[go: up one dir, main page]

JP7342448B2 - Particle detection method - Google Patents

Particle detection method Download PDF

Info

Publication number
JP7342448B2
JP7342448B2 JP2019115486A JP2019115486A JP7342448B2 JP 7342448 B2 JP7342448 B2 JP 7342448B2 JP 2019115486 A JP2019115486 A JP 2019115486A JP 2019115486 A JP2019115486 A JP 2019115486A JP 7342448 B2 JP7342448 B2 JP 7342448B2
Authority
JP
Japan
Prior art keywords
particle
particles
channel
aperture
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019115486A
Other languages
Japanese (ja)
Other versions
JP2020056778A (en
Inventor
和樹 飯嶋
琴浩 古川
俊薫 豊嶋
晃治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2020056778A publication Critical patent/JP2020056778A/en
Application granted granted Critical
Publication of JP7342448B2 publication Critical patent/JP7342448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、粒子検出方法に関する。 The present invention relates to a particle detection method.

高分子ミセルやリポソームといったナノ粒子を用いた医薬品の開発が長年進められており、特にリポソームに関しては実際に医薬品として世界で広く用いられているものもある。これらナノ粒子を用いた医薬品による治療はDrug Delivery System(以下、DDS)と呼ばれ、Enhanced Permeability and Retention効果による患部への効率的な薬剤の送達により副作用を低減した治療が可能になるとして注目を浴びている。一方で、ナノ粒子を用いた医薬品であるため、一般的な低分子医薬品と比べて粒子の凝集性や会合、融合を考慮した品質管理が必要となる。 The development of pharmaceuticals using nanoparticles such as polymeric micelles and liposomes has been progressing for many years, and some liposomes in particular are actually widely used as pharmaceuticals around the world. Pharmaceutical treatments using these nanoparticles are called drug delivery systems (hereinafter referred to as DDS), and are attracting attention as they enable treatments with reduced side effects by efficiently delivering drugs to the affected area through enhanced permeability and retention effects. Bathing. On the other hand, since it is a drug that uses nanoparticles, quality control that takes into account particle aggregation, association, and fusion is required compared to general low-molecule drugs.

ナノ粒子医薬品の品質管理項目の一つである粒子径測定は一般に動的光散乱(以下、DLS)もしくはレーザー回折散乱法により行われるが、粒子群から得られる散乱光を検出し、粒子径分布を計算する手法であるため、マイノリティーな粒子群の検出には向いていない。 Particle size measurement, which is one of the quality control items for nanoparticle medicines, is generally performed by dynamic light scattering (hereinafter referred to as DLS) or laser diffraction scattering, which detects scattered light obtained from a group of particles and determines the particle size distribution. Since this method calculates , it is not suitable for detecting minority particle groups.

マイノリティーな粒子群の検出には、粒子を個々に1つずつ測定する技術の方が正確な測定が可能と考えられ、例えば各粒子のブラウン運動を観察するナノトラッキングアナリシスや、個々の粒子の質量を測定する共振式質量測定法、電気的検出を用いるコールター法(電気的検知帯法;以下、ESZ)(例えば、非特許文献1参照)が知られている。これらの手法は、各検出手段から得られる情報(シグナル)が、各粒子に対して1対1で対応しているため粒子個々の評価をすることが可能であり、数的に含まれる割合の少ない粒子でも正確に測定が可能となるが、測定できる粒子径範囲(ダイナミックレンジ)が比較的狭いという課題がある。 For detection of minority particle groups, techniques that measure each particle one by one are thought to be more accurate; for example, nanotracking analysis, which observes the Brownian motion of each particle, and the mass detection of individual particles. A resonant mass measurement method for measuring , and a Coulter method (electronic sensing zone method; hereinafter referred to as ESZ) using electrical detection are known (for example, see Non-Patent Document 1). In these methods, the information (signal) obtained from each detection means corresponds to each particle on a one-to-one basis, so it is possible to evaluate each particle individually, and it is possible to evaluate the proportion contained numerically. Although accurate measurement is possible even with a small number of particles, there is a problem that the measurable particle size range (dynamic range) is relatively narrow.

R.W.De Blois.et al、The Review of Scientific Instruments、Volume 41、Number 7、pp909-916(1970)R. W. De Blois. et al, The Review of Scientific Instruments, Volume 41, Number 7, pp909-916 (1970)

本発明の課題は、ナノ粒子医薬品中に含まれる広範な分布をもつ粒子を個々にかつ連続的に検出できる粒子検出方法を提供することにある。 An object of the present invention is to provide a particle detection method that can individually and continuously detect particles with a wide distribution contained in nanoparticle medicines.

本発明に係るナノ粒子医薬品中に含まれる粒子を検出する方法は、粒子をその粒子径に応じて流体の流れに対して垂直方向へ分離し、分離された粒子を2以上の流路に分断し、前記流路に設置された粒子検出部で前記粒子を検出することを特徴とする。 The method for detecting particles contained in nanoparticle medicines according to the present invention involves separating particles in a direction perpendicular to a fluid flow according to their particle diameter, and dividing the separated particles into two or more flow channels. The method is characterized in that the particles are detected by a particle detection section installed in the flow path.

また、本発明に係るナノ粒子医薬品中に含まれる粒子を検出する方法の一態様においては、前記流路に設置されたアパーチャを挟んで配置された電極を含む電気検出器で前記粒子を検出する。 Further, in one aspect of the method for detecting particles contained in a nanoparticle drug according to the present invention, the particles are detected with an electric detector including electrodes placed across an aperture installed in the flow path. .

また、本発明に係るナノ粒子医薬品中に含まれる粒子を検出する方法の一態様においては、前記電気検出器の検出できる粒子径範囲が設置している流路によって異なる。 Furthermore, in one aspect of the method for detecting particles contained in nanoparticle pharmaceuticals according to the present invention, the particle diameter range that can be detected by the electric detector varies depending on the installed flow path.

また、本発明に係るナノ粒子医薬品中に含まれる粒子を検出する方法の一態様においては、前記電気検出器の検出できる粒子径範囲の一部が重複している。 Furthermore, in one embodiment of the method for detecting particles contained in nanoparticle pharmaceuticals according to the present invention, part of the particle size ranges that can be detected by the electric detector overlap.

また、本発明に係るナノ粒子医薬品中に含まれる粒子を検出する方法の一態様においては、前記流路の本数、分岐部の形状、幅、高さ、長さのうち少なくとも1つのパラメーターが調整され、ある一定以上の大きさの粒子が混入しない流路構造とすることで、粒子を2以上の流路に分断する。 Furthermore, in one aspect of the method for detecting particles contained in nanoparticle pharmaceuticals according to the present invention, at least one parameter among the number of channels, the shape, width, height, and length of the branched portion is adjusted. The particles are separated into two or more channels by creating a channel structure that prevents particles of a certain size or more from being mixed in.

また、本発明に係るナノ粒子医薬品中に含まれる粒子を検出する方法の一態様においては、ピンチドフローフラクショネーションの原理を利用して、粒子を分離する。 Furthermore, in one embodiment of the method for detecting particles contained in nanoparticle pharmaceuticals according to the present invention, particles are separated using the principle of pinched flow fractionation.

さらに、本発明は上述した方法でナノ粒子医薬品中の粒子、凝集体、会合体、融合体のうち少なくとも1つを検出し、粒子径分布、平均粒径、モード径、中間粒子径、各粒子の体積割合、濃度、個数、積算濃度、積算個数のうち少なくとも1つのパラメーターまたは前記パラメーターの経時変化を測定する方法を含んでいる。 Furthermore, the present invention detects at least one of particles, aggregates, aggregates, and fusions in nanoparticle pharmaceuticals by the method described above, and detects particle size distribution, average particle size, mode size, intermediate particle size, and The method includes a method of measuring at least one parameter among the volume ratio, concentration, number, cumulative concentration, and cumulative number of the sample, or a change in the parameter over time.

本発明により、ナノ粒子医薬品中で広範な粒子径分布を持って存在する粒子やマイノリティーな粒子、粒子群を精度よく連続的に検出する事ができ、バッチ処理の分離技術と比較して、大量な粒子サンプルの測定が可能になる。 The present invention makes it possible to continuously detect particles with a wide range of particle size distribution, minority particles, and particle groups in nanoparticle medicines with high precision. This makes it possible to measure large particle samples.

