[go: up one dir, main page]

JP7251804B2 - Wearing device around the ear - Google Patents

Wearing device around the ear Download PDF

Info

Publication number
JP7251804B2
JP7251804B2 JP2020154659A JP2020154659A JP7251804B2 JP 7251804 B2 JP7251804 B2 JP 7251804B2 JP 2020154659 A JP2020154659 A JP 2020154659A JP 2020154659 A JP2020154659 A JP 2020154659A JP 7251804 B2 JP7251804 B2 JP 7251804B2
Authority
JP
Japan
Prior art keywords
mastication
biosignal
ear
muscle
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020154659A
Other languages
Japanese (ja)
Other versions
JP2022048693A (en
Inventor
誠 佐々木
直輝 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2020154659A priority Critical patent/JP7251804B2/en
Publication of JP2022048693A publication Critical patent/JP2022048693A/en
Application granted granted Critical
Publication of JP7251804B2 publication Critical patent/JP7251804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、咀嚼や嚥下を検出することができる耳周辺装着具に関する。 TECHNICAL FIELD The present invention relates to an ear-piercing device capable of detecting chewing and swallowing.

咀嚼には、食物を嚥下や消化に適した物性に調整する、唾液の分泌を促し消化を良くする、満腹中枢を刺激し過食や肥満を予防する、などの様々な重要な機能がある。
しかし、食生活の変化によって現代人の咀嚼回数は減少傾向にあり、咀嚼回数と生活習慣病との関連性も報告されている。
また、咀嚼機能や嚥下機能が低下した摂食嚥下障害者や高齢者の場合、食事中に窒息・誤嚥などを起こすリスクが高く、注意深く食事中の様子を見守る必要がある。しかしながらこれまでの見守りとは、安否確認や生存確認が主流であり、食事中の見守りを対象としたものは少ない。高齢者施設では、食事の履歴を記録し管理することも重要な業務の一つであり、介護記録等の支援において食事の見守りは重要となる。
それゆえ、健康維持や窒息・誤嚥の予防、食事の記録・管理のために、「咀嚼・嚥下の回数やペース等の咀嚼・嚥下の状態」や「誤嚥によるむせや咳の回数」を日常的に記録し観察することが重要である。
特許文献1は、使用者の体調や食物の種類等に応じ簡単な操作で目標咀嚼条件が設定され、使用者の咀嚼状態を検出判定通報する咀嚼カウンタを提案している。なお、特許文献1では、圧電素子を用いて使用者の下顎骨及び上頬骨の動きを咀嚼動作として検出している。
特許文献2は、嚥下動作が生じていないことを検出する嚥下障害検出システムを提案している。このシステムでは、咀嚼検出手段が、被検者の咀嚼動作が継続して行われていることを検出し、動き検出手段が、咽頭または喉頭が所定の動きをしていないことを検出し、嚥下障害判定手段が、咀嚼検出手段及び動き検出手段の2つの検出結果のみに基づいて被検者が嚥下障害であることを判定するものである。
特許文献2は、咀嚼検出手段は、咀嚼時の口内の音、被検者の咀嚼時に動く顎の位置、被検者の咀嚼に関与する筋肉の筋電位、及び被検者の咀嚼に関与する血管の血流に関する物理量を検出し、動き検出手段には、被検者の喉頭の位置を測定可能な圧力センサ、測距センサ、又は被検者の咽頭の位置を内部撮影して透視画像を取得して出力する撮像カメラを用いている。
特許文献3は、咀嚼回数を計測するために外耳道の動きをイヤーチップで受けて測定する咀嚼回数計を提案している。
特許文献4は、咀嚼動作により生じる電位を検出するための一組の電位検出手段であって、両側の外耳道または耳介にそれぞれ装着される電位検出手段と、一組の電位検出手段により計測された電位の差を算出する電位差算出手段とを備えた咀嚼動作計測装置を提案している。
特許文献5は、耳と頭部との間で挟持されて耳に装着される耳掛部を備えて咀嚼回数を計測できる生体装着型計測装置を提案している。
特許文献6は、外耳道に挿入されたイヤホン型センサを用いた筋活動診断装置を提案しており、人の筋肉の活動状態の一つとして咀嚼を特定している。
特許文献7は、変位センサ及びマイクを備えて咀嚼や嚥下を検知する検知装置を提案している。
Chewing has various important functions, such as adjusting the physical properties of food to be suitable for swallowing and digestion, promoting saliva secretion and improving digestion, and stimulating the satiety center to prevent overeating and obesity.
However, due to changes in eating habits, the number of chewing cycles of modern people tends to decrease, and the relationship between the number of chewing cycles and lifestyle-related diseases has also been reported.
In addition, dysphagia and elderly people with impaired masticatory and swallowing functions are at high risk of suffocation and aspiration during meals, so it is necessary to carefully monitor their eating habits. However, until now, the main purpose of monitoring was to confirm the safety and survival of a person, and there were few that targeted monitoring during meals. Recording and managing meal histories is one of the important tasks in elderly care facilities, and watching meals is important in supporting care records and the like.
Therefore, in order to maintain health, prevent suffocation and aspiration, and record and manage meals, it is necessary to record “the state of chewing and swallowing, such as the number and pace of chewing and swallowing” and “the number of times of choking and coughing due to aspiration”. It is important to record and observe on a daily basis.
Patent Literature 1 proposes a mastication counter that detects and reports the user's mastication state by setting a target mastication condition with a simple operation according to the physical condition of the user, the type of food, and the like. In addition, in Patent Literature 1, a piezoelectric element is used to detect the movement of the user's mandible and upper cheekbone as chewing motion.
Patent Literature 2 proposes a dysphagia detection system that detects that no swallowing action has occurred. In this system, the mastication detection means detects that the subject continues to masticate, the movement detection means detects that the pharynx or larynx is not moving in a predetermined manner, and swallowing is detected. The disorder determination means determines that the subject has dysphagia based only on the two detection results of the mastication detection means and the movement detection means.
According to Patent Document 2, the mastication detection means is related to the sound in the mouth during mastication, the position of the jaw that moves during mastication of the subject, the myoelectric potential of the muscles involved in mastication of the subject, and the mastication of the subject. A physical quantity related to blood flow in blood vessels is detected, and the motion detection means includes a pressure sensor capable of measuring the position of the larynx of the subject, a distance measuring sensor, or a fluoroscopic image obtained by internally photographing the position of the pharynx of the subject. An imaging camera that captures and outputs is used.
Patent Literature 3 proposes a mastication frequency counter that measures the number of times of mastication by receiving the movement of the external auditory canal with an ear tip.
Patent Document 4 discloses a set of potential detection means for detecting potential generated by mastication, which is measured by potential detection means attached to the external auditory canals or auricles on both sides, respectively, and a set of potential detection means. proposed a mastication motion measuring device provided with a potential difference calculating means for calculating a difference in potential between the two.
Patent Literature 5 proposes a measuring device attached to a living body, which includes an ear hook portion that is held between the ear and the head and attached to the ear, and that can measure the number of times of mastication.
Patent Literature 6 proposes a muscle activity diagnostic device using an earphone-type sensor inserted into the ear canal, and specifies mastication as one of the muscle activity states of a person.
Patent Literature 7 proposes a detection device that includes a displacement sensor and a microphone to detect chewing and swallowing.

特開2007-317144号公報JP 2007-317144 A 特開2012-75758号公報JP 2012-75758 A 特開2013-42968号公報JP 2013-42968 A 特開2020-431号公報JP-A-2020-431 特開2016-131854号公報JP 2016-131854 A 特開2012-228号公報Japanese Patent Application Laid-Open No. 2012-228 国際公開2018/182043号WO2018/182043

特許文献1では、使用者が耳に装着した状態で食事が自由にできるが、咀嚼動作だけの検出であり、嚥下を検出できない。
特許文献2では、音と筋電位とを検出することが記載されているが、いずれも咀嚼検出に用いるものである。
特許文献3では、咀嚼回数の計測に振動センサを用いている。
特許文献4では、耳介に装着する装置であり筋電位によって咀嚼動作を検出するが、嚥下を検出するものではない。
特許文献5では、測距センサを用いて耳裏下部の動きを検出することで咀嚼回数を計測するものであり、また嚥下は検出しない。
特許文献6では、筋電位を検出して咀嚼を特定し、更にイヤホン型センサを用いているが、嚥下を検出していない。
特許文献7では、変位センサはユーザの頬等に貼り付けられ、マイクはユーザのこめかみ付近等に貼り付けている。
装着者の装着負担を軽減する上では、耳周辺に装着できる器具が適しているが、耳周辺に装着することで、咀嚼と嚥下を検出できるものは提案されていない。
In Patent Literature 1, the user can freely eat while the device is attached to the ear, but only chewing motions are detected, and swallowing cannot be detected.
Patent Document 2 describes detection of sound and myoelectric potential, both of which are used for mastication detection.
In Patent Document 3, a vibration sensor is used to measure the number of times of mastication.
In Patent Document 4, the device is attached to the auricle and detects chewing motion by myoelectric potential, but does not detect swallowing.
In Patent Document 5, the number of times of chewing is measured by detecting the movement of the lower part of the back of the ear using a distance measuring sensor, and swallowing is not detected.
In Patent Document 6, myoelectric potential is detected to identify mastication, and an earphone sensor is used, but swallowing is not detected.
In Patent Document 7, the displacement sensor is attached to the user's cheek or the like, and the microphone is attached to the user's temple or the like.
A device that can be worn around the ear is suitable for reducing the wearing burden on the wearer.

