JP7215334B2 - Method for producing lead ruthenate powder - Google Patents
Method for producing lead ruthenate powder Download PDFInfo
- Publication number
- JP7215334B2 JP7215334B2 JP2019101565A JP2019101565A JP7215334B2 JP 7215334 B2 JP7215334 B2 JP 7215334B2 JP 2019101565 A JP2019101565 A JP 2019101565A JP 2019101565 A JP2019101565 A JP 2019101565A JP 7215334 B2 JP7215334 B2 JP 7215334B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- powder
- containing compound
- ruthenate
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、ルテニウム酸鉛粉末の製造方法に関し、更に詳しくは、含鉛化合物および含ホウ素化合物を含むガラス形成用化合物と、含ルテニウム化合物との混合粉末を溶融して得たガラス融体から、ガラス成分を除去してルテニウム酸鉛粉末を製造する方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing lead ruthenate powder. The present invention relates to a method for producing lead ruthenate powder by removing glass components.
厚膜抵抗ペーストは、導電粉末、ガラス形成用化合物粉末およびそれらを印刷に適したペースト状にするための有機ビヒクルから実質構成される。この厚膜抵抗ペーストを所定のパターンで印刷し、高温で焼結処理をすることで、例えば、厚膜チップ抵抗器を構成する抵抗体を形成することができる。導電粉末としては、ガラス形成用化合物の粉末との混合比率を変化させることで緩やかに抵抗値を変化させることができるため、酸化ルテニウム(RuO2)粉末やルテニウム酸鉛(Pb2Ru2O7-X)粉末が広く用いられている。 Thick film resistor pastes consist essentially of conductive powders, glass-forming compound powders and an organic vehicle to render them into a paste suitable for printing. By printing this thick film resistor paste in a predetermined pattern and sintering it at a high temperature, for example, a resistor constituting a thick film chip resistor can be formed. As the conductive powder, ruthenium oxide (RuO 2 ) powder and lead ruthenate (Pb 2 Ru 2 O 7 -X ) powders are widely used.
近年、厚膜チップ抵抗器のような電子素子の小型化が進むとともに、電気的特性の向上が求められており、より詳しくは、抵抗体の小型化にともなう高精細化、および電子素子当たりの抵抗値ばらつきを小さくすることが求められている。このような電子素子の小型化に対応し、かつ電気的特性の良好な厚膜抵抗体を形成するためには、導電粉末を微細化し、かつ、粗大粒子を極力少なくして粒度分布を狭くすることが必要である。粒径が1μmを超える粗大粒子が存在すると、導電粉末とガラス形成用化合物粉末を含有する厚膜抵抗ペースト内の各成分の分布が不均一となり、形成される抵抗体内の導電部の分布構造も不均一となってしまい、抵抗値ばらつきが大きくなったり、粗大粒子による短絡が生じたりする。このように、導電粉末の粒径、特に粗大粒子の存在は、形成する抵抗体の抵抗値、抵抗温度係数、等の電気的特性に影響を与えるため、粒径の制御された微細な導電粉末が望まれている。 In recent years, as electronic elements such as thick-film chip resistors have become smaller, there has been a demand for improved electrical characteristics. It is required to reduce the variation in resistance value. In order to respond to the miniaturization of such electronic devices and to form a thick film resistor with good electrical characteristics, the conductive powder is made finer and coarse particles are reduced as much as possible to narrow the particle size distribution. It is necessary. When coarse particles having a particle size of more than 1 μm are present, the distribution of each component in the thick-film resistor paste containing the conductive powder and the glass-forming compound powder becomes non-uniform, and the distribution structure of the conductive portions in the formed resistor becomes uneven. This results in non-uniformity, increasing variations in resistance values, and causing short circuits due to coarse particles. Thus, the particle size of the conductive powder, particularly the presence of coarse particles, affects the electrical properties of the resistor to be formed, such as the resistance value and temperature coefficient of resistance. is desired.
ルテニウム酸鉛粉末の製造方法に関しては、既に多くの技術が開示されている。例えば、次の特許文献1には、金属ルテニウムを酸化剤共存下でアルカリ溶解し、得たルテニウム酸溶液に、鉛イオンを含む溶液を添加して沈殿物を発生させ、得た沈殿物を洗浄、乾燥した後、焙焼処理することでルテニウム酸鉛微粉末を得る技術が開示されている。 Many techniques have already been disclosed with respect to methods for producing lead ruthenate powder. For example, in the following Patent Document 1, metal ruthenium is alkali-dissolved in the presence of an oxidizing agent, a solution containing lead ions is added to the resulting ruthenic acid solution to generate a precipitate, and the obtained precipitate is washed. , a technique for obtaining lead ruthenate fine powder by drying and then roasting.
また、次の特許文献2には、ルテニウム酸アルカリ金属塩の水溶液と鉛化合物を含む水溶液、及び低級アルコールを混合し、アルコールで還元することで、ルテニウムと鉛の水和酸化物または水酸化物の共沈物スラリーを生成させ、該スラリーから分離した共沈物を乾燥させた後、焙焼することでルテニウム酸鉛微粉末を得る技術が開示されている。 Further, in the following Patent Document 2, a hydrated oxide or hydroxide of ruthenium and lead is prepared by mixing an aqueous solution of an alkali metal ruthenate, an aqueous solution containing a lead compound, and a lower alcohol and reducing it with alcohol. A coprecipitate slurry is produced, the coprecipitate separated from the slurry is dried, and then roasted to obtain a lead ruthenate fine powder.
しかしながら、これらの製造方法を用いて形成したルテニウム酸鉛粉末は、製造条件の差異や残留した不純物量によって、さまざまな粒径のルテニウム酸鉛粉末が生成し、粒径ばらつきが大きいため、1μmを超える粗大粒子も生成しやすくなり、厚膜抵抗体の抵抗値ばらつきを低く抑えることができず、電気的特性を向上させることが困難である。 However, the lead ruthenate powder formed by these manufacturing methods has various particle sizes due to differences in manufacturing conditions and the amount of residual impurities. It becomes easy to generate coarse particles exceeding the above, and it is impossible to suppress the variation in the resistance value of the thick film resistor to a low level, making it difficult to improve the electrical characteristics.
