laminated is illustrated. However, the present invention is not limited to this, and when at least one of the positive electrode plate and the separator is laminated, a part of the lamination may not be biased in the same direction as the negative electrode plate.

・上記実施形態では、極板群14が積層方向の中央BCから端部に向かって負極板16が上方に偏倚している場合について例示した。しかしこれに限らず、極板群が積層方向の一方の端部から他方の端部に向かって負極板が上方に偏倚してもよい。 In the above embodiment, the case where the electrode plate group 14 is deflected upward from the central BC in the stacking direction toward the end portion of the negative electrode plate 16 is illustrated. However, the present invention is not limited to this, and the negative electrode plate may be displaced upward from one end of the electrode plate group toward the other end in the stacking direction.

・上記実施形態では、極板群14が積層方向の中央BCから端部に向かって負極板16が上向に偏倚している場合について例示した。しかしこれに限らず、極板群は、中央から端部の間で負極板の偏倚する方向が1回以上変化してもよい。例えば、極板群は、中央から端部の間で下端部の形状が上下方向にぎざぎざになってもよい。 In the above embodiment, the case where the electrode plate group 14 is displaced upward from the central BC in the stacking direction toward the end portion of the electrode plate group 14 is illustrated. However, the present invention is not limited to this, and the electrode plate group may change the direction in which the negative electrode plate deviates from the center to the end portion once or more. For example, in the electrode plate group, the shape of the lower end portion may be jagged in the vertical direction between the center and the end portion.

・上記実施形態では、第1セパレータ171~第3セパレータ173は下端の配置位置が極板群14の下端部141の形状L12に沿っている場合について例示した。しかし、これに限らず、負極板を挟む2つのセパレータは、相互に偏倚していないため、当該負極板を挟んだ外辺が積層方向に揃う態様で積層されていてもよい。このとき、負極板を挟む2つのセパレータは非対応範囲を有さない一方、隣の負極板を挟む2つのセパレータとの間には、2つの負極板が有している負極ずれ量に対応する非対応範囲を有するようになる。 In the above embodiment, the case where the lower end of the first separator 171 to the third separator 173 is arranged along the shape L12 of the lower end portion 141 of the electrode plate group 14 is illustrated. However, the present invention is not limited to this, and since the two separators sandwiching the negative electrode plate are not biased to each other, the two separators sandwiching the negative electrode plate may be laminated in such a manner that the outer sides sandwiching the negative electrode plate are aligned in the stacking direction. At this time, the two separators sandwiching the negative electrode plate do not have a non-corresponding range, while the negative electrode deviation amount of the two negative electrode plates corresponds to the distance between the two separators sandwiching the adjacent negative electrode plates. It will have a non-corresponding range.

これにより、1つの電極板(例えば1つの負極板)と、2つのセパレータとを一組として扱うことができる。例えば、袋状のセパレータに収容した負極板を、負極板の位置を基準として偏倚を有するように積層させることができる。 Thereby, one electrode plate (for example, one negative electrode plate) and two separators can be treated as a set. For example, the negative electrode plates housed in the bag-shaped separator can be laminated so as to have an deviation based on the position of the negative electrode plate.

・上記実施形態では、負極板16が第1電極板を構成し、正極板15が第2電極板を構成する場合について例示した。しかし、これに限らず、負極板の板面よりも正極板の板面が広ければ、第1電極板が正極板であって、第2電極板が負極板であってもよい。 -In the above embodiment, the case where the negative electrode plate 16 constitutes the first electrode plate and the positive electrode plate 15 constitutes the second electrode plate is illustrated. However, the present invention is not limited to this, and the first electrode plate may be the positive electrode plate and the second electrode plate may be the negative electrode plate as long as the plate surface of the positive electrode plate is wider than the plate surface of the negative electrode plate.