図1(a)(b)は、本発明の一実施形態を示す図であり、粒子分離流路110へ水力学的ろ過(Hydrodynamic Filtration:HDF)を応用したものを示す。図1(a)は、マイクロチップ10の上面図であり、図1(b)は図1(a)における領域190の拡大図である。FIGS. 1A and 1B are diagrams showing an embodiment of the present invention, in which hydrodynamic filtration (HDF) is applied to a particle separation channel 110. FIG. 1(a) is a top view of the microchip 10, and FIG. 1(b) is an enlarged view of the region 190 in FIG. 1(a). 図2(a)は、本発明の一実施形態を示す図であり、粒子検出部103を直列に2つ配置した場合の態様を示す。図2(b)は、2つの粒子検出部103を1つの粒子が連続的に通過した場合の、測定している電流値の経時変化の様子を模式的に示した図で、上側のグラフが上流側の粒子検出部103により測定されたもので、下側のグラフが下流側の粒子検出部103により測定されたことを示す。ここで、便宜上、2つの粒子検出部103のグラフの縦軸の位置をずらしたが、実際は粒子が通過しないときのベースラインとなる電流値はほぼ同一である。FIG. 2(a) is a diagram showing an embodiment of the present invention, and shows a mode in which two particle detection units 103 are arranged in series. FIG. 2(b) is a diagram schematically showing how the measured current value changes over time when one particle passes through the two particle detection units 103 continuously, and the upper graph is The graph on the lower side indicates the measurement by the particle detection unit 103 on the downstream side. Here, for convenience, the positions of the vertical axes of the graphs of the two particle detection units 103 are shifted, but in reality, the current values serving as the baseline when no particles pass are almost the same. 図3(a)は、本発明の一実施形態を示す図であり、アパーチャを直列に2つ配置した場合であり、図2とは異なり、電極を1対のみ用いた場合の態様を示す。図3(b)は、2つのアパーチャを粒子が連続的に通過した場合の測定している電流値の経時変化の様子を模式的に示した図である。FIG. 3(a) is a diagram showing an embodiment of the present invention, in which two apertures are arranged in series, and unlike FIG. 2, it shows a mode in which only one pair of electrodes is used. FIG. 3(b) is a diagram schematically showing how the measured current value changes over time when particles successively pass through two apertures. 図4(a)は、本発明の一実施形態を示す図であり、1つの粒子回収流路102に対して複数の粒子検出部103が並列に設置された場合の態様を示す。図4(b)は、図4(a)の等価回路を示す。FIG. 4(a) is a diagram showing an embodiment of the present invention, and shows a mode in which a plurality of particle detection sections 103 are installed in parallel for one particle collection channel 102. FIG. 4(b) shows an equivalent circuit of FIG. 4(a). 図5(a)は、本発明の一実施形態を示す図であり、1つの粒子回収流路102に対して複数の粒子検出部103が並列に設置された場合の態様を示し、複数の粒子検出部103が、流体的に下流側の電極から電圧を印加することで、複数の粒子検出部103間での電気的干渉を低減する態様を示す。図5(b)は、図5(a)の等価回路を示し、複数の粒子回収流路102が独立していることを示す。FIG. 5(a) is a diagram showing one embodiment of the present invention, and shows a mode in which a plurality of particle detection units 103 are installed in parallel to one particle collection channel 102, and a plurality of particle A mode is shown in which the detection unit 103 reduces electrical interference between a plurality of particle detection units 103 by applying a voltage from an electrode on the fluidically downstream side. FIG. 5(b) shows an equivalent circuit of FIG. 5(a), and shows that the plurality of particle recovery channels 102 are independent. 図6は、本発明の一実施形態を示す図であり、1つの粒子回収流路102に対して複数のアパーチャが並列に設置され、より低コストな装置として利用できる態様を示す。FIG. 6 is a diagram showing an embodiment of the present invention, in which a plurality of apertures are installed in parallel for one particle collection channel 102, and shows an aspect that can be used as a lower cost device. 図7は、中継流路60と電極挿入口59を用いた、より安価に粒子検出部103を作製するための態様を示している。FIG. 7 shows a mode for manufacturing the particle detection unit 103 at a lower cost using the relay flow path 60 and the electrode insertion port 59. 図8(a)~(c)は、本発明の一実施形態を示す図であり、粒子分離流路110でHDFを応用した態様を示す。図8(a)は、粒子回収流路102が2つのものを示し、図8(b)は、粒子回収流路102が3つのものを示し、図8(c)は、粒子回収流路102が3つで粒子分離流路110に分岐流路105をもつものを示す。FIGS. 8(a) to 8(c) are diagrams showing one embodiment of the present invention, and show an aspect in which HDF is applied in the particle separation channel 110. 8(a) shows a case with two particle collection channels 102, FIG. 8(b) shows a case with three particle recovery channels 102, and FIG. 8(c) shows a case with two particle recovery channels 102. is three and the particle separation channel 110 has a branch channel 105. 図9(a)は、図8(b)の分岐部110Aでの流体の流れを示す図であり、図9(b)は、図9(a)の直線流路部分の拡大図を示す。FIG. 9(a) is a diagram showing the flow of fluid at the branch portion 110A in FIG. 8(b), and FIG. 9(b) is an enlarged view of the straight flow path portion in FIG. 9(a). 図10(a)は、層流条件下における直線流路内での粒子の流れを示す図であり、図10(b)は、粒子拡散流路110Bでの粒子の流れの軌道を示す。FIG. 10(a) is a diagram showing the flow of particles in a straight channel under laminar flow conditions, and FIG. 10(b) shows the trajectory of the particle flow in the particle diffusion channel 110B. 図11(a)~(c)は、本発明の一実施形態を示す図であり、粒子分離流路110でPFFを応用した態様を示す。図11(a)は、粒子回収流路102が2つのものを示し、図11(b)は、粒子回収流路102が3つのものを示し、図11(c)は、図11(a)(b)の領域21の拡大図を示す。FIGS. 11(a) to 11(c) are diagrams showing one embodiment of the present invention, and show an aspect in which PFF is applied in the particle separation channel 110. 11(a) shows a case with two particle recovery channels 102, FIG. 11(b) shows a case with three particle recovery channels 102, and FIG. 11(c) shows a case with two particle recovery channels 102. An enlarged view of region 21 in (b) is shown. 図12(a)は、本発明の一実施形態を示す図であり、粒子分離流路110で非対称PFFを応用した態様を示す。図12(b)は、図12(a)の領域21の拡大図を示す。FIG. 12(a) is a diagram showing an embodiment of the present invention, and shows an aspect in which an asymmetric PFF is applied in the particle separation channel 110. FIG. 12(b) shows an enlarged view of region 21 in FIG. 12(a). 図13(a)は、本発明の一実施形態を示す図であり、粒子分離流路110で非対称PFFを応用し、拡大流路17の狭窄流路壁面16b側の壁面が徐々に拡大する場合の態様を示す。図13(b)は、図13(a)の領域21の拡大図を示す。FIG. 13(a) is a diagram showing an embodiment of the present invention, in which an asymmetric PFF is applied in the particle separation channel 110 and the wall surface on the narrow channel wall surface 16b side of the expanding channel 17 gradually expands. The mode is shown below. FIG. 13(b) shows an enlarged view of region 21 in FIG. 13(a). 図14は、本発明の一実施形態を示す図であり、2つのアパーチャで粒子検出部103が構成され、それぞれのアパーチャの下流がアウトレットへ接続されており、各アウトレットが電極挿入口59としても機能するようにした態様を示す。FIG. 14 is a diagram showing an embodiment of the present invention, in which a particle detection unit 103 is configured with two apertures, the downstream side of each aperture is connected to an outlet, and each outlet also serves as an electrode insertion port 59. This shows how it works. 図15(a)は、実施例1で用いたマイクロチップ10の概要図を示す。図15(b)は、図15(a)の領域21の拡大図を示す。FIG. 15(a) shows a schematic diagram of the microchip 10 used in Example 1. FIG. 15(b) shows an enlarged view of region 21 in FIG. 15(a). 図16は、実施例1における測定結果から作成された、処理済サンプルの粒子径分布を示す。FIG. 16 shows the particle size distribution of the treated sample created from the measurement results in Example 1. 図17は、実施例1における測定結果から作成された、未処理サンプルの粒子径分布を示す。FIG. 17 shows the particle size distribution of the untreated sample created from the measurement results in Example 1. 図18は、比較例1における測定結果から作成された、処理済サンプルの粒子径分布を示す。FIG. 18 shows the particle size distribution of the treated sample created from the measurement results in Comparative Example 1. 図19は、比較例1における測定結果から作成された、未処理サンプルの粒子径分布を示す。FIG. 19 shows the particle size distribution of the untreated sample created from the measurement results in Comparative Example 1. 図20は、実施例2における測定結果から作成された、経時変化検証用の加熱処理済抗体医薬品の粒子径分布を示し、図20(a)は処理後0分、図20(b)は処理後10分、図20(c)は処理後120分を示す。FIG. 20 shows the particle size distribution of the heat-treated antibody drug for verifying changes over time, created from the measurement results in Example 2, with FIG. 20(a) showing 0 minutes after treatment, and FIG. 20(b) showing treatment. 10 minutes after treatment, and FIG. 20(c) shows 120 minutes after treatment. 図21は、比較例2における測定結果から作成された、経時変化検証用の加熱処理済抗体医薬品の粒子径分布を示し、図21(a)は処理後0分、図21(b)は処理後10分、図21(c)は処理後120分を示す。FIG. 21 shows the particle size distribution of the heat-treated antibody drug for verifying changes over time, created from the measurement results in Comparative Example 2, with FIG. 21(a) showing 0 minutes after treatment, and FIG. 21(b) showing treatment. 10 minutes after treatment, and FIG. 21(c) shows 120 minutes after treatment. 図22は、実施例3における測定結果から作成された、抗体凝集体量比較用の加熱処理済抗体医薬品の粒子径分布を示し、図22(a)は抗体医薬品A、図22(b)は抗体医薬品B、図22(c)は抗体医薬品Cの結果を示す。Figure 22 shows the particle size distribution of heat-treated antibody pharmaceuticals for comparison of antibody aggregate amounts created from the measurement results in Example 3, where Figure 22(a) is antibody pharmaceutical A and Figure 22(b) is Antibody drug B, FIG. 22(c) shows the results for antibody drug C. 図23は、比較例3における測定結果から作成された、抗体凝集体量比較用の加熱処理済抗体医薬品の粒子径分布を示し、図23(a)は抗体医薬品A、図23(b)は抗体医薬品B、図23(c)は抗体医薬品Cの結果を示す。Figure 23 shows the particle size distribution of heat-treated antibody pharmaceuticals for comparing the amount of antibody aggregates created from the measurement results in Comparative Example 3, where Figure 23(a) is antibody pharmaceutical A and Figure 23(b) is Antibody drug B, FIG. 23(c) shows the results for antibody drug C. 図24は、参考例1における示差走査熱量計による抗体医薬品の熱安定性評価結果を示す。FIG. 24 shows the results of evaluating the thermal stability of the antibody drug using a differential scanning calorimeter in Reference Example 1. 図25(a)は、実施例4における測定結果から作成された、未処理リポソーム製剤の粒子径分布を示しており、図25(b)は実施例4における保管リポソーム製剤の粒子径分布を示す。FIG. 25(a) shows the particle size distribution of the untreated liposome preparation created from the measurement results in Example 4, and FIG. 25(b) shows the particle size distribution of the stored liposome preparation in Example 4. . 図26(a)は、比較例4における測定結果から作成された、未処理リポソーム製剤の粒子径分布を示しており、図26(b)は比較例4における保管リポソーム製剤の粒子径分布を示す。FIG. 26(a) shows the particle size distribution of the untreated liposome preparation created from the measurement results in Comparative Example 4, and FIG. 26(b) shows the particle size distribution of the stored liposome preparation in Comparative Example 4. .

本発明は、ナノ粒子医薬品中に含まれる粒子を検出する方法であって、粒子をその粒子径に応じて流体の流れに対して垂直方向へ分離し、分離された粒子を2以上の流路に分断し、前記流路に設置された粒子検出部で前記粒子を検出することを特徴とする。以下、本発明の一実施形態について説明する。 The present invention is a method for detecting particles contained in nanoparticle medicines, in which particles are separated in a direction perpendicular to a fluid flow according to their particle diameters, and the separated particles are passed through two or more flow channels. The flow path is divided into two parts, and the particles are detected by a particle detection unit installed in the flow path. An embodiment of the present invention will be described below.

ナノ粒子医薬品(以下、サンプルという場合がある)とは、流体中に、少なくとも部分的にナノオーダーの幅及び/または高さをもつ物質を含む流体を指し、例えば、高分子、ミセル、リポソーム、抗体、抗原、核酸、ペプチド、タンパク質、ウイルス、ウイルス様粒子、細胞または前記物質2以上で複合体を形成したものを含む流体を指し、最終的に医薬品として使用されることを意図したもの、または医薬品の候補となりうる前記物質を含む流体を指す。ナノ粒子医薬品中には前述した粒子の凝集体、会合体、融合体などが含まれている場合があり、粒径は1nm~100μmの範囲で分布している。 A nanoparticle drug (hereinafter sometimes referred to as a sample) refers to a fluid containing a substance at least partially having a nano-order width and/or height, such as a polymer, micelle, liposome, etc. Refers to fluids containing antibodies, antigens, nucleic acids, peptides, proteins, viruses, virus-like particles, cells, or complexes formed with two or more of the above substances, and which are ultimately intended to be used as medicines, or Refers to a fluid containing the above-mentioned substances that can be candidates for pharmaceutical products. Nanoparticle medicines may contain aggregates, associations, fusions, etc. of the aforementioned particles, and the particle size is distributed in the range of 1 nm to 100 μm.

また、「垂直方向へ分離する」とは、流体の流れに対して厳密に垂直である必要はなく、流体の流れに対して凡そ垂直方向に粒子が分離すればよいものとする。 Furthermore, "separating in the vertical direction" does not necessarily have to be strictly perpendicular to the flow of the fluid, but it is sufficient that the particles are separated in a direction approximately perpendicular to the flow of the fluid.

粒子検出装置の装置構成の一実施例を示す模式図である図1をもとに本発明の実施形態についての詳細を説明する。マイクロチップ10における流路の断面は、流路構造の作製上の容易さから、矩形であることが望ましいが、円形や楕円形、多角形などの断面であってもよく、また部分的に矩形以外の形状であってもよい。また、流路高さは作製の容易さから均一であることが好ましいが、部分的に深さが異なっていてもよい。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to FIG. 1, which is a schematic diagram showing an example of the device configuration of a particle detection device. The cross section of the channel in the microchip 10 is preferably rectangular from the viewpoint of ease of manufacturing the channel structure, but it may also be a circular, oval, or polygonal cross section, or it may be partially rectangular. It may be of any other shape. Further, although it is preferable that the channel height is uniform for ease of fabrication, the depth may be partially different.

サンプルは、インレット14から導入され、送液部によって流路下流へと送液され、粒子導入流路101、粒子分離流路110、粒子回収流路102aまたは102b、それぞれ対応する粒子検出部103aまたは103bを通過して、アウトレット104aまたは104bへ流出する。粒子分離流路110において、粒子径に応じて粒子が流体の流れに対して垂直方向へ分離され、分離された粒子が、粒子回収流路102aまたは102bへと流れる。粒子回収流路102aまたは102bを経て到達した粒子検出部103a、103bにおいて、電気的検出が行われる。この時、粒子検出部103a、103bの内部は電解質を含む溶液で満たされ、電極54a、54bにそれぞれ接続された導線55を介して電気測定器56、電源57に接続されている。粒子検出時は、電源57により任意の値の電流が流れており、アパーチャ53を介した閉回路ができている(図2参照)。さらに電気測定器56は解析部61に接続されており、電気測定器56から得られた検出シグナルを解析部61で計算し、粒子径分布を作成する。 The sample is introduced from the inlet 14 and sent to the downstream side of the flow path by the liquid sending section, and is passed through the particle introduction channel 101, the particle separation channel 110, the particle recovery channel 102a or 102b, and the corresponding particle detection section 103a or 102b, respectively. 103b and flows out to outlet 104a or 104b. In the particle separation channel 110, particles are separated in a direction perpendicular to the fluid flow according to the particle diameter, and the separated particles flow to the particle recovery channel 102a or 102b. Electrical detection is performed in the particle detection units 103a and 103b that have arrived via the particle recovery channel 102a or 102b. At this time, the insides of the particle detection units 103a and 103b are filled with a solution containing an electrolyte, and are connected to an electric measuring device 56 and a power source 57 via conductive wires 55 connected to electrodes 54a and 54b, respectively. When detecting particles, a current of an arbitrary value is flowing from the power source 57, and a closed circuit is formed through the aperture 53 (see FIG. 2). Furthermore, the electric measuring device 56 is connected to an analysis section 61, and the detection signal obtained from the electric measuring device 56 is calculated by the analysis section 61 to create a particle size distribution.

インレット14は、サンプルを保持できる構造であればよく、凹型構造であることが好ましい。また材質としては、溶出物が少ない金属やガラス、セラミクスを用いてもよいが、安価に製造するために高分子材料で形成されることが好ましい。粒子導入流路101は、インレット14と、粒子分離流路110との間に形成される。粒子導入流路101は、粒子分離流路110における粒子の分離を補助するために配置されるが、マイクロチップ10を小型化するために省いてもよい。 The inlet 14 may have any structure as long as it can hold a sample, and preferably has a concave structure. Further, as the material, metal, glass, or ceramics, which have a small amount of eluate, may be used, but it is preferable to use a polymeric material in order to manufacture it at low cost. Particle introduction channel 101 is formed between inlet 14 and particle separation channel 110. Although the particle introduction channel 101 is arranged to assist the separation of particles in the particle separation channel 110, it may be omitted in order to downsize the microchip 10.

