以下に、本願の開示する端末装置、基地局装置、無線通信システム及び端末装置制御方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する端末装置、基地局装置、無線通信システム及び端末装置制御方法が限定されるものではない。
図1は、端末装置のブロック図である。端末装置1は、後述する基地局装置2と無線通信によりデータの送受信を行う。本実施例では、端末装置1及び基地局装置2は、HARQフィードバック方式としてCBG(Code Block Group)型のフィードバック方式を用いる。ここで、CBG型のフィードバック方式について以下に説明する。
図2は、CBG型のフィードバック方式について説明するための図である。端末装置1は、コードブロック(CB:Code Block)101を所定数集めたCBG(Code Brock Group)111~113を含むトランスポートブロック115を基本単位として、データを基地局装置2から受信する。ここで、図2では、2つのコードブロック101を集めたものをCBG111~113としたが、CBG111~113のコードブロックの数には特に制限は無い。以下では、CBG111~113を区別しない場合、「CBG110」として表す。このコードブロック101が、「第1グループ」の一例にあたる。また、CBG110が、「第2グループ」の一例にあたる。
端末装置1は、無線部11、PDCCH(Physical Downlink Control Channel)受信処理部12及びPDSCH(Physical Downlink Sheared Channel)受信処理部13を有する。また、端末装置1は、ACK(Acknowledgement)/NACK(Negative Acknowledgement)生成部14及びSR(Scheduling Request)生成部15を有する。さらに、PUCCH(Physical Uplink Control Channel)生成部16及びPUSCH(Physical Uplink Sheared Channel)生成部17及びバッファ18を有する。
無線部11は、アンテナを介して制御信号及びデータを含むPDCCH及びPDSCHの信号を基地局装置2から受信する。ここで、無線部11が受信する信号は、図2に示すような複数のCBG110を含むトランスポートブロック115を含む。そして、無線部11は、受信した信号にAD(Analog Digital)変換を施す。その後、無線部11は、受信したPDCCH及びPDSCHの信号をPDCCH受信処理部12へ出力する。
また、無線部11は、ACK/NACKを表す信号の入力をPUCCH生成部16から受ける。次に、無線部11は、ACK/NACKを表す信号に対してDA(Digital Analog)変換を施す。その後、無線部11は、ACK/NACKを表す信号をアンテナを介して基地局装置2へ送信する。
また、無線部11は、データを含む信号の入力をPUSCH生成部17から受ける。次に、無線部11は、データを含む信号に対してDA変換を施す。その後、無線部11は、データを含む信号をアンテナを介して基地局装置2へ送信する。
PDCCH受信処理部12は、制御信号及びデータを含むPDCCH及びPDSCHの信号の入力を無線部11から受ける。そして、PDCCH受信処理部12は、PDCCHの信号に対して復調処理及び復号化処理を施して制御信号を取得する。この制御信号には、無線リソースの割り当て情報も含まれる。その後、PDCCH受信処理部12は、制御信号とともにPDSCHの信号をPDSCH受信処理部13へ出力する。
PDSCH受信処理部13は、制御信号とともにPDSCHの信号の入力をPDCCH受信処理部12から受ける。次に、PDSCH受信処理部13は、制御信号で指定されたMCS(Modulation and Coding Scheme)を用いてPDCCHの信号に対して復調処理及び復号化処理を施してデータを取得する。
次に、PDSCH受信処理部13は、1つのトランスポートブロック115のデータに含まれるCBG110を特定する。そして、PDSCH受信処理部13は、トランスポートブロック115に含まれる各CBG110についてデータが復号できたか否かを判定する。
PDSCH受信処理部13は、データが復号できたCBG110については、データの復号の成功をACK/NACK生成部14へ通知する。また、PDSCH受信処理部13は、データの復号に失敗したCBG110については、データの復号の失敗をACK/NACK生成部14へ通知する。このPDSCH受信処理部13が、「受信部」の一例にあたる。
ACK/NACK生成部14は、各CBG110に対するデータの復号の成功の通知又は失敗の通知をPDSCH受信処理部13から受ける。そして、ACK/NACK生成部14は、各CBG110に対するデータの復号の成功を表すAck又はデータの復号の失敗を表すNackを生成する。以下では、Ack及びNackのいずれか一方もしくは双方を含む情報を、「Ack/Nack」と表す。
ここで、各CBG110に対するAck/Nackの生成について説明する。図3は、サブキャリアにマッピングされたAck/Nackを表すビットパターンの一例の図である。ここでは、2つのCBG#1及び#2に対するAck/Nackについて説明する。
1つのリソースブロック121及び122は、12個のサブキャリアを含む。そして、各サブキャリアがそれぞれ値を有する。Ack/Nackは、リソースブロック121及び122などを用いて基地局装置2へ送信される。図3では、CBG#1又は#2のいずれに対するAck/Nackの値が各サブキャリアに入っているかを表している。
リソースブロック121は、1つのリソースブロックでCBG#1に対する1ビットのAck又はNackを表す場合の、Ack/Nackのビットパターンのマッピングを表す。この場合、リソースブロック121のRS(Reference Signal)を除く各サブキャリアは全てCBG#1に対するAck又はNackの値を表す。すなわち、Ackを表す値を0としNackを表す値を1とすると、CBG#1に対してAckを返す場合、リソースブロック121に含まれるサブキャリアには、RS以外は全て0の値が格納される。CBG#1に対してNackを返す場合、リソースブロック121に含まれるサブキャリアには、RS以外は全て1の値が格納される。
この場合、1つのリソースブロックに対して1つのCBGのAck又はNackの値が格納されるので、ACK/NACK生成部14は、リソースブロック121に対しては、同じ値を並べた8ビットのビット系列をCBG#1のAck/Nackとして生成する。この場合、基地局装置2は、受信した信号の1つのリソースブロック121から、CBG#1のAck/Nackを取得する。
一方、リソースブロック122は、1つのリソースブロックでCBG#1及び#2のそれぞれに対する1ビットのAck又はNackを表す場合の、Ack/Nackのビットパターンのマッピングを表す。この場合、リソースブロック122のRSを除く各サブキャリアには、CBG#1に対するAck又はNackを表す値又はCBG#2に対するAck又はNackを表す値が格納される。例えば、リソースブロック122に示すように、CBG#1に対するAck/Nackを表す値とCBG#2に対するAck/Nackを表す値とがRS以外のサブキャリアに交互に配置される。この場合、2つのリソースブロックで2つのCBG#1及び#2のそれぞれに対するAck/Nackが表される。
この場合、ACK/NACK生成部14は、Ackを表す値を0としNackを表す値を1とすると、CBG#1及び#2のAck/Nackを表す2つのリソースブロック分のビット系列を、図4に示すように生成する。図4は、2つのリソースブロックにマッピングされる2つのCBGに対するAck/Nackを表す値の一例を表す図である。
例えば、CBG#1の受信応答がAckで、CBG#2の受信応答がNackの場合、ACK/NACK生成部14は、「01010101,01010101」というビット系列を生成する。この場合、基地局装置2は、受信した信号の2つのリソースブロック122の情報を加算するなどして、CBG#1及び#2のそれぞれに対するAck/Nackを取得する。
1つのリソースブロックで表されるCBG110の受信応答の数が増えた場合、ACK/NACK生成部14は、0と1で表されるビット系列のパターンを増やす。このように、ACK/NACK生成部14は、1つのリソースブロック121で1つのCBG110に対するAck/Nackの情報を表すようにAck/Nackを生成することもできる。また、ACK/NACK生成部14は、複数のリソースブロック121で複数のCBG110に対するAck/Nackの情報を表すようにAck/Nackを生成することもできる。
また、1サブキャリアに複数のCBGのAck/Nackをマッピングすることもできる。図5を参照して、1サブキャリアに複数のCBGのAck/Nackをマッピングする例について説明する。図5は、1つのリソースブロック内の1つのサブキャリアに2つのCBGのAck/Nackがマッピングされた一例を示す図である。図5における1サブキャリアの情報としては、例えば、サブキャリアを4位相偏移変調(QPSK:Quadrature Phase Shift Keying)で変調した場合の2ビットの情報である。
例えば、図5のリソースブロック123は、2つのCBGに対するAck/Nackを1つのリソースブロックで送信する場合のAck/Nackのビットパターンのマッピングを表す。この場合、リソースブロック123のサブキャリアは、2ビットである。そして、リソースブロック123のRSを除く各サブキャリアは全てCBG#1及び#2に対するAck又はNackの値を表す。この場合、各サブキャリアがQPSKで変調される。ここで、例えば、Ackを表す値を0としNackを表す値を1とすると、CBG#1に対してAckを返し、CBG#2に対してNackを返す場合、リソースブロック123に含まれるサブキャリアには、RS以外は全て(0,1)の値が格納される。
この場合、1つのリソースブロックに対して2つのCBGのAck又はNackの値が格納されるので、ACK/NACK生成部14は、リソースブロック123に対しては、同じ値を並べた16ビットのビット系列が、CBG#1及び#2のAck/Nackとして生成される。この場合、基地局装置2は、受信した信号の1つのリソースブロック123から、CBG#1及び#2のAck/Nackを取得する。
また、図5のリソースブロック124は、4つのCBGに対するAck/Nackを1つのリソースブロックで送信する場合のAck/Nackのビットパターンのマッピングを表す。この場合も、リソースブロック123のサブキャリアは、2ビットである。そして、リソースブロック124のRSを除く各サブキャリアには、CBG#1及び#2に対するAck又はNackを表す値又はCBG#3及び#4に対するAck又はNackを表す値が格納される。この場合も、各サブキャリアがQPSKで変調される。例えば、リソースブロック124に示すように、CBG#1及び#2に対するAck/Nackを表す値とCBG#3及び#4に対するAck/Nackを表す値とがRS以外のサブキャリアに交互に配置される。この場合、1つのリソースブロックで4つのCBG#1~#4のそれぞれに対するAck/Nackが表される。
この場合、1つのリソースブロックに対して4つのCBGのAck又はNackの値が格納されるので、ACK/NACK生成部14は、リソースブロック124に対しては、同じ値を並べた32ビットのビット系列が、CBG#1~#4のAck/Nackとして生成される。この場合、基地局装置2は、受信した信号の1つのリソースブロック123から、CBG#1~#4のAck/Nackを取得する。