・上記実施形態では、複数の負極板16が同じ負極ずれ量MSで偏倚している場合について例示した。しかしこれに限らず、適切な放熱性能が得られるのであれば、負極ずれ量が積層方向の位置に応じて相違していてもよい。 -In the above embodiment, a case where a plurality of negative electrode plates 16 are biased with the same negative electrode deviation amount MS is illustrated. However, the present invention is not limited to this, and the amount of negative electrode deviation may differ depending on the position in the stacking direction as long as appropriate heat dissipation performance can be obtained.

・上記実施形態では、極板群14の下端部141の全域で負極板16が偏倚して積層されている場合について例示した。しかしこれに限らず、極板群の下端部の一部の範囲で負極板が偏倚してもよい。これによっても、極板群からの放熱性能が高められる。例えば、熱の放熱しづらい中央部を偏倚させるようにしてもよい。 In the above embodiment, the case where the negative electrode plates 16 are unevenly laminated over the entire lower end portion 141 of the electrode plate group 14 is illustrated. However, the present invention is not limited to this, and the negative electrode plate may be biased in a part of the lower end portion of the electrode plate group. This also enhances the heat dissipation performance from the electrode plate group. For example, the central portion where it is difficult to dissipate heat may be biased.

・極合剤は、基材の少なくとも一つの面に位置すればよく、基材の片面のみに位置することも可能である。
・上記実施形態では、正極板15、負極板16、及びセパレータ17が長方形状である場合について例示した。しかしこれに限らず、正極板、負極板、及びセパレータは、二次電池の電極板を構成することができればよく、正方形状等のその他の矩形状であってもよい。
-The polar mixture may be located on at least one surface of the substrate, and may be located on only one surface of the substrate.
-In the above embodiment, the case where the positive electrode plate 15, the negative electrode plate 16, and the separator 17 are rectangular is illustrated. However, the present invention is not limited to this, and the positive electrode plate, the negative electrode plate, and the separator may be any other rectangular shape such as a square shape as long as they can form the electrode plate of the secondary battery.

・正極タブ18Aや負極タブ23Aの形状は、非水系電池の形状などに応じて適宜設定されるものであり、他の形状に変更可能である。
・上記実施形態では、二次電池11を、ケース12内に1つの極板群14を有する構造としたが、ケース12内に複数の極板群を有する構造としてもよい。例えば複数の極板群は、ケース12内で直列に接続される。
The shapes of the positive electrode tab 18A and the negative electrode tab 23A are appropriately set according to the shape of the non-aqueous battery and the like, and can be changed to other shapes.
-In the above embodiment, the secondary battery 11 has a structure having one electrode plate group 14 in the case 12, but may have a structure having a plurality of electrode plate groups in the case 12. For example, a plurality of electrode plates are connected in series in the case 12.

・上記実施形態では、二次電池11がリチウムイオン二次電池である場合について例示した。しかし、これに限らず、二次電池は、その他の非水系電解質の二次電池であってもよいし、ニッケル水素二次電池等の水系電解質の二次電池であってもよい。例えばニッケル水素二次電池は、ニッケル金属等からなる基材に水酸化ニッケル等を含む正極合剤を備えた正極板と、金属材からなる基材に水素吸蔵合金を含む負極合剤を備えた負極板とをセパレータを介して積層した極板群を有する。 -In the above embodiment, the case where the secondary battery 11 is a lithium ion secondary battery is exemplified. However, the present invention is not limited to this, and the secondary battery may be a secondary battery of another non-aqueous electrolyte, or may be a secondary battery of an aqueous electrolyte such as a nickel hydrogen secondary battery. For example, a nickel-hydrogen secondary battery is provided with a positive electrode plate having a positive electrode mixture containing nickel hydroxide or the like on a base material made of nickel metal or the like, and a negative electrode mixture containing a hydrogen storage alloy on the base material made of a metal material. It has a group of electrode plates in which a negative electrode plate and a negative electrode plate are laminated via a separator.