このような粗大粒子の発生を抑制する方法として、例えば、次の特許文献3には、ルテニウム酸鉛水酸化物に硫黄を添加した後、焙焼することで粗大粒子の発生を抑制する技術が開示されている。
この方法によれば、硫黄を800質量ppm以上1300質量ppm以下含有させることで、効率良く粗大粒子の発生を抑制することができる。ルテニウム酸鉛粉末に硫黄が不純物として残留していると、厚膜抵抗体の特性が低下してしまう虞があるため、特許文献3には、焼成後のルテニウム酸鉛粉末を水洗等により洗浄することが提案されている。
しかしながら、微細化の進む電子素子においては、わずかな量の硫黄であっても問題となる場合があるため、洗浄の精度をより向上させる必要があるが、硫黄を完全に除去できていることを保証することは非常に困難である。また、焙焼時にルテニウム酸鉛粉末の内部に硫黄を取り込んでしまった場合には、表面洗浄だけでは硫黄の除去が困難であり、長期使用の過程で硫黄が表面に浸みだし、電子素子の信頼性を低下させる要因となる場合もある。
As a method for suppressing the generation of such coarse particles, for example, the following Patent Document 3 discloses a technique for suppressing the generation of coarse particles by roasting after adding sulfur to lead ruthenate hydroxide. disclosed.
According to this method, by containing 800 mass ppm or more and 1300 mass ppm or less of sulfur, it is possible to efficiently suppress the generation of coarse particles. If sulfur remains in the lead ruthenate powder as an impurity, the characteristics of the thick film resistor may deteriorate. is proposed.
However, even a small amount of sulfur can cause problems in electronic devices, which are becoming increasingly miniaturized. Therefore, it is necessary to further improve the accuracy of cleaning. Very difficult to guarantee. Also, if sulfur is taken into the interior of the lead ruthenate powder during roasting, it is difficult to remove the sulfur only by cleaning the surface. It may also be a factor that reduces sexuality.
本発明は、上述の問題を鑑みてなされたものであり、硫黄を添加することなく、生成するルテニウム酸鉛粉末の平均粒径を制御することができ、かつ、1μmを超える粗大粒子を生成させず、粒径ばらつきの小さなルテニウム酸鉛粉末を得ることが可能なルテニウム酸鉛粉末の製造方法を提供することを目的としている。 The present invention has been made in view of the above-mentioned problems, and is capable of controlling the average particle size of the lead ruthenate powder to be produced and producing coarse particles exceeding 1 μm without adding sulfur. First, it is an object of the present invention to provide a method for producing a lead ruthenate powder that can obtain a lead ruthenate powder with a small variation in particle size.
本発明者は、生成するルテニウム酸鉛粉末の粒径に対する、各種条件の影響を鋭意調査した結果、含鉛化合物、含ホウ素化合物を含むガラス形成用化合物と、含ルテニウム化合物を混合した混合粉末を溶融することで、含鉛化合物と含ルテニウム化合物が反応してルテニウム酸鉛を形成すると同時に、含鉛化合物や含ホウ素化合物などからなるガラス形成用化合物が溶融ガラスを形成し、この溶融ガラスが、ルテニウム酸鉛の粒子成長を阻害し、粒子成長速度を低下させることにより、溶融ガラス内で形成されるルテニウム酸鉛粒子が微細で、かつ粒度分布が狭くなり、粗大粒子の生成を抑制できることを見出した。なお、最終的にルテニウム酸鉛粉末を得るには、ルテニウム酸鉛を含有するガラス融体からガラス成分を除去する必要がある。このため、ガラス成分は溶融処理後に酸等により洗浄除去することができる配合にしておく必要がある。
すなわち、本発明者は、含鉛化合物および含ホウ素化合物を含むガラス形成用化合物と、含ルテニウム化合物とを混合し、適切な温度で溶融することで、溶融ガラス内に、粗粒の非常に少ない粒径の揃った微細なルテニウム酸鉛を含有する、ガラス融体を生成できること、またその後、酸等により、ルテニウム酸鉛を含有するガラス融体からガラス成分を除去するための処理を行うことで、粗大粒子の少ない微細なルテニウム酸鉛粉末を得られることを見出し、本発明を完成するに至った。
As a result of intensive investigation of the effects of various conditions on the particle size of lead ruthenate powder to be produced, the present inventors produced a mixed powder in which a glass-forming compound containing a lead-containing compound and a boron-containing compound and a ruthenium-containing compound were mixed. When melted, the lead-containing compound and the ruthenium-containing compound react to form lead ruthenate, and at the same time, the glass-forming compound comprising the lead-containing compound and the boron-containing compound forms molten glass, and the molten glass is It was discovered that by inhibiting the growth of lead ruthenate particles and reducing the particle growth rate, the lead ruthenate particles formed in the molten glass are finer and have a narrower particle size distribution, thereby suppressing the formation of coarse particles. rice field. In order to finally obtain lead ruthenate powder, it is necessary to remove the glass component from the glass melt containing lead ruthenate. For this reason, the glass component must be blended so that it can be washed off with an acid or the like after the melting treatment.
That is, the present inventors have found that by mixing a glass-forming compound containing a lead-containing compound and a boron-containing compound with a ruthenium-containing compound and melting at an appropriate temperature, the molten glass contains very few coarse particles. It is possible to generate a glass melt containing fine lead ruthenate with a uniform particle size, and then to perform a treatment with an acid or the like to remove the glass component from the glass melt containing lead ruthenate. The inventors have found that fine lead ruthenate powder with few coarse particles can be obtained, and have completed the present invention.