本発明は、咀嚼及び嚥下を正確に検出でき装着負担が少ない耳周辺装着具を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a wearable device around the ear that can accurately detect mastication and swallowing and is less burdensome to wear.

請求項1記載の本発明の耳周辺装着具は、生体信号検出手段10と音検出手段20とを備え、側頭筋、後頭筋、胸鎖乳突筋、咬筋、耳介筋、茎突舌骨筋、及び顎二腹筋の少なくとも一つの筋肉の耳周辺での筋活動による生体信号が検出できる位置に前記生体信号検出手段10を配置し、咀嚼音及び嚥下音を検出できる位置に前記音検出手段20を配置する耳周辺装着具であって、前記生体信号検出手段10で検出される前記生体信号から咀嚼区間を決定し、決定した前記咀嚼区間以外で検出される前記音検出手段20による音声信号で前記嚥下音を特定することを特徴とする。
請求項2記載の本発明は、請求項1に記載の耳周辺装着具において、前記咀嚼区間に検出される前記生体信号から咀嚼回数を算出し、前記嚥下音から嚥下回数を算出することを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の耳周辺装着具において、前記生体信号検出手段10の生体信号用電極11を、装着者の皮膚に接触させ、前記音検出手段20のマイク21を、前記装着者の前記皮膚に接触させずに装着することを特徴とする。
請求項4記載の本発明は、請求項3に記載の耳周辺装着具において、前記マイク21の周囲に前記生体信号用電極11を配置し、前記生体信号用電極11を前記装着者の前記皮膚に接触させた状態では、前記マイク21と前記皮膚との間に空気層22が形成されることを特徴とする。
請求項5記載の本発明は、請求項4に記載の耳周辺装着具において、前記生体信号用電極11を、前記マイク21を中心としたドーナツ状に配置したことを特徴とする。
請求項6記載の本発明は、請求項3に記載の耳周辺装着具において、前記生体信号用電極11を、カンペル平面以上の高さに配置し、前記マイク21を、前記カンペル平面以下の高さに配置したことを特徴とする。
請求項7記載の本発明は、請求項1から請求項6のいずれか1項に記載の耳周辺装着具において、前記生体信号からピーク探索を行い、前記ピーク探索で検出される隣り合うピークの間の距離を咀嚼ペースとして算出し、一つの前記ピークの波形の高さを用いて咀嚼強さを算出し、一つの前記ピークの所定高さにおける幅を用いて筋活動時間を算出し、算出される前記咀嚼ペース、前記咀嚼強さ、及び前記筋活動時間を用いて、嚥下に伴う予備動作を除去して前記咀嚼区間を決定することを特徴とする。
According to claim 1, the ear-piercing device of the present invention comprises biosignal detection means 10 and sound detection means 20, and includes temporal muscle, occipital muscle, sternocleidomastoid muscle, masseter muscle, auricular muscle, and stylohyoid bone. The biosignal detection means 10 is placed at a position where a biosignal due to muscle activity around the ear of at least one muscle of the digastric muscle and the digastric muscle can be detected, and the sound detection means is placed at a position where mastication sounds and swallowing sounds can be detected. 20, wherein a mastication interval is determined from the biosignal detected by the biosignal detection means 10, and an audio signal by the sound detection means 20 detected outside the determined mastication interval. to identify the swallowing sound.
According to a second aspect of the present invention, there is provided a device for wearing around the ear according to the first aspect, wherein the number of times of chewing is calculated from the biosignal detected in the mastication period, and the number of swallowing is calculated from the swallowing sound. and
According to the third aspect of the present invention, there is provided the ear-piercing device according to the first or second aspect, wherein the biosignal electrode 11 of the biosignal detection means 10 is brought into contact with the wearer's skin to detect the sound. It is characterized in that the microphone 21 of the means 20 is worn without contacting the skin of the wearer.
According to the fourth aspect of the present invention, in the ear-worn device according to the third aspect, the biosignal electrode 11 is arranged around the microphone 21, and the biosignal electrode 11 is attached to the wearer's skin. , an air layer 22 is formed between the microphone 21 and the skin.
According to a fifth aspect of the present invention, in the ear-worn device according to the fourth aspect, the biosignal electrodes 11 are arranged in a donut shape with the microphone 21 at the center.
According to the sixth aspect of the present invention, there is provided the ear-piercing device according to the third aspect, wherein the biosignal electrode 11 is arranged at a height higher than the Camper plane, and the microphone 21 is arranged at a height lower than the Camper plane. It is characterized in that it is arranged at
According to a seventh aspect of the present invention, in the ear-worn device according to any one of claims 1 to 6, a peak search is performed from the biological signal, and adjacent peaks detected by the peak search are The distance between the peaks is calculated as the mastication pace, the mastication strength is calculated using the height of the waveform of one of the peaks, and the muscle activity time is calculated using the width of the one peak at a predetermined height. The mastication interval is determined by removing the preparatory motion associated with swallowing using the mastication pace, the mastication strength, and the muscle activity time.

本発明の耳周辺装着具によれば、咀嚼の検出には生体信号検出手段を用い、嚥下の検出には音検出手段を用い、更に嚥下音の特定にあたっては、生体信号検出手段で検出される咀嚼区間を用いることで、咀嚼及び嚥下を正確に検出でき、筋活動による生体信号の検出及び音検出を耳周辺で行うことで装着負担が少ない。 According to the ear-worn device of the present invention, the biosignal detection means is used to detect mastication, the sound detection means is used to detect swallowing, and the deglutition sound is detected by the biosignal detection means. By using the mastication section, mastication and swallowing can be accurately detected, and the burden of wearing is reduced by performing biosignal detection and sound detection by muscle activity around the ear.

本発明の一実施例による耳周辺装着具及び同装具の装着位置を示す図FIG. 1 is a diagram showing an ear-piercing device and a mounting position of the device according to an embodiment of the present invention; 生体信号の定性的評価のための複合センサの計測個所を示す図A diagram showing the measurement points of a composite sensor for qualitative evaluation of biosignals 生体信号の定性的評価結果を示す図Diagram showing qualitative evaluation results of biosignals 咀嚼及び嚥下の検出実験例における生体信号の検出個所を示す図FIG. 10 is a diagram showing detection points of biosignals in an experimental example of detection of mastication and swallowing; 検出される生体信号の前処理を説明するための図A diagram for explaining preprocessing of a detected biological signal. ピーク探索における咀嚼検出データを示す図Figure showing mastication detection data in peak search 咀嚼ペース、咀嚼強さ、及び筋活動時間を示す図Diagram showing mastication pace, mastication strength, and muscle activity time 予備動作の除去による咀嚼区間を示す図A diagram showing the mastication section by removing the preparatory motion 嚥下の検出を示す図Diagram showing swallow detection 本実施例による耳周辺装着具の評価結果を示す図FIG. 4 is a diagram showing evaluation results of the ear-worn device according to the present embodiment. 食材別咀嚼データMastication data by ingredients 検知位置による検出誤差を示す図Diagram showing detection error due to detection position 検知位置による検出誤差を示す図Diagram showing detection error due to detection position

本発明の第1の実施の形態による耳周辺装着具は、生体信号検出手段と音検出手段とを備え、側頭筋、後頭筋、胸鎖乳突筋、咬筋、耳介筋、茎突舌骨筋、及び顎二腹筋の少なくとも一つの筋肉の耳周辺での筋活動による生体信号が検出できる位置に生体信号検出手段を配置し、咀嚼音及び嚥下音を検出できる位置に音検出手段を配置する耳周辺装着具であって、生体信号検出手段で検出される生体信号から咀嚼区間を決定し、決定した咀嚼区間以外で検出される音検出手段による音声信号で嚥下音を特定するものである。本実施の形態によれば、咀嚼の検出には生体信号検出手段を用い、嚥下の検出には音検出手段を用い、更に嚥下音の特定にあたっては、生体信号検出手段で検出される咀嚼区間を用いることで、咀嚼及び嚥下を正確に検出でき、筋活動による生体信号の検出及び音検出を耳周辺で行うことで装着負担が少ない。 The ear-mounted device according to the first embodiment of the present invention includes biosignal detection means and sound detection means, and includes temporal muscle, occipital muscle, sternocleidomastoid muscle, masseter muscle, auricular muscle, and stylohyoid bone. A biological signal detecting means is arranged at a position where a biological signal due to muscle activity around the ear of at least one muscle of the digastric muscle and the digastric muscle can be detected, and a sound detecting means is arranged at a position where mastication sounds and swallowing sounds can be detected. The ear-worn device determines a mastication period from a biological signal detected by a biological signal detection means, and specifies a swallowing sound from an audio signal detected by a sound detection means other than the determined mastication period. According to this embodiment, the biosignal detection means is used to detect mastication, the sound detection means is used to detect deglutition, and the mastication section detected by the biosignal detection means is used to specify the swallowing sound. By using the device, it is possible to accurately detect chewing and swallowing, and the burden of wearing the device is reduced because biosignal detection and sound detection due to muscle activity are performed around the ear.