送液部は、シリンジポンプやペリスタポンプ、圧送ポンプ等の圧力勾配により送液させる方法を用いてもよいし、マイクロチップ10の流路断面における不均一な速度分布を抑制するために電気浸透流ポンプを用いてもよい。この場合、ポンプから接続された配管はインレット14へ直接接続することでインレット14内に保持されているサンプルへ圧力を印加することで送液する。また、アウトレットへ配管を介してポンプを接続し、陰圧をかけることによりマイクロチップ10の流路内の流体を吸引させることで送液してもよい。さらに、インレット14の液面を、アウトレット104aまたはアウトレット104bの液面よりも高くすることで、液面差により送液してもよく、この場合送液部は不要となる。より定量的な測定をするためには圧力勾配により粒子を通過させた方が好ましく、脈動がより少ない圧送ポンプで送液する態様が最も好ましい。 The liquid feeding section may use a method of feeding liquid using a pressure gradient such as a syringe pump, peristaltic pump, or pressure pump, or an electroosmotic flow pump may be used to suppress uneven velocity distribution in the cross section of the flow path of the microchip 10. may also be used. In this case, the piping connected from the pump is directly connected to the inlet 14 to apply pressure to the sample held in the inlet 14 to feed the sample. Alternatively, a pump may be connected to the outlet via piping, and the fluid in the flow path of the microchip 10 may be sucked by applying negative pressure to send the fluid. Furthermore, by making the liquid level in the inlet 14 higher than the liquid level in the outlet 104a or the outlet 104b, liquid may be fed based on the liquid level difference, and in this case, a liquid feeding part is not required. In order to perform more quantitative measurements, it is preferable to allow particles to pass through using a pressure gradient, and it is most preferable to use a pressure pump that causes less pulsation.

送液部の流量は、流路の断面積やアパーチャの断面積により任意の値に設定することが好ましく、一例として、0.1μL/hourから1mL/hourの間に設定することが好ましい。 The flow rate of the liquid feeding section is preferably set to an arbitrary value depending on the cross-sectional area of the flow path and the cross-sectional area of the aperture, and is preferably set between 0.1 μL/hour and 1 mL/hour, as an example.

粒子回収流路102は、測定可能粒子径範囲(ダイナミックレンジ)を拡げる観点で2以上設ける。ここで、粒子検出部103は粒子回収流路102の内部または下流に設けられており、粒子回収流路102へ流入してきた粒子を検出するために用いられる。1つの粒子回収流路102に対して少なくとも1つの粒子検出部103が設けられている必要があり、2以上の粒子検出部103が設けられていてもよい(図2~6)。また、測定可能粒子径範囲を外れる粒子を回収する流路をさらに設けることもできる。1つの粒子回収流路102に対して2以上の粒子検出部103が設けられた態様においては、前記2以上の粒子検出部103は直列に配置されてもよい(図2、3)。例えば2つの粒子検出部103が直列に配置された場合、2つの粒子検出部103を通過した同一の粒子から生成されたシグナルの間隔から、流路内の粒子の通過速度を算出することができ、粒子の通過速度は回収流路102の流量に一般に比例するため、回収流路内の流体の流量を見積もることが可能となる。この時、図2に示す通り電極に印加する電圧は、上流側のアパーチャ53’の上流側の電極と、下流側のアパーチャ53’’の下流側の電極から印加する態様が好ましい。上流側のアパーチャ53’の下流側の電極54b’または下流側のアパーチャ53’’の上流側の電極54a’’から電圧を印加した場合、前記2つの電極間で電圧降下が生じ、一方のアパーチャの電流値変化が、他方のアパーチャの電流値へと影響を及ぼすため、それらの影響を考慮しながら測定する必要がある。従って、2つまたは2つ以上のアパーチャを含む粒子検出部103を用いる場合、図3に示す通り上流側のアパーチャ53’の上流側の電極54a’と、下流側のアパーチャ53’’の下流側の電極54b’’のみを用いて測定してもよい。なお、図7に示すように、粒子検出流路の上流と下流それぞれへ、中継流路60を介して流体的かつ電気的にアパーチャと接続している電極挿入口59を設け、ここへ電極54を浸漬させることでESZによる粒子検出を行ってもよい。 Two or more particle recovery channels 102 are provided in order to expand the measurable particle size range (dynamic range). Here, the particle detection unit 103 is provided inside or downstream of the particle recovery channel 102 and is used to detect particles flowing into the particle recovery channel 102. At least one particle detection section 103 must be provided for one particle collection channel 102, and two or more particle detection sections 103 may be provided (FIGS. 2 to 6). Furthermore, a flow path for collecting particles outside the measurable particle size range can be further provided. In an embodiment in which two or more particle detection units 103 are provided for one particle collection channel 102, the two or more particle detection units 103 may be arranged in series (FIGS. 2 and 3). For example, when two particle detection units 103 are arranged in series, the passage speed of particles in the flow path can be calculated from the interval between signals generated from the same particles that have passed through the two particle detection units 103. Since the particle passage velocity is generally proportional to the flow rate in the recovery channel 102, it is possible to estimate the flow rate of the fluid in the recovery channel. At this time, as shown in FIG. 2, the voltage applied to the electrodes is preferably applied from an electrode on the upstream side of the aperture 53' on the upstream side and an electrode on the downstream side of the aperture 53'' on the downstream side. When a voltage is applied from the downstream electrode 54b' of the upstream aperture 53' or the upstream electrode 54a'' of the downstream aperture 53'', a voltage drop occurs between the two electrodes, and one aperture Since a change in the current value of one aperture affects the current value of the other aperture, it is necessary to take measurements while taking these influences into account. Therefore, when using the particle detection unit 103 including two or more apertures, as shown in FIG. The measurement may be performed using only the electrode 54b''. As shown in FIG. 7, electrode insertion ports 59 are provided upstream and downstream of the particle detection channel, respectively, and are fluidly and electrically connected to the aperture via the relay channel 60, into which the electrodes 54 are inserted. Particle detection may be performed by ESZ by immersing the sample.

また、1つの粒子回収流路102に対して2つ以上の粒子検出部103が設けられた態様において、前記2以上の粒子検出部103は並列に配置されてもよい(図4~6)。本態様により粒子検出部103の並列化された数に比例して処理量が増加するという優れた効果が得られる。この時、電気的に検出するための電極54は、各アパーチャを挟むように配置され、粒子検出部103の数の2倍あれば測定は可能である。一方で、図6に示したように、各アパーチャに対して上流側に1本、下流側に粒子検出部103の数の分だけ電極を配置した態様でも測定は可能であり、電極の数を減らすことによる低コスト化という観点からは、こちらの態様の方が好ましい。ここで、粒子検出部103を並列化し、各アパーチャへ同時に電圧を印加した場合、各アパーチャを挟むように配置される複数の電極対へ電圧を同時に印加すると、図4(a)に示すように、等価回路は複雑なものとなり、あるアパーチャの電流値変化が、他のアパーチャの電流値へと影響を及ぼすため、それら影響を考慮する必要がある。一方で、電圧を各アパーチャで個々に印加し、それぞれ個別に検出したい場合、測定しないアパーチャをグラウンド、シャーシへ接続せず、開回路の状態にすることで実施可能であり、前述の他のアパーチャへの影響はなくなる。この時、開回路の状態にするために、電極54と電源57の間にスイッチング回路を用いてもよく、リレー方式やフォトモス方式によるもので開回路の状態にしてもよい。粒子検出部103は、測定時に電磁ノイズが極力影響しない測定系を構築する方が好ましく、この点でスイッチング回路には、電磁石を用いるリレー方式よりも、フォトモスセンサーのような光電流を用いた方式の方が好ましい。但し、図5の通り、アパーチャの下流側の電極から上流側へ向けて電圧を印加した場合、あるアパーチャの電流値変化が、他のアパーチャの電流値へと影響を及ぼさないため、本態様を用いてもよい。 Further, in an embodiment in which two or more particle detection units 103 are provided for one particle collection channel 102, the two or more particle detection units 103 may be arranged in parallel (FIGS. 4 to 6). This aspect provides an excellent effect in that the amount of processing increases in proportion to the number of parallel particle detection units 103. At this time, electrodes 54 for electrical detection are arranged to sandwich each aperture, and measurement is possible if the number is twice the number of particle detection units 103. On the other hand, as shown in FIG. 6, it is also possible to perform measurement by arranging one electrode on the upstream side of each aperture and the same number of electrodes as the number of particle detection units 103 on the downstream side. This embodiment is preferable from the viewpoint of cost reduction through reduction. Here, if the particle detection units 103 are parallelized and a voltage is applied to each aperture at the same time, if voltage is simultaneously applied to a plurality of electrode pairs arranged to sandwich each aperture, as shown in FIG. 4(a), , the equivalent circuit becomes complex, and changes in the current value of one aperture affect the current values of other apertures, so it is necessary to take these effects into consideration. On the other hand, if you want to apply voltage to each aperture individually and detect each aperture individually, this can be done by leaving the aperture that is not being measured in an open circuit state without connecting it to ground or the chassis. There will be no impact on At this time, to create an open circuit state, a switching circuit may be used between the electrode 54 and the power source 57, or a relay system or a photoMOS system may be used to create an open circuit state. It is preferable for the particle detection unit 103 to construct a measurement system in which electromagnetic noise does not affect the measurement as much as possible.In this respect, it is preferable to construct a measurement system in which electromagnetic noise is not affected as much as possible during measurement. method is preferable. However, as shown in FIG. 5, when a voltage is applied from the electrode on the downstream side of the aperture toward the upstream side, a change in the current value of one aperture does not affect the current value of other apertures, so this embodiment is not applicable. May be used.

粒子検出部103は、アパーチャ53と電気検出器とを含む。アパーチャ53は、流路内に形成された流路直径よりも小さい穴を指し、粒子検出流路62とアパーチャ形成構造52により規定される。アパーチャの断面形状は、その製造工程によって種々の形状をとってもよく、エッチングやレーザー照射による加工では円、楕円の形状をとり、フォトリソグラフィーとソフトリソグラフィーによるポリジメチルシロキサン(以下、PDMS)等の高分子材料による成形の場合は矩形となる。アパーチャの断面積は、測定する粒子よりも大きければよいが、一般にESZで測定可能な粒子径範囲は、アパーチャ断面積の2~60%といわれているため、流入してくると想定される粒子の大きさに応じて設計する必要がある。また、図2、3及び14に示すように、2つのアパーチャで粒子検出部103が構成されてもよい。また、図4~6に示すように、複数の粒子検出部を備えることで複数のアパーチャを構成し、それぞれのアパーチャの下流がアウトレットへ接続されており、各アウトレットが電極挿入口59としても機能するようにした構成としてもよい。この場合、アパーチャの体積が凡そ同一であれば各アパーチャから得られるシグナルは凡そ同一となる。すなわち、各アパーチャ上流の回収流路へ流れてきた粒子全てを検出することが可能であり、濃度の定量的な測定という観点で好ましい態様といえる。ESZによる粒子検出の感度は、アパーチャと電極までの間の流路抵抗に比例して低下するため、得られたシグナルから粒子径を算出する場合は、このシグナル低下を加味する必要がある(式(1)参照)。この時、Lはアパーチャを形成する流路の長さ、deはアパーチャの等価直径、L’は中継流路60の長さ、de’は中継流路60の等価直径とした。また、式(1)によるシグナル低下の加味はその流路構造に応じて適宜行うことが好ましく、必ずしも式(1)と完全に合致した式でなくてもよい。 Particle detection section 103 includes an aperture 53 and an electric detector. Aperture 53 refers to a hole formed within the flow path that is smaller than the flow path diameter, and is defined by particle detection flow path 62 and aperture forming structure 52 . The cross-sectional shape of the aperture may take various shapes depending on the manufacturing process, and when processed by etching or laser irradiation, it takes a circular or elliptical shape, and when processed by photolithography and soft lithography, it takes the shape of a polymer such as polydimethylsiloxane (hereinafter referred to as PDMS). In the case of molding with material, it will be a rectangle. The cross-sectional area of the aperture only needs to be larger than the particles to be measured, but the particle diameter range that can be measured with ESZ is generally said to be 2 to 60% of the aperture cross-sectional area, so It is necessary to design according to the size of the Further, as shown in FIGS. 2, 3, and 14, the particle detection unit 103 may be configured with two apertures. Further, as shown in FIGS. 4 to 6, a plurality of apertures are formed by providing a plurality of particle detection sections, and the downstream end of each aperture is connected to an outlet, and each outlet also functions as an electrode insertion port 59. It is also possible to adopt a configuration in which this is done. In this case, if the volumes of the apertures are approximately the same, the signals obtained from each aperture will be approximately the same. That is, it is possible to detect all the particles that have flowed into the recovery channel upstream of each aperture, and this can be said to be a preferable embodiment from the viewpoint of quantitatively measuring the concentration. The sensitivity of particle detection by ESZ decreases in proportion to the flow path resistance between the aperture and the electrode, so when calculating the particle diameter from the obtained signal, it is necessary to take this signal decrease into account (formula (See (1)). At this time, L is the length of the flow path forming the aperture, de is the equivalent diameter of the aperture, L' is the length of the relay flow path 60, and de' is the equivalent diameter of the relay flow path 60. Further, it is preferable to take into account the signal reduction according to the formula (1) as appropriate depending on the channel structure, and the formula does not necessarily have to completely match the formula (1).