・二次電池11は、電気自動車、ハイブリッド自動車、ガソリン自動車やディーゼル自動車等の車両やその他の移動体に用いられてもよい。又は、固定設置されてもよい。 -The secondary battery 11 may be used for vehicles such as electric vehicles, hybrid vehicles, gasoline vehicles and diesel vehicles, and other moving bodies. Alternatively, it may be fixedly installed.

11…二次電池、12…ケース、13…蓋部、14…極板群、15…正極板、16…負極板、17…セパレータ、18…正極基材、18A…正極タブ、19…正極合材層、20…正極集電部、21…正極端子、23…負極基材、23A…負極タブ、24…負極合材層、30…負極集電部、31…負極端子、32…放出部、33…注入孔、36…積層方向中央、40…ナイロン袋、50…恒温槽、121…底面、141…下端部、142…最下点、145…上端部、146…最下点、151…第1正極板、152…第2正極板、161…第1負極板、162…第2負極板、171…第1セパレータ、172…第2セパレータ、173…第3セパレータ。
11 ... secondary battery, 12 ... case, 13 ... lid, 14 ... electrode plate group, 15 ... positive electrode plate, 16 ... negative electrode plate, 17 ... separator, 18 ... positive electrode base material, 18A ... positive electrode tab, 19 ... positive electrode combination Material layer, 20 ... Positive electrode current collector, 21 ... Positive electrode terminal, 23 ... Negative electrode base material, 23A ... Negative electrode tab, 24 ... Negative electrode mixture layer, 30 ... Negative electrode current collector, 31 ... Negative electrode terminal, 32 ... Discharge section, 33 ... Injection hole, 36 ... Center in stacking direction, 40 ... Nylon bag, 50 ... Constant temperature bath, 121 ... Bottom surface, 141 ... Lower end, 142 ... Bottom point, 145 ... Top, 146 ... Bottom point, 151 ... No. 1 positive electrode plate, 152 ... second positive electrode plate, 161 ... first negative electrode plate, 162 ... second negative electrode plate, 171 ... first separator, 172 ... second separator, 173 ... third separator.

Claims (8)