本発明の第2の実施の形態は、第1の実施の形態による耳周辺装着具において、咀嚼区間に検出される生体信号から咀嚼回数を算出し、嚥下音から嚥下回数を算出するものである。本実施の形態によれば、咀嚼回数及び嚥下回数を正確に算出できる。 According to the second embodiment of the present invention, in the ear support device according to the first embodiment, the number of times of chewing is calculated from the biosignal detected in the mastication period, and the number of swallowing is calculated from the sound of swallowing. . According to this embodiment, the number of chewing times and the number of swallowing times can be calculated accurately.

本発明の第3の実施の形態は、第1又は第2の実施の形態による耳周辺装着具において、生体信号検出手段の生体信号用電極を、装着者の皮膚に接触させ、音検出手段のマイクを、装着者の皮膚に接触させずに装着するものである。本実施の形態によれば、生体信号用電極を皮膚に接触させることで筋活動による生体信号を正確に検出し、一方でマイクが皮膚に接触することで生じるノイズを、マイクを皮膚に接触させないことで少なくでき、嚥下音を正確に検出できる。 According to a third embodiment of the present invention, in the ear support device according to the first or second embodiment, the biosignal electrodes of the biosignal detection means are brought into contact with the wearer's skin, and the sound detection means The microphone is worn without contacting the wearer's skin. According to the present embodiment, by bringing the biosignal electrode into contact with the skin, the biosignal due to muscle activity can be accurately detected, while the noise generated by the microphone contacting the skin is prevented from coming into contact with the skin. By doing so, the swallowing sound can be detected accurately.

本発明の第4の実施の形態は、第3の実施の形態による耳周辺装着具において、マイクの周囲に生体信号用電極を配置し、生体信号用電極を装着者の皮膚に接触させた状態では、マイクと皮膚との間に空気層が形成されるものである。本実施の形態によれば、マイクの周囲に生体信号用電極を配置することで、マイクと皮膚との間に空気層を形成しやすく、この空気層によって集音性が高まる。 According to a fourth embodiment of the present invention, in the ear-worn device according to the third embodiment, the biosignal electrodes are arranged around the microphone, and the biosignal electrodes are brought into contact with the wearer's skin. An air layer is formed between the microphone and the skin. According to the present embodiment, by arranging the biosignal electrodes around the microphone, it is easy to form an air layer between the microphone and the skin, and the air layer enhances sound collection.

本発明の第5の実施の形態は、第4の実施の形態による耳周辺装着具において、生体信号用電極を、マイクを中心としたドーナツ状に配置したものである。本実施の形態によれば、マイクと皮膚との間に集音性が高い空気層を形成しやすい。 According to a fifth embodiment of the present invention, in the ear-worn device according to the fourth embodiment, the biosignal electrodes are arranged in a doughnut shape around the microphone. According to the present embodiment, it is easy to form an air layer with high sound collecting properties between the microphone and the skin.

本発明の第6の実施の形態は、第3の実施の形態による耳周辺装着具において、生体信号用電極を、カンペル平面以上の高さに配置し、マイクを、カンペル平面以下の高さに配置したものである。本実施の形態によれば、咀嚼及び嚥下を更に正確に検出しやすい。 According to a sixth embodiment of the present invention, in the ear-worn device according to the third embodiment, the biosignal electrode is arranged at a height higher than the Camper's plane, and the microphone is arranged at a height lower than the Camper's plane. It is arranged. According to this embodiment, mastication and swallowing can be detected more accurately.

本発明の第7の実施の形態は、第1から第6のいずれかの実施の形態による耳周辺装着具において、生体信号からピーク探索を行い、ピーク探索で検出される隣り合うピークの間の距離を咀嚼ペースとして算出し、一つのピークの波形の高さを用いて咀嚼強さを算出し、一つのピークの所定高さにおける幅を用いて筋活動時間を算出し、算出される咀嚼ペース、咀嚼強さ、及び筋活動時間を用いて、嚥下に伴う予備動作を除去して咀嚼区間を決定するものである。予備動作とは、嚥下時に、口を閉じる動作や上下の歯列を咬合接触させる動作であり、このような予備的動作でも筋活動が検出されるが、本実施の形態によれば、嚥下に伴う予備動作を除去することで咀嚼区間をより正確に検出でき、咀嚼区間を正確に検出できることで、嚥下も更に正確に検出できる。 According to a seventh embodiment of the present invention, in the ear-worn device according to any one of the first to sixth embodiments, a peak search is performed from the biosignal, and a peak between adjacent peaks detected by the peak search is The mastication pace is calculated by calculating the distance as the masticatory pace, calculating the masticatory strength using the height of one peak waveform, and calculating the muscle activity time using the width of one peak at a predetermined height. , mastication strength, and muscle activity time are used to remove preparatory motions associated with swallowing and determine mastication intervals. Preliminary motions are motions of closing the mouth and motions of bringing the upper and lower dentitions into occlusal contact during swallowing, and muscle activity is detected even in such preliminary motions. Elimination of the accompanying preparatory motion allows for more accurate detection of mastication segments, and the ability to accurately detect mastication segments allows for even more accurate detection of swallowing.

以下本発明の一実施例について図面とともに説明する。
図1は本実施例による耳周辺装着具及び同装具の装着位置を示す図である。
本実施例による耳周辺装着具は、生体信号検出手段10と音検出手段20とを備えている。
生体信号検出手段10は生体信号用電極11で構成され、音検出手段20はマイク21で構成され、生体信号用電極11は、信号検出用の関電極11a及び基準電位を表す不関電極(基準電極)11bからなる。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an ear-surrounding fitting according to the present embodiment and a mounting position of the fitting.
The ear-worn device according to this embodiment includes biosignal detection means 10 and sound detection means 20 .
The biosignal detection means 10 is composed of a biosignal electrode 11, and the sound detection means 20 is composed of a microphone 21. The biosignal electrode 11 includes a reference electrode 11a for signal detection and an indifferent electrode (reference electrode) representing a reference potential. electrode) 11b.

図1(a)に示すように、本実施例による耳周辺装着具は、生体信号検出手段10の生体信号用電極11と、音検出手段20のマイク21とを固定部材30に配置することで複合センサ1を構成している。図1(a)では、生体信号用電極11として2つの関電極11aを、マイク21を中心としたドーナツ状に配置している。なお、関電極11aは1つでもよく、3つ以上であってもよい。また、生体信号の導出法は、単極誘導法、双極誘導法のいずれでもよく、例えば2つの関電極11aで観測した信号から2チャンネルの生体信号を導出してもよいし(単極誘導)、1チャンネルの生体信号を導出してもよい(双極誘導)。これらを組み合わせて2つの関電極11aから3チャンネルの生体信号を導出しても良い。
生体信号用電極11にはゴム電極が適しており、ゴム電極を用いることで、繰り返しの使用が可能で柔軟性があり任意の形状に加工しやすい。また、皮膚と電極の間の摩擦により、咀嚼・嚥下中に電極位置がずれにくい利点もある。
As shown in FIG. 1( a ), the ear-mounted device according to the present embodiment has a biosignal electrode 11 of biosignal detection means 10 and a microphone 21 of sound detection means 20 arranged on a fixing member 30 . A composite sensor 1 is constructed. In FIG. 1(a), two Seki electrodes 11a as the biosignal electrodes 11 are arranged in a donut shape with the microphone 21 at the center. The number of Seki electrodes 11a may be one, or three or more. Further, the biosignal derivation method may be either a unipolar induction method or a bipolar induction method. For example, a two-channel biosignal may be derived from the signals observed by the two Seki electrodes 11a (unipolar induction). , one-channel biosignals may be derived (bipolar leads). By combining these, three-channel biosignals may be derived from two Seki electrodes 11a.
A rubber electrode is suitable for the biosignal electrode 11, and by using a rubber electrode, it can be used repeatedly, is flexible, and can be easily processed into an arbitrary shape. Another advantage is that the electrode position is less likely to shift during mastication and swallowing due to friction between the skin and the electrode.