本発明によるルテニウム酸鉛粉末の製造方法は、含鉛化合物および含ホウ素化合物を含み、該含ホウ素化合物に含有するホウ素の含有量が、前記含鉛化合物に含有する鉛の含有量100質量部に対し、3質量部以上10質量部以下となる、ガラス形成用化合物と、含ルテニウム化合物とを、該含ルテニウム化合物に含有するルテニウムの含有量に対する、前記ガラス形成用化合物中の前記含鉛化合物に含有する鉛の含有量のmol比が1よりも大きくなる配合比で混合して混合粉末を得る混合粉末作製工程と、前記混合粉末作製工程により得られた混合粉末を溶融する溶融工程と、前記溶融工程により作製されたルテニウム酸鉛を含有するガラス融体から、酸水溶液によりガラス成分を洗浄除去するための洗浄工程と、前記洗浄工程により得られたルテニウム酸鉛を乾燥処理し、水分を除去する乾燥工程と、を有することを特徴とする。 The method for producing lead ruthenate powder according to the present invention includes a lead-containing compound and a boron-containing compound, and the content of boron contained in the boron-containing compound is less than the content of lead contained in the lead-containing compound of 100 parts by mass. On the other hand, 3 parts by mass or more and 10 parts by mass or less of the glass-forming compound and the ruthenium-containing compound are added to the lead-containing compound in the glass-forming compound with respect to the ruthenium content in the ruthenium-containing compound. A mixed powder preparation step of obtaining a mixed powder by mixing at a compounding ratio in which the molar ratio of the lead content is greater than 1; a melting step of melting the mixed powder obtained by the mixed powder preparation step; A cleaning step for cleaning and removing the glass component from the lead ruthenate-containing glass melt produced by the melting step with an acid aqueous solution, and drying the lead ruthenate obtained by the cleaning step to remove moisture. and a drying step.
また、本発明のルテニウム酸鉛粉末の製造方法においては、前記溶融工程の溶融温度を650℃以上800℃以下にすることが好ましい。 In the method for producing lead ruthenate powder of the present invention, the melting temperature in the melting step is preferably 650° C. or higher and 800° C. or lower.
また、本発明のルテニウム酸鉛粉末の製造方法においては、前記溶融工程に投入する混合粉末は、含ホウ素化合物の含有量が、含鉛化合物の含有量に対し、5質量%以下であることが好ましい。 Further, in the method for producing lead ruthenate powder of the present invention, the content of the boron-containing compound in the mixed powder introduced into the melting step is 5% by mass or less with respect to the content of the lead-containing compound. preferable.
また、本発明のルテニウム酸鉛粉末の製造方法においては、前記溶融工程処理後、得られたガラス融体を水中にて急冷することが好ましい。 Moreover, in the method for producing the lead ruthenate powder of the present invention, it is preferable to rapidly cool the obtained glass melt in water after the melting step treatment.
本発明によれば、硫黄を加えることなく、生成するルテニウム酸鉛粉末の平均粒径を制御することができ、かつ、1μmを超える粗大粒子を生成させず、粒径ばらつきの小さなルテニウム酸鉛粉末を得ることが可能なルテニウム酸鉛粉末の製造方法が得られる。 ADVANTAGE OF THE INVENTION According to the present invention, the average particle size of the lead ruthenate powder produced can be controlled without adding sulfur, and the lead ruthenate powder with small particle size variation without producing coarse particles exceeding 1 μm. A method for producing lead ruthenate powder can be obtained.
以下、本発明の実施形態について説明するが、本発明は、下記の実施形態に制限されるものではなく、本発明の範囲内で、下記実施形態に種々の変形および置換を加えることができる。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and various modifications and replacements can be made to the following embodiments within the scope of the present invention.
(ガラス組成物)
本発明のルテニウム酸鉛粉末の製造方法には、含鉛化合物および含ホウ素化合物を含むガラス形成用化合物を用いる。含鉛化合物としては、特に限定されないが、ガラス形成に一般的に用いられる一酸化鉛(PbO)、四酸化三鉛(Pb3O4)、二酸化鉛(PbO2)等が適用できる。含ホウ素化合物としては、特に限定されないが、ガラス形成に一般的に用いられる酸化ホウ素(B2O3)、ホウ酸(H3BO3)等が適用できる。
含ホウ素化合物および含鉛化合物のそれぞれの含有量は、ガラス形成用化合物がガラス化する範囲内の配合量とする。ガラス形成用化合物は、後述する溶融工程でガラス融体を形成できる範囲で、含ホウ素化合物および含鉛化合物以外の化合物を加えることができる。但し、含ホウ素化合物の含有量が多すぎると、形成したルテニウム酸鉛を、過剰なホウ素が分解してしまう場合がある。このため、含鉛化合物に含有する鉛の含有量100質量部に対する、含ホウ素化合物に含有するホウ素の含有量は3質量部以上10質量部以下とする。より好ましくは、5質量部以下とするのがよい。
それぞれの化合物の含有量が上記のようにガラス化する範囲内の配合量となった、上記ガラス形成用化合物が、後述する溶融工程にてガラス化すると、形成されたガラス融体がルテニウム酸鉛の粒子成長を阻害する。その結果、微細な粒子のルテニウム酸鉛を得ることができるようになる。
一方、上記ガラス形成用化合物におけるそれぞれの化合物の含有量が、後述する溶融工程でガラス化しない配合量の場合、ルテニウム酸鉛の粒子成長を十分に阻害することができなくなり、ルテニウム酸鉛の粒子が粗大化してしまう。
(Glass composition)
The method for producing the lead ruthenate powder of the present invention uses a glass-forming compound that includes a lead-containing compound and a boron-containing compound. The lead-containing compound is not particularly limited, but lead monoxide (PbO), trilead tetroxide (Pb 3 O 4 ), lead dioxide (PbO 2 ), etc., which are generally used for glass formation, can be applied. The boron-containing compound is not particularly limited, but boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), and the like, which are generally used for glass formation, can be applied.