また、図5のリソースブロック群125は、4つのCBGに対するAck/Nackを2つのリソースブロックで送信する場合のAck/Nackのビットパターンのマッピングを表す。この場合も、リソースブロック群125のサブキャリアは、2ビットである。そして、リソースブロック125のRSを除く各サブキャリアには、CBG#1及び#2に対するAck又はNackを表す値又はCBG#3及び#4に対するAck又はNackを表す値が格納される。この場合も、各サブキャリアがQPSKで変調される。例えば、リソースブロック群125に示すように、CBG#1及び#2に対するAck/Nackを表す値とCBG#3及び#4に対するAck/Nackを表す値とがRS以外のサブキャリアに交互に配置される。この場合、2つのリソースブロックで4つのCBG#1~#4のそれぞれに対するAck/Nackが表される。
この場合、1つのリソースブロックに対して4つのCBGのAck又はNackの値が格納されるので、ACK/NACK生成部14は、リソースブロック群125に対しては、同じ値を並べた32ビットのビット系列が、CBG#1~#4のAck/Nackとして生成される。この場合、基地局装置2は、受信した信号の2つのリソースブロック123から、CBG#1~#4のAck/Nackを取得する。
そして、ACK/NACK生成部14は、各CBG110に対するAck及びNackをまとめて1つのトランスポートブロック115に対する受信応答としてPUCCH生成部16へ出力する。このACK/NACK生成部14が、「応答信号生成部」の一例にあたる。
バッファ18は、第1バッファ181及び第2バッファ182を有する。第1バッファ181及び第2バッファ182には遅延や信頼度などの要求条件あるいはQoS(Quality of Service)にしたがって分けられた論理チャネルのデータがそれぞれ格納される。第1バッファ181は、URLLC(Ultra-Reliable and Low Latency Communication)などの低遅延で優先度の高い処理における送信データを格納するバッファである。また、第2バッファ182は、eMBB(Enhanced Mobile Brad Band)やウェブブラウジングなどの優先度の低い処理における送信データを格納するバッファである。第1バッファ181や第2バッファ182には、CPU(Central Processing Unit)が実行する演算処理などで発生した送信データがCPUにより格納される。
SR生成部15は、第1バッファ181又は第2バッファ182に送信データが格納されたか否かを確認する。第1バッファ181又は第2バッファ182に送信データが格納された場合、SR生成部15は、送信データを送信するための無線リソースの割り当てを要求する無線リソース割当要求を生成する。
そして、SR生成部15は、無線リソース割当要求を送信データの格納元である第1バッファ181又は第2バッファ182の情報とともにPUCCH生成部16へ出力する。このSR生成部15が、「無線リソース割当要求生成部」の一例にあたる。
PUCCH生成部16は、各CBG110のACK及びNACKをまとめた1つのトランスポートブロック115に対する受信応答の情報の入力をACK/NACK生成部14から受ける。また、PUCCH生成部16は、無線リソース割当要求の入力をSR生成部15から受ける。ここで、図6を参照して、受信応答及び無線リソース割当要求に対して予め割り当てられた無線リソースについて説明する。図6は、無線リソースの割り当てを表す図である。図6の縦方向は周波数を表し、横方向は時間を表す。
図6において、PDCCH202に挟まれた区間が、TTI(Transmission Time Interval)201である。そして、PDCCH202の後にPDSCH203が送受信される。そして、無線リソース210が、無線リソース割当要求に予め割り当てられたリソースである。また、無線リソース220が、受信応答に予め割り当てられたリソースである。なお、本実施例では、受信応答を送信するPUCCHにおいて、2シンボル単位で信号が送信される場合で説明したが、このPUCCHにおける送信単位は他の単位を用いてもよい。例えば、PUCCHにおいて、信号は1シンボル単位で送信されてもよい。以下では、図6で示す受信応答及び無線リソース割当要求に予め割り当てられた無線リソースを、「通常無線リソース」という。
PUCCH生成部16は、受信応答又は無線リソース割当要求をあるTTI201において同時に送るか否かを判定する。以下では、あるTTI201において受信応答及び無線リソース割当要求を同じタイミングで送信する場合を、「同時送信」という。言い換えれば、同時送信とは、端末装置1において時間方向に重なる無線リソース210と無線リソース220とを用いた受信応答及び無線リソース割当要求の送信が発生した場合である。
PUCCH生成部16は、同時送信でない場合、受信応答であるAck/Nackを表すデータ又は無線リソース割当要求を表すデータに符号化処理及び変調処理を施す。その後、PUCCH生成部16は、符号化処理及び変調処理を施したデータに通常無線リソースを割り当てる。
図7は、実施例1に係る端末装置による無線リソースの割り当てを表す図である。図7の、割当状態311~313において縦方向が周波数を表し、横方向が時間を表す。例えば、無線リソース割当要求を送らずに受信応答を送る場合、PUCCH生成部16は、図7の割当状態311に示すように無線リソースを割り当てる。すなわち、PUCCH生成部16は、受信応答にリソースブロック301~303の無線リソース220を割り当てる。この場合、リソースブロック300の無線リソース210は割り当てられない。逆に、受信応答を送らずに無線リソース割当要求を送る場合、PUCCH生成部16は、リソースブロック300の無線リソース210を割り当てる。
そして、PUCCH生成部16は、無線リソースの割り当てに応じてAck/Nackを表すデータ又は無線リソース割当要求を表すデータをPUCCHに配置して信号を生成する。その後、PUCCH生成部16は、無線部11を介して生成した信号を基地局装置2へ送信する。この場合、PUCCH生成部16は、無線リソース210を用いて無線リソース割当要求を基地局装置2へ送信する。また、PUCCH生成部16は、無線リソース220を用いて受信応答を基地局装置2へ送信する。
次に、同時送信の場合のPUCCH生成部16による処理について説明する。ここでは、同時送信時に発生した受信応答及び無線リソース割当要求を、同時送信でない場合と同様に通常無線リソースに割り当てた状態を「通常割当状態」という。
同時送信の場合、PUCCH生成部16は、図7の割当状態312に示すように無線リソースを割り当てる。具体的には、PUCCH生成部16は、同時送信時の受信応答に割り当てるリソースブロックの情報を予め記憶する。すなわち、PUCCH生成部16は、受信応答の通常無線リソースに含まれるリソースブロックの中から1つ除外リソースブロックを予め記憶する。そして、PUCCH生成部16は、通常割当状態において除外リソースブロックが割り当てられるAck/Nackを表すデータに、通常割当状態であれば無線リソース割当要求に割り当てられる無線リソース210を割り当てる。
次に、無線リソース210を割り当てたデータ以外のAck/Nackを表すデータに、通常割当状態と同様に無線リソース220の除外リソースブロック以外のリソースブロックを割り当てる。例えば、割当状態312に示すように、PUCCH生成部16は、無線リソース210を割り当てたデータ以外のAck/Nackを表すデータに無線リソース220におけるリソースブロック301及び303を割り当てる。この場合、PUCCH生成部16は、リソースブロック302は使用しない。
このように無線リソースの割り当てを行うことで、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで基地局装置2にSRの発生を通知する。
ここで、リソースブロック301~303のうちいずれを未使用とするかは自由に決めることができる。ただし、未使用リソースブロックが使用中リソースブロックに挟まれている方が、基地局装置2は、未使用であることを検出しやすい。そこで、PUCCH生成部16は、割当状態312のように、使用中リソースブロックに未使用リソースブロックが挟まれるように未使用リソースブロックを選択することが好ましい。
また、無線リソース210にマッピングする信号の内容は、この未使用リソースブロックに対して通常割当状態にてマッピングする信号の内容をそのまま適用すればよい。あるいは、無線リソース220の中の使用リソースブロックと無線リソース210の中の使用リソースブロックを周波数順に並べ、通常割当状態のAck/Nackの送信と同じ方法、すなわち周波数の低い順又は高いにマッピングを行ってもよい。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かを判定する。ここで、PUCCH生成部16は、第1バッファ181に格納された優先度の高い処理における送信データの送信と第2バッファ182に格納された優先度の高い処理における送信データの送信とでそれぞれ異なる送信電力密度を調整するためのパラメータを有する。
本実施例では、PUCCH生成部16は、第1バッファ181に格納された送信データの送信の場合のパラメータとして、送信電力密度を高くするパラメータを有する。また、PUCCH生成部16は、第2バッファ182に格納された送信データの送信の場合のパラメータとして、第1バッファ181に格納された送信データの送信の場合よりも送信電力密度が低くなるパラメータを有する。パラメータは、例えば、受信応答を送信する場合の送信電力密度に対するオフセットである。このパラメータの値は、例えば、基地局装置2からPUCCHのリソース設定を通知する際にRRC(Radio Resource Control)信号あるいはPDCCHにより指定される。
PUCCH生成部16は、第1バッファ181に格納された送信データを送信するための無線リソース割当要求であれば、割当状態312のように受信応答に割り当てられた無線リソースの送信電力密度を高くする。これに対して、第2バッファ182に格納された低優先度の処理における送信データに対する無線リソース割当要求であれば、PUCCH生成部16は、割当状態312のように受信応答の送信電力密度を通常の受信応答の送信時と同じにする。
その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して受信応答のデータを基地局装置2へ送信する。これにより、PUCCH生成部16は、各CBG110のAck/Nackの情報とともに無線リソース割当要求の発生を基地局装置2へ通知する。
ここで、本実施例では、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、常に割当状態313のように、通常割当状態の無線リソースの割り当てを行ってもよい。この場合、PUCCH生成部16は、リソースブロック300~301を全て使用する。
このように、本実施例では、同時受信の場合、通常割当状態と比べて無線リソース割当要求の通常割当リソース分の無線リソースは使用されなくなる。すなわち、未使用無線リソースの数はそれほど増えない。ここで、優先度の低い無線リソース割当要求であれば、Ack/Nackと同等の信頼度で送信してもよいので、送信電力は十分賄える。これに対して、優先度の高い無線リソース割当要求であれば、信頼度を高めるためにより高い送信電力密度での送信が望ましく、送信電力不足が発生する可能性もある。このPUCCH生成部16が、「送信部」の一例にあたる。
図1に戻って説明を続ける。PUSCH生成部17は、無線リソース割当要求に対する応答で指定された送信データを送信するための無線リソースの情報をPDCCH受信処理部12から取得する。次に、PUSCH生成部17は、送信した無線リソース割当要求に対応する送信データをバッファ18の第1バッファ181又は第2バッファ182から取得する。
そして、PUSCH生成部17は、取得した送信データに符号化処理及び変調処理を施す。次に、PUSCH生成部17は、符号化処理及び変調処理を施した送信データに指定された無線リソースを割り当てる。その後、PUSCH生成部17は、無線リソースの割り当てに応じて送信データをPUSCHに配置して信号を生成する。その後、PUSCH生成部17は、無線部11を介して生成した信号を基地局装置2へ送信する。