図1(b)に示すように、生体信号用電極11は装着者の皮膚に接触させ、マイク21は装着者の皮膚に接触させずに装着する。マイク21の周囲に生体信号用電極11を配置し、生体信号用電極11を装着者の皮膚に接触させた状態では、マイク21と皮膚との間に空気層22が形成される。形成される空気層22の周りにリング状にシリコン材23を設けることが好ましい。なお、シリコン材23に代えて、マイク21の表面にメッシュ状の絶縁物や集音に影響を与えないスポンジ材を用いてもよい。 As shown in FIG. 1(b), the biosignal electrode 11 is brought into contact with the wearer's skin, and the microphone 21 is worn without being brought into contact with the wearer's skin. When the biosignal electrode 11 is arranged around the microphone 21 and the biosignal electrode 11 is in contact with the wearer's skin, an air layer 22 is formed between the microphone 21 and the skin. It is preferable to provide a ring-shaped silicon material 23 around the formed air layer 22 . Instead of the silicon material 23, a mesh insulator or a sponge material that does not affect sound collection may be used on the surface of the microphone 21. FIG.

図1(c)に示す領域Xは、装着時に、生体信号検出手段10と音検出手段20とが配置される範囲を示している。なお、図1(c)では、複合センサ1として2つの複合センサ1A、1Bを示しているが、単に配置を示すものであり、いずれか1つの複合センサ1を用いればよい。図1(c)では、不関電極11bを耳朶の後方に配置している。 A region X shown in FIG. 1(c) indicates a range in which the biological signal detection means 10 and the sound detection means 20 are arranged when the device is worn. Although FIG. 1(c) shows two composite sensors 1A and 1B as the composite sensor 1, it merely shows the arrangement, and any one of the composite sensors 1 may be used. In FIG. 1(c), the indifferent electrode 11b is placed behind the earlobe.

生体信号検出手段10は、側頭筋、後頭筋、胸鎖乳突筋、咬筋、耳介筋、茎突舌骨筋、及び顎二腹筋の少なくとも一つの筋肉の耳周辺での筋活動による生体信号が検出できる位置に配置する。なお、本実施例では、筋活動による生体信号を筋電位信号として説明するが、筋収縮にともなって体表面上に発生する微細振動信号(筋音図)や、筋収縮に伴う皮膚の形状変化を検出する圧力信号や変位信号も筋活動による生体信号である。
音検出手段20は、咀嚼音及び嚥下音を検出できる位置に配置する。
このように、耳周りの生体信号を生体信号検出手段10及び音検出手段20で検出することで、本実施例による耳周辺装着具は、耳掛け式装着器具や眼鏡式装着器具のように、日常的に使用可能なウェアラブルデバイスとすることができる。
The biosignal detection means 10 detects a biosignal by muscle activity around the ear of at least one of the temporalis muscle, the occipital muscle, the sternocleidomastoid muscle, the masseter muscle, the auricular muscle, the stylohyoid muscle, and the digastric muscle. Place it in a position where it can be detected. In this embodiment, biosignals due to muscle activity are described as myoelectric potential signals. A pressure signal and a displacement signal for detecting are also biological signals due to muscle activity.
The sound detection means 20 is arranged at a position where chewing sounds and swallowing sounds can be detected.
By detecting biosignals around the ear by the biosignal detection means 10 and the sound detection means 20 in this way, the ear-wound device according to the present embodiment can be used like an ear-hook type device or a spectacle-type device. It can be a wearable device that can be used on a daily basis.

本実施例による耳周辺装着具は、生体信号検出手段10及び音検出手段20の他に、検出信号を増幅する増幅器、アナログデジタル変換を行うAD変換器、電源を供給する電源部、及び検出信号を処理する制御部を備える。これら増幅器、AD変換器、電源部、及び制御部は、生体信号検出手段10及び音検出手段20とともに耳周辺部に配置してもよいが、有線や無線による通信手段を備えることで、これらの一部又は全てを構造的に分離してもよい。
本実施例による耳周辺装着具は、生体信号用電極11を皮膚に接触させることで筋電位を正確に検出し、一方でマイク21を皮膚に接触させないことで雑音を少なくでき、嚥下音を正確に検出できる。
また、本実施例による耳周辺装着具は、マイク21の周囲に生体信号用電極11を配置することで、マイク21と皮膚との間に空気層22を形成しやすく、この空気層22によって集音性が高まる。そして、生体信号用電極11を、マイク21を中心としたドーナツ状に配置することで、マイク21と皮膚との間に集音性が高い空気層22を形成しやすい。
In addition to the biological signal detection means 10 and the sound detection means 20, the ear-wound device according to the present embodiment includes an amplifier that amplifies the detection signal, an AD converter that performs analog-to-digital conversion, a power supply section that supplies power, and a detection signal. is provided. These amplifiers, AD converters, power supply units, and control units may be arranged around the ear together with the biological signal detection means 10 and the sound detection means 20, but by providing wired or wireless communication means, these Some or all may be structurally separated.
The ear-mounted device according to the present embodiment can accurately detect myoelectric potentials by bringing the biosignal electrode 11 into contact with the skin, while noise can be reduced by not bringing the microphone 21 into contact with the skin, and the swallowing sound can be accurately detected. can be detected.
In addition, in the ear-worn device according to the present embodiment, by arranging the biosignal electrodes 11 around the microphone 21, the air layer 22 is easily formed between the microphone 21 and the skin, and the air layer 22 collects enhances sound. By arranging the biosignal electrodes 11 in a donut shape with the microphone 21 at the center, it is easy to form an air layer 22 with high sound collecting properties between the microphone 21 and the skin.

以下の実験では下記の装置を用いた。
複合センサ1は生体信号用電極11とマイク21からなり、生体信号用電極11には「生体信号用ゴム電極」(NOK株式会社製)を、マイク21には「マイク(EM-60340BT-A)」(アオイ電機製)を用いた。
マイク21は、2.5Vを電位基準とする5V単電源で駆動される。マイク21からの音声信号は、マイクアンプにより5倍に増幅され、AD変換器へ取り込まれる。
生体信号用電極11からの筋電位信号(生体信号)は、耳朶に貼りつけた不関電極11bを基準に差動増幅することで計測した。検出された筋電位信号は、筋電アンプボックスを介して2,052倍に増幅され、AD変換器へ取り込まれる。
計測ではアナログ入力を用いてデータ採取を行い、データの収集で用いるAD変換器には、NIUSB-6218(NATIONAL INSTRUMENTS)を用いた。サンプリング周波数は、嚥下の特徴が見られる周波数帯4kHzまでを考慮し、その2倍である8kHzに設定した。
筋電位信号の導出に双極誘導法を用いた場合、1つの複合センサ1で得られる信号は、筋電位信号が1チャンネル、音声信号が1チャンネルである。
The following equipment was used in the following experiments.
The composite sensor 1 consists of a biosignal electrode 11 and a microphone 21. The biosignal electrode 11 is a "biosignal rubber electrode" (manufactured by NOK Corporation), and the microphone 21 is a "microphone (EM-60340BT-A). ” (manufactured by Aoi Denki) was used.
The microphone 21 is driven by a single 5V power supply with 2.5V as the potential reference. A voice signal from the microphone 21 is amplified five times by a microphone amplifier and is taken into an AD converter.
A myoelectric potential signal (biological signal) from the biosignal electrode 11 was measured by performing differential amplification with reference to the indifferent electrode 11b attached to the earlobe. The myoelectric potential signal detected is amplified by 2,052 times through the myoelectric amplifier box and taken into the AD converter.
In the measurement, analog input was used to acquire data, and NIUSB-6218 (NATIONAL INSTRUMENTS) was used as an AD converter used for data acquisition. The sampling frequency was set to 8 kHz, which is double the frequency band up to 4 kHz, where the characteristics of swallowing are observed.
When the bipolar lead method is used for deriving the myoelectric potential signal, the signal obtained by one composite sensor 1 is one channel for the myoelectric potential signal and one channel for the audio signal.

図2は生体信号の定性的評価のための複合センサの計測個所を示す図である。
図3は生体信号の定性的評価結果を示す図である。
FIG. 2 is a diagram showing measurement points of a composite sensor for qualitative evaluation of biosignals.
FIG. 3 is a diagram showing qualitative evaluation results of biosignals.

図3(a)は、米の右噛み時の右耳側の計測データである。図示している筋電位信号は複合センサ1毎の筋電位信号である。
図3(a)に示すように、耳周りのすべての場所において噛みしめ時の筋電位信号が観測された。また、嚥下のための予備動作に対応した筋電位信号が嚥下前に観測された。
FIG. 3(a) shows measurement data on the right ear side when chewing rice on the right side. The illustrated myoelectric potential signal is the myoelectric potential signal for each composite sensor 1 .
As shown in FIG. 3(a), myoelectric potential signals during clenching were observed at all locations around the ear. In addition, myoelectric potential signals corresponding to preparatory movements for swallowing were observed before swallowing.