粒子検出部103の電気検出器は、電極54、電極54に導線55を介して接続される電気測定器56、及び電源57から主に構成される。2つの電極54は、アパーチャ53を挟んで配置される。電気測定器56は、電気的特性を検知するものであればよく、電流測定器、電圧測定器、抵抗測定器、電荷量測定器が挙げられ、ESZの測定においては電流測定器を用いるのが最も好ましい。また、IVアンプを用いて、電流電圧変換後に利得を上げて、微小な電流値変化を検出することが、より微小な粒子を検出する上で好ましい。また、アパーチャ内を通過した粒子を取りこぼしなく検出するために、電気測定器56のサンプリング時間間隔は、粒子がアパーチャを通過するのに要する時間よりも十分短いことが好ましく、1秒間に1万回以上サンプリングすることが好ましく、1秒間に2万回以上サンプリングすることがさらに好ましい。 The electric detector of the particle detection unit 103 mainly includes an electrode 54 , an electric measuring device 56 connected to the electrode 54 via a conductive wire 55 , and a power source 57 . The two electrodes 54 are arranged with the aperture 53 in between. The electrical measuring device 56 may be any device that detects electrical characteristics, and examples thereof include a current measuring device, a voltage measuring device, a resistance measuring device, and a charge amount measuring device.It is preferable to use a current measuring device in measuring ESZ. Most preferred. Furthermore, it is preferable to use an IV amplifier to increase the gain after current-voltage conversion and to detect minute changes in current value in order to detect even minuter particles. In addition, in order to detect all the particles that have passed through the aperture, the sampling time interval of the electric measuring device 56 is preferably sufficiently shorter than the time required for the particles to pass through the aperture, and is 10,000 times per second. It is preferable to sample at least 20,000 times per second, and it is more preferable to sample at least 20,000 times per second.

解析部61では、測定結果を演算するための演算装置と、測定結果又はそれに由来する演算結果を記録するための記録媒体とを具備することができる。あるいは、これらの演算装置及び記録媒体は、電気測定器56と一体化していてよいし、電気測定器56に対して接続可能な外部装置であってもよい。記録媒体に記録されるデータには、サンプリングした電流値と、粒子が通過した際に発生する電流値変化、またその電流値変化から算出される粒子径、粒子数、粒子濃度、検出時間又は測定開始時からの経過時間が含まれる。 The analysis unit 61 can include a calculation device for calculating measurement results and a recording medium for recording measurement results or calculation results derived therefrom. Alternatively, these computing devices and recording media may be integrated with the electrical measuring device 56 or may be external devices connectable to the electrical measuring device 56. The data recorded on the recording medium includes the sampled current value, the change in current value that occurs when the particles pass, and the particle diameter, number of particles, particle concentration, and detection time or measurement calculated from the change in current value. Contains the elapsed time since the start.

粒子分離流路110で用いる分離手法において水力学的ろ過(Hydrodynamic Filtration:HDF)を用いる場合、粒子分離流路110の上流部の末端が粒子導入流路101と接続しており、流体が流出する下流部の末端の分岐部110Aを介して粒子回収流路102へと接続していればよい(図8)。この時、分岐部110Aは、粒子を分離するために少なくとも2つ以上の粒子回収流路102へと流体的に接続されている必要があり、粒子回収流路を含む下流の流体力学的抵抗を考慮して、各流路やアパーチャの断面積、体積を設定する必要がある。例えば、図8(b)、図9の通り回収流路102を3つ設けた場合、各回収流路へ流れる流量をQa、Qb、Qcとすると、各流量の比は流路の幅w、高さh、長さLから算出され、具体的にはハーゲンポアズイユの式から直線流路内における流量は式(2)に従い計算される。 When hydrodynamic filtration (HDF) is used in the separation method used in the particle separation channel 110, the upstream end of the particle separation channel 110 is connected to the particle introduction channel 101, and the fluid flows out. It is sufficient if it is connected to the particle recovery channel 102 via the branch section 110A at the downstream end (FIG. 8). At this time, the branch part 110A needs to be fluidly connected to at least two or more particle recovery channels 102 in order to separate the particles, and the downstream fluid dynamic resistance including the particle recovery channels is reduced. It is necessary to take this into consideration when setting the cross-sectional area and volume of each flow path and aperture. For example, when three recovery channels 102 are provided as shown in FIG. 8(b) and FIG. 9, if the flow rates flowing to each recovery channel are Qa, Qb, and Qc, the ratio of each flow rate is the width w of the channel, It is calculated from the height h and the length L, and specifically, the flow rate in the straight flow path is calculated from the Hagen-Poiseuille equation according to equation (2).

また、拡大図9(b)の通り、層流条件下でのマイクロチップの流路内の速度分布は放物線となり、一般に式(3)中のu(r)で表される(この時、w0は円管の半径、rは円管中心からの距離、μは粘度、Lは円管の長さ、ΔPは圧力損失を示す。)。 Furthermore, as shown in the enlarged diagram 9(b), the velocity distribution in the flow path of the microchip under laminar flow conditions becomes a parabola, which is generally expressed as u(r) in equation (3) (at this time, w0 is the radius of the circular tube, r is the distance from the center of the circular tube, μ is the viscosity, L is the length of the circular tube, and ΔP is the pressure loss.)

流路壁面からの任意の距離w1とw2で区切られる放物線内の面積Sa、Sb、Scの比は、各回収流路へ流れる流量Qa、Qb、Qcの比と等しくなる。この時、流路内に存在する粒子のうち、その粒子の中心または重心位置がw1よりも流路壁面近くに存在している粒子が回収流路102aへ流入し、w2よりも流路壁面近くに存在している粒子が回収流路102bへ流入し、w1とw2の間に存在する粒子は、回収流路102cへ流入する。従って、回収流路102a、102bへ流れる最も大きい粒子の半径はそれぞれw1、w2となるため、アパーチャの断面形状が円形の場合は、アパーチャの半径をw1またはw2以上とする必要があり、アパーチャの断面形状が略円形や楕円形の場合は、略円形または楕円形の中心または重心を通る最小半径をw1またはw2以上とする必要がある。また、アパーチャの断面形状が矩形の場合、2組の対向する辺それぞれがw1またはw2の2倍以上の長さである必要がある。加えてアパーチャの断面形状が多角形の場合、その内接円の半径をw1またはw2以上とする必要がある。 The ratio of the areas Sa, Sb, and Sc within the parabola separated by arbitrary distances w1 and w2 from the channel wall surface is equal to the ratio of the flow rates Qa, Qb, and Qc flowing into each recovery channel. At this time, among the particles existing in the channel, particles whose center or center of gravity is closer to the channel wall surface than w1 flow into the recovery channel 102a, and are closer to the channel wall surface than w2. Particles existing between w1 and w2 flow into the recovery channel 102b, and particles existing between w1 and w2 flow into the recovery channel 102c. Therefore, the radii of the largest particles flowing into the recovery channels 102a and 102b are w1 and w2, respectively, so if the cross-sectional shape of the aperture is circular, the radius of the aperture must be greater than w1 or w2, and the radius of the aperture must be greater than or equal to w1 or w2. When the cross-sectional shape is approximately circular or elliptical, the minimum radius passing through the center or center of gravity of the approximately circular or elliptical shape must be greater than or equal to w1 or w2. Further, when the cross-sectional shape of the aperture is rectangular, each of the two sets of opposing sides needs to be at least twice as long as w1 or w2. In addition, if the aperture has a polygonal cross-sectional shape, the radius of its inscribed circle must be greater than or equal to w1 or w2.

ここで、粒子分離流路110の末端以外の箇所に分岐部110A(図8に図示されていない)を複数設け、1以上の分岐流路105を設ける態様をとってもよい(図8(c))。分岐流路105は一方の流路壁面側のみに設けてもよいし、流路壁面の両側へ設けてもよい。また1以上の分岐流路105は、下流の回収流路102において同時に合流してもよく、徐々に合流する態様をとってもよい。 Here, a mode may be adopted in which a plurality of branch portions 110A (not shown in FIG. 8) are provided at a location other than the end of the particle separation channel 110, and one or more branch channels 105 are provided (FIG. 8(c)). . The branch channel 105 may be provided only on one channel wall side, or may be provided on both sides of the channel wall surface. Further, one or more branch channels 105 may merge simultaneously in the downstream recovery channel 102, or may gradually merge.

さらに、粒子分離流路110の分岐部110A(図10に図示されていない)の流体的に上流側に、粒子拡散流路110Bを形成してもよい(図10(b))。粒子拡散流路110Bの流体的な上流側が粒子導入流路101へと接続されており、流体的な下流側が分岐部110Aへと接続している。また、粒子導入流路101を用いない態様の場合は、粒子拡散流路110Bの流体的な上流側が直接インレットへと接続される。 Furthermore, a particle diffusion channel 110B may be formed fluidly upstream of the branch portion 110A (not shown in FIG. 10) of the particle separation channel 110 (FIG. 10(b)). The fluid upstream side of the particle diffusion channel 110B is connected to the particle introduction channel 101, and the fluid downstream side is connected to the branch section 110A. Furthermore, in the case of an embodiment in which the particle introduction channel 101 is not used, the fluid upstream side of the particle diffusion channel 110B is directly connected to the inlet.

粒子拡散流路110Bは、流体的な上流側から下流側へ向けて、流路の幅または高さ、もしくは両方が拡大していく構造をとることが好ましい。これは、粒子回収流路が、粒子拡散流路110Bの流路幅方向に複数存在するのか、高さ方向に複数存在するのかで好ましい態様が異なるが、一般的なフォトリソグラフィーとソフトリソグラフィーによるマイクロチップの流路形成技術を用いる場合、その作製の容易さという点で、流路の幅が拡大していく構造が好ましい。 Preferably, the particle diffusion channel 110B has a structure in which the width or height, or both, of the channel increases from the fluid upstream side to the downstream side. The preferred embodiment of this differs depending on whether a plurality of particle collection channels exist in the width direction of the particle diffusion channel 110B or a plurality of particle recovery channels exist in the height direction. When using a chip channel forming technique, a structure in which the width of the channel increases is preferable in terms of ease of fabrication.

この粒子拡散流路110Bでは、単位時間当たりの粒子のブラウン運動、つまり拡散距離がその粒子径の平方根に反比例することを利用し、粒子拡散流路110Bを粒子が流れていく際に、その粒子径に応じて粒子が流路の拡大する方向へ拡散するため、拡大した流路壁面付近では、粒子径の小さい粒子の存在確率が高くなり、濃縮効果が得られる。ここで、図10(b)の流路壁面aと粒子拡散流路壁面aの接続する角度θa、流路壁面bと粒子拡散流路壁面bの接続する角度θbは、流路幅を拡大させる点で180°未満である必要がある。また、流路壁面a、流路壁面bで囲まれる流路内の流速1m/秒以上となるような高流量の条件では、拡大部分での渦流れの発生が懸念されるため、1m/秒未満となるような比較的低流量な条件で送液をするか、角度θa、θbを90°よりも大きくすることが好ましい。一方で、粒子拡散流路110Bへ粒子が流入した際、粒子はその重さに応じて粒子が流れてきた方向(流体力学的な下流方向で、分岐部110Aが存在する方向)に慣性力を受ける。つまり、粒子の密度が同じ場合、粒子径の大きい粒子ほど流路中央に近づく方向に慣性力を受けるため、より流路壁面では粒子径の小さい粒子の存在割合が高くなり、HDFにおける更なる分離能向上へと寄与する。また、角度θa、θbは非対称でも良く、一方の壁面を略直線に接続し、対向する他方の壁面のみを180°未満の角度で拡大させて接続してもよい。 In this particle diffusion channel 110B, by utilizing the Brownian motion of particles per unit time, that is, the fact that the diffusion distance is inversely proportional to the square root of the particle diameter, when the particles flow through the particle diffusion channel 110B, the particles Since particles diffuse in the direction in which the channel expands according to their diameter, the probability of existence of particles with small particle diameters increases near the enlarged channel wall surface, resulting in a concentration effect. Here, the angle θa at which channel wall surface a and particle diffusion channel wall surface a connect, and the angle θb at which channel wall surface b and particle diffusion channel wall surface b connect, in FIG. 10(b), expand the channel width. It must be less than 180° at the point. In addition, under high flow conditions where the flow velocity in the channel surrounded by channel wall surface a and channel wall surface B is 1 m/sec or more, there is a concern that vortex flow may occur in the enlarged part, so It is preferable to send the liquid under relatively low flow conditions such as less than 90 degrees, or to make the angles θa and θb larger than 90°. On the other hand, when particles flow into the particle diffusion channel 110B, the particles exert an inertial force in the direction in which the particles flow (hydrodynamic downstream direction, in which the branch section 110A exists) according to their weight. receive. In other words, when the density of particles is the same, particles with larger diameters receive inertial force in a direction closer to the center of the flow channel, so the proportion of particles with smaller diameters increases on the channel wall surface, resulting in further separation in HDF. Contribute to improving abilities. Further, the angles θa and θb may be asymmetrical, and one wall surface may be connected in a substantially straight line, and only the other opposing wall surface may be enlarged and connected at an angle of less than 180°.