次に、図8を参照して、基地局装置2について説明する。図8は、基地局装置のブロック図である。基地局装置2は、図8に示すように、PUCCHリソース管理部21、バッファ22、スケジューラ23、下り信号ベースバンド処理部24、上り信号ベースバンド処理部25及び無線部26を有する。バッファ22は、基地局装置2が取得した送信データの一時的な記憶領域である。
PUCCHリソース管理部21は、無線リソース割当要求用のリソース設定情報及びAck/Nack用のリソース設定情報をスケジューラ23に通知する。ここで、PUCCHリソース管理部21は、無線リソース割当要求及びAck/Nackを送信する受信応答の通常無線リソースを予め決められた周期で周期的に設定してもよい。他にも、PUCCHリソース管理部21は、無線リソース割当要求及びAck/Nackを送信する受信応答の通常無線リソースをTTIごとに決定して設定してもよい。
スケジューラ23は、バッファ22に格納された送信データの中から送信するデータを特定する。そして、スケジューラ23は、特定したデータの送信のスケジューリングを行う。
次に、スケジューラ23は、送信するトランスポートブロック115のデータをCBG110に分割する。次に、スケジューラ23は、使用するMCSを決定する。例えば、スケジューラ23は、URLLC用のデータについては、eMBB用のデータに比べて冗長度を大きくするMCSを選択する。また、スケジューラ23は、データの送受信のための制御情報を生成する。さらに、スケジューラ23は、データ及び制御情報を送信する無線リソースを決定する。その後、スケジューラ23は、送信するデータのトランスポートブロック115における各CBG110の情報、MCSの情報、生成した制御情報及び使用する無線リソースの情報を下り信号ベースバンド処理部24へ出力する。
その後、スケジューラ23は、CBG110毎に1ビットのACK又はNACKの入力を上り信号ベースバンド処理部25から受ける。また、スケジューラ23は、無線リソース割当要求の入力を上り信号ベースバンド処理部25から受ける。
スケジューラ23は、送信したトランスポートブロック115に含まれるCBG110のうちでNACKを受信したCBG110を特定する。そして、スケジューラ23は、再送するデータを決定する。
また、スケジューラ23は、制御情報を生成する。さらに、無線リソース割当要求を受信した場合、スケジューラ23は、送信データに用いる通常無線リソースを決定する。また、スケジューラ23は、データの再送に用いる無線リソースを決定する。その後、スケジューラ23は、再送するデータの情報、MCSの情報、生成した制御情報及び使用する無線リソースの情報を下り信号ベースバンド処理部24へ出力する。スケジューラ23は、全てのCBG110についてACKを受信するまで再送を繰り返す。
下り信号ベースバンド処理部24は、送信又は再送するデータの情報、MCSの情報、制御情報及び使用する無線リソースの情報の入力をスケジューラ23から受ける。次に、下り信号ベースバンド処理部24は、受信した送信又は再送するデータの情報に応じたデータをバッファ22から取得する。次に、下り信号ベースバンド処理部24は、受信したMCSの情報で指定された符号化率を用いて取得したデータ及び制御情報に符号化処理を施す。さらに、下り信号ベースバンド処理部24は、受信したMCSの情報で指定された変調方式を用いて取得したデータ及び制御情報に変調処理を施す。その後、下り信号ベースバンド処理部24は、指定された無線リソースに制御情報及びデータを割り当て、制御情報をPDCCHに配置し、データをPDSCHに配置する。そして、下り信号ベースバンド処理部24は、制御情報及びデータを無線部26へ出力する。
無線部26は、制御情報及びデータの入力を下り信号ベースバンド処理部24から受ける。次に、無線部26は、制御情報及びデータに対してDA(Digital to Analog)変換を施す。その後、無線部26は、割り当てられた無線リソースを用いて制御信号及びデータをアンテナを介して端末装置1へ送信する。
また、無線部26は、アンテナを介して送信したデータの受信応答又は無線リソース割当要求のいずれか一方及び双方を含む信号を端末装置1から受信する。そして、無線部26は、受信した信号にAD(Analog to Digital)変換を施す。その後、無線部26は、送信したデータの受信応答又は無線リソース割当要求のいずれか一方及び双方を含む信号を上り信号ベースバンド処理部25へ出力する。この無線部26が、「基地局受信部」の一例にあたる。
上り信号ベースバンド処理部25は、送信したデータの受信応答又は無線リソース割当要求のいずれか一方及び双方を含む信号に対して復調処理及び復号化処理を施す。そして、上り信号ベースバンド処理部25は、受信した信号における無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれているか否かを判定する。受信した信号における無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれている、すなわち未使用リソースブロックが含まれていない場合、上り信号ベースバンド処理部25は、同時送信でないと判定する。
同時送信でなければ、上り信号ベースバンド処理部25は、受信応答の通常無線リソースである無線リソース220から各CBG110に対するAck/Nackの情報を取得する。
これに対して、未使用リソースブロックが含まれている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。ここで、上り信号ベースバンド処理部25は、図7の割当状態312に示した同時送信時に受信応答の送信に使用されるリソースブロックを予め記憶する。そして、上り信号ベースバンド処理部25は、予め決められたリソースブロックから各CBG110に対するAck/Nackの情報を取得する。
また、無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれていない場合、上り信号ベースバンド処理部25は、リソース210に無線リソース割当要求が配置されているか否かを判定する。無線リソース210に無線リソース割当要求が配置されている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。これに対して、無線リソース210に無線リソース割当要求が配置されていない場合、上り信号ベースバンド処理部25は、受信応答及び無線リソース割当要求のいずれも受信しなかったと判定する。
その後、上り信号ベースバンド処理部25は、各CBG110に対するAck/Nackの情報をスケジューラ23へ出力する。また、無線リソース割当要求が発生したと判定した場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生をスケジューラ23に通知する。この上り信号ベースバンド処理部25が、「取得部」の一例にあたる。
次に、図9を参照して、端末装置1による受信応答及び無線リソース割当要求の送信の流れについて説明する。図9は、実施例1に係る端末装置による受信応答及び無線リソース割当要求の送信のフローチャートである。ここでは、基地局装置2から無線信号を受信した場合を例に説明する。
PDSCH受信処理部13は、無線部11及びPDCCH受信処理部12を介して、基地局装置2から送信された信号を受信する(ステップS101)。
ACK/NACK生成部14は、PDCCH受信処理部12による信号の受信における、CBG110毎の信号受信の成否を取得する。そして、ACK/NACK生成部14は、取得したCBG110毎の信号受信の成否に応じて、各CBG110に対するAck/Nackを含む受信応答を生成する(ステップS102)。そして、ACK/NACK生成部14は、生成した受信応答をPUCCH生成部16へ出力する。
PUCCH生成部16は、各CBG110に対するAck/Nackを含む受信応答の入力をACK/NACK生成部14から受ける。さらに、PUCCH生成部16は、無線リソース割当要求をSR生成部15から取得したか否かにより、無線リソース割当要求があるか否かを判定する(ステップS103)。
無線リソース割当要求がある場合(ステップS103:肯定)、PUCCH生成部16は、取得した受信応答に符号化処理及び変調処理を施す。そして、PUCCH生成部16は、符号化処理及び変調処理を施した受信応答に通常割当状態の無線リソース割当要求の無線リソース及び受信応答の無線リソースの一部を割り当てる(ステップS104)。
これに対して、無線リソース割当要求が無い場合(ステップS103:否定)、取得した受信応答に変調処理及び符号化処理を施し、受信応答に通常無線リソースを全て割り当てる(ステップS105)。
その後、PUCCH生成部16は、無線リソースの割り当てにしたがってPUCCHへ変調処理及び符号化処理が施された信号を配置する(ステップS106)。そして、PUCCH生成部16は、変調処理及び符号化処理が施された信号を無線部11へ出力する。
無線部11は、変調処理及び符号化処理が施された信号の入力をPUCCH生成部16から受ける。そして、無線部11は、変調処理及び符号化処理が施された信号に対してDA変換を行いアンテナを介して端末装置1へ向けて送信する(ステップS107)。
ここで、本実施例では、無線リソース割当要求と受信応答との同時送信の場合について説明したが、無線リソース割当要求と他の信号とが重なった場合でも同様の方法により送信で力を削減することができる。例えば、無線リソース割当要求とCSI(Channel State Information)フィードバックとを同時送信する場合でも、上述した方法により送信電力を削減することができる。具体的には、PUCCH生成部16が、CSIフィードバックへの無線リソースの割り当てを上述した受信応答に対する無線リソースの割り当てと同様に行うことで、無線リソース割当要求を送信せずに無線リソース割当要求の発生を基地局に通知することができる。これにより、送信電力を削減することができる。
以上に説明したように、本実施例に係る端末装置は、同時送信の場合、通常割当状態の無線リソース割当要求の無線リソース及び受信応答の無線リソースの一部を用いて受信応答を送信する。これにより、本実施例に係る端末装置は、各CBGのAck/Nack及び無線リソース割当要求の発生を基地局装置に通知する。したがって、端末装置は、同時送信の場合の送信電力を低減することができる。すなわち、本実施例に係る端末装置は、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。特に、同時送信の場合に無線リソース割当要求及び受信応答の双方を通常割当状態で送ろうとした際に送信電力が不足する場合に、送信電力の上限内で受信応答を送るとともに無線リソース割当要求の発生を通知することができる。
次に、実施例2について説明する。本実施例に係る端末装置は、同時送信時に実施例1の場合に送ったAck/Nackのうちの一部を送信して、送信したAck/Nackの配置により残りのAck/Nackを通知することが実施例1と異なる。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
PUCCH生成部16は、受信応答の情報の入力をACK/NACK生成部14から受ける。また、PUCCH生成部16は、無線リソース割当要求の入力をSR生成部15から受ける。
PUCCH生成部16は、同時送信か否かを判定する。同時送信でない場合、PUCCH生成部16は、受信応答又は無線リソース割当要求を表すデータに符号化処理及び変調処理を施す。その後、実施例1と同様に、PUCCH生成部16は、符号化処理及び変調処理を施した信号に無線リソースを割り当てる。
次に、同時送信の場合のPUCCH生成部16による処理について説明する。図10は、実施例2に係る端末装置による無線リソースの割り当てを表す図である。図10の、割当状態314において縦方向が周波数を表し、横方向が時間を表す。同時送信の場合、PUCCH生成部16は、割当状態314に示すように無線リソースを割り当てる。