The content of each of the boron-containing compound and the lead-containing compound is set within a range in which the glass-forming compound vitrifies. A compound other than the boron-containing compound and the lead-containing compound can be added to the glass-forming compound as long as it can form a glass melt in the melting step described later. However, if the content of the boron-containing compound is too large, the formed lead ruthenate may be decomposed by excessive boron. Therefore, the content of boron contained in the boron-containing compound is set to 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of lead contained in the lead-containing compound. More preferably, it should be 5 parts by mass or less.
When the above-described glass-forming compound, whose content of each compound is within the range for vitrification as described above, is vitrified in the melting step described later, the formed glass melt is lead ruthenate. inhibits grain growth. As a result, fine particles of lead ruthenate can be obtained.
On the other hand, if the content of each compound in the glass-forming compound is such that it does not vitrify in the melting step described later, the growth of lead ruthenate particles cannot be sufficiently inhibited, resulting in lead ruthenate particles. becomes coarse.
(含ルテニウム化合物)
本発明に用いる含ルテニウム化合物としては、酸化ルテニウムが適用できる。酸化ルテニウムの製造方法は特に限定されないが、例えば次に示す方法で製造することができる。まず、金属ルテニウムをアルカリ条件下で酸化処理し、ルテニウム酸塩の水溶液を得る。あるいは、金属ルテニウムをアルカリ溶融して得られる固体のルテニウム酸塩を水で溶解してルテニウム酸塩の水溶液を得る。
これらの方法により得られたルテニウム酸塩の水溶液のpHを調整し、アルコール等の還元剤を用いて還元することで酸化ルテニウム粉末を得ることができる。
(Ruthenium-containing compound)
Ruthenium oxide can be applied as the ruthenium-containing compound used in the present invention. Although the method for producing ruthenium oxide is not particularly limited, it can be produced, for example, by the method shown below. First, ruthenium metal is oxidized under alkaline conditions to obtain an aqueous solution of ruthenate. Alternatively, a solid ruthenate obtained by alkaline melting of metallic ruthenium is dissolved in water to obtain an aqueous solution of ruthenate.
A ruthenium oxide powder can be obtained by adjusting the pH of the aqueous solution of ruthenate obtained by these methods and reducing it with a reducing agent such as alcohol.
含ルテニウム化合物の含有量は任意で良いが、鉛と反応させてルテニウム酸鉛を形成させるため、含ルテニウム化合物に含有するルテニウムの含有量に対する、ガラス組成物中の含鉛化合物に含有する鉛の含有量のmol比が1よりも大きい、鉛が過剰となる配合比となるようにするのが好ましい。ルテニウムの含有量に対する鉛の含有量のmol比が1よりも小さい場合、ルテニウム酸鉛の形成に余ったルテニウムが、含ルテニウム化合物中に酸化ルテニウムなどの状態で残留し、製造されるルテニウム酸鉛粉末中に不純物として混合してしまう場合があるため好ましくない。 The content of the ruthenium-containing compound may be arbitrary, but since lead is reacted with lead to form lead ruthenate, the amount of lead contained in the lead-containing compound in the glass composition should be adjusted to the content of ruthenium contained in the ruthenium-containing compound. It is preferable that the molar ratio of the content is greater than 1 and the compounding ratio is such that lead is excessive. When the molar ratio of the lead content to the ruthenium content is less than 1, the ruthenium left over from the formation of lead ruthenate remains in the ruthenium-containing compound in the form of ruthenium oxide or the like, and lead ruthenate is produced. It is not preferable because it may be mixed in the powder as an impurity.
(溶融工程)
上述した、含鉛化合物および含ホウ素化合物を含むガラス形成用化合物と、含ルテニウム化合物を、ボールミルやライカイ機等により十分に混合、解砕し、混合粉末を作製する。得られた混合粉末を、650℃以上800℃以下の温度で溶融処理することで、ルテニウム酸鉛を包含するガラス融体が生成される。
溶融温度が650℃未満であると、ルテニウムと鉛の反応が不十分となり、ルテニウム酸鉛が十分形成されない場合があるので好ましくない。
また、溶融温度が800℃以上になると、ガラス融体がルテニウム酸鉛の粒子成長を阻害する効果が十分発揮されず、粒径の制御が難しくなり、得られるルテニウム酸鉛粉末の粒径がばらついてしまい、一部の粒子が粗大化してしまう場合があるため、小型化、薄層化の進む厚膜抵抗用の導電物としては望ましくない。
溶融時間は、反応が完了する時間以上であれば、特に限定されない。
溶融後に、ガラス融体を冷却する方法は、自然放冷で冷却しても良いし、水中に投入して急冷しても良い。但し、ガラス融体を水中に投入し急冷した方が、細かく粉砕し易くなり、後工程での酸洗浄工程でより効果的にルテニウム酸鉛以外の酸化鉛や酸化ホウ素等からなるガラス成分を除去可能になるため好ましい。
(melting process)
The glass-forming compound containing the lead-containing compound and the boron-containing compound and the ruthenium-containing compound are sufficiently mixed and pulverized by a ball mill, a lykai machine, or the like to prepare a mixed powder. The obtained mixed powder is melt-treated at a temperature of 650° C. or more and 800° C. or less to produce a glass melt containing lead ruthenate.
If the melting temperature is lower than 650° C., the reaction between ruthenium and lead may be insufficient, and lead ruthenate may not be formed sufficiently.
Further, when the melting temperature is 800° C. or higher, the effect of the glass melt to inhibit the particle growth of the lead ruthenate is not sufficiently exhibited, making it difficult to control the particle size, and the resulting lead ruthenate powder varies in particle size. It is not desirable as a conductive material for thick-film resistors, which are becoming smaller and thinner.
The melting time is not particularly limited as long as it is longer than or equal to the reaction completion time.