図3(b)は、米の右噛み時の右耳側の計測データであり、複合センサ1毎のマイク21の1チャンネル分の音声信号である。
図3(b)に示すように、耳周りのすべての場所において咀嚼音が得られた。耳下部では、下に行くほど咀嚼音が小さく観測された。また、耳下部では嚥下音が観測された。嚥下音は耳下部(2)で大きくなる傾向がみられた。音声信号は音の発生する位置の影響が大きいと考えられる。
定性的評価を整理すると、咀嚼は耳上部の側頭筋に位置すれば大きな波形が得られる。ただし、嚥下時に上下の歯面を合わせる咬合接触(以下予備動作)の筋活動も観測され、筋電位信号のみから、咀嚼と嚥下を見分けるには、機械学習などの高度な信号処理が必要である。音声信号は、咀嚼は検出できるが、嚥下は咽頭部に近づくほど検出できる。
FIG. 3(b) shows measurement data on the right ear side when chewing rice on the right side, which is an audio signal for one channel of the microphone 21 for each composite sensor 1. FIG.
As shown in FIG. 3(b), chewing sounds were obtained at all locations around the ears. In the lower part of the ear, the mastication sound was observed to become smaller as it went down. Swallowing sounds were also observed below the ear. Swallowing sounds tended to be louder at the lower ear (2). It is considered that the sound signal is greatly affected by the position where the sound is generated.
In terms of qualitative evaluation, if mastication is located in the temporalis muscle above the ear, a large waveform can be obtained. However, muscle activity during occlusal contact (hereinafter referred to as preparatory movement) that brings the upper and lower tooth surfaces together during swallowing is also observed, and advanced signal processing such as machine learning is required to distinguish mastication and swallowing from myoelectric potential signals alone. . Audio signals can detect chewing, but can detect swallowing closer to the pharynx.

図3(c)は、食材と被験者とを異ならせた場合の筋電位信号と音声信号とを示している。
図3(c)に示すように、食材によって筋活動が変わり、また、個人差があり、同一の被験者であっても電極位置が異なる場合には、筋活動の波形が異なる。
そのため、筋電位信号から咀嚼を検出するには、一般に機械学習や閾値処理が必要となる。しかし、機械学習には学習データが必要であり、技術的に可能であったとしても、様々な食材を対象とした咀嚼データを事前に用意しておくことは現実的ではない。これは、閾値処理の場合でも同様であり、食材差、個人差、計測位置での差などを考慮しなければならない。
また、同一の食材であっても、一口量や、咀嚼が進み、食塊形成が進むにつれて、筋活動が変化する。さらに、嚥下に伴う予備動作があり、咀嚼と予備動作の区別がつかない。また、ペットボトルの水をごくごく飲む際など、嚥下条件によって予備動作があらわれない場合があり、動作の判定が必要になる。
FIG. 3(c) shows the myoelectric potential signal and the audio signal when the food and the subject are different.
As shown in FIG. 3(c), the muscle activity varies depending on the foodstuff, and there are individual differences. Even for the same subject, when the electrode positions are different, the waveform of the muscle activity differs.
Therefore, machine learning and threshold processing are generally required to detect mastication from myoelectric potential signals. However, machine learning requires learning data, and even if it is technically possible, it is not realistic to prepare mastication data for various ingredients in advance. This is the same in the case of threshold processing, and it is necessary to consider differences in ingredients, individual differences, and differences in measurement positions.
Moreover, even with the same foodstuff, the muscle activity changes as the bite size, mastication progresses, and bolus formation progresses. Furthermore, there is a preparatory action associated with swallowing, and it is difficult to distinguish between mastication and preparatory action. In addition, there are cases where the preparatory motion does not appear depending on the swallowing conditions, such as when drinking a lot of water from a plastic bottle, and it is necessary to determine the motion.

図4は咀嚼及び嚥下の検出実験例における生体信号の検出個所を示す図である。
顔の左右に計6個の複合センサ1を装着して計測を行った。得られる信号は、筋電位信号が6チャンネル、音声信号が6チャンネルである。
複合センサ1の計測箇所を決めるため、歯科分野で用いられる基準、すなわちカンペル平面を使用した。カンペル平面とは、耳珠点と鼻下点を結んだ線より構成される面である。カンペル平面に垂直であり、耳珠点と交わる線を基準とし、カンペル平面から上方向に15mm、下方向に50mm、80mmをセンサの計測箇所とした。
カンペル平面から上方向に15mmの位置における複合センサ1Aは主に咀嚼筋である側頭筋、カンペル平面から下方向に50mm、80mmの位置における複合センサ1B、1Cは主に胸鎖乳突筋に位置すると考えられる。
FIG. 4 is a diagram showing biosignal detection points in an experimental example of detection of mastication and swallowing.
A total of six composite sensors 1 were attached to the left and right sides of the face and measurements were taken. The signals obtained are 6 channels of myopotential signals and 6 channels of audio signals.
In order to determine the measurement points of the composite sensor 1, the reference used in the dental field, namely the Camper's plane, was used. The Camper plane is a plane formed by a line connecting the tragus point and the nasal point. A line that is perpendicular to the Camper's plane and intersects with the tragus point is used as a reference, and the measurement points of the sensor are 15 mm upward and 50 mm and 80 mm downward from the Camper's plane.
The combined sensor 1A at a position 15 mm upward from the Camper's plane is mainly located at the temporalis muscle, which is the muscle of mastication, and the combined sensors 1B and 1C at positions 50 mm and 80 mm downward from the Camper's plane are mainly located at the sternocleidomastoid muscle. It is thought that

図5は検出される生体信号の前処理を説明するための図である。
ノイズを軽減するための前処理として、得られた筋電位信号に800Hzのローカットフィルタ、音声信号に900Hzのローカットフィルタを施す。その後、信号処理を行うにあたり、計測された信号を長さ64msのフレームに分割し、フレームごとに計算を行う。
図5(a)に示すように、あるフレームから次フレームへと計算範囲を移動させる際には、フレームの開始点を12ms間隔でシフトさせていくフレームシフト方式を採用した。
FIG. 5 is a diagram for explaining the preprocessing of detected biological signals.
As preprocessing for reducing noise, an 800 Hz low-cut filter is applied to the myoelectric potential signal and a 900 Hz low-cut filter is applied to the voice signal. After that, in performing signal processing, the measured signal is divided into frames of length 64 ms, and calculation is performed for each frame.
As shown in FIG. 5(a), when moving the calculation range from one frame to the next, a frame shift method was adopted in which the start point of the frame is shifted at intervals of 12 ms.

咀嚼・嚥下の検出を行うためには、検出が容易な波形信号にする必要があるため、信号の振幅成分について数値化して検出対象の信号とした。ここで、図5(b)、(c)に示す式中のSは計測信号(Signal)を表している。
信号の時間領域における振幅成分の特徴を抽出するため、図5(b)に示すRMS(Root Mean Square)を、フレームごとに求めた。一般に、同じ筋肉の筋活動を計測する場合、筋収縮が強いほどRMSは高い値を示す。そのため、RMSの値が大きいほど咀嚼に要した筋活動が大きいこと、すなわち咀嚼強さに関する情報を得ることができる。ここで、チャンネル番号l(l=1,2,・・・,6)でのp番目のフレームにおけるnサンプル目の計測信号Sの値をSl,n(p)(n=1,2,・・・,N)とする。フレーム長さ64msでサンプリング周波数が8,000Hzであるとき、フレームのサンプル数Nは512点となる。
また、RMS特徴量には、フレーム間の変動を抑制するために、図5(c)に示す式により移動平均処理を施した。pはフレーム番号、Mは移動平均数である。今回はM=10とした。
以上の処理をチャンネル毎に施した。
In order to detect mastication/swallowing, it is necessary to make the waveform signal easy to detect. Here, S in the formulas shown in FIGS. 5(b) and 5(c) represents a measurement signal (Signal).
In order to extract the characteristics of the amplitude component in the time domain of the signal, the RMS (Root Mean Square) shown in FIG. 5(b) was obtained for each frame. In general, when measuring the muscle activity of the same muscle, the stronger the muscle contraction, the higher the RMS value. Therefore, the greater the RMS value, the greater the muscle activity required for mastication, that is, the information on the strength of mastication can be obtained. Here, the value of the n-th sample measurement signal S in the p-th frame at the channel number l (l=1, 2, . . . , 6) is S l,n (p) (n=1, 2, , N). When the frame length is 64 ms and the sampling frequency is 8,000 Hz, the sample number N of the frame is 512 points.
In addition, the RMS feature amount was subjected to moving average processing according to the formula shown in FIG. 5(c) in order to suppress variations between frames. p is the frame number and M is the number of moving averages. This time, M=10.
The above processing was performed for each channel.