粒子分離流路110で用いる分離手法においてHDFを用いた場合、図8における粒子検出部103a、103bで検出できる粒子径範囲は、それぞれ全く同一でもよいが、広範な粒子径範囲を持つサンプルを測定するために異なる粒子径範囲を測定できるよう設定することが好ましく、その一部がお互いに重複している方が、分離しきれなかった粒子を検出でき、よりロバストな結果を得られる点でさらに好ましい。図8(a)に示したように、粒子回収流路102が2本の場合、粒子検出部103a、103bで検出できる粒子径範囲は、粒子検出部103aを大きい粒子径範囲にし、粒子検出部103bを小さい粒子径範囲に設定してもよく、その逆でも問題はない。但しHDFの理論に基づき、アパーチャが粒子により閉塞されないよう設定する必要がある。 When HDF is used in the separation method used in the particle separation channel 110, the particle size ranges that can be detected by the particle detection units 103a and 103b in FIG. It is preferable to set the measurement range so that different particle size ranges can be measured, and it is even more effective if some of the ranges overlap with each other in that it is possible to detect particles that could not be separated and obtain more robust results. preferable. As shown in FIG. 8(a), when there are two particle collection channels 102, the particle size range that can be detected by the particle detection units 103a and 103b is as follows: 103b may be set in a small particle size range, and vice versa without any problem. However, based on HDF theory, it is necessary to set the aperture so that it is not blocked by particles.

粒子のカウント数からの濃度換算においては、各粒子回収流路102へ流れる流量は設定した送液部の流量と式(2)を用いて算出されるため、測定時間当たりの粒子のカウント数をこれで割ることにより、粒子濃度を算出する。 When converting the concentration from the number of particle counts, the flow rate flowing into each particle collection channel 102 is calculated using the set flow rate of the liquid feeding section and equation (2), so the number of particle counts per measurement time can be calculated using formula (2). By dividing by this, the particle concentration is calculated.

続いて、粒子分離流路110においてピンチドフローフラクショネーション(PFF)の原理を利用した流路を用いる場合の構成の一例を図11に示した。PFFの原理を利用した流路を用いる場合、粒子分離流路110は、分岐流路18a、分岐流路18b、狭窄流路16、及び拡大流路17を含む。粒子を含む流体100Pおよび粒子を含まない流体100Nを保持するインレット14a、14bはそれぞれ分岐流路18a、分岐流路18bと流体的に接続している。分岐流路18a、分岐流路18bはその下流で合流し、狭窄流路16の上流側へと流体的に接続される。その後、PFFの原理に基づいて狭窄流路16の下流と接続している拡大流路17で粒子が分離される。拡大流路17の流路幅は、所定の位置で一定となり、拡大流路17の下流で流体的に接続される回収流路102a、102bで粒子が回収され、回収流路の下流で接続される検出部103a、103bで粒子が検出される。ここで、回収流路は2本以上であれば何本設置してもよいが、流路の小型化、低コスト化の観点で5本以下にすることが好ましく、3本以下が最も好ましい。 Next, FIG. 11 shows an example of a configuration in which a flow path using the principle of pinched flow fractionation (PFF) is used in the particle separation flow path 110. When using a channel using the principle of PFF, the particle separation channel 110 includes a branch channel 18a, a branch channel 18b, a narrow channel 16, and an enlarged channel 17. Inlets 14a and 14b holding particle-containing fluid 100P and particle-free fluid 100N are fluidly connected to branch channel 18a and branch channel 18b, respectively. The branch flow path 18a and the branch flow path 18b merge downstream thereof and are fluidly connected to the upstream side of the narrowed flow path 16. Thereafter, the particles are separated in an expanded channel 17 connected to the downstream side of the constricted channel 16 based on the principle of PFF. The channel width of the enlarged channel 17 is constant at a predetermined position, and particles are collected in recovery channels 102a and 102b that are fluidly connected downstream of the enlarged channel 17, and are Particles are detected by the detection units 103a and 103b. Here, any number of recovery channels may be installed as long as they are two or more, but from the viewpoint of reducing the size and cost of the channel, it is preferable to use five or less, and most preferably three or less.

また、非対称PFFの原理に基づいて、拡大流路17を形成してもよい。この場合、図12及び13に示される通り、拡大流路17にドレイン流路22を設置してもよく、粒子の分離能を向上させる点では、この態様がより好ましい。ドレイン流路22は、アウトレット23と接続されており、流体が排出又は回収される。ドレイン流路へは50%以上の流体が流れるよう設計することが好ましく、70%以上の流体が流れるよう設計することがさらに好ましい。 Furthermore, the enlarged flow path 17 may be formed based on the principle of an asymmetric PFF. In this case, as shown in FIGS. 12 and 13, a drain channel 22 may be installed in the enlarged channel 17, and this embodiment is more preferable in terms of improving particle separation performance. The drain channel 22 is connected to the outlet 23, and fluid is discharged or collected. It is preferable to design so that 50% or more of the fluid flows into the drain channel, and more preferably to design so that 70% or more of the fluid flows into the drain channel.

さらに、狭窄流路16と拡大流路17が接続する構造は、図11(c)や図13(b)に示すように流路幅が徐々に拡大するように構成してもよい。流路幅が徐々に拡大する場合、拡大流路の壁面17bが直線を描くように拡大して、スロープ40を形成してもよいし、曲線を描くように拡大してもよい。拡大流路17の流路幅が、段状に拡大するか又は直線的に拡大する場合、狭窄流路の壁面16a、16bと、当該壁面に続く拡大流路17の壁面17a、17bとの間の角度24a、24bにより、拡大流路を規定することができる。例えば、段状に拡大する場合の角度24a、24bは90°である。拡大流路17の壁面が、徐々に直線的に拡大する場合、角度24a、24bは、90°~180°で表される。拡大領域の壁面の角度24a、24bは、独立に90°~180°の間の任意の角度をとることができ、一例として、120°、135°、150°、180°をとることができる。ただし、狭窄流路壁面16bに対する拡大流路壁面17bの角度24bは90°又はそれ未満の場合であっても、それが部分的な構造で、実質的には徐々に拡大していくような構造であれば、大半の流体は徐々にアウトレット23の方向へ流れることから問題ない。 Furthermore, the structure in which the narrowed channel 16 and the enlarged channel 17 are connected may be configured such that the channel width gradually increases as shown in FIG. 11(c) or FIG. 13(b). When the flow path width is gradually expanded, the wall surface 17b of the expanded flow path may be expanded to draw a straight line to form a slope 40, or may be expanded to draw a curve. When the channel width of the enlarged channel 17 expands stepwise or linearly, between the wall surfaces 16a, 16b of the narrowed channel and the wall surfaces 17a, 17b of the enlarged channel 17 following the wall surface. An enlarged flow path can be defined by the angles 24a and 24b. For example, the angles 24a and 24b in the case of stepwise expansion are 90°. When the wall surface of the enlarged channel 17 gradually expands linearly, the angles 24a and 24b are expressed as 90° to 180°. The angles 24a and 24b of the walls of the enlarged region can independently take any angle between 90° and 180°, and can take, for example, 120°, 135°, 150°, and 180°. However, even if the angle 24b of the enlarged channel wall surface 17b with respect to the narrowed channel wall surface 16b is 90 degrees or less, this is a partial structure and the structure gradually expands. If so, there is no problem because most of the fluid gradually flows toward the outlet 23.

拡大流路17の下流に接続する複数の粒子回収流路102は、少なくとも2つ設けられる必要があり、測定したい粒子径範囲に応じてその数を任意に増やすことが好ましい。各粒子回収流路102は、少なくとも1つの粒子検出部103があり、複数設けてもよい。 At least two of the plurality of particle recovery channels 102 connected downstream of the enlarged channel 17 need to be provided, and it is preferable to arbitrarily increase the number depending on the particle diameter range to be measured. Each particle recovery flow path 102 has at least one particle detection section 103, and may have a plurality of particle detection sections.

拡大流路17は、HDFの項で記載した粒子拡散流路110Bとしての機能も持たせることで、さらに粒子の分離能を促進させる機能を付与させてもよいが、この場合は、拡大流路の長さは、粒子が拡散できる十分な長さを持つ必要があり、少なくとも1μm以上は必要となる。拡大流路17の流路長さは、拡大する流路幅と角度24a、24bにより任意の値に決定される。 The enlarged channel 17 may also have the function of the particle diffusion channel 110B described in the HDF section, thereby providing a function of further promoting the particle separation ability, but in this case, the enlarged channel 17 The length must be long enough to allow particles to diffuse, and must be at least 1 μm or more. The channel length of the enlarged channel 17 is determined to be an arbitrary value depending on the channel width to be expanded and the angles 24a and 24b.

また、拡大流路を用いず、狭窄流路16の下流に直接複数の粒子回収流路102を設けてもよい。 Alternatively, a plurality of particle recovery channels 102 may be provided directly downstream of the narrowed channel 16 without using the expanded channel.

粒子分離流路110にPFFの原理を利用した流路を用いた場合、粒子は狭窄流路壁面16a側から16b側へ向けて存在しうる粒子の直径が大きくなっていくため、例えば図11(a)の場合、粒子検出部103aが小径粒子を検出し、粒子検出部103bが大径粒子を検出するようにアパーチャの断面積を設定すること好ましい。また、図11(c)の場合、粒子検出部103aが小径粒子を検出し、粒子検出部103cが中径粒子を検出し、粒子検出部103bが大径粒子を検出するようにアパーチャの断面積を設定することが好ましい。つまり、狭窄流路壁面16aに近い粒子検出部103ほど、小さい粒子を検出できるようアパーチャの断面積を設定することが好ましい。例えば、0.1~2.0μmの粒子を検出しようとする場合、図11(c)、図12、図13の場合、粒子検出部103aでは直径0.1~0.3μmの粒子を検出するためにアパーチャ断面積が0.4μm^2(幅1μm、高さ0.4μmの矩形状のもの、または半径0.36μmの円形状のもの)のものを設置し、粒子検出部103cでは直径0.2~0.8μmの粒子を検出するためにアパーチャ断面積が2μm^2(幅2μm、高さ1μmの矩形状のもの、または半径0.8μmの円形状のもの)のものを設置し、粒子検出部103bでは直径0.4~2.0μmの粒子を検出するためにアパーチャ断面積が14μm^2(幅3.5μm、高さ4μmの矩形状のもの、または半径2.1μmの円形状のもの)のものを設置してもよい。 When a flow path using the principle of PFF is used for the particle separation flow path 110, the diameter of the particles that can exist increases from the narrowed flow path wall surface 16a side to the 16b side. In case a), it is preferable to set the cross-sectional area of the aperture so that the particle detection unit 103a detects small-diameter particles and the particle detection unit 103b detects large-diameter particles. In the case of FIG. 11(c), the cross-sectional area of the aperture is set such that the particle detection unit 103a detects small-diameter particles, the particle detection unit 103c detects medium-diameter particles, and the particle detection unit 103b detects large-diameter particles. It is preferable to set In other words, it is preferable to set the cross-sectional area of the aperture so that the closer the particle detection section 103 is to the narrowed channel wall surface 16a, the smaller particles can be detected. For example, when trying to detect particles with a diameter of 0.1 to 2.0 μm, in the case of FIGS. 11(c), 12, and 13, the particle detection unit 103a detects particles with a diameter of 0.1 to 0.3 μm. Therefore, an aperture with a cross-sectional area of 0.4 μm^2 (a rectangular one with a width of 1 μm and a height of 0.4 μm, or a circular one with a radius of 0.36 μm) is installed. .In order to detect particles of 2 to 0.8 μm, an aperture cross-sectional area of 2 μm^2 (rectangular with a width of 2 μm and height of 1 μm, or circular with a radius of 0.8 μm) is installed. In the particle detection unit 103b, in order to detect particles with a diameter of 0.4 to 2.0 μm, the aperture cross-sectional area is 14 μm^2 (a rectangular one with a width of 3.5 μm and a height of 4 μm, or a circular shape with a radius of 2.1 μm). ) may be installed.