After melting, the melted glass may be cooled by natural cooling, or may be quenched by immersing it in water. However, if the molten glass is put into water and then quenched, it will be easier to pulverize it finely, and glass components other than lead ruthenate, such as lead oxide and boron oxide, will be more effectively removed in the subsequent acid washing process. preferred because it is possible.
(酸洗浄工程)
溶融工程で得られたルテニウム酸鉛粉末を含むガラス融体を酸で洗浄することで、ルテニウム酸鉛以外の酸化鉛や酸化ホウ素等からなるガラス成分を溶解し、除去することが可能になる。酸洗浄するガラス融体が、細かい粉末であるほど表面積が増加することにより、効率よくガラス成分を除去可能になり、酸洗浄の時間を短くすることができ、作業効率を向上させることができる。このため、必要に応じて酸洗浄工程前に、ガラス融体を粗粉砕しても良い。このとき、上述のように、溶融工程後の冷却処理を、水中に投入して急冷する方法にすると、冷却後のガラス成分が脆くなり、より簡便にガラス融体を粉砕することができるため、より好ましい。
酸洗浄に用いる酸としては、溶融工程で形成されたガラス融体を溶解できる酸であれば特に限定されないが、例えば、硝酸等を適用することができる。
また、ルテニウム酸鉛表面から酸洗浄工程で使用した酸の残渣を除去するため、最後に水で酸を置換する水洗浄を行い、含水したルテニウム酸鉛スラリーを得る。
(Acid cleaning process)
By washing the glass melt containing the lead ruthenate powder obtained in the melting step with an acid, glass components other than lead ruthenate, such as lead oxide and boron oxide, can be dissolved and removed. The finer the powder of the melted glass to be acid-washed, the greater the surface area, so that the glass component can be efficiently removed, the time for acid-washing can be shortened, and the work efficiency can be improved. Therefore, the glass melt may be coarsely pulverized before the acid washing step, if necessary. At this time, as described above, if the cooling treatment after the melting step is performed by quenching by immersing in water, the glass component after cooling becomes brittle and the glass melt can be more easily pulverized. more preferred.
The acid used for acid cleaning is not particularly limited as long as it can dissolve the glass melt formed in the melting step, but nitric acid or the like can be used, for example.
Further, in order to remove the residue of the acid used in the acid cleaning step from the surface of the lead ruthenate, the lead ruthenate slurry is finally washed with water to replace the acid with water to obtain a water-containing lead ruthenate slurry.
(乾燥工程)
水洗浄後の含水したルテニウム酸鉛スラリーに対し、必要に応じてろ過等の固液分離処理を行った後、空気中で乾燥することで、ルテニウム酸鉛の乾燥粉末を得ることができる。
(Drying process)
Dry powder of lead ruthenate can be obtained by subjecting the water-containing lead ruthenate slurry after washing with water to solid-liquid separation treatment such as filtration, if necessary, and then drying in the air.
以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されるものではない。 EXAMPLES The present invention will be described below based on more detailed examples, but the present invention is not limited to these examples.
(評価試験1:粗大粒子の生成抑制効果確認)
(実施例1)
四酸化三鉛(Pb3O4)を80.2g、酸化ホウ素(B2O3)を7.5g、酸化ルテニウム(RuO2)を12.3gそれぞれ秤量した後、ライカイ機に投入して、解砕及び混合を十分に行った。本実施例では、四酸化三鉛中の鉛含有量100質量部に対する、酸化ホウ素中のホウ素含有量は3.2質量部である。また、ルテニウムに対する鉛の含有mol比は3.8である。
得られた混合粉末100gをアルミナるつぼに移した後、700℃の温度で2時間溶融し、ルテニウム酸鉛粉末を包含するガラス融体を得た。溶融処理後、得られたガラス融体を水に投入して冷却した。冷却後、ガラス融体を粗粉砕し、粉末状とした。その後、24%硝酸水溶液500mLに粉末状のガラス融体を入れて、撹拌することで、酸化ホウ素および未反応の酸化鉛からなるガラス成分を溶解した。その後、この水溶液をろ過し除去することで、ガラス成分を洗浄除去するための処理を施した粉末を得た。このような酸洗浄処理を合計2回行った。得られた酸洗浄後の粉末を、純水500mLに入れて撹拌した後、ろ過することで、粉末表面などに残留した酸を除去した。このような水洗浄処理を合計3回行った。水洗浄後のスラリー状のルテニウム酸鉛組成物を、80℃で12時間乾燥することでルテニウム酸鉛粉末を得た。
<平均粒径>
このようにして製造したルテニウム酸鉛粉末の比表面積を、吸着ガスとして窒素ガスを用いたガス吸着法(BET法)により測定し、その比表面積から平均粒径を算出したところ61nmであった。
<粒子ばらつきの評価(粗大粒子の有無確認)>
製造したルテニウム酸鉛粉末から0.3g採取し、100mLビーカーに入れた後、純水100mLを加え試料溶液を作製した。作製した試料溶液を入れた100mLビーカーに超音波を照射し、ルテニウム酸鉛粉末を純水中に分散させた。その後、10分間静置し、粗大粒子をビーカー底に沈降させた後に、ビーカー内の上澄みを除去することで微細粒子を効率的に除去した。ビーカー内に残った残液を更にフィルターでろ過することにより粗大粒子を効率的に採取する処理を行った。採取した粒子を、走査型電子顕微鏡にて倍率2000倍で64×48μmの視野を20視野観察したところ、粒径が1μmを超えるルテニウム酸鉛の粗大粒子は観測されなかった。
(Evaluation test 1: Confirmation of the effect of suppressing the generation of coarse particles)
(Example 1)
After weighing 80.2 g of trilead tetroxide (Pb 3 O 4 ), 7.5 g of boron oxide (B 2 O 3 ), and 12.3 g of ruthenium oxide (RuO 2 ), they were put into the Laikai machine, Crushing and mixing were sufficiently performed. In this example, the content of boron in boron oxide was 3.2 parts by mass with respect to 100 parts by mass of lead in trilead tetroxide. Also, the molar ratio of lead to ruthenium is 3.8.