図6はピーク探索における咀嚼検出データを示す図である。
前処理をした筋電位信号から、食材やセンサ位置、個人差の影響を受けないために、ピーク探索を用いて咀嚼を検出する。図6で示す「▼」は実際に咀嚼として検出されたピークである。図6(a)は結果予備動作がピークとして検出されていないデータであり、図6(b)は予備動作がピークとして検出されているデータである。
FIG. 6 is a diagram showing mastication detection data in peak search.
Mastication is detected from the preprocessed myoelectric potential signal using peak search to avoid the effects of food, sensor position, and individual differences. “▼” shown in FIG. 6 are peaks actually detected as mastication. FIG. 6A shows data in which the preparatory motion is not detected as a peak, and FIG. 6B shows data in which the preparatory motion is detected as a peak.

図7は咀嚼ペース、咀嚼強さ、及び筋活動時間を示す図である。
咀嚼ペースは、ピーク探索で検出される隣り合うピークの間の距離として算出され、咀嚼強さは、一つのピークの波形の高さを用いて算出され、筋活動時間は、一つのピークの所定高さにおける幅を用いて算出される。
図7では、筋活動時間は、ピーク高さの半分の高さにおける幅としている。咀嚼強さは、一つのピークで定まる波形と幅から積分で求められる面積とすることもできる。
FIG. 7 is a diagram showing chewing pace, chewing strength, and muscle activity time.
The masticatory pace is calculated as the distance between adjacent peaks detected by peak search, the masticatory strength is calculated using the height of the waveform of one peak, and the muscle activity time is calculated as the predetermined length of one peak. Calculated using width at height.
In FIG. 7, the muscle activity time is the width at half the peak height. The masticatory strength can also be an area obtained by integration from the waveform and width determined by one peak.

図8は予備動作の除去による咀嚼区間を示す図であり、図8(a)は予備動作を含んだ状態での咀嚼区間を示し、図8(b)は予備動作を除去した後の咀嚼区間を示している。
図7で示す咀嚼ペース、咀嚼強さ、及び筋活動時間を用いて咀嚼区間から予備動作を除去する。
図8(a)に示すように、予備動作がピークとして検出される場合には、ピーク探索の結果だけでは、予備動作を含んで咀嚼区間となってしまうため、咀嚼ペース、咀嚼強さ、及び筋活動時間を用いて、予備動作を特定する。例えば、咀嚼ペース、咀嚼強さ、及び筋活動時間それぞれの平均値を算出し、平均値に係数を掛けて判定を行う場合は、咀嚼ペースの平均×1.6以上、咀嚼強さの平均×0.4以下、及び筋活動時間の平均×1.3以上、のいずれかを満たす場合には、予備動作と判定することができる。
図8(b)に示すように、予備動作を除去することで正しい咀嚼区間を得ることができる。
このように、算出される咀嚼ペース、咀嚼強さ、及び筋活動時間を用いて、嚥下に伴う予備動作を除去して咀嚼区間を決定することで、咀嚼区間をより正確に検出でき、咀嚼区間を正確に検出できることで、嚥下も更に正確に検出できる。
なお、決定された咀嚼区間におけるピークから咀嚼回数を算出することができる。
8A and 8B are diagrams showing the mastication section with the preparatory motion removed, FIG. 8A showing the masticatory section including the preparatory action, and FIG. 8B showing the masticatory section after the preparatory action is removed. is shown.
The mastication pace, mastication intensity, and muscle activation time shown in FIG. 7 are used to remove preparatory movements from the mastication segment.
As shown in FIG. 8(a), when the preparatory motion is detected as a peak, the mastication section including the preparatory motion is defined only by the peak search result. The muscle activation time is used to identify the preparatory motion. For example, when the average values of mastication pace, mastication strength, and muscle activity time are calculated, and the average value is multiplied by a coefficient for determination, the average mastication pace x 1.6 or more, the average mastication strength x If either 0.4 or less or the average of muscle activity times×1.3 or more is satisfied, it can be determined as a preparatory motion.
As shown in FIG. 8(b), the correct chewing interval can be obtained by removing the preparatory movement.
In this way, by using the calculated mastication pace, mastication strength, and muscle activity time to determine the mastication interval by removing the preliminary motion associated with swallowing, the mastication interval can be detected more accurately. can be accurately detected, swallowing can also be detected more accurately.
The number of times of mastication can be calculated from the peak in the determined mastication section.

図9は嚥下の検出を示す図である。
嚥下音の検出は、咀嚼区間を用いて行う。
図9(a)では、検出される筋電位信号と音声信号とを示している。
決定された咀嚼区間では、音声信号にマスクをかける(図9(b))。なお、咀嚼音は咀嚼の筋活動のピークより遅れて発生するため、マスクは実際の咀嚼区間より広い範囲とすることが好ましい。なお、嚥下は、複数回発生することもある。
本実施例による耳周辺装着具は、生体信号検出手段10で検出される筋電位信号から咀嚼区間を決定し、決定した咀嚼区間以外で検出される音検出手段20による音声信号で嚥下音を特定する。
ここで、嚥下音として特定できる音声信号は、決定された第1の咀嚼区間と、第1の咀嚼区間の次のタイミングで決定された第2の咀嚼区間との間を咀嚼区間以外として検出できる。また、第1の咀嚼区間の後の所定時間や、第2の咀嚼区間の後の所定時間を咀嚼区間以外として検出できる。
このように、咀嚼の検出には生体信号検出手段10を用い、嚥下の検出には音検出手段20を用い、更に嚥下音の特定にあたっては、生体信号検出手段10で検出される咀嚼区間を用いることで、咀嚼及び嚥下を正確に検出できる。
また、咀嚼区間に検出される筋電位信号から咀嚼回数を算出し、嚥下音から嚥下回数を算出することで、咀嚼回数及び嚥下回数を正確に算出できる。
また、咀嚼区間の検出過程において、図8(a)に示すように予備動作がピークとして検出されることで予備動作を特定できる場合は、検出される予備動作の後に検出される音声信号を嚥下音として特定することで、嚥下検出の精度を高めることができる。
FIG. 9 is a diagram showing detection of swallowing.
The swallowing sound is detected using the mastication interval.
FIG. 9(a) shows the detected myoelectric potential signal and the audio signal.
The audio signal is masked in the determined mastication interval (FIG. 9(b)). Since mastication sounds are generated later than the peak of mastication muscle activity, it is preferable that the mask has a wider range than the actual mastication interval. Note that swallowing may occur multiple times.
The ear-mounted device according to this embodiment determines a mastication segment from the myoelectric potential signal detected by the biosignal detection means 10, and specifies the swallowing sound from the sound signal detected by the sound detection means 20 other than the determined mastication segment. do.
Here, the audio signal that can be identified as the swallowing sound can be detected between the determined first mastication segment and the second mastication segment determined at the next timing of the first mastication segment as other than the mastication segment. . Also, a predetermined time after the first mastication interval and a predetermined time after the second mastication interval can be detected as other than the mastication interval.
In this manner, the biosignal detection means 10 is used to detect mastication, the sound detection means 20 is used to detect deglutition, and the mastication interval detected by the biosignal detection means 10 is used to specify the swallowing sound. Thus, chewing and swallowing can be accurately detected.
Further, by calculating the number of times of mastication from the myoelectric potential signal detected in the mastication interval and calculating the number of times of swallowing from the swallowing sound, the number of times of chewing and the number of times of swallowing can be calculated accurately.
In addition, in the mastication period detection process, if the preliminary motion can be identified by detecting the preliminary motion as a peak as shown in FIG. By specifying it as sound, it is possible to improve the accuracy of swallowing detection.