4辺の外周辺を備えた矩形状の第1電極板と、前記第1電極板と電気的に対となる4辺の外周辺を備えた矩形状の第2電極板とがセパレータを介して交互に積層された極板群を有する二次電池であって、
前記第1電極板は、第1基材の一部に第1電極合材層を有するとともに、前記第1電極板の上端に延出された第1集電タブを有し、
前記第2電極板は、第2基材の一部に第2電極合材層を有するとともに、前記第2電極板の上端に延出された第2集電タブを有し、
前記第1基材の板面は、前記第2基材の板面よりも広く、
前記第2電極板を挟む2つの前記第1電極板は、面方向に沿って上下に偏倚して積層されることで積層方向に不一致となる非対応範囲を有するとともに、前記2つの前記第1電極合材層が前記積層方向に一致する重複範囲中に前記2つの前記第1電極板に挟まれる前記第2電極板の前記第2電極合材層の全範囲が含まれる
二次電池。
A rectangular first electrode plate having four outer perimeters and a rectangular second electrode plate having four outer perimeters electrically paired with the first electrode plate are interposed via a separator. It is a secondary battery having a group of electrode plates stacked alternately, and is a secondary battery.
The first electrode plate has a first electrode mixture layer as a part of the first base material, and has a first current collecting tab extending to the upper end of the first electrode plate .
The second electrode plate has a second electrode mixture layer as a part of the second base material, and has a second current collecting tab extending to the upper end of the second electrode plate .
The plate surface of the first base material is wider than the plate surface of the second base material.
The two first electrode plates sandwiching the second electrode plate have a non-correspondence range in which the stacking directions are inconsistent due to the stacking of the first electrode plates being offset up and down along the plane direction, and the two first electrode plates are laminated. A secondary battery in which the entire range of the second electrode mixture layer of the second electrode plate sandwiched between the two first electrode plates is included in the overlapping range in which the electrode mixture layer coincides with the stacking direction.
3つ以上の前記第1電極板は、前記積層方向から見たとき、各前記第1電極板が同じ方向にずれて偏倚している
請求項1に記載の二次電池。
The secondary battery according to claim 1, wherein the three or more first electrode plates are offset and deviated in the same direction when viewed from the stacking direction.
前記第1電極板が負極板であり、
前記第2電極板が正極板である
請求項1又は2に記載の二次電池。
The first electrode plate is a negative electrode plate, and the first electrode plate is a negative electrode plate.
The secondary battery according to claim 1 or 2, wherein the second electrode plate is a positive electrode plate.
前記第1電極板を挟む2つの前記セパレータは、各外辺が前記積層方向に揃うように積層されている
請求項1~3のいずれか1項に記載の二次電池。
The secondary battery according to any one of claims 1 to 3, wherein the two separators sandwiching the first electrode plate are laminated so that their outer sides are aligned in the stacking direction.
前記第1電極板を挟む2つの前記セパレータは、前記積層方向に不一致となる非対応範囲を有するように表面が面方向に偏倚して積層されている
請求項1~3のいずれか1項に記載の二次電池。
According to any one of claims 1 to 3, the two separators sandwiching the first electrode plate are laminated with their surfaces deviated in the surface direction so as to have a non-correspondence range in which they do not match in the stacking direction. The described secondary battery.
前記極板群は、前記積層方向の中央から端部に位置する前記第1電極板が同じ方向にずれて偏倚している
請求項1~5のいずれか1項に記載の二次電池。
The secondary battery according to any one of claims 1 to 5, wherein the electrode plate group is offset from the center of the stacking direction to the end of the first electrode plate in the same direction.
4辺の外周辺を備えた矩形状の第1電極板と、前記第1電極板と電気的に対となる4辺の外周辺を備えた矩形状の第2電極板とがセパレータを介して交互に積層された極板群を有する二次電池の製造方法であって、
前記第1電極板は、第1基材の一部に第1電極合材層を有するとともに、前記第1電極板の上端に延出された第1集電タブを有し、
前記第2電極板は、第2基材の一部に第2電極合材層を有するとともに、前記第2電極板の上端に延出された第2集電タブを有し、
前記第1電極板の板面は、前記第2電極板の板面よりも広く、
前記第2電極板を挟む2つの前記第1電極板を、前記2つの前記第1電極合材層が積層方向に一致する重複範囲中に前記2つの前記第1電極板に挟まれる前記第2電極板の前記第2電極合材層の全範囲を含むようにしつつ、面方向に沿って上下に偏倚させて積層することで前記積層方向に不一致となる非対応範囲を設ける積層工程を備える
二次電池の製造方法。
A rectangular first electrode plate having four outer perimeters and a rectangular second electrode plate having four outer perimeters electrically paired with the first electrode plate are interposed via a separator. It is a method of manufacturing a secondary battery having a group of electrode plates stacked alternately.
The first electrode plate has a first electrode mixture layer as a part of the first base material, and has a first current collecting tab extending to the upper end of the first electrode plate .
The second electrode plate has a second electrode mixture layer as a part of the second base material, and has a second current collecting tab extending to the upper end of the second electrode plate .
The plate surface of the first electrode plate is wider than the plate surface of the second electrode plate.
The second electrode plate sandwiching the second electrode plate is sandwiched between the two first electrode plates in an overlapping range in which the two first electrode mixture layers coincide with each other in the stacking direction. It is provided with a laminating step of providing a non-corresponding range in which the laminating direction does not match by laminating the electrode plate so as to include the entire range of the second electrode mixture layer while being deviated up and down along the plane direction. Next battery manufacturing method.
前記積層工程はさらに、前記第2電極板、及び、前記セパレータの少なくとも一方を前記2つの前記第1電極板と同じ方向に偏倚させて積層する
請求項7に記載の二次電池の製造方法。
The method for manufacturing a secondary battery according to claim 7, wherein the laminating step further comprises laminating at least one of the second electrode plate and the separator in the same direction as the two first electrode plates.
JP2019096039A 2019-05-22 2019-05-22 Method of manufacturing secondary batteries and secondary batteries Active JP7099989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096039A JP7099989B2 (en) 2019-05-22 2019-05-22 Method of manufacturing secondary batteries and secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096039A JP7099989B2 (en) 2019-05-22 2019-05-22 Method of manufacturing secondary batteries and secondary batteries