After transferring 100 g of the obtained mixed powder to an alumina crucible, it was melted at a temperature of 700° C. for 2 hours to obtain a glass melt containing lead ruthenate powder. After the melting treatment, the obtained glass melt was put into water and cooled. After cooling, the glass melt was coarsely pulverized into powder. After that, the powdery glass melt was added to 500 mL of a 24% nitric acid aqueous solution and stirred to dissolve the glass component composed of boron oxide and unreacted lead oxide. Thereafter, the aqueous solution was filtered and removed to obtain a powder subjected to a treatment for washing and removing the glass component. Such acid cleaning treatment was performed twice in total. The acid-washed powder thus obtained was put into 500 mL of pure water, stirred, and then filtered to remove the acid remaining on the surface of the powder. Such water washing treatment was performed a total of three times. The lead ruthenate powder was obtained by drying the slurry-like lead ruthenate composition after washing with water at 80° C. for 12 hours.
<Average particle size>
The specific surface area of the lead ruthenate powder thus produced was measured by the gas adsorption method (BET method) using nitrogen gas as the adsorption gas, and the average particle size calculated from the specific surface area was 61 nm.
<Evaluation of particle variation (confirmation of presence or absence of coarse particles)>
0.3 g of the produced lead ruthenate powder was sampled and placed in a 100 mL beaker, and then 100 mL of pure water was added to prepare a sample solution. A 100 mL beaker containing the prepared sample solution was irradiated with ultrasonic waves to disperse the lead ruthenate powder in pure water. Thereafter, the mixture was allowed to stand for 10 minutes to allow coarse particles to settle to the bottom of the beaker, and then the supernatant in the beaker was removed to efficiently remove fine particles. The residual liquid remaining in the beaker was further filtered with a filter to efficiently collect coarse particles. When the sampled particles were observed with a scanning electron microscope at a magnification of 2000×20 fields of view of 64×48 μm, coarse lead ruthenate particles exceeding 1 μm in diameter were not observed.
(比較例1)
従来のルテニウム酸鉛粉末を得る方法として、以下の方法でルテニウム酸鉛粉末を得た。
金属ルテニウム1600gを、次亜塩素酸52L、水酸化ナトリウム1600gを純水32Lに溶解して作製したアルカリ溶液に加え、溶解し、純水を加えてルテニウム酸塩溶液160Lを得た。また、硝酸鉛(Pb(NO3)2)5400gを過酸化水素水6.4Lと純水16Lに溶解して硝酸鉛溶液を得た。次いで、ルテニウム酸塩溶液160Lを40℃に維持し、攪拌しつつ、硝酸鉛溶液を添加した。硝酸を添加してpHを中性付近に調整し、黒色沈殿物を得た。得られた沈殿物を固液分離した後、温水で洗浄し、110℃で一晩乾燥した。このようにして得た黒色沈殿物を700℃で2時間焙焼し、酸化ルテニウムを含まないPB2RU2O6.5のルテニウム酸鉛パイロクロア粉末を得た。
<平均粒径の評価>
製造したルテニウム酸鉛パイロクロア粉末の平均粒径をBET法にて計測したところ42nmであった。
<粒子ばらつきの評価(粗大粒子の有無確認)>
実施例1と同様の方法で、製造した粉末の粒子ばらつきの評価を行ったところ、1μmを超えるルテニウム酸鉛パイロクロア粉末の粗大粒子が684個観測された。
(Comparative example 1)
As a conventional method for obtaining lead ruthenate powder, lead ruthenate powder was obtained by the following method.
1600 g of metallic ruthenium was added to and dissolved in an alkaline solution prepared by dissolving 52 L of hypochlorous acid and 1600 g of sodium hydroxide in 32 L of pure water, and pure water was added to obtain 160 L of ruthenate solution. Further, 5400 g of lead nitrate (Pb(NO 3 ) 2 ) was dissolved in 6.4 L of hydrogen peroxide solution and 16 L of pure water to obtain a lead nitrate solution. The 160 L of ruthenate solution was then maintained at 40° C. and stirred while the lead nitrate solution was added. Nitric acid was added to adjust the pH to near neutrality to obtain a black precipitate. After solid-liquid separation of the obtained precipitate, it was washed with warm water and dried overnight at 110°C. The black precipitate thus obtained was calcined at 700° C. for 2 hours to obtain PB 2 RU 2 O 6.5 lead ruthenate pyrochlore powder containing no ruthenium oxide.
<Evaluation of average particle size>
The average particle size of the produced lead ruthenate pyrochlore powder was measured by the BET method and found to be 42 nm.
<Evaluation of particle variation (confirmation of presence or absence of coarse particles)>
When the particle variation of the produced powder was evaluated in the same manner as in Example 1, 684 coarse particles of the lead ruthenate pyrochlore powder exceeding 1 μm were observed.
(評価試験2:溶融工程の処理温度による平均粒子径制御確認)
実施例2~4では、溶融温度を表1に示す、650℃~800℃に変化させる以外は実施例1と同様な方法でルテニウム酸鉛粉末を得た。
製造したルテニウム酸鉛粉末の平均粒径をBET法にて計測した結果、及び、実施例1と同様に行った、製造したルテニウム酸鉛粉末の粒子ばらつきの評価結果を表1に示す。
(Evaluation test 2: confirmation of average particle size control by treatment temperature in melting process)
In Examples 2 to 4, lead ruthenate powders were obtained in the same manner as in Example 1 except that the melting temperature was changed from 650° C. to 800° C. shown in Table 1.
Table 1 shows the results of measuring the average particle diameter of the produced lead ruthenate powder by the BET method and the evaluation results of the particle variation of the produced lead ruthenate powder conducted in the same manner as in Example 1.