また粒子分離流路110でPFFの原理を利用した流路を用いる場合、送液部により設定される流量は、0.1μL/hourから1mL/hourの間に設定することが好ましく、粒子を含まない流体100Nの流量が、粒子を含む流体100Pよりも2倍以上多いことが好ましい。粒子を含まない流体100Nの流量が、粒子を含む流体100Pよりも何倍以上であることが好ましいかについては、狭窄流路16の流路幅と分離したい粒子の直径に依存し、例えば、分離したい粒子の直径が狭窄流路16の流路幅の1/4であった場合、粒子を含まない流体100Nの流量が、粒子を含む流体100Pよりも3倍以上であることが好ましく、分離したい粒子の直径が狭窄流路16の流路幅の1/10であった場合、粒子を含まない流体100Nの流量が、粒子を含む流体100Pの流量よりも9倍以上であることが好ましい。つまり、PFFの原理に基づいて分離したい粒子の直径に対して、狭窄流路16の流路幅がN倍であった場合、粒子を含まない流体100Nの流量が、粒子を含む流体100PよりもN-1倍以上多いことが好ましい。前記流量比であれば、分離したい粒子は狭窄流路の壁面16aを滑流することになるため、PFFの原理に基づいた粒子分離が可能となる。 In addition, when a flow path using the principle of PFF is used in the particle separation flow path 110, the flow rate set by the liquid feeding section is preferably set between 0.1 μL/hour and 1 mL/hour, and particles containing It is preferable that the flow rate of the fluid 100N without particles is at least twice as large as that of the fluid 100P containing particles. How many times the flow rate of the fluid 100N that does not contain particles is preferably higher than that of the fluid 100P that contains particles depends on the channel width of the constricted channel 16 and the diameter of the particles to be separated. When the diameter of the particles to be separated is 1/4 of the channel width of the constricted channel 16, it is preferable that the flow rate of the fluid 100N without particles is at least three times that of the fluid 100P containing particles. When the diameter of the particles is 1/10 of the channel width of the constricted channel 16, it is preferable that the flow rate of the fluid 100N not containing particles is nine times or more than the flow rate of the fluid 100P containing particles. In other words, if the width of the constricted channel 16 is N times the diameter of particles to be separated based on the principle of PFF, the flow rate of 100N of fluid that does not contain particles will be higher than that of fluid 100P that contains particles. It is preferable that the amount is N-1 times or more. With the above flow rate ratio, the particles to be separated will glide along the wall surface 16a of the constricted flow path, making it possible to separate particles based on the principle of PFF.

さらに、粒子分離流路110でPFFの原理を利用した流路を用いる場合において、粒子を含む流体100Pに含まれる粒子全てを狭窄流路壁面16aに滑流させる必要はなく、相対的に大きい粒子径を持つ粒子のみを狭窄流路壁面16aに滑流させてもよい。例えば図11(b)、図12、図13の場合、小粒径の粒子を検出する粒子検出部103aで検出できる最大粒子径以下の粒子を、狭窄流路壁面16aへ滑流させれば、最大粒子径以下の粒子が狭窄流路壁面16aに整列されなかったとしても、粒子検出部103aでその分布をESZの原理に基づいて作成することができる。すなわち、PFFで分離しきれなかった粒子がいたとしても、粒子検出部でその粒子径分布が作成できるため、ESZがPFFの分離能を補完するという優れた効果が得られる。 Furthermore, in the case where a flow path using the principle of PFF is used in the particle separation flow path 110, it is not necessary to cause all the particles contained in the particle-containing fluid 100P to slide down the narrowed flow path wall surface 16a, and relatively large particles Only particles having a certain diameter may be allowed to slide onto the narrow channel wall surface 16a. For example, in the case of FIG. 11(b), FIG. 12, and FIG. 13, if particles with a maximum particle diameter that is less than the maximum particle diameter that can be detected by the particle detection unit 103a that detects small-diameter particles are allowed to slide toward the constricted channel wall surface 16a, Even if particles smaller than the maximum particle diameter are not aligned on the narrow channel wall surface 16a, the particle detection unit 103a can create their distribution based on the ESZ principle. That is, even if there are particles that cannot be completely separated by PFF, the particle size distribution can be created in the particle detection section, so that the excellent effect of ESZ complementing the separation ability of PFF can be obtained.

また、小粒径の粒子を検出する粒子検出部103aで検出できる最大粒子径以上の粒子までしか狭窄流路壁面16aへ滑流させられない流量条件下であっても、前述のHDFの理論に基づき、粒子検出部103aのアパーチャが閉塞する粒子径の粒子が流入しないよう流路抵抗を設定することで、本発明の目的としている広範な粒子径分布を持つサンプルの測定が可能となる。すなわち、PFFによる中粒径、大粒径粒子の分離と、HDFによる小粒径粒子の分離と、ESZによる精密な粒子径分布の作成により、広範な粒子径分布を持つサンプルの測定が可能になるという優れた効果が得られる。この時、PFFにおける拡大流路17が、前述の粒子拡散流路110Bの役割も併せて果たすため、単位時間あたりの拡散距離の大きい小粒径粒子の分離を促進させるという優れた効果が得られる。またこの態様において、小粒径粒子は粒子検出部103cにも流入し、場合によっては粒子検出部102bにも流入するため、粒子検出部103aへ流入してくる小粒径粒子は粒子サンプルを含む流体100Pの一部となる。その流入量は、粒子拡散流路110Bの役割を果たす拡大流路17の長さが、小粒径粒子が拡散するのに十分な距離であれば、粒子回収流路102aとその下流の流路構造から算出される流量に比例するため、その算出された値から定量することができる。ここで、拡大流路17の長さにおける「小粒径粒子が拡散するのに十分な距離」とは、粒子を含まない流体100Nの流量と粒子を含む流体100Pの流量の和が0.1μL/hourから1mL/hourの範囲であれば、1μm以上が好ましく、より好ましくは100μm以上が好ましい。 Furthermore, even under flow conditions in which only particles larger than the maximum particle size that can be detected by the particle detection unit 103a that detects small particle size particles can be allowed to slide toward the narrowed channel wall surface 16a, the HDF theory described above can be applied. Based on this, by setting the flow path resistance so that particles with a particle size that would block the aperture of the particle detection unit 103a do not flow in, it becomes possible to measure a sample having a wide particle size distribution, which is the object of the present invention. In other words, by separating medium and large particles using PFF, separating small particles using HDF, and creating a precise particle size distribution using ESZ, it is possible to measure samples with a wide range of particle size distributions. An excellent effect can be obtained. At this time, since the enlarged channel 17 in the PFF also plays the role of the aforementioned particle diffusion channel 110B, an excellent effect of promoting the separation of small diameter particles having a large diffusion distance per unit time can be obtained. . Furthermore, in this embodiment, small-sized particles also flow into the particle detection section 103c, and in some cases also flow into the particle detection section 102b, so that the small-sized particles flowing into the particle detection section 103a include a particle sample. It becomes part of the fluid 100P. If the length of the enlarged channel 17, which plays the role of the particle diffusion channel 110B, is a sufficient distance for small-sized particles to diffuse, the inflow amount is determined between the particle recovery channel 102a and the channel downstream thereof. Since it is proportional to the flow rate calculated from the structure, it can be quantified from the calculated value. Here, the "distance sufficient for small diameter particles to diffuse" in the length of the enlarged channel 17 means that the sum of the flow rate of the fluid 100N that does not contain particles and the flow rate of the fluid 100P that contains particles is 0.1 μL. If it is in the range of /hour to 1mL/hour, it is preferably 1 μm or more, more preferably 100 μm or more.

粒子分離流路110で用いる分離手法において、DLD(決定論的側方変位法)、ディーン力または慣性力による粒子分離の原理を用いる場合、粒子導入流路101は少なくとも1本が必要であり、より安定した分離を行うために複数本導入し、そのうちの1つからサンプルを導入し、残りの粒子導入流路101から粒子を含まない流体を導入させてもよい。 In the separation method used in the particle separation channel 110, when using the principle of particle separation using DLD (deterministic lateral displacement method), Dean force, or inertial force, at least one particle introduction channel 101 is required, In order to perform more stable separation, a plurality of particles may be introduced, a sample may be introduced from one of them, and a fluid containing no particles may be introduced from the remaining particle introduction channel 101.

粒子分離流路110で用いる分離手法において、電場による粒子分離を行う場合、分離流路内に、流体の流れに対して垂直方向に一対の電極を配置した流路構造とすることが好ましい。この時、粒子はその大きさだけでなく、流体中での表面電荷も分離の要素に入るため、粒子回収流路102内またはその下流の粒子検出部103はそれを考慮した設計とする必要がある。 In the separation method used in the particle separation channel 110, when particle separation is performed using an electric field, it is preferable to have a channel structure in which a pair of electrodes are arranged in the separation channel in a direction perpendicular to the flow of the fluid. At this time, not only the size of the particles but also the surface charge in the fluid is a factor in separation, so the particle detection section 103 in or downstream of the particle collection channel 102 must be designed with this in mind. be.

粒子分離流路110で用いる分離手法において、磁場による粒子分離を行う場合、分離流路内または分離流路外に、流体の流れに対して垂直方向に一対の磁場発生部品、また磁場発生装置を配置する構成とすることが好ましい。この時、粒子はその大きさだけでなく、粒子の磁性も分離の要素に入るため、粒子回収流路102内またはその下流の粒子検出部103はそれを考慮した設計とする必要がある。 In the separation method used in the particle separation channel 110, when particle separation is performed using a magnetic field, a pair of magnetic field generating components or a magnetic field generator is installed in or outside the separation channel in a direction perpendicular to the fluid flow. It is preferable to have a configuration in which the At this time, not only the size of the particles but also the magnetism of the particles is a factor in separation, so the particle detection section 103 in or downstream of the particle collection channel 102 needs to be designed with this in mind.

粒子分離流路110で用いる分離手法において、表面弾性波や音響泳動による粒子分離を行う場合、分離流路内または分離流路外に、流体の流れに対して垂直方向に一対の音響トランスデューサ―を配置した流路構造とすることが好ましい。この時、粒子はその大きさだけでなく、粒子の剛性や密度も分離の要素に入るため、粒子回収流路102内またはその下流の粒子検出部103はそれを考慮した設計とする必要がある。 In the separation method used in the particle separation channel 110, when particle separation is performed by surface acoustic waves or acoustophoresis, a pair of acoustic transducers are installed in or outside the separation channel in a direction perpendicular to the fluid flow. It is preferable to have a channel structure in which the channels are arranged. At this time, not only the size of the particles but also the rigidity and density of the particles are factors in separation, so the particle detection section 103 within the particle recovery channel 102 or downstream thereof needs to be designed with this in mind. .

粒子検出流路62は、ESZ以外の原理に基づいた構造とすることもでき、例えば、ナノトラッキングアナリシス、DLS、散乱光検出、レーザー回折散乱法、共振式質量測定法、光遮蔽法、顕微鏡観察法、フローサイトメトリーを用いることが出来る。 The particle detection channel 62 can also have a structure based on principles other than ESZ, such as nanotracking analysis, DLS, scattered light detection, laser diffraction scattering method, resonance mass measurement method, light shielding method, and microscopic observation. method, flow cytometry can be used.

また本発明は、製剤の過程で生じたナノ粒子医薬品中の粒子や凝集体、会合体、融合体を検出することにより、粒子径分布、平均粒径、モード径、中間粒子径、各粒子の体積割合、濃度、個数、積算濃度、積算個数のうち少なくとも1つのパラメーターまたは前記パラメーターの経時変化を測定することが可能である。この測定結果を基に、ナノ粒子医薬品の安定性、安全性、凝集・会合・融合に関わる物理特性の評価することが可能である。また、ナノ粒子医薬品に対して加熱、加圧、攪拌、振動、懸濁溶液組成の変更、凍結融解等のストレスを加えることで意図的にナノ粒子医薬品中の粒子の凝集体や会合体、融合体を生成させ、ナノ粒子医薬品の安定性、安全性、凝集・会合・融合に関わる物理特性の評価を行ってもよい。 In addition, the present invention detects particles, aggregates, aggregates, and fusions in nanoparticle medicines generated during the formulation process, thereby determining the particle size distribution, average particle size, mode size, intermediate particle size, and It is possible to measure at least one parameter among volume ratio, concentration, number, integrated concentration, and integrated number, or a change over time of the parameter. Based on these measurement results, it is possible to evaluate the stability, safety, and physical properties related to aggregation, association, and fusion of nanoparticle drugs. In addition, by intentionally applying stress such as heating, pressurization, stirring, vibration, changing the suspension solution composition, and freezing/thawing to nanoparticle drugs, it is possible to intentionally create aggregates, aggregates, and fusion of particles in nanoparticle drugs. The stability, safety, and physical properties related to aggregation, association, and fusion of nanoparticle drugs may be evaluated.

ここで経時変化とは、時間の経過とともにナノ粒子医薬品またはその候補となる物質の粒子径、体積またはその個数が変化すること以外に、ナノ粒子医薬品の製剤過程またはその候補となる物質の製造過程で施される処理前後での前記変化も含むこととする。 Changes over time include changes in the particle size, volume, or number of nanoparticle drugs or their candidate substances over time, as well as changes in the formulation process of nanoparticle drugs or the manufacturing process of their candidate substances. The above-mentioned changes before and after the treatment performed are also included.

以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 EXAMPLES Below, embodiments of the present invention will be described in more detail with reference to Examples. Of course, the present invention is not limited to the following embodiments, and it goes without saying that various modifications can be made to the details. Furthermore, the present invention is not limited to the embodiments described above, and various changes can be made within the scope of the claims, and the present invention also includes embodiments obtained by appropriately combining the disclosed technical means. falls within the technical scope of the invention. Additionally, all documents mentioned herein are incorporated by reference.