具体的には、PUCCH生成部16は、対応するAck/Nackを直接表すデータが送信されるCBG110を予め記憶する。図11は、各CBGに対するAck/Nackの一例を表す図である。ここでは、図11に示すように、CBG#1~#6が存在し、PUCCH生成部16は、CBG#1~#4をAck/Nackを直接表すデータを送信する直接通知CBG401として予め記憶する。この場合、PUCCH生成部16は、CBG#1~#4のAck/Nackの情報の配置状態、すなわち未使用リソースブロックの状態によりAck/Nackの通知を行う間接通知CBG402をCBG#5及び#6として予め記憶する。
さらに、PUCCH生成部16は、図12に示すような未使用リソーステーブル410を予め有する。図12は、未使用リソーステーブルの一例を表す図である。未使用リソーステーブル410は、間接通知CBGのAck/Nackに対応する未使用リソースブロックを表す。
PUCCH生成部16は、直接通知CBG401のAck/Nackを表すリソースブロックと間接通知CBG402のAck/Nackの情報を表すリソースブロックとが分けられた受信応答をACK/NACK生成部14から取得する。PUCCH生成部16は、取得した受信応答のうち間接通知CBG402であるCBG#5~#6のそれぞれのAck/Nackの情報を取得する。そして、PUCCH生成部16は、CBG#5~#6のそれぞれのAck/Nackに対応する未使用リソースブロックの組み合わせを未使用リソーステーブル410から取得する。例えば、図11に示すように、CBG#5及び#6のいずれに対してもAckを返す場合、PUCCH生成部16は、リソースブロック301及び302を未使用リソースブロックとして取得する。
次に、PUCCH生成部16は、CBG#1~#4のAck/Nackを表す受信応答に、通常割当状態であれば無線リソース割当要求に割り当てられる無線リソース210及び未使用リソースブロック以外のリソースブロックを割り当てる。例えば、CBG#5及び#6のいずれに対してもAckを返す場合、PUCCH生成部16は、CBG#1~#4に対する受信応答に、無線リソース210にあたるリソースブロック300及び無線リソース220のリソースブロック301を割り当てる。すなわち、PUCCH生成部16は、CBG#1~#4に対する受信応答に、無線リソースを割当状態314のように割り当てる。この場合、PUCCH生成部16は、リソースブロック302及び303は使用しない。
このように無線リソースの割り当てを行うことで、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで基地局装置2にSRの発生を通知する。また、PUCCH生成部16は、送信する信号を減らす。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かを判定する。そして、PUCCH生成部16は、第1バッファ181に格納された送信データを送信するための無線リソース割当要求であれば、割当状態312のように受信応答に割り当てられた無線リソースの送信電力密度を高くする。すなわち、これに対して、第2バッファ182に格納された低優先度の処理の送信データに対する無線リソース割当要求であれば、PUCCH生成部16は、割当状態312のように受信応答の無線リソースの送信電力密度を通常の受信応答の送信時と同じにする。
その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して受信応答のデータを基地局装置2へ送信する。これにより、PUCCH生成部16は、各CBG110のAck/Nackの情報とともに無線リソース割当要求の発生を基地局装置2へ通知する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
この場合、ACK/NACK生成部14は、CBG110のうちいずれが直接通知CBG401であり間接通知CBG402であるかを予め把握する。そして、ACK/NACK生成部14は、直接通知CBG401のAck/Nackを表す受信応答を生成する。また、ACK/NACK生成部14は、間接通知CBG402のAck/Nackの情報を表す受信応答を生成する。そして、ACK/NACK生成部14は、生成した受信応答をPUCCH生成部16へ出力する。
本実施例に係る基地局装置2も、図8のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
上り信号ベースバンド処理部25は、端末装置1のPUCCH生成部16と同様に、未使用リソーステーブル410を有する。さらに、上り信号ベースバンド処理部25は、CBG110における直接通知CBG401及び間接通知CBG402の情報を予め有する。
上り信号ベースバンド処理部25は、端末装置1が送信した信号を無線部26から受信する。そして、上り信号ベースバンド処理部25は、受信した信号に対して復号化処理及び復調処理を施す。そして、上り信号ベースバンド処理部25は、受信した信号における無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれているか否かを判定する。受信した信号における無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれている、すなわち未使用リソースブロックが含まれていない場合、上り信号ベースバンド処理部25は、同時送信でないと判定する。
同時送信でなければ、上り信号ベースバンド処理部25は、受信応答の通常無線リソースである無線リソース220から各CBG110に対するAck/Nackの情報を取得する。
これに対して、未使用リソースブロックが含まれている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。次に、上り信号ベースバンド処理部25は、受信応答の通常無線リソースである無線リソース220において直接通知CBG401が配置されたリソースブロックを特定する。そして、上り信号ベースバンド処理部25は、直接通知CBG401に対するAck/Nackの情報を取得する。さらに、上り信号ベースバンド処理部25は、未使用リソーステーブル410を用いて、無線リソース220における未使用リソースブロックの配置から間接通知CBG402のAck/Nackを判定する。
また、無線リソース220の何れにもリソースブロックにAck/Nackの情報が含まれていない場合、上り信号ベースバンド処理部25は、無線リソース210に無線リソース割当要求が配置されているか否かを判定する。無線リソース210に無線リソース割当要求が配置されている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。これに対して、無線リソース210に無線リソース割当要求が配置されていない場合、上り信号ベースバンド処理部25は、受信応答及び無線リソース割当要求のいずれも受信しなかったと判定する。
その後、上り信号ベースバンド処理部25は、各CBG110に対するAck/Nackの情報をスケジューラ23へ出力する。また、無線リソース割当要求が発生したと判定した場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生をスケジューラ23に通知する。
次に、図13を参照して、本実施例に係る端末装置1による受信応答及び無線リソース割当要求の送信の流れについて説明する。図13は、実施例2に係る端末装置による受信応答及び無線リソース割当要求の送信のフローチャートである。ここでは、基地局装置2から無線信号を受信した場合を例に説明する。
PDSCH受信処理部13は、無線部11及びPDCCH受信処理部12を介して、基地局装置2から送信された信号を受信する(ステップS201)。
ACK/NACK生成部14は、PDCCH受信処理部12による信号の受信における、CBG110毎の信号受信の成否を取得する。そして、ACK/NACK生成部14は、取得したCBG110毎の信号受信の成否に応じて、各CBG110に対するAck/Nackを含む受信応答を生成する(ステップS202)。例えば、PDCCH受信処理部12は、直接通知CBG401のAck/Nackを表すリソースブロックと間接通知CBG402のAck/Nackの情報を表すリソースブロックとが分けられた受信応答を生成する。そして、ACK/NACK生成部14は、生成した受信応答をPUCCH生成部16へ出力する。
PUCCH生成部16は、各CBG110に対するAck/Nackを含む受信応答の入力をACK/NACK生成部14から受ける。さらに、PUCCH生成部16は、無線リソース割当要求をSR生成部15から取得したか否かにより、無線リソース割当要求があるか否かを判定する(ステップS203)。
無線リソース割当要求がある場合(ステップS203:肯定)、PUCCH生成部16は、未使用リソーステーブル410を用いて、間接通知CBG402のAck/Nackを表す未使用リソースブロックの情報を取得する(ステップS204)。
PUCCH生成部16は、直接通知CBG401のAck/Nackに変調処理及び符号化処理を施し、無線リソース割当要求及び受信応答の通常無線リソースから未使用リソースブロックを除いた無線リソースを割り当てる(ステップS205)。
これに対して、無線リソース割当要求がある場合(ステップS203:否定)、PUCCH生成部16は、取得した受信応答に変調処理及び符号化処理を施し、受信応答に通常無線リソースを全て割り当てる(ステップS206)。
その後、PUCCH生成部16は、無線リソースの割り当てにしたがってPDCCHへ変調処理及び符号化処理が施された信号を配置する(ステップS207)。そして、PUCCH生成部16は、変調処理及び符号化処理が施された信号を無線部11へ出力する。
無線部11は、変調処理及び符号化処理が施された信号の入力をPUCCH生成部16から受ける。そして、無線部11は、変調処理及び符号化処理が施された信号に対してDA変換を行いアンテナを介して端末装置1へ向けて送信する(ステップS208)。
以上に説明したように、本実施例に係る端末装置は、直接通知CBGに対するAck/Nackを直接表す信号を基地局装置へ送信するとともに、間接通知CBGに対するAck/Nackを直接通知CBGに対するAck/Nackの配置により通知する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、実施例1に比べてより送信電力を低減することができる。
次に、実施例3について説明する。本実施例に係る端末装置は、同時送信時にCBGをグループ化してCBGグループを生成し、CBGグループ毎にAck/Nackを通知することが実施例1と異なる。また、本実施例においては同時送信しない場合に比べて同時送信時のフィードバックするAck/Nackの1ビットあたりの対応するCB数を増やすことにより、Ack/Nackフィードバックのビット数を減らす。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
PUCCH生成部16は、受信応答の情報の入力をACK/NACK生成部14から受ける。また、PUCCH生成部16は、無線リソース割当要求の入力をSR生成部15から受ける。
PUCCH生成部16は、同時送信か否かを判定する。同時送信でない場合、PUCCH生成部16は、受信応答又は無線リソース割当要求を表すデータに符号化処理及び変調処理を施す。その後、実施例1と同様に、PUCCH生成部16は、符号化処理及び変調処理を施した信号に無線リソースを割り当てる。
次に、同時送信の場合のPUCCH生成部16による処理について説明する。図14は、実施例3に係るPUCCH生成部により生成されるCBGグループの一例を示す図である。ここでも、CBG#1~#6が存在する場合で説明する。PUCCH生成部16は、ACK/NACK生成部14から取得した受信応答から各CBG#1~#6に対するAck/Nackの情報を取得する。