図10は本実施例による耳周辺装着具の評価結果を示す図である。
図10(a)に示す式によって誤差を算出して評価を行った。誤差(外れ率)は推定回数の誤差であり、回数の正解値は被験者の自己申告によって記録した回数である。
評価実験には、咀嚼の実験でよく用いられるグミ、ガムに加え、咀嚼時に音が鳴るものとして米菓、主食である米を用いた。また食材は、予備実験を行い咀嚼回数が10回前後となる量、大きさとした。
米にはコープ商品「おいしいご飯」5g、米菓には「通の枝豆」亀田製菓1枚、グミには「つぶぐみ」春日井製菓株式会社1/2粒、ガムには「ACUO」株式会社ロッテ1粒を用いた。
図10(b)に示す誤差は、被験者4名が、「右噛み10回程度→嚥下1回+左噛み10回程度→嚥下1回」を1セットと定義し、それぞれ6セットを行った際の平均誤差である。
FIG. 10 is a diagram showing evaluation results of the ear-worn device according to the present example.
The error was calculated and evaluated by the formula shown in FIG. 10(a). The error (outlier rate) is the error in the estimated number of times, and the correct number of times is the number of times recorded by the subject's self-report.
In the evaluation experiment, in addition to gummies and gum, which are often used in chewing experiments, we used rice crackers to make a sound when chewing, and rice, which is a staple food. In addition, the amount and size of the foodstuffs were adjusted so that the number of times of mastication was about 10 times in a preliminary experiment.
For rice, 5g of co-op product “Oishii Gohan”, for rice crackers, 1 sheet of “Tsu no Edamame” Kameda Seika, for gummies, 1/2 gummy “Tsubugumi” Kasugai Seika Co., Ltd., for gum “ACUO” Lotte Co., Ltd. One grain was used.
The error shown in FIG. 10(b) is that four subjects define one set as "right biting about 10 times → left biting about 10 times→left biting about 10 times→swallowing once", and perform 6 sets of each. is the average error of

図11は食材別咀嚼データであり、図11(a)は咀嚼強さ、図11(b)は咀嚼ペース、図11(c)は咀嚼時間、図11(d)は咀嚼終了から嚥下までの時間を示す図である。
図11に示すように、咀嚼の強さ及び咀嚼時間では、歯ごたえのあるグミでは値が大きくなっていることが分かる。このように、食事における特徴を数値化することができる。
Fig. 11 shows mastication data for each ingredient, Fig. 11(a) shows mastication intensity, Fig. 11(b) shows mastication pace, Fig. 11(c) shows mastication time, and Fig. 11(d) shows time from completion of mastication to swallowing. FIG. 4 is a diagram showing time;
As shown in FIG. 11, it can be seen that chewing intensity and chewing time are large for chewy gummies. In this way, the characteristics of meals can be quantified.

図12及び図13は検知位置による検出誤差を示す図である。
図12(a)から図12(d)、及び図13(a)では、図4に示す複合センサ1A、1B、1Cを、顔の左右に計6個装着して、測定に用いる複合センサ1を異ならせている。図13(b)から図13(d)では、図4に示す複合センサ1A、1Bを、顔の左右に計4個装着して、測定に用いる複合センサ1を異ならせている。
図12(a)では、顔右に配置した複合センサ1A、及び顔左に配置した複合センサ1Aからの筋電位信号2チャンネルを用い、顔右に配置した複合センサ1B、1C、及び顔左に配置した複合センサ1B、1Cからの音声信号4チャンネルを用いている。
図12(b)では、顔右に配置した複合センサ1A、1B、1C、及び顔左に配置した複合センサ1A、1B、1Cからの筋電位信号6チャンネルを用い、顔右に配置した複合センサ1A、1B、1C、及び顔左に配置した複合センサ1A、1B、1Cからの音声信号6チャンネルを用いている。
図12(c)では、顔右に配置した複合センサ1A、及び顔左に配置した複合センサ1Aからの筋電位信号2チャンネルを用い、顔右に配置した複合センサ1C、及び顔左に配置した複合センサ1Cからの音声信号2チャンネルを用いている。
図12(d)では、顔右に配置した複合センサ1Aからの筋電位信号1チャンネルを用い、顔右に配置した複合センサ1Cからの音声信号1チャンネルを用いている。
12 and 13 are diagrams showing detection errors depending on detection positions.
12(a) to 12(d) and FIG. 13(a), a total of six composite sensors 1A, 1B, and 1C shown in FIG. are different. In FIGS. 13(b) to 13(d), a total of four composite sensors 1A and 1B shown in FIG. 4 are attached to the left and right sides of the face, and different composite sensors 1 are used for measurement.
In FIG. 12(a), two channels of myoelectric potential signals from the combined sensor 1A placed on the right side of the face and the combined sensor 1A placed on the left side of the face are used, and the combined sensors 1B and 1C placed on the right side of the face and Four audio signal channels from the arranged composite sensors 1B and 1C are used.
In FIG. 12(b), the combined sensors 1A, 1B, and 1C placed on the right side of the face and the combined sensors 1A, 1B, and 1C placed on the left side of the face are used for six channels of myoelectric potential signals, and the combined sensor placed on the right side of the face 6 channels of audio signals from 1A, 1B, 1C and composite sensors 1A, 1B, 1C placed on the left side of the face are used.
In FIG. 12(c), two channels of myoelectric potential signals from the combined sensor 1A placed on the right side of the face and the combined sensor 1A placed on the left side of the face are used, and the combined sensor 1C placed on the right side of the face and the left side of the face Two audio signal channels from the composite sensor 1C are used.
In FIG. 12(d), the myoelectric potential signal channel 1 from the combined sensor 1A placed on the right side of the face is used, and the audio signal channel 1 from the combined sensor 1C placed on the right side of the face is used.

図13(a)では、顔左に配置した複合センサ1Aからの筋電位信号1チャンネルを用い、顔左に配置した複合センサ1Cからの音声信号1チャンネルを用いている。
図13(b)では、顔右に配置した複合センサ1A、及び顔左に配置した複合センサ1Aからの筋電位信号2チャンネルを用い、顔右に配置した複合センサ1B、及び顔左に配置した複合センサ1Bからの音声信号2チャンネルを用いている。
図13(c)では、顔右に配置した複合センサ1Aからの筋電位信号1チャンネルを用い、顔右に配置した複合センサ1Bからの音声信号1チャンネルを用いている。
図13(d)では、顔左に配置した複合センサ1Aからの筋電位信号1チャンネルを用い、顔左に配置した複合センサ1Bからの音声信号1チャンネルを用いている。
図12及び図13に示すように、いずれの場合も検出誤差は小さいが、生体信号用電極11を、カンペル平面以上の高さに配置し、マイク21を、カンペル平面以下の高さに配置することで、咀嚼及び嚥下を正確に検出しやすい。
In FIG. 13A, one channel of the myoelectric potential signal from the combined sensor 1A placed on the left side of the face is used, and one channel of the sound signal from the combined sensor 1C placed on the left side of the face is used.
In FIG. 13(b), using two channels of myoelectric potential signals from the combined sensor 1A placed on the right side of the face and the combined sensor 1A placed on the left side of the face, the combined sensor 1B placed on the right side of the face and the left side of the face Two audio signal channels from the composite sensor 1B are used.
In FIG. 13(c), one channel of myoelectric potential signals from the combined sensor 1A placed on the right side of the face is used, and one channel of audio signals from the combined sensor 1B placed on the right side of the face is used.
In FIG. 13D, one channel of the myoelectric potential signal from the combined sensor 1A placed on the left side of the face is used, and one channel of the sound signal from the combined sensor 1B placed on the left side of the face is used.
As shown in FIGS. 12 and 13, although the detection error is small in both cases, the biosignal electrode 11 is arranged at a height above the Camper's plane, and the microphone 21 is arranged at a height below the Camper's plane. This facilitates accurate detection of mastication and swallowing.

本発明は、キャリブレーションや機械学習の学習プロセスを必要とせず、食材、個人差、計測位置での差異に関らず咀嚼及び嚥下を検出することができる。 The present invention does not require calibration or machine learning learning processes, and can detect chewing and swallowing regardless of ingredients, individual differences, and differences in measurement positions.

1 複合センサ
1A 複合センサ
1B 複合センサ
1C 複合センサ
10 生体信号検出手段
11 生体信号用電極
11a 関電極
11b 不関電極
20 音検出手段
21 マイク
22 空気層
23 シリコン材
30 固定部材
X 領域
Reference Signs List 1 compound sensor 1A compound sensor 1B compound sensor 1C compound sensor 10 biosignal detection means 11 biosignal electrode 11a interest electrode 11b indifference electrode 20 sound detection means 21 microphone 22 air layer 23 silicon material 30 fixing member X area

Claims (7)