粒子検出装置の製造
図15で示されるマイクロチップ10を、一般的なフォトリソグラフィーとソフトリソグラフィー技術を用いて作製した。具体的な手順を以下に示す。
4インチベアシリコンウェハ(株式会社フィルテック)上へ、フォトレジストSU-8 3005(Microchem社)を滴下後、スピンコーター(MIKASA社)を用いてフォトレジスト薄膜を形成した。この時、目的膜厚に応じて、SU-8 3005へ希釈剤Cyclopentanone(東京応化工業社)を添加した。続いて、マスクアライナー(ウシオ電機社)と、任意のパターンを形成したクロムマスクを用いて流路パターンをフォトレジスト膜へ形成し、SU-8Developer(Microchem社)を用いて流路パターンを現像することで、用いたい流路の鋳型を作製した。
続いて、作製した鋳型へ、未硬化のLSR7070FC(モメンティブパフォーマンス社)を流し込み、80℃で2時間加熱することで、流路の形状を転写されたポリジメチルシロキサン(PDMS)を作製した。硬化したPDMSを鋳型から慎重に剥がし、カッターで任意の大きさに成形後、パンチャーを用いて流路のインレット、アウトレットを形成した。剥離したPDMSとスライドガラス(松浪ガラス社)を酸素プラズマ発生装置(メイワフォーシス社)で表面処理後、PDMSとスライドガラスを貼り合わせることでマイクロチップ10を作製した。
流路13の高さは粒子検出部103a、粒子検出部103c以外すべて5.5μmとし、流路13の端部に、基板11の上面に貫通するインレット14a、14b、アウトレット104a、104a’、104b、104b’、104c、104c’、23(それぞれ穴の径2mm)を設けた。流路13は、分岐流路18a(幅20μm、長さ1.5mm)、分岐流路18b(幅40μm、長さ500μm)、狭窄流路16(幅6μm、長さ20μm)、拡大流路17(拡大角度135度、最大拡大時流路幅600μm、長さ0.5mm)、ドレイン流路22(幅500μm、長さ1.7mm)、粒子回収流路102a(幅75μm、長さ4mm)、粒子回収流路102c(幅140μm、長さ7.5mm)、粒子回収流路102b(幅512μm、長さ3.75mm)とした。また、粒子検出部102aの2つのアパーチャは、どちらも幅1.6μm、高さ0.6μm、長さ2.5μmとし、粒子検出部102cの2つのアパーチャは、どちらも幅2.6μm、高さ1.2μm、長さ3μmとし、粒子検出部102bの2つのアパーチャは、どちらも幅5.8μm、高さ5.5μm、長さ10μmとした。各粒子検出部の形状は図14と同様であり、また式(1)において算出されるk値は、アパーチャ抵抗と、アパーチャから電極が挿入されているアウトレットまでの流路の抵抗比から、3.0とした。
Manufacturing of particle detection device A microchip 10 shown in FIG. 15 was manufactured using general photolithography and soft lithography techniques. The specific steps are shown below.
A photoresist SU-8 3005 (Microchem) was dropped onto a 4-inch bare silicon wafer (Filtech Co., Ltd.), and a photoresist thin film was formed using a spin coater (MIKASA). At this time, a diluent Cyclopentanone (Tokyo Ohka Kogyo Co., Ltd.) was added to SU-8 3005 depending on the desired film thickness. Next, a channel pattern is formed on the photoresist film using a mask aligner (Ushio Inc.) and a chrome mask with an arbitrary pattern formed thereon, and the channel pattern is developed using SU-8 Developer (Microchem). By doing this, we created a mold for the flow path we wanted to use.
Subsequently, uncured LSR7070FC (Momentive Performance) was poured into the prepared mold and heated at 80° C. for 2 hours to produce polydimethylsiloxane (PDMS) with the shape of the flow path transferred thereto. The cured PDMS was carefully peeled off from the mold, and after being shaped into an arbitrary size using a cutter, an inlet and an outlet for a flow path were formed using a puncher. After surface-treating the peeled PDMS and slide glass (Matsunami Glass Co., Ltd.) using an oxygen plasma generator (Meiwaforsys Co., Ltd.), the microchip 10 was produced by bonding the PDMS and the slide glass together.
The height of the channel 13 is all 5.5 μm except for the particle detection section 103a and the particle detection section 103c, and the ends of the channel 13 are provided with inlets 14a, 14b and outlets 104a, 104a', 104b that penetrate the top surface of the substrate 11. , 104b', 104c, 104c', and 23 (each with a hole diameter of 2 mm) were provided. The flow path 13 includes a branch flow path 18a (width 20 μm, length 1.5 mm), a branch flow path 18b (width 40 μm, length 500 μm), a narrowed flow path 16 (width 6 μm, length 20 μm), and an enlarged flow path 17. (135 degree expansion angle, maximum expansion channel width 600 μm, length 0.5 mm), drain channel 22 (width 500 μm, length 1.7 mm), particle collection channel 102a (width 75 μm, length 4 mm), particles A recovery channel 102c (width 140 μm, length 7.5 mm) and a particle recovery channel 102b (width 512 μm, length 3.75 mm) were used. The two apertures of the particle detection unit 102a are both 1.6 μm wide, 0.6 μm high, and 2.5 μm long, and the two apertures of the particle detection unit 102c are both 2.6 μm wide and 2.6 μm high. The particle detection unit 102b has two apertures each having a width of 5.8 μm, a height of 5.5 μm, and a length of 10 μm. The shape of each particle detection part is the same as that in FIG. 14, and the k value calculated in equation (1) is calculated from the aperture resistance and the resistance ratio of the flow path from the aperture to the outlet where the electrode is inserted. It was set as .0.

電気検出実施例
作製したマイクロチップ10は、基板上へ載置され、マイクロチップ10内の複数の粒子検出部103へ電極を接続した。電極は一対の白金線より構成され、一方の電極は導線を介してプログラマブル電流増幅器CA5350(エヌエフ回路社)へ接続され、ADコンバーターを介してPCへと接続され、送信されてきたデジタルの信号をLabViewにより解析した。また粒子検出部103へ接続される電極のもう一方は9Vの乾電池へ導線を介して接続した。
各インレットは、テフロンチューブを介してプレッシャーポンプP-PumpBasic(Dolomite社)へ接続し、一定の流量で送液した。
Electrical Detection Example The fabricated microchip 10 was placed on a substrate, and electrodes were connected to a plurality of particle detection units 103 within the microchip 10. The electrodes are composed of a pair of platinum wires, and one electrode is connected to a programmable current amplifier CA5350 (NF Circuit Co., Ltd.) via a conductive wire, and then connected to a PC via an AD converter to receive the transmitted digital signal. Analyzed by LabView. The other electrode connected to the particle detection unit 103 was connected to a 9V dry battery via a conductive wire.
Each inlet was connected to a pressure pump P-PumpBasic (Dolomite) via a Teflon tube, and liquid was fed at a constant flow rate.

大粒子検出装置の製造
クロムマスクのパターンとスピンコーターを用いた薄膜形成条件が異なる点以外は上述の粒子検出装置と同様にして大粒子検出用マイクロチップを作製した。この時、流路13の高さは粒子検出部103a、粒子検出部103c以外すべて15μmとして設計し、流路13は、狭窄流路16(幅20μm、長さ60μm)、拡大流路17(拡大角度135度、最大拡大時流路幅570μm、長さ1.25mm)、ドレイン流路22(幅545μm、長さ1.4mm)、粒子回収流路102a(幅75μm、長さ4mm)、粒子回収流路102c(幅140μm、長さ7.5mm)、粒子回収流路102b(幅350μm、長さ3.7mm)とした。また、粒子検出部102aの2つのアパーチャは、どちらも幅2μm、高さ2.5μm、長さ10μmとし、粒子検出部102cの2つのアパーチャは、どちらも幅4μm、高さ5μm、長さ10μmとし、粒子検出部102bの2つのアパーチャは、どちらも幅15μm、高さ15μm、長さ10μmとした。
Production of large particle detection device A microchip for large particle detection was fabricated in the same manner as the particle detection device described above, except that the pattern of the chrome mask and the conditions for forming a thin film using a spin coater were different. At this time, the height of the channel 13 is designed to be 15 μm except for the particle detection section 103a and the particle detection section 103c. Angle 135 degrees, maximum expansion channel width 570 μm, length 1.25 mm), drain channel 22 (width 545 μm, length 1.4 mm), particle recovery channel 102a (width 75 μm, length 4 mm), particle recovery flow A channel 102c (width 140 μm, length 7.5 mm) and a particle recovery channel 102b (width 350 μm, length 3.7 mm) were used. The two apertures of the particle detection unit 102a are both 2 μm wide, 2.5 μm high, and 10 μm long, and the two apertures of the particle detection unit 102c are both 4 μm wide, 5 μm high, and 10 μm long. The two apertures of the particle detection unit 102b were both 15 μm wide, 15 μm high, and 10 μm long.

サンプル調製
(1)未処理サンプル
直径0.3μmリポソーム(片山化学工業)を、ポアサイズ0.1μmのシリンジフィルター(メルクミリポア社製)を用いて異物除去を行った、0.05%(v/v)ツイーン20含有の1×PBS溶液(リン酸緩衝液)で10000倍希釈した。
(2)処理済サンプル
上述の直径0.3μmリポソームを上述の0.05%(v/v)ツイーン20含有の1×PBS溶液で100倍に希釈後、オートクレーブ(高圧蒸気滅菌)処理(121℃、2気圧、20分)を施し、0.05%(v/v)ツイーン20含有の1×PBS溶液でさらに100倍希釈した。
(3)未処理抗体医薬品
ポアサイズ0.1μmのシリンジフィルター(メルクミリポア社製)を用いて異物除去を行った、0.05%(v/v)ツイーン20含有の1×PBS溶液(リン酸緩衝液)で、市販の抗体医薬品A、B、Cをそれぞれ1mg/mLの濃度となるよう希釈した。
(4)経時変化検証用の加熱処理済抗体医薬品
抗体医薬品Cを、製剤の状態で60℃30分の加熱処理を行い、室温で10分放置後、0.05%(v/v)ツイーン20含有の1×PBS溶液で1mg/mLの濃度となるよう希釈し、希釈した時間を処理後0分とした。
(5)抗体凝集体量比較用の加熱処理済抗体医薬品
抗体医薬品A、B、Cを、それぞれ0.05%(v/v)ツイーン20含有の1×PBS溶液で1mg/mLの濃度となるよう希釈し、68℃30分の加熱処理を行った。
(6)示差走査熱量計測定用抗体医薬品
抗体医薬品A、B、Cを、それぞれ0.05%(v/v)ツイーン20含有の1×PBS溶液で15時間透析を行った。
(7)未処理リポソーム製剤
アムビソーム(登録商標、大日本住友製薬)を、メーカー指定のプロトコルにて調製した後、0.05%(v/v)ツイーン20含有の1×PBS溶液で100倍希釈した。
(8)保管リポソーム製剤
上述の未処理リポソーム製剤を40℃で10日間保管した。
Sample preparation (1) Untreated sample Foreign matter was removed from 0.3 μm diameter liposomes (Katayama Chemical Industries) using a syringe filter with a pore size of 0.1 μm (manufactured by Merck Millipore), 0.05% (v/v). ) It was diluted 10,000 times with a 1× PBS solution (phosphate buffer) containing Tween 20.
(2) Treated sample The above-mentioned 0.3 μm diameter liposome was diluted 100 times with the above-mentioned 1× PBS solution containing 0.05% (v/v) Tween 20, and then autoclaved (high pressure steam sterilized) at 121°C. , 2 atm, 20 minutes) and further diluted 100 times with a 1× PBS solution containing 0.05% (v/v) Tween 20.
(3) Untreated antibody drug A 1× PBS solution containing 0.05% (v/v) Tween 20 (phosphate buffered Commercially available antibody drugs A, B, and C were each diluted with 1 mg/mL solution.
(4) Heat-treated antibody drug for verifying changes over time Antibody drug C was heat-treated at 60°C for 30 minutes in the form of a preparation, left at room temperature for 10 minutes, and then treated with 0.05% (v/v) Tween 20. It was diluted to a concentration of 1 mg/mL with a 1× PBS solution containing the sample, and the dilution time was set as 0 minutes after the treatment.
(5) Heat-treated antibody drugs for comparison of antibody aggregate amounts Antibody drugs A, B, and C each have a concentration of 1 mg/mL in a 1× PBS solution containing 0.05% (v/v) Tween 20. The mixture was diluted and heat treated at 68°C for 30 minutes.
(6) Antibody drugs for differential scanning calorimetry measurement Antibody drugs A, B, and C were each dialyzed for 15 hours in a 1×PBS solution containing 0.05% (v/v) Tween 20.
(7) Untreated liposome preparation Ambisome (registered trademark, Sumitomo Dainippon Pharma) was prepared according to the protocol specified by the manufacturer, and then diluted 100 times with a 1x PBS solution containing 0.05% (v/v) Tween 20. did.
(8) Storage liposome formulation The above-mentioned untreated liposome formulation was stored at 40°C for 10 days.