ここで、PUCCH生成部16は、予めCBG#1~#6をどのようにグループ化するかの情報を予め有する。そして、PUCCH生成部16は、予め決められた情報にしたがい、CBG#1~#6をグループ化する。例えば、図14に示すように、PUCCH生成部16は、CBG#1及び#2は、そのまま1つずつCBGグループ##1及び##2を生成し、CBG#3及び#4、並びに、CBG#5及び#6をそれぞれまとめてCBGグループ##3及び##4を生成する。
この場合、PUCCH生成部16は、それぞれのCBGグループ##1~##4のAck/Nackを、各グループに含まれるCBG110のAck/Nackの論理和とする。すなわち、PUCCH生成部16は、CBG#1及び#2に対するAck/NackをそのままCBGグループ##1及び##2のAck/Nackとする。また、PUCCH生成部16は、CBG#3及び#4のいずれに対する応答もAckであるので、CBGグループ##3に対する応答をAckとする。また、PUCCH生成部16は、CBG#5に対する応答がAckであり、CBG#6のいずれに対する応答がNackであるので、CBGグループ##4に対する応答をNackとする。
そして、PUCCH生成部16は、図15の割当状態315に示すように、受信応答の通常無線リソースの内の予め決められた一部のリソースブロックをCBGグループ##1~##4のAck/Nackを表す受信応答に割り当てる。図15は、実施例3に係る端末装置による無線リソースの割り当てを表す図である。ここでは、PUCCH生成部16は、無線リソース220のリソースブロック302及び301をCBGグループ##1~##4のAck/Nackを表す受信応答に割り当て、リソースブロック303を未使用リソースブロックとする。
このように、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで基地局装置2にSRの発生を通知する。また、PUCCH生成部16は、送信する信号を減らす。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより送信電力密度を変更する。
その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して受信応答のデータを基地局装置2へ送信する。これにより、PUCCH生成部16は、各CBG110のAck/Nackの情報とともに無線リソース割当要求の発生を基地局装置2へ通知する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
本実施例に係る基地局装置2も、図8のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
上り信号ベースバンド処理部25は、端末装置1のPUCCH生成部16と同様に、各CBGグループ##1~##4に含まれるCBG110の情報を予め有する。また、上り信号ベースバンド処理部25は、CBGグループ##1~##4に対するAck/Nackが配置される位置を予め有する。
上り信号ベースバンド処理部25は、端末装置1が送信した信号を無線部26から受信する。そして、上り信号ベースバンド処理部25は、受信した信号に対して復号化処理及び復調処理を施す。そして、上り信号ベースバンド処理部25は、受信した信号における無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれているか否かを判定する。受信した信号における無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれている、すなわち未使用リソースブロックが含まれていない場合、上り信号ベースバンド処理部25は、同時送信でないと判定する。
同時送信でなければ、上り信号ベースバンド処理部25は、受信応答の通常無線リソースである無線リソース220から各CBG#1~#6に対するAck/Nackの情報を取得する。
これに対して、未使用リソースブロックが含まれている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。次に、上り信号ベースバンド処理部25は、受信応答の通常無線リソースである無線リソース220における予め決められたリソースブロックからCBGグループ##1~##4に対するAck/Nackの情報を取得する。そして、上り信号ベースバンド処理部25は、CBGグループ##1~##4に対するAck/Nackの情報から、各CBG#1~#6に対するAck/Nackを取得する。
また、無線リソース220の全てのリソースブロックにAck/Nackの情報が含まれていない場合、上り信号ベースバンド処理部25は、無線リソース210に無線リソース割当要求が配置されているか否かを判定する。無線リソース210に無線リソース割当要求が配置されている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。これに対して、無線リソース210に無線リソース割当要求が配置されていない場合、上り信号ベースバンド処理部25は、受信応答及び無線リソース割当要求のいずれも受信しなかったと判定する。
その後、上り信号ベースバンド処理部25は、各CBG110に対するAck/Nackの情報をスケジューラ23へ出力する。また、無線リソース割当要求が発生したと判定した場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生をスケジューラ23に通知する。
次に、図16を参照して、本実施例に係る端末装置1による受信応答及び無線リソース割当要求の送信の流れについて説明する。図16は、実施例3に係る端末装置による受信応答及び無線リソース割当要求の送信のフローチャートである。ここでは、基地局装置2から無線信号を受信した場合を例に説明する。
PDSCH受信処理部13は、無線部11及びPDCCH受信処理部12を介して、基地局装置2から送信された信号を受信する(ステップS301)。
ACK/NACK生成部14は、PDCCH受信処理部12による信号の受信における、CBG110毎の信号受信の成否を取得する。そして、ACK/NACK生成部14は、取得したCBG110毎の信号受信の成否に応じて、各CBG110に対するAck/Nackを含む受信応答を生成する(ステップS302)。そして、ACK/NACK生成部14は、生成した受信応答をPUCCH生成部16へ出力する。
PUCCH生成部16は、各CBG110に対するAck/Nackを含む受信応答の入力をACK/NACK生成部14から受ける。さらに、PUCCH生成部16は、無線リソース割当要求をSR生成部15から取得したか否かにより、無線リソース割当要求があるか否かを判定する(ステップS303)。
無線リソース割当要求がある場合(ステップS303:肯定)、PUCCH生成部16は、CBGグループを生成する(ステップS304)。
さらに、PUCCH生成部16は、各CBGグループに含まれるCBG110のAck/Nackの論理和を求めCBGグループのAck/Nackを生成する(ステップS305)。
そして、PUCCH生成部16は、各CBGグループのAck/Nackに変調処理及び符号化処理を施し、受信応答の通常無線リソースの一部の無線リソースを割り当てる(ステップS306)。
これに対して、無線リソース割当要求がある場合(ステップS303:否定)、PUCCH生成部16は、取得した受信応答に変調処理及び符号化処理を施し、かくCBGのAck/Nackを含む受信応答に通常無線リソースを全て割り当てる(ステップS307)。
その後、PUCCH生成部16は、無線リソースの割り当てにしたがってPUCCHへ変調処理及び符号化処理が施された信号を配置する(ステップS308)。そして、PUCCH生成部16は、変調処理及び符号化処理が施された信号を無線部11へ出力する。
無線部11は、変調処理及び符号化処理が施された信号の入力をPUCCH生成部16から受ける。そして、無線部11は、変調処理及び符号化処理が施された信号に対してDA変換を行いアンテナを介して端末装置1へ向けて送信する(ステップS309)。
以上に説明したように、本実施例に係る端末装置は、CBGをまとめたCBGグループに対するAck/Nackを基地局装置に通知する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、実施例1に比べてより送信電力を低減することができる。
次に、実施例4について説明する。本実施例に係る端末装置は、実施例2の機能と実施例3の機能とをまとめた機能を有する。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
同時送信の場合の本実施例に係るPUCCH生成部16による処理について説明する。図17は、実施例4に係るPUCCH生成部により生成されるCBGグループ、並びに、直接通知CBG及び間接通知CBGの一例を示す図である。ここでは、CBG#1~#8が存在する場合で説明する。PUCCH生成部16は、ACK/NACK生成部14から取得した受信応答から各CBG#1~#8に対するAck/Nackの情報を取得する。
ここで、PUCCH生成部16は、予めCBG#1~#8をどのようにグループ化するかの情報を予め有する。そして、PUCCH生成部16は、予め決められた情報にしたがい、CBG#1~#8をグループ化する。例えば、図17にPUCCH生成部16は、CBG#1及び#2、CBG#3及び#4、CBG#5及び#6、並びに、CBG#7及び#8をそれぞれまとめてCBGグループ##1~##4を生成する。この場合、PUCCH生成部16は、それぞれのCBGグループ##1~##4のAck/Nackは、各グループに含まれるCBG110のAck/Nackの論理和とする。
さらに、PUCCH生成部16は、CBGグループ##1及び##2を直接通知CBGグループ403とする。また、PUCCH生成部16は、CBGグループ##3及び##4を間接通知CBGグループ404とする。
PUCCH生成部16は、図18に示す使用リソーステーブル411を有する。図18は、使用リソーステーブルの一例を表す図である。ここで、本実施例では、PUCCH生成部16は、使用リソースブロックを登録したテーブルを用いたが、実施例2と同様に未使用リソースブロックを登録したテーブルを用いてもよい。そして、PUCCH生成部16は、使用リソーステーブル411を用いて、間接通知CBGグループ404であるCBGグループ##3及び##4のAck/Nackの情報を表す使用リソースブロックを特定する。例えば、図17に示すCBGグループ##1~##4に対するAck/Nackが図17に示す状態である場合、リソースブロック303が使用リソースブロックとなる。
そして、PUCCH生成部16は、図19の割当状態316に示すように、受信応答の通常無線リソースの内の予め決められた一部のリソースブロックをCBGグループ##1及び##2のAck/Nackを表す受信応答に割り当てる。図19は、実施例4に係る端末装置による無線リソースの割り当てを表す図である。ここでは、PUCCH生成部16は、使用リソースブロックとして特定されたリソースブロック302をCBGグループ##1及び##2のAck/Nackを表す受信応答に割り当て、リソースブロック301、303及び304を未使用リソースブロックとする。
このように無線リソースの割り当てを行うことで、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで基地局装置2にSRの発生を通知する。また、PUCCH生成部16は、送信する信号を減らす。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより送信電力密度を変更する。
その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して受信応答のデータを基地局装置2へ送信する。これにより、PUCCH生成部16は、各CBG110のAck/Nackの情報とともに無線リソース割当要求の発生を基地局装置2へ通知する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