生体信号検出手段と音検出手段とを備え、
側頭筋、後頭筋、胸鎖乳突筋、咬筋、耳介筋、茎突舌骨筋、及び顎二腹筋の少なくとも一つの筋肉の耳周辺での筋活動による生体信号が検出できる位置に前記生体信号検出手段を配置し、
咀嚼音及び嚥下音を検出できる位置に前記音検出手段を配置する
耳周辺装着具であって、
前記生体信号検出手段で検出される前記生体信号から咀嚼区間を決定し、
決定した前記咀嚼区間以外で検出される前記音検出手段による音声信号で前記嚥下音を特定する
ことを特徴とする耳周辺装着具。
comprising biosignal detection means and sound detection means,
The living body at a position where a biological signal can be detected by muscle activity around the ear of at least one of the temporal muscle, occipital muscle, sternocleidomastoid muscle, masseter muscle, auricular muscle, stylohyoid muscle, and digastric muscle. arranging a signal detection means,
An ear-mounted device in which the sound detection means is arranged at a position where mastication sounds and swallowing sounds can be detected,
determining a mastication interval from the biosignal detected by the biosignal detection means;
An ear-surrounding wearing device, characterized in that the swallowing sound is specified by an audio signal detected by the sound detection means detected outside the determined mastication interval.
前記咀嚼区間に検出される前記生体信号から咀嚼回数を算出し、
前記嚥下音から嚥下回数を算出する
ことを特徴とする請求項1に記載の耳周辺装着具。
calculating the number of times of mastication from the biosignal detected in the mastication interval;
2. The ear-piercing device according to claim 1, wherein the number of swallows is calculated from the swallowing sound.
前記生体信号検出手段の生体信号用電極を、装着者の皮膚に接触させ、
前記音検出手段のマイクを、前記装着者の前記皮膚に接触させずに
装着する
ことを特徴とする請求項1又は請求項2に記載の耳周辺装着具。
bringing the biosignal electrode of the biosignal detection means into contact with the wearer's skin;
3. The ear-worn device according to claim 1, wherein the microphone of said sound detecting means is worn without contacting said skin of said wearer.
前記マイクの周囲に前記生体信号用電極を配置し、
前記生体信号用電極を前記装着者の前記皮膚に接触させた状態では、前記マイクと前記皮膚との間に空気層が形成される
ことを特徴とする請求項3に記載の耳周辺装着具。
arranging the biosignal electrode around the microphone;
4. The ear-piercing device according to claim 3, wherein an air layer is formed between the microphone and the skin when the biosignal electrode is in contact with the skin of the wearer.
前記生体信号用電極を、前記マイクを中心としたドーナツ状に配置した
ことを特徴とする請求項4に記載の耳周辺装着具。
5. The ear-worn device according to claim 4, wherein the biosignal electrodes are arranged in a doughnut shape around the microphone.
前記生体信号用電極を、カンペル平面以上の高さに配置し、
前記マイクを、前記カンペル平面以下の高さに配置した
ことを特徴とする請求項3に記載の耳周辺装着具。
The biosignal electrode is arranged at a height above the Camper's plane,
4. The ear-worn device according to claim 3, wherein the microphone is arranged at a height equal to or lower than the Camper's plane.
前記生体信号からピーク探索を行い、
前記ピーク探索で検出される隣り合うピークの間の距離を咀嚼ペースとして算出し、
一つの前記ピークの波形の高さを用いて咀嚼強さを算出し、
一つの前記ピークの所定高さにおける幅を用いて筋活動時間を算出し、
算出される前記咀嚼ペース、前記咀嚼強さ、及び前記筋活動時間を用いて、嚥下に伴う予備動作を除去して前記咀嚼区間を決定する
ことを特徴とする請求項1から請求項6のいずれか1項に記載の耳周辺装着具。
Performing a peak search from the biosignal,
Calculate the distance between adjacent peaks detected by the peak search as a mastication pace,
Calculate the mastication strength using the waveform height of one of the peaks,
calculating the muscle activity time using the width at a predetermined height of one of the peaks;
7. The mastication interval is determined by removing preparatory movements associated with swallowing using the calculated mastication pace, mastication strength, and muscle activity time. 1. The ear-periphery fitting according to 1.
JP2020154659A 2020-09-15 2020-09-15 Wearing device around the ear Active JP7251804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020154659A JP7251804B2 (en) 2020-09-15 2020-09-15 Wearing device around the ear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020154659A JP7251804B2 (en) 2020-09-15 2020-09-15 Wearing device around the ear

Publications (2)

Publication Number Publication Date
JP2022048693A JP2022048693A (en) 2022-03-28
JP7251804B2 true JP7251804B2 (en) 2023-04-04

Family

ID=80844246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154659A Active JP7251804B2 (en) 2020-09-15 2020-09-15 Wearing device around the ear

Country Status (1)

Country Link
JP (1) JP7251804B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317144A (en) 2006-05-26 2007-12-06 Resuko Kk Mastication counter
JP2016131854A (en) 2015-01-22 2016-07-25 シャープ株式会社 Living-body wearable measuring apparatus
JP2017104465A (en) 2014-12-27 2017-06-15 三栄源エフ・エフ・アイ株式会社 Evaluation method of ingesta deglutition sensation
US20180242908A1 (en) 2017-02-13 2018-08-30 The Board Of Trustees Of The University Of Alabama Food intake monitor
WO2018182043A1 (en) 2017-03-31 2018-10-04 コンピュータ・ハイテック株式会社 Device for detecting mastication or swallowing
WO2018180779A1 (en) 2017-03-29 2018-10-04 株式会社村田製作所 Swallowing analysis system
JP2018198635A (en) 2017-05-25 2018-12-20 国立大学法人岐阜大学 Swallowing timing measuring method and swallowing timing measuring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464072B2 (en) * 2010-06-16 2014-04-09 ソニー株式会社 Muscle activity diagnosis apparatus and method, and program
JP2012075758A (en) * 2010-10-05 2012-04-19 Doshisha Dysphagia detecting system
JP2013042968A (en) * 2011-08-24 2013-03-04 Nippon Joho Denshi Kk Mastication frequency meter
JP6975952B2 (en) * 2016-07-08 2021-12-01 国立大学法人岩手大学 Living body motion identification system and living body motion identification method
JP7034638B2 (en) * 2017-09-14 2022-03-14 三栄源エフ・エフ・アイ株式会社 Food texture evaluation method
JP7145484B2 (en) * 2018-06-27 2022-10-03 国立研究開発法人産業技術総合研究所 Masticatory motion measuring device, masticatory motion measuring method, and method for acquiring data related to masticatory motion
JP7009342B2 (en) * 2018-09-27 2022-01-25 Kddi株式会社 Devices, programs and methods that can evaluate meals based on the amount of chewing and smiling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317144A (en) 2006-05-26 2007-12-06 Resuko Kk Mastication counter
JP2017104465A (en) 2014-12-27 2017-06-15 三栄源エフ・エフ・アイ株式会社 Evaluation method of ingesta deglutition sensation
JP2016131854A (en) 2015-01-22 2016-07-25 シャープ株式会社 Living-body wearable measuring apparatus
US20180242908A1 (en) 2017-02-13 2018-08-30 The Board Of Trustees Of The University Of Alabama Food intake monitor
WO2018180779A1 (en) 2017-03-29 2018-10-04 株式会社村田製作所 Swallowing analysis system
WO2018182043A1 (en) 2017-03-31 2018-10-04 コンピュータ・ハイテック株式会社 Device for detecting mastication or swallowing
JP2018198635A (en) 2017-05-25 2018-12-20 国立大学法人岐阜大学 Swallowing timing measuring method and swallowing timing measuring device

Also Published As

Publication number Publication date
JP2022048693A (en) 2022-03-28

Similar Documents

Publication Publication Date Title
US11344256B2 (en) Collecting biologically-relevant information using an earpiece
US11426305B2 (en) Systems and methods for obstructive sleep apnea detection and monitoring
DK2667777T3 (en) APPARATUS FOR DIAGNOSIS OF SAG dysfunction
Hwang et al. Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram
US20130109932A1 (en) Systems and methods for pulmonary monitoring and treatment
Farella et al. Masticatory muscle activity during deliberately performed oral tasks
Hossain et al. Comparison of wearable sensors for estimation of chewing strength
US20220117777A1 (en) Sleep monitoring device
KR101456695B1 (en) Bite force measurement system
JP7113387B2 (en) Method of operating treatment and examination system, treatment and examination program of treatment and examination system, and its storage medium
JP7145484B2 (en) Masticatory motion measuring device, masticatory motion measuring method, and method for acquiring data related to masticatory motion
JP2024138102A (en) Operation method of eating and swallowing function evaluation system
Gerstner et al. Over‐the‐counter bite splints: A randomized controlled trial of compliance and efficacy
WO2018146672A1 (en) Method and system for analyzing neural and muscle activity in a subject's head for the detection of mastication
JP7251804B2 (en) Wearing device around the ear
KR20160052995A (en) functional malocclusion diagnostic system
EP4292527A1 (en) A system for detecting bruxism or temporomandibular joint disorders
JP6174965B2 (en) A device for monitoring the pressure in the oral cavity or pharynx
Fusayama et al. Masseter and digastric muscle activity evaluation using a novel electromyogram that utilizes elastic sheet electrodes
KR101642462B1 (en) functional malocclusion diagnostic system
Tamura et al. Review of monitoring devices for food intake
Kilic Associations between upper lip activity and incisor position
Obid EMG activity of masticatory muscles of patients with different bruxism grades during tasks with submaximal controlled force
RU133709U1 (en) DEVICE FOR REGISTRATION OF VERTICAL MOVEMENTS OF THE LOWER JAW

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7251804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150