Publications (2)

Publication Number Publication Date
JP2020191239A JP2020191239A (en) 2020-11-26
JP7099989B2 true JP7099989B2 (en) 2022-07-12

Family

ID=73453859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096039A Active JP7099989B2 (en) 2019-05-22 2019-05-22 Method of manufacturing secondary batteries and secondary batteries

Country Status (1)

Country Link
JP (1) JP7099989B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139994A (en) 2004-11-11 2006-06-01 Nissan Motor Co Ltd Bipolar battery
JP2012054003A (en) 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Lithium ion battery
JP2014532262A (en) 2011-11-10 2014-12-04 エルジー・ケム・リミテッド Battery cell with new structure
JP2015529954A (en) 2012-11-13 2015-10-08 エルジー・ケム・リミテッド Electrode assembly having a step structure
JP2016501423A (en) 2013-02-13 2016-01-18 エルジー・ケム・リミテッド Atypical battery cell
JP2016039041A (en) 2014-08-07 2016-03-22 株式会社Gsユアサ Power storage element and manufacturing method for the same
JP2016072015A (en) 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 Flexible battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139994A (en) 2004-11-11 2006-06-01 Nissan Motor Co Ltd Bipolar battery
JP2012054003A (en) 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Lithium ion battery
JP2014532262A (en) 2011-11-10 2014-12-04 エルジー・ケム・リミテッド Battery cell with new structure
JP2015529954A (en) 2012-11-13 2015-10-08 エルジー・ケム・リミテッド Electrode assembly having a step structure
JP2016501423A (en) 2013-02-13 2016-01-18 エルジー・ケム・リミテッド Atypical battery cell
JP2016039041A (en) 2014-08-07 2016-03-22 株式会社Gsユアサ Power storage element and manufacturing method for the same
JP2016072015A (en) 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 Flexible battery

Also Published As

Publication number Publication date
JP2020191239A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
KR101379957B1 (en) A Stepwise Electrode Assembly, and a Battery Cell, Battery Pack and Device Comprising the Same
US10056577B2 (en) Battery cell of novel structure
US9431679B2 (en) Electrode assembly having stepped portion, as well as battery cell, battery pack, and device including the electrode assembly
JP6731623B2 (en) battery
KR101473145B1 (en) Lectrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
KR102618844B1 (en) Lead tabs for battery terminals
US8828571B2 (en) Secondary battery
KR102411957B1 (en) A method for manufacturing an electrode stack for a battery cell, and a battery cell
KR20130118716A (en) Electrode assembly, battery cell and device comprising the same
KR101590259B1 (en) Electrode assembly, battery and device comprising the same
US10991985B2 (en) Secondary battery
KR102238367B1 (en) electrode assembly and secondary battery having electrode assembly
EP2683010B1 (en) Secondary battery comprising two electrode assemblies
KR20130097881A (en) Method for manufacturing a secondary battery and the secondary battery manufactured thereby
KR20180126534A (en) Multi-joint battery module
CN116895900A (en) Battery
CN114976200B (en) Secondary battery and method for manufacturing secondary battery
JP2016178053A (en) Square secondary battery
KR20170033543A (en) Electrode assembly and secondary battery using for the same
KR20170030782A (en) Pouch-typed Battery Cell Having Battery Case of Sheet Structure
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
JP7099989B2 (en) Method of manufacturing secondary batteries and secondary batteries
KR20250086078A (en) secondary battery
KR101431726B1 (en) Electrode Assembly of Improved Safety And Secondary Battery with the Same
US10511063B2 (en) Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7099989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250