本実施例に係る基地局装置2も、図8のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
上り信号ベースバンド処理部25は、端末装置1のPUCCH生成部16と同様に、各CBGグループ##1~##4に含まれるCBG110の情報を予め有する。また、上り信号ベースバンド処理部25は、直接通知CBGグループ403に対するAck/Nackが配置される位置を予め有する。
上り信号ベースバンド処理部25は、端末装置1が送信した信号を無線部26から受信する。そして、上り信号ベースバンド処理部25は、受信した信号に対して復号化処理及び復調処理を施す。そして、上り信号ベースバンド処理部25は、受信した信号における無線リソース220に未使用リソースブロックが含まれている場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生を把握する。次に、上り信号ベースバンド処理部25は、受信応答の通常無線リソースである無線リソース220における予め決められたリソースブロックから直接通知CBGグループ403に対するAck/Nackの情報を取得する。次に、上り信号ベースバンド処理部25は、直接通知CBGグループ403に対するAck/Nackが配置されていた位置から、間接通知CBGグループ404のAck/Nackを求める。その後、上り信号ベースバンド処理部25は、CBGグループ##1~##4に対するAck/Nackの情報から、各CBG#1~#6に対するAck/Nackを取得する。
以上に説明したように、本実施例に係る端末装置は、CBGをまとめたCBGグループを直接通知CBGグループと間接通知CBGグループに分ける。そして、本実施例に係る端末装置は、直接通知CBGグループに対するAck/Nackを基地局装置に通知することで、間接通知CBGグループに対するAck/Nackも通知する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、実施例1に比べてより送信電力を低減することができる。
次に、実施例5について説明する。本実施例に係る端末装置は、同時送信時に無線リソース割当要求はそのままで、CBGを直接通知CBGと間接通知CBGに分けて、直接通知CBGに対するAck/Nackの位置で間接通知CBGのAck/Nackを通知する。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
図20は、実施例5に係る端末装置による無線リソースの割り当てを表す図である。図20における割当状態321~323は、それぞれ縦方向で周波数を表し横方向で時間を表す。
本実施例においても、PUCCH生成部16は、同時送信でないときに受信応答を送る場合、割当状態321に示すように、通常無線リソースの全てを受信応答に割り当てる。
これに対して、同時送信の場合、PUCCH生成部16は、割当状態322における無線リソース割当要求の通常無線リソースである無線リソース210を無線リソース割当要求に割り当てる。また、PUCCH生成部16は、CBG110を直接通知CBG401と間接通知CBG402とに分ける。そして、PUCCH生成部16は、間接通知CBG402のAck/Nackを表すように割当状態322における無線リソース220の一部を直接通知CBG401のAck/Nackに割り当てる。
これにより、PUCCH生成部16は、リソースブロック301、302及び304を直接通知CBG401のAck/Nackに割り当てる。この場合、PUCCH生成部16は、リソースブロック303を未使用リソースブロックとすることで、間接通知CBG402のAck/Nackを通知する。
このように、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで送信する信号を減らし、送信電力を削減する。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより、無線リソース210の送信電力密度を変更する。その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して無線リソース割当要求及び受信応答のデータを基地局装置2へ送信する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、割当状態323に示すように、通常割当状態の無線リソースの割り当てを行ってもよい。
本実施例に係る基地局装置2も、図8のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
上り信号ベースバンド処理部25は、端末装置1が送信した信号を無線部26から受信する。そして、上り信号ベースバンド処理部25は、受信した信号に対して復号化処理及び復調処理を施す。そして、上り信号ベースバンド処理部25は、受信した信号から同時送信か否かを判定する。同時送信でなければ、上り信号ベースバンド処理部25は、無線リソース割当要求又は各CBG110のAck/Nackを取得する。
これに対して、同時受信の場合、まず、上り信号ベースバンド処理部25は、無線リソース割当要求を取得する。次に、上り信号ベースバンド処理部25は、受信した信号における無線リソース220から直接通知CBG401に対するAck/Nackの情報を取得する。さらに、上り信号ベースバンド処理部25は、直接通知CBG401の配置状態から間接通知CBG402のAck/Nackを求める。
その後、上り信号ベースバンド処理部25は、各CBG110に対するAck/Nackの情報をスケジューラ23へ出力する。また、無線リソース割当要求が発生したと判定した場合、上り信号ベースバンド処理部25は、無線リソース割当要求の発生をスケジューラ23に通知する。
以上に説明したように、本実施例に係る端末装置は、無線リソース割当要求は通常無線リソースを用いて送信し、直接通知CBGと間接通知CBGとを用いて受信応答を送信する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、送信電力を低減することができる。
また、以上では、無線リソース割当要求と受信応答との同時送信時の送信電力の削減について説明したが、他の信号の同時送信における送信電力の削減であっても、上述した方法を用いて実現することができる。例えば、受信応答として、URLLC向けの優先度の高い受信応答とEMBB向けの優先度の低い受信応答がある場合にも、上述した方法を用いて送信電力を削減ることができる。
例えば、PUCCH生成部16は、上述した無線リソース割当要求と同様に、URLLC向けの受信応答に通常無線リソースを割り当てる。また、PUCCH生成部16は、上述した受信応答と同様に、直接通知CBG401と間接通知CBG402を用いてEMBB向けの受信応答を送信する。これにより、PUCCH生成部16は、EMBB向けの受信応答に使用するビット数を減らすことができ、送信電力を削減することができる。また、PUCCH生成部16は、削減した電力をURLLC向けの受信応答に振り分けることもでき、URLLC向けの受信応答の信頼性を向上させることができる。
さらに、無線リソース割当要求、URLLC向け受信応答及びEMBB向け受信応答の同時送信においても同様の方法を用いることができる。この場合、PUCCH生成部16は、上述した無線リソース割当要求と同様に、無線リソース割当要求及びURLLC向けの受信応答に通常無線リソースを割り当てる。また、PUCCH生成部16は、上述した受信応答と同様に、直接通知CBG401と間接通知CBG402を用いてEMBB向けの受信応答を送信する。これにより、PUCCH生成部16は、EMBB向けの受信応答に使用するビット数を減らすことができ、送信電力を削減することができる。また、PUCCH生成部16は、削減した電力を無線リソース割当要求やURLLC向けの受信応答に振り分けることもでき、それぞれの信頼性を向上させることができる。
次に、実施例6について説明する。本実施例に係る端末装置は、実施例5と同様に同時送信時に無線リソース割当要求はそのままで送信する。そして、本実施例に係る端末装置は、CBGをグループ化して、各CBGグループに対するAck/Nackを通知する。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
同時送信の場合のPUCCH生成部16による処理について説明する。図21は、実施例6に係るPUCCH生成部により生成されるCBGグループの一例を示す図である。ここでは、CBG#1~#6が存在する場合で説明する。PUCCH生成部16は、ACK/NACK生成部14から取得した受信応答から各CBG#1~#6に対するAck/Nackの情報を取得する。
ここで、PUCCH生成部16は、予めCBG#1~#6をどのようにグループ化するかの情報を予め有する。そして、PUCCH生成部16は、予め決められた情報にしたがい、CBG#1~#6をグループ化する。例えば、図21に示すように、PUCCH生成部16は、CBG#1~#3及びCBG#4~#6をそれぞれまとめてCBGグループ##1及び##2を生成する。
この場合、PUCCH生成部16は、それぞれのCBGグループ##1~##2のAck/Nackを、各グループに含まれるCBG110のAck/Nackの論理和とする。
そして、PUCCH生成部16は、図22の割当状態324に示すように、無線リソース割当要求の通常無線リソースである無線リソース210を無線リソース割当要求に割り当てる。また、PUCCH生成部16は、受信応答の通常無線リソースの内の予め決められた一部のリソースブロックをCBGグループ##1及び##2のAck/Nackを表す受信応答に割り当てる。図22は、実施例6に係る端末装置による無線リソースの割り当てを表す図である。ここでは、PUCCH生成部16は、無線リソース220のリソースブロック303をCBGグループ##1及び##2のAck/Nackを表す受信応答に割り当て、リソースブロック301及び302を未使用リソースブロックとする。
このように、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで送信する信号を減らし、送信電力を削減する。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより送信電力密度を変更する。
その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して受信応答のデータを基地局装置2へ送信する。これにより、PUCCH生成部16は、各CBG110のAck/Nackの情報とともに無線リソース割当要求の発生を基地局装置2へ送信する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより、無線リソース210の送信電力密度を変更する。その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して無線リソース割当要求及び受信応答のデータを基地局装置2へ送信する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
以上に説明したように、本実施例に係る端末装置は、無線リソース割当要求は通常無線リソースを用いて送信し、CBGグループを用いて受信応答を送信する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、送信電力を低減することができる。
また、以上では、無線リソース割当要求と受信応答との同時送信時の送信電力の削減について説明したが、実施例5と同様に他の信号の同時送信における送信電力の削減であっても、上述した方法を用いて実現することができる。例えば、受信応答として、URLLC向けの優先度の高い受信応答とEMBB向けの優先度の低い受信応答がある場合にも、上述した方法を用いて送信電力を削減ることができる。