(評価試験3:含鉛化合物に含有する鉛の含有量に対する、含ホウ素化合物に含有するホウ素の含有量に応じた、平均粒径、粒子ばらつき確認)
実施例5、6では、四酸化三鉛中の鉛含有量100質量部に対する、酸化ホウ素中のホウ素含有量を夫々表2に示す配合比とした以外は実施例1と同様な方法でルテニウム酸鉛粉末を得た。
製造したルテニウム酸鉛粉末の平均粒径をBET法にて計測した結果、及び、実施例1と同様に行った、製造したルテニウム酸鉛粉末の粒子ばらつきの評価結果を表2に示す。
(Evaluation Test 3: Confirmation of average particle size and particle variation according to the content of boron contained in the boron-containing compound with respect to the content of lead contained in the lead-containing compound)
In Examples 5 and 6, ruthenic acid was prepared in the same manner as in Example 1, except that the content of boron in boron oxide was adjusted to 100 parts by mass of lead in trilead tetroxide as shown in Table 2. A lead powder was obtained.
Table 2 shows the results of measurement of the average particle diameter of the produced lead ruthenate powder by the BET method and the evaluation results of the particle variation of the produced lead ruthenate powder conducted in the same manner as in Example 1.
評価試験1、評価試験2の表1、及び評価試験3の表2の結果から、本発明の製法を用いた実施例1~7のルテニウム酸鉛粉末は、BET法による平均粒径が51nm~89nmと非常に微細な粉末であり、かつ、1μm以上の粗大粒子を形成することがなく、粒子ばらつきが小さいことが確認できた。また、溶融時間を一定にして、溶融温度を変化させることにより、任意にルテニウム酸鉛粉末の粒径を制御できることが確認できた。
これに対し、従来の製造方法で作製した比較例1のルテニウム酸鉛粉末は、BET法による平均粒径が42nmと微細な粉末を製造するような条件であっても、1μm以上の粗大粒子を含んでしまい、ばらつきの大きな粒度分布となってしまうことが確認できた。
なお、評価試験3において、比較例として、四酸化三鉛中の鉛含有量100質量部に対する、酸化ホウ素中のホウ素含有量を本発明の範囲外(3質量部未満、10質量部超)とした以外は、実施例1と同様な方法でルテニウム酸鉛粉末を得ることを試みたが、酸化ホウ素中のホウ素の含有量が3質量部未満であるとガラス化できず、また、酸化ホウ素中のホウ素の含有量が10質量部を超えるとルテニウム酸鉛が分解してしまった。
From the results of Evaluation Test 1, Table 1 of Evaluation Test 2, and Table 2 of Evaluation Test 3, the lead ruthenate powders of Examples 1 to 7 using the production method of the present invention have an average particle size of 51 nm to 51 nm by the BET method. It was confirmed that the powder was very fine as 89 nm, did not form coarse particles of 1 μm or more, and had small particle variation. It was also confirmed that the grain size of the lead ruthenate powder can be arbitrarily controlled by changing the melting temperature while keeping the melting time constant.
On the other hand, the lead ruthenate powder of Comparative Example 1 produced by the conventional production method had coarse particles of 1 μm or more even under the conditions for producing fine powder with an average particle size of 42 nm by the BET method. It has been confirmed that the particle size distribution is highly dispersed due to inclusion of the particles.
In Evaluation Test 3, as a comparative example, the content of boron in boron oxide with respect to the content of lead in trilead tetroxide of 100 parts by mass was outside the scope of the present invention (less than 3 parts by mass, more than 10 parts by mass). An attempt was made to obtain lead ruthenate powder in the same manner as in Example 1, except that the powder contained in boron oxide was less than 3 parts by mass. When the content of boron exceeded 10 parts by mass, the lead ruthenate was decomposed.
以上説明した通り、本発明の範囲内の配合として、ガラス中でルテニウム酸鉛を生成することで粗大粒子の形成を防止することができ、溶融温度を制御することで、ルテニウム酸鉛粉末の粒径を容易に制御することが可能であることが分かった。このため、本発明の方法で製造したルテニウム酸鉛粉末は微細で粒度分布の揃った粉末とすることができ、近年要求が厳しくなっている、小型抵抗体の製造に適した抵抗ペーストに好適に用いることができる。 As described above, as a formulation within the scope of the present invention, formation of lead ruthenate in glass can prevent the formation of coarse particles, and by controlling the melting temperature, grains of lead ruthenate powder can be reduced. It has been found that the diameter can be easily controlled. Therefore, the lead ruthenate powder produced by the method of the present invention can be a fine powder with a uniform particle size distribution, and is suitable for use as a resistor paste suitable for the production of small resistors, which has become increasingly demanding in recent years. can be used.
本発明のルテニウム酸鉛粉末の製造方法は、電子素子の小型化に対応し、かつ電気的特性の良好な厚膜抵抗体を製造することが求められる分野に有用である。 INDUSTRIAL APPLICABILITY The method for producing lead ruthenate powder of the present invention is useful in fields where it is required to produce thick-film resistors with good electrical characteristics that are compatible with miniaturization of electronic devices.