(実施例1)
上述のマイクロチップ10を用い、インレット14aへ調製した処理済サンプルを2.4μL/hourの流量で送液し、インレット14bへ0.05%(v/v)ツイーン20含有の1×PBSを10μL/hourの流量で送液した。続いて、上述の電気検出実施例に基づき3つの各粒子回収流路102へ流入した粒子を1分間検出し、測定結果を1つのヒストグラムへまとめると図16の通りとなった。この時、リポソームは比重1.05μg/mLの真球として重量濃度換算(μg/mL)し、ヒストグラムとしてまとめた。
未処理サンプルについても同様にして実験を行い、得られた測定結果を1つのヒストグラムへまとめると図17の通りとなった。
両者を比較すると、処理済サンプルでのみ0.5μm以上の領域に凝集体または融合体とみられる大粒子の分布が見られ、オートクレーブ処理によりリポソームの凝集体または融合体が発生していることが確認できた。
(Example 1)
Using the above-mentioned microchip 10, the prepared processed sample was delivered to the inlet 14a at a flow rate of 2.4 μL/hour, and 10 μL of 1×PBS containing 0.05% (v/v) Tween 20 was delivered to the inlet 14b. The liquid was fed at a flow rate of /hour. Next, the particles flowing into each of the three particle collection channels 102 were detected for one minute based on the electrical detection example described above, and the measurement results were summarized into one histogram as shown in FIG. 16. At this time, the liposome was converted into a weight concentration (μg/mL) as a true sphere with a specific gravity of 1.05 μg/mL, and summarized as a histogram.
An experiment was conducted in the same manner for the untreated sample, and the measurement results obtained were summarized into one histogram as shown in FIG. 17.
Comparing the two, a distribution of large particles that appear to be aggregates or fusions was observed only in the treated sample in an area of 0.5 μm or more, confirming that liposome aggregates or fusions were generated by the autoclave treatment. did it.

(比較例1)
処理済サンプルを、AggregatesSizer(島津製作所社)により測定を行い、図18に示す測定結果が得られた。また、未処理サンプルも同様に測定を行い、図19に示す測定結果が得られた。なお、AggregatesSizerは、粒子群にレーザー光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布を求めるレーザー回折・散乱法を測定原理としており、粒子径に応じた粒子の分離は行っていない。
両者を比較すると、直径0.5μm以上の粒子径分布に大きな差がないことから、本手法では僅かに存在するリポソームの凝集体または融合体を検出することは難しいことが確認された。
(Comparative example 1)
The treated sample was measured using AggregatesSizer (Shimadzu Corporation), and the measurement results shown in FIG. 18 were obtained. Further, the untreated sample was also measured in the same manner, and the measurement results shown in FIG. 19 were obtained. The measurement principle of AggregatesSizer is the laser diffraction/scattering method, which irradiates a particle group with a laser beam and calculates the particle size distribution from the intensity distribution pattern of the diffracted/scattered light emitted from the particle group. No separation was performed.
Comparing the two, there was no significant difference in particle size distribution with a diameter of 0.5 μm or more, which confirmed that it is difficult to detect a small amount of liposome aggregates or fusions using this method.

(実施例2)
上述のマイクロチップ10を用い、インレット14aへ調製した経時変化検証用の加熱処理済抗体医薬品(処理後0分)を2.4μL/hourの流量で送液し、インレット14bへ0.05%(v/v)ツイーン20含有の1×PBSを10μL/hourの流量で送液した。続いて、上述の電気検出実施例に基づき3つの各粒子回収流路102へ流入した粒子を1分間検出し、測定結果を1つのヒストグラムへまとめると図20(a)の通りとなった。この時、抗体凝集体は比重1.32μg/mLの真球として重量濃度換算(μg/mL)し、ヒストグラムとしてまとめた。さらに、処理後10分、120分の前記加熱処理済抗体医薬品についても同様に測定を行ったところ、各々図20(b)、(c)の通りとなり、抗体凝集体量とピークトップ位置が経時的に増大していく様子を観察した。
また、未処理抗体医薬品についても同様にして実験を行ったところ、粒子の検出はほぼなく、未処理のものに関しては抗体凝集体または不純物は殆ど存在しないことを確認した。
(Example 2)
Using the above-mentioned microchip 10, the heat-treated antibody drug (0 minutes after treatment) prepared for verifying changes over time was delivered to the inlet 14a at a flow rate of 2.4 μL/hour, and 0.05% (0.05%) was delivered to the inlet 14b. v/v) 1×PBS containing Tween 20 was delivered at a flow rate of 10 μL/hour. Next, the particles flowing into each of the three particle collection channels 102 were detected for one minute based on the electrical detection example described above, and the measurement results were summarized into one histogram as shown in FIG. 20(a). At this time, the antibody aggregate was converted into a weight concentration (μg/mL) as a true sphere with a specific gravity of 1.32 μg/mL, and summarized as a histogram. Furthermore, when the heat-treated antibody drugs were similarly measured 10 minutes and 120 minutes after treatment, the results were shown in Figures 20(b) and 20(c), and the amount of antibody aggregates and peak top position changed over time. I observed how it was increasing.
Furthermore, when experiments were conducted in the same manner with untreated antibody drugs, almost no particles were detected, and it was confirmed that there were almost no antibody aggregates or impurities in the untreated drugs.

(比較例2)
経時変化検証用の加熱処理済抗体医薬品の処理後0分、10分、120分のサンプルを、比較例1と同様にして測定を行い、図21(a)~(c)に示す測定結果が得られた。これより、レーザー・回折散乱法においても抗体凝集体の経時変化を観察可能であることを確認した。しかしながら、ピーク幅が実施例2と比較してブロードであり、定量的な測定は難しいといえる。
(Comparative example 2)
Samples of heat-treated antibody drugs for time-dependent change verification at 0 minutes, 10 minutes, and 120 minutes after treatment were measured in the same manner as in Comparative Example 1, and the measurement results shown in Figures 21(a) to (c) were obtained. Obtained. From this, we confirmed that it is also possible to observe changes in antibody aggregates over time using the laser/diffraction scattering method. However, the peak width is broader than in Example 2, making quantitative measurement difficult.

(実施例3)
上述のマイクロチップ10を用い、インレット14aへ調製した抗体凝集体量比較用の加熱処理済抗体医薬品A、B、Cを2.4μL/hourの流量で送液し、インレット14bへ0.05%(v/v)ツイーン20含有の1×PBSを10μL/hourの流量で送液した。続いて、上述の電気検出実施例に基づき3つの各粒子回収流路102へ流入した粒子を1分間検出し、測定結果を1つのヒストグラムへまとめると図22(a)~(c)の通りとなった。この時、抗体凝集体は比重1.32μg/mLの真球として重量濃度換算(μg/mL)してヒストグラムとしてまとめた。また、積算した抗体凝集体量は、抗体医薬品Aは7.3μg/mL、抗体医薬品Bは2.1μg/mL、抗体医薬品Cは0.74μg/mLとなった。
図22の通り、抗体医薬品の種類により、生成する抗体凝集体の分布や量が異なる様子を確認した。
(Example 3)
Using the above-mentioned microchip 10, heat-treated antibody drugs A, B, and C for comparison of the amount of antibody aggregates prepared are sent to the inlet 14a at a flow rate of 2.4 μL/hour, and 0.05% to the inlet 14b. (v/v) 1×PBS containing Tween 20 was delivered at a flow rate of 10 μL/hour. Next, based on the electrical detection example described above, particles flowing into each of the three particle collection channels 102 are detected for one minute, and the measurement results are summarized into one histogram as shown in FIGS. 22(a) to 22(c). became. At this time, the antibody aggregate was converted into a weight concentration (μg/mL) as a true sphere with a specific gravity of 1.32 μg/mL and summarized as a histogram. In addition, the integrated amounts of antibody aggregates were 7.3 μg/mL for antibody drug A, 2.1 μg/mL for antibody drug B, and 0.74 μg/mL for antibody drug C.
As shown in Figure 22, it was confirmed that the distribution and amount of generated antibody aggregates differed depending on the type of antibody drug.

(比較例3)
抗体凝集体量比較用の加熱処理済抗体医薬品A、B、Cを、比較例1と同様にして測定を行い、図23に示す測定結果が得られた。これより、レーザー・回折散乱法においても異なる抗体医薬品における抗体凝集体の分布や量の違いを確認できるものの、図23(c)の抗体医薬品Cに関しては抗体凝集体を検出できず、正確な測定は難しいことが確認された。
(Comparative example 3)
Heat-treated antibody drugs A, B, and C for comparison of antibody aggregate amounts were measured in the same manner as in Comparative Example 1, and the measurement results shown in FIG. 23 were obtained. From this, although it is possible to confirm differences in the distribution and amount of antibody aggregates in different antibody drugs using the laser/diffraction scattering method, it is not possible to detect antibody aggregates with respect to antibody drug C in Figure 23(c), making accurate measurement difficult. was confirmed to be difficult.

(参考例1)
示差走査熱量計測定用抗体医薬品A、B、Cについて、示差走査熱量計MicroCal(マルバーン社)により各々の抗体の熱安定性を測定した結果を図24に示す。それぞれの吸熱ピークトップの位置は、抗体医薬品Aは72.3℃、Bは72.8℃、Cは75.0℃となり、熱安定性は抗体医薬品Cが最も高く、続いて抗体医薬品Bの安定性が高く、最も安定性が低いのは抗体医薬品Cと解釈される結果が得られた。
実施例3と参考例1の結果より、抗体医薬品の熱安定性が低いものほど抗体凝集体量が多いことが確認され、前記熱安定性と抗体凝集体量とが相関する様子を確認できた。従って、本発明を用いて抗体医薬品の安定性評価が可能であることを見出した。
(Reference example 1)
FIG. 24 shows the results of measuring the thermal stability of each antibody for differential scanning calorimeter measurement antibody drugs A, B, and C using a differential scanning calorimeter MicroCal (Malvern). The positions of the endothermic peak tops of each are 72.3°C for antibody drug A, 72.8°C for antibody drug B, and 75.0°C for antibody drug C, and the thermal stability is highest for antibody drug C, followed by antibody drug B. The results indicate that antibody drug C has the highest stability and the lowest stability.
From the results of Example 3 and Reference Example 1, it was confirmed that the lower the thermal stability of the antibody drug, the higher the amount of antibody aggregates, and it was confirmed that the thermal stability and the amount of antibody aggregates were correlated. . Therefore, we have found that it is possible to evaluate the stability of antibody drugs using the present invention.

(実施例4)
上述のマイクロチップ10を用い、インレット14aへ調製した未処理リポソーム製剤を3.6μL/hourの流量で送液し、インレット14bへ0.05%(v/v)ツイーン20含有の1×PBSを800mbarの圧力で送液した。続いて、上述の電気検出実施例に基づき、粒子回収流路102aへ流入した粒子を2分間、粒子回収流路102cへ流入した粒子を4分間、粒子回収流路102bへ流入した粒子を100秒間検出した。
また、大粒子検出用マイクロチップを用い、インレット14aへ調製した未処理リポソーム製剤を16μL/hourの流量で送液し、インレット14bへ0.05%(v/v)ツイーン20含有の1×PBSを400mbarの圧力で送液した。続いて、上述の電気検出実施例に基づき、粒子回収流路102aへ流入した粒子を2分間、粒子回収流路102cへ流入した粒子を4分間、粒子回収流路102bへ流入した粒子を4分間検出した。
マイクロチップ10において検出した直径0.5μm未満の粒子と、大粒子検出用マイクロチップにおいて検出した直径0.5μm以上の粒子の測定結果をヒストグラムにまとめると図25(a)の通りとなった。この時、リポソームは比重1.05μg/mLの真球として重量濃度換算(μg/mL)し、ヒストグラムとしてまとめた。
図25(a)の通り、前記未処理リポソーム製剤は数十nmから数μmの幅広い分布を持つためマイクロチップ10の他、より大径粒子の測定が可能な大粒子検出用マイクロチップを併用し、0.5μm未満の粒子についてはマイクロチップ10での測定結果を、0.5μm以上の粒子については大粒子検出用マイクロチップでの測定結果を用いることで、図25(a)に示すヒストグラムを得た。
さらに、同様にして保管リポソーム製剤を測定し、図25(b)に示すヒストグラムを得た。
両者を比較すると、0.5μm以上の領域に凝集体または融合体とみられる大粒子の分布が双方見られ、さらに保管リポソーム製剤においては、前記凝集体または融合体の量が0.6μg/mLから1.2μg/mLへ増加していることが確認できた。
(Example 4)
Using the above-described microchip 10, the prepared untreated liposome preparation was delivered to the inlet 14a at a flow rate of 3.6 μL/hour, and 1× PBS containing 0.05% (v/v) Tween 20 was delivered to the inlet 14b. The liquid was pumped at a pressure of 800 mbar. Subsequently, based on the electrical detection example described above, the particles flowing into the particle recovery channel 102a are detected for 2 minutes, the particles flowing into the particle recovery channel 102c are detected for 4 minutes, and the particles flowing into the particle recovery channel 102b are detected for 100 seconds. Detected.