例えば、PUCCH生成部16は、上述した無線リソース割当要求と同様に、URLLC向けの受信応答に通常無線リソースを割り当てる。また、PUCCH生成部16は、上述した受信応答と同様に、CBGグループを用いてEMBB向けの受信応答を送信する。これにより、PUCCH生成部16は、EMBB向けの受信応答に使用するビット数を減らすことができ、送信電力を削減することができる。また、PUCCH生成部16は、削減した電力をURLLC向けの受信応答に振り分けることもでき、URLLC向けの受信応答の信頼性を向上させることができる。
さらに、無線リソース割当要求、URLLC向け受信応答及びEMBB向け受信応答の同時送信においても同様の方法を用いることができる。
次に、実施例7について説明する。本実施例に係る端末装置は、実施例5と同様に同時送信時に無線リソース割当要求はそのままで送信する。そして、本実施例に係る端末装置は、受信応答を送信するリソースブロックの中でNackの情報をより多く含むリソースブロックを未送信リソースブロックとする。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、実施例1と同様の各部の機能については説明を省略する。
同時送信の場合のPUCCH生成部16による処理について説明する。図23は、各リソースブロックにおけるNackの数の算出を説明するための図である。ここでは、CBG#1~#6が存在する場合で説明する。
PUCCH生成部16は、例えば、図23のAck/Nack情報421に示されるCBG#1~#6のそれぞれに対するAck/Nackの情報を取得する。次に、PUCCH生成部16は、通常割当状態において各CBG#1~#6に対するAck/Nackの情報に割り当てられるリソースブロック301~303を特定する。ここでは、表422に示すように、CBG#1及び#2にリソースブロック301が割り当てられる。また、CBG#3及び#4にリソースブロック302が割り当てられる。また、CBG#5及び#6にリソースブロック303が割り当てられる。
次に、PUCCH生成部16は、リソースブロック301~303のそれぞれに対応するCBG#1~#6のNackの数を取得する。ここでは、リソースブロック301におけるNackの数は2であり、リソースブロック302におけるNackの数は0であり、リソースブロック303におけるNackの数は1である。
そして、PUCCH生成部16は、Nackの数の最も多いリソースブロック301を未使用リソースブロックとする。そして、PUCCH生成部16は、図24の割当状態325に示すように無線リソースを割り当てる。図24は、実施例7に係る端末装置による無線リソースの割り当てを表す図である。
具体的には、PUCCH生成部16は、無線リソース割当要求の通常無線リソースである無線リソース210を無線リソース割当要求に割り当てる。また、PUCCH生成部16は、未使用リソースブロックとしたリソースブロック301以外のリソースブロック302及び303を用いて通常割当状態と同様の割り当てを行う。
このように、PUCCH生成部16は、通常無線リソースの中にAck/Nackを送信しない未使用リソースブロックを含ませることで送信する信号を減らし、送信電力を削減する。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより送信電力密度を変更する。
その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して受信応答のデータを基地局装置2へ送信する。これにより、PUCCH生成部16は、CBG#1及び#2のAck/Nackの情報以外の各CBG#3~#4のAck/Nackの情報とともに無線リソース割当要求を基地局装置2へ送信する。
Nackが返された場合、基地局装置2はNackが返されたデータの再送を行う。また、応答が返ってこない場合も、基地局装置2は応答が返ってこないデータの再送を行う。すなわち、端末装置1がNackを返さなくても、基地局装置2によりデータの再送が行われるので、Nackを多く含むリソースブロックでAck/Nackを返さなくても、Ack/Nackを返した場合とほぼ同様の処理が行われるといえる。そのため、本実施例ではPUCCH生成部16は、Nackを多く含むリソースブロックを未使用リソースブロックとしている。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
さらに、PUCCH生成部16は、送信する無線リソース割当要求が、第1バッファ181又は第2バッファ182のいずれに格納された送信データのための無線リソース割当要求かにより、無線リソース210の送信電力密度を変更する。その後、PUCCH生成部16は、割当てた無線リソースを用いて決定した送信電力密度で無線部11を介して無線リソース割当要求及び受信応答のデータを基地局装置2へ送信する。
ここで、本実施例においても、同時送信の場合であっても、通常割当状態の割り当てで送信電力が不足しなければ、PUCCH生成部16は、通常割当状態の無線リソースの割り当てを行ってもよい。
次に、図25を参照して、本実施例に係る端末装置1による受信応答及び無線リソース割当要求の送信の流れについて説明する。図25は、実施例7に係る端末装置による受信応答及び無線リソース割当要求の送信のフローチャートである。ここでは、基地局装置2から無線信号を受信した場合を例に説明する。
PDSCH受信処理部13は、無線部11及びPDCCH受信処理部12を介して、基地局装置2から送信された信号を受信する(ステップS401)。
ACK/NACK生成部14は、PDCCH受信処理部12による信号の受信における、CBG110毎の信号受信の成否を取得する。そして、ACK/NACK生成部14は、取得したCBG110毎の信号受信の成否に応じて、各CBG110に対するAck/Nackを含む受信応答を生成する(ステップS402)。そして、ACK/NACK生成部14は、生成した受信応答をPUCCH生成部16へ出力する。
PUCCH生成部16は、各CBG110に対するAck/Nackを含む受信応答の入力をACK/NACK生成部14から受ける。さらに、PUCCH生成部16は、無線リソース割当要求をSR生成部15から取得したか否かにより、無線リソース割当要求があるか否かを判定する(ステップS403)。
無線リソース割当要求がある場合(ステップS403:肯定)、PUCCH生成部16は、通常割当状態で無線リソース220の各リソースブロック301~303に含まれるNackの数を特定する(ステップS404)。
さらに、PUCCH生成部16は、Nackの数の多い順に未送信リソースブロックを決定する(ステップS405)。
そして、PUCCH生成部16は、通常割当状態で未送信ブロックに割り当てられる送信しないAck/Nackを除いた受信応答に未使用リソースブブロック以外のリソースブロック302及び303を割り当てる(ステップS406)。
これに対して、無線リソース割当要求がない場合(ステップS403:否定)、PUCCH生成部16は、取得した受信応答に変調処理及び符号化処理を施し、生成した受信応答に通常無線リソースを全て割り当てる(ステップS407)。
その後、PUCCH生成部16は、無線リソースの割り当てにしたがってPUCCHへ変調処理及び符号化処理が施された信号を配置する(ステップS408)。そして、PUCCH生成部16は、変調処理及び符号化処理が施された信号を無線部11へ出力する。
無線部11は、変調処理及び符号化処理が施された信号の入力をPUCCH生成部16から受ける。そして、無線部11は、変調処理及び符号化処理が施された信号に対してDA変換を行いアンテナを介して端末装置1へ向けて送信する(ステップS409)。
以上に説明したように、本実施例に係る端末装置は、通常無線リソースを用いて無線リソース割当要求を送信し、受信応答のうちNackを多く含むリソースブロックを未使用リソースブロックとして受信応答を送信する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、送信電力を低減することができる。
また、以上では、無線リソース割当要求と受信応答との同時送信時の送信電力の削減について説明したが、実施例5と同様に他の信号の同時送信における送信電力の削減であっても、上述した方法を用いて実現することができる。例えば、受信応答として、URLLC向けの優先度の高い受信応答とEMBB向けの優先度の低い受信応答がある場合にも、上述した方法を用いて送信電力を削減ることができる。
例えば、PUCCH生成部16は、上述した無線リソース割当要求と同様に、URLLC向けの受信応答に通常無線リソースを割り当てる。また、PUCCH生成部16は、上述した受信応答と同様に、EMBB向けの受信応答に割り当てられるリソースブロックのうちNackの多いリソースブロックを未送信リソースブロックとする。これにより、PUCCH生成部16は、EMBB向けの受信応答に使用するビット数を減らすことができ、送信電力を削減することができる。また、PUCCH生成部16は、削減した電力をURLLC向けの受信応答に振り分けることもでき、URLLC向けの受信応答の信頼性を向上させることができる。
さらに、無線リソース割当要求、URLLC向け受信応答及びEMBB向け受信応答の同時送信においても同様の方法を用いることができる。
次に、実施例8について説明する。本実施例に係る端末装置は、異なる種類の無線リソース割当要求を同時に送信することが実施例1~7と異なる。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、各実施例と同様の各部の機能については説明を省略する。
図26は、実施例8に係る種類の異なる無線リソース割当要求に対する無線リソースの割り当てを表す図である。図26の縦方向は周波数を表し、横方向は時間を表す。種類の異なる無線リソース割当要求には、それぞれ無線リソース211と無線リソース212とが割り当てられる。そして、種類の異なる無線リソース割当要求を同じタイミングで送信する場合、無線リソース211と無線リソース212とは時間方向に重なる。また、種類の異なる無線リソース割当要求と受信応答とを同じタイミングで送信する場合、無線リソース211、無線リソース212及び無線リソース220とは時間方向に重なる。そのため、同時送信の場合には送信電力が大きくなる。そこで、本実施例に係る端末装置1は、以下の方法で送信電力を低減させる。
端末装置1が、実施例1~4の何れかと同様の機能を有する場合について説明する。本実施例に係るPUCCH生成部16は、第1バッファ181及び第2バッファ182に格納された送信データのそれぞれの無線リソース割当要求をSR生成部15から取得する。すなわち、PUCCH生成部16は、高優先度の無線リソース割当要求と低優先度の無線リソース割当要求を取得する。
PUCCH生成部16は、同時送信の場合、第2バッファ182に格納された送信データに対する低優先度の無線リソース割当要求の送信を次回の送信機会へ延期する。そして、第1バッファ181に格納された送信データに対する高優先度の無線リソース割当要求と受信応答との同時送信を、実施例1~3の何れかの方法を用いて実行する。
また、高優先度の無線リソース割当要求と低優先度の無線リソース割当要求の何れかを取得した場合、PUCCH生成部16は、実施例1~3の何れかの方法を用いて無線リソース割当要求と受信応答との同時送信を実行する。
端末装置1が、実施例5~7の何れかと同様の機能を有する場合について説明する。本実施例に係るPUCCH生成部16は、第1バッファ181及び第2バッファ182に格納された送信データのそれぞれの無線リソース割当要求をSR生成部15から取得する。
PUCCH生成部16は、同時送信の場合、第2バッファ182に格納された送信データに対する低優先度の無線リソース割当要求の送信を次回の送信機会へ延期する。そして、第1バッファ181に格納された送信データに対する高優先度の無線リソース割当要求と受信応答との同時送信を、実施例1~3の何れかの方法を用いて実行する。
また、低優先度の無線リソース割当要求なしで高優先度の無線リソース割当要求を取得した場合、PUCCH生成部16は、実施例5~7の何れかの方法を用いて無線リソース割当要求と受信応答との同時送信を実行する。これに対して、高優先度の無線リソース割当要求なしで低優先度の無線リソース割当要求を取得した場合、PUCCH生成部16は、低優先度の無線リソース割当要求の送信を次回の送信機会へ延期する。そして、PUCCH生成部16は、受信応答に通常無線リソースを割り当て送信する。
以上に説明したように、本実施例に係る端末装置は、種類の異なる無線リソース割当要求が同時に発生した場合に、低優先度の無線リソース割当要求の送信を延期した上で、実施例1~7で説明した何れかの方法で消費電力の低減を図る。これにより、種類の異なる無線リソース割当要求を取り扱う端末装置においても、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。また、送信電力を低減することができる。
次に、実施例9について説明する。本実施例に係る端末装置は、種類の異なる無線リソース割当要求を取扱い、且つ、PUCCHにおいて使用された無線リソースのパターンに応じて無線リソース割当要求の種類を通知することが実施例1と異なる。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、各実施例と同様の各部の機能については説明を省略する。
本実施例に係るPUCCH生成部16は、第1バッファ181及び第2バッファ182のいずれかに格納された送信データの無線リソース割当要求をSR生成部15から取得する。
そして、PUCCH生成部16は、高優先度の無線リソース割当要求の場合、図27の割当状態331に示すようにリソースブロック302を未使用リソースとする。そして、リソースブロック300、301及び303を受信応答に割り当てる。図27は、実施例9に係る端末装置による無線リソースの割り当てを表す図である。この場合、PUCCH生成部16は、同時送信でない場合に受信応答を送信するときより高く送信電力密度を設定する。
また、PUCCH生成部16は、低優先度の無線リソース割当要求の場合、図27の割当状態332に示すようにリソースブロック301を未使用リソースとする。そして、リソースブロック300、302及び303を受信応答に割り当てる。この場合、PUCCH生成部16は、同時送信でない場合に受信応答を送信するときと同等に送信電力密度を設定する。
基地局装置2の上り信号ベースバンド処理部25は、端末装置1から送信された信号を受信する。そして、基地局装置2の上り信号ベースバンド処理部25は、受信信号のPUCCHにおいて受信応答を取得し、各CBG110のAck/Nackを取得する。さらに、上り信号ベースバンド処理部25は、PUCCHにおける受信応答の送信に用いられたリソースブロックを確認する。そして、リソースブロック302が未使用リソースブロックの場合、上り信号ベースバンド処理部25は、高優先度の無線リソースが発生したと判定する。また、リソースブロック301が未使用リソースブロックの場合、上り信号ベースバンド処理部25は、低優先度の無線リソースが発生したと判定する。
以上に説明したように、本実施例に係る端末装置は、PUCCHにおける使用リソースブロックのパターンに応じて無線リソース割当要求の種類を通知する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。
次に、実施例10について説明する。本実施例に係る端末装置は、種類の異なる無線リソース割当要求を取扱い、且つ無線リソース割当要求の種類に応じて実施例1の機能と実施例2の機能とを切り替えて使用する。本実施例に係る端末装置も図1のブロック図で表される。以下の説明では、各実施例と同様の各部の機能については説明を省略する。
本実施例に係るPUCCH生成部16は、第1バッファ181及び第2バッファ182のいずれかに格納された送信データの無線リソース割当要求をSR生成部15から取得する。
PUCCH生成部16は、高優先度の無線リソース割当要求の場合、実施例2の機能を使用する。すなわち、PUCCH生成部16は、各CBG110を直接通知CBG401と間接通知CBG402に分ける。そして、PUCCH生成部16は、直接通知CBG401に対するAck/Nackを表す受信応答を、間接通知CBG402のAck/Nackを表すように無線リソース210と無線リソース220の一部とを受信応答に割り当てる。この場合、PUCCH生成部16は、同時送信でない場合に受信応答を送信するときよりも高い送信電力密度を設定する。
また、低優先度の無線リソース割当要求の場合、PUCCH生成部16は、実施例1の機能を使用する。すなわち、PUCCH生成部16は、各CBG110のAck/Nackを表す受信応答を無線リソース210と無線リソース220の一部とを受信応答に割り当てる。この場合、PUCCH生成部16は、同時送信でない場合に受信応答を送信するときと同等の送信電力密度を設定する。
以上に説明したように、本実施例に係る端末装置は、無線リソース割当要求の種類に応じて無線リソースの割り当て方法を変更する。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報を効率的に送信することができる。
次に、実施例11について説明する。本実施例に係る端末装置は、送信電力に応じて無線リソース割当要求及び受信応答を送信する方法を切り替える。図28は、実施例11に係る端末装置のブロック図である。以下の説明では、各実施例と同様の各部の機能については説明を省略する。
本実施例に係る端末装置1は、伝搬チャネル推定部31及び余剰電力算出部32を有する。伝搬チャネル推定部31は、基地局装置2から送信された信号の振幅から受信電力を推定する。そして、伝搬チャネル推定部31は、受信電力の情報を余剰電力算出部32へ出力する。
余剰電力算出部32は、受信電力の情報を伝搬チャネル推定部31から取得する。そして、余剰電力算出部32は、基地局装置2が用いた送信電力から受信電力を減算し、伝搬損失を算出する。次に、余剰電力算出部32は、Ack/Nackに対して保証する信頼度を達成するために用いる送信電力を余剰電力から算出する。そして、余剰電力算出部32は、Ack/Nackに対して保証する信頼度を達成するために用いる送信電力の情報をPUSCH生成部17に通知する。
PUSCH生成部17は、Ack/Nackに対して保証する信頼度を達成するために用いる送信電力の情報を余剰電力算出部32から取得する。そして、PUSCH生成部17は、Ack/Nackに対して保証する信頼度を達成するために用いる送信電力の情報を定期的に基地局装置2へ送信する。
PUCCH生成部16は、送信電力に応じて無線リソース割当要求及び受信応答の送信に実施例1~7の何れの方法を用いるかを決定する。そして、PUCCH生成部16は、決定した方法用いて無線リソース割当要求及び受信応答を送信する。
本実施例に係る基地局装置2も図8のブロック図で表される。上り信号ベースバンド処理部25は、Ack/Nackに対して保証する信頼度を達成するために用いる送信電力の情報を端末装置1から受信する。
そして、上り信号ベースバンド処理部25は、受信した送信電力の情報に応じて、端末装置1が使用する無線リソース割当要求及び受信応答の送信の方法を特定する。そして、上り信号ベースバンド処理部25は、特定した方法を用いて無線リソース割当要求及び受信応答を受信する。
以上に説明したように、本実施例に係る端末装置及び基地局装置は、端末装置の送信電力に応じて無線リソース割当要求及び受信応答の送信の方法を切り替えて送受信を行う。これにより、Ack/Nackのフィードバック情報や無線リソース割当要求等を含む情報をより効率的に送信することができる。
以上では、CBG110を用いたAck/Nackのフィードバックの場合について説明したが、同時送信が発生する場合であれば他の方法によるAck/Nackのフィードバックであっても、各実施例の機能を用いて情報の効率的な送信を行うことができる。
例えば、図29に示すように、異なるTTIにおけるそれぞれのPDSCH203で送信された信号に対するAck/Nackを無線リソース221にまとめて同じタイミングで送信する場合にも各実施例の機能を用いることができる。図29は、異なるTTIにおける信号に対するAck/Nackをまとめて同じタイミングで送信する場合の無線リソースの割り当てを表す図である。
この場合も、同時送信時に効率的に信号を送信することが求められる。すなわち、無線リソース221と同じタイミングで無線リソース割当要求が発生した場合に、端末装置1は、実施例1~7の何れかの機能を用いて無線リソース割当要求及び受信応答を送信する。
このほかにも、CA(Carrier Aggregation)を用いた通信を行う場合にも、P(Primary)セルとS(Secondary)セルとのそれぞれに対するAck/Nackを同じタイミングで送信することが考えられる。
この場合も、同時送信時に効率的に信号を送信することが求められる。すなわち、Pセル及びSセルに対するAck/Nackと同じタイミングで無線リソース割当要求が発生した場合に、端末装置1は、実施例1~7の何れかの機能を用いて無線リソース割当要求及び受信応答を送信する。
(ハードウェア構成)
次に、図30を参照して、端末装置1のハードウェア構成について説明する。図30は、各実施例に係る端末装置のハードウェア構成図である。端末装置1は、プロセッサ901、主記憶装置902、画像表示装置903、補助記憶装置904及び無線機905を有する。
プロセッサ901は、主記憶装置902、画像表示装置903、補助記憶装置904及び無線機905とバスで接続される。また、無線機905は、アンテナに接続される。
画像表示装置903は、例えば、液晶ディスプレイなどである。画像表示装置903は、基地局装置2から送信されたデータなどを表示し、操作者に提供する。
補助記憶装置904は、図1に例示したPDCCH受信処理部12、PDSCH受信処理部13、ACK/NACK生成部14、PUCCH生成部16及びPUSCH生成部17の機能を実現するためのプログラムを含む各種プログラムを格納する。また、補助記憶装置904は、伝搬チャネル推定部31及び余剰電力算出部32の機能を実現するためのプログラムを含む各種プログラムを格納する。
プロセッサ901は、補助記憶装置904に格納された各種プログラムを読み出し、主記憶装置902上に展開して実行する。これにより、プロセッサ901は、図1に例示したPDCCH受信処理部12、PDSCH受信処理部13、ACK/NACK生成部14、PUCCH生成部16及びPUSCH生成部17の機能を実現する。また、プロセッサ901は、伝搬チャネル推定部31及び余剰電力算出部32の機能を実現するためのプログラムを含む各種プログラムを格納する。
無線機905は、無線部11の機能を実現する。無線機905は、アンテナを介して基地局装置2と無線通信を行う。
次に、図31を参照して、基地局装置2のハードウェア構成について説明する。図31は、各実施例に係る基地局装置のハードウェア構成図である。基地局装置2は、プロセッサ911、主記憶装置912、ネットワークインタフェース913、補助記憶装置914及び無線機915を有する。
プロセッサ911は、主記憶装置912、ネットワークインタフェース913、補助記憶装置914及び無線機915とバスで接続される。また、無線機915は、アンテナに接続される。
ネットワークインタフェース913は、上位装置との通信で用いるインタフェースである。主記憶装置912は、図8に例示したバッファ22の機能を実現する。
補助記憶装置914は、図8に例示したPUCCHリソース管理部21、スケジューラ23、下り信号ベースバンド処理部24及び上り信号ベースバンド処理部25の機能を実現するためのプログラムを含む各種プログラムを格納する。
プロセッサ911、補助記憶装置914に格納された各種プログラムを読み出し、主記憶装置912上に展開して実行する。これにより、プロセッサ911は、図8に例示したPUCCHリソース管理部21、スケジューラ23、下り信号ベースバンド処理部24及び上り信号ベースバンド処理部25の機能を実現する。
無線機915は、無線部26の機能を実現する。無線機915は、アンテナを介して端末装置1と無線通信を行う。