Claims (4)
前記混合粉末作製工程により得られた混合粉末を溶融し、ルテニウム酸鉛粉末を含有するガラス融体を形成する溶融工程と、前記溶融工程により作製されたルテニウム酸鉛を含有するガラス融体から、酸水溶液によりガラス成分を洗浄除去するための洗浄工程と、前記洗浄工程により得られたルテニウム酸鉛を乾燥処理し、水分を除去する乾燥工程と、を有することを特徴とするルテニウム酸鉛粉末の製造方法。 A lead-containing compound and a boron-containing compound are included, and the boron content in the boron-containing compound is 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the lead content in the lead-containing compound. , a glass-forming compound and a ruthenium-containing compound, wherein the molar ratio of the lead content in the lead-containing compound in the glass-forming compound to the ruthenium content in the ruthenium-containing compound is more than 1 A mixed powder preparation step of obtaining a mixed powder by mixing at a compounding ratio that also increases,
a melting step of melting the mixed powder obtained in the mixed powder preparation step to form a glass melt containing the lead ruthenate powder; A lead ruthenate powder comprising: a washing step for washing and removing a glass component with an acid aqueous solution; and a drying step for drying the lead ruthenate obtained by the washing step to remove moisture. Production method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019101565A JP7215334B2 (en) | 2019-05-30 | 2019-05-30 | Method for producing lead ruthenate powder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019101565A JP7215334B2 (en) | 2019-05-30 | 2019-05-30 | Method for producing lead ruthenate powder |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2020193137A JP2020193137A (en) | 2020-12-03 |
| JP7215334B2 true JP7215334B2 (en) | 2023-01-31 |
Family
ID=73546200
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019101565A Active JP7215334B2 (en) | 2019-05-30 | 2019-05-30 | Method for producing lead ruthenate powder |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7215334B2 (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004172250A (en) | 2002-11-19 | 2004-06-17 | Sumitomo Metal Mining Co Ltd | Thick film resistor composition, thick film resistor using the same, and method of forming the same |
| JP2004259718A (en) | 2003-02-24 | 2004-09-16 | Sumitomo Metal Mining Co Ltd | Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same |
| JP2005306677A (en) | 2004-04-22 | 2005-11-04 | Sumitomo Metal Mining Co Ltd | Ru-MO powder, method for producing the same, and thick film resistor composition using the same |
| JP2006248815A (en) | 2005-03-09 | 2006-09-21 | Sumitomo Metal Mining Co Ltd | Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same |
| JP2013053030A (en) | 2011-09-02 | 2013-03-21 | Sumitomo Metal Mining Co Ltd | Plate-like ruthenium oxide powder, method for producing the same, and thick film resistor composition using the same |
| JP2018162202A (en) | 2017-03-27 | 2018-10-18 | 住友金属鉱山株式会社 | Method for producing bismuth ruthenate powder and bismuth ruthenate powder |
| JP2018165238A (en) | 2017-03-28 | 2018-10-25 | 住友金属鉱山株式会社 | Ruthenium oxide powder, thick-film resistor composition, thick-film resistor paste, and thick-film resistor |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2970713B2 (en) * | 1991-12-25 | 1999-11-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Thick film resistor composition |
-
2019
- 2019-05-30 JP JP2019101565A patent/JP7215334B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004172250A (en) | 2002-11-19 | 2004-06-17 | Sumitomo Metal Mining Co Ltd | Thick film resistor composition, thick film resistor using the same, and method of forming the same |
| JP2004259718A (en) | 2003-02-24 | 2004-09-16 | Sumitomo Metal Mining Co Ltd | Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same |
| JP2005306677A (en) | 2004-04-22 | 2005-11-04 | Sumitomo Metal Mining Co Ltd | Ru-MO powder, method for producing the same, and thick film resistor composition using the same |
| JP2006248815A (en) | 2005-03-09 | 2006-09-21 | Sumitomo Metal Mining Co Ltd | Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same |
| JP2013053030A (en) | 2011-09-02 | 2013-03-21 | Sumitomo Metal Mining Co Ltd | Plate-like ruthenium oxide powder, method for producing the same, and thick film resistor composition using the same |
| JP2018162202A (en) | 2017-03-27 | 2018-10-18 | 住友金属鉱山株式会社 | Method for producing bismuth ruthenate powder and bismuth ruthenate powder |
| JP2018165238A (en) | 2017-03-28 | 2018-10-25 | 住友金属鉱山株式会社 | Ruthenium oxide powder, thick-film resistor composition, thick-film resistor paste, and thick-film resistor |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2020193137A (en) | 2020-12-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101236253B1 (en) | Method of producing copper powder and copper powder | |
| US10832838B1 (en) | Ruthenium oxide powder, thick film resistor composition, thick film resistor paste, and thick film resistor | |
| JP5831055B2 (en) | Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same | |
| KR20060096180A (en) | Fabrication of High Purity Niobium Monoxide and Capacitors therefrom | |
| JP2019108610A (en) | Spherical silver powder and method for producing the same | |
| TW202225089A (en) | Boron nitride powder, and method for producing boron nitride powder | |
| JP7215334B2 (en) | Method for producing lead ruthenate powder | |
| KR101251567B1 (en) | Nickel powder, process for producing the same, and conductive paste | |
| DE112017006173T5 (en) | Zinc oxide varistor and process for its preparation | |
| JP4285315B2 (en) | Ru-MO powder, method for producing the same, and thick film resistor composition using the same | |
| KR20250044664A (en) | Ruthenium oxide powder, composition for thick film resistor, paste for thick film resistor, thick film resistor | |
| JP6740829B2 (en) | Ruthenium dioxide powder, method for producing the same, thick film resistor paste, and thick film resistor | |
| JP2020196928A (en) | Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method | |
| JP6895056B2 (en) | Method for manufacturing bismuth ruthenate powder | |
| CN112514007B (en) | Composition for thick film resistor, paste for thick film resistor, and thick film resistor | |
| JP4111000B2 (en) | Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same | |
| JP6887615B2 (en) | Glass containing bismuth ruthenate particles and its production method, thick film resistor composition and thick film resistor paste | |
| CN110322984B (en) | Composition for thick film resistor, paste for thick film resistor, and thick film resistor | |
| JP4692028B2 (en) | Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same | |
| WO2017179524A1 (en) | Silver-coated copper powder and method for producing same | |
| KR20250138766A (en) | Sputtering target and its manufacturing method | |
| JP2006069836A (en) | Ruthenium composite oxide fine powder and method for producing the same | |
| JP2024012999A (en) | Copper particles and method for producing copper particles | |
| JPH11157845A (en) | Method for producing Ru oxide powder and Ru composite oxide powder | |
| JP2021062994A (en) | Thermal expansion suppressing filler, method for producing the same and composite material comprising the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220207 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221118 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230102 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7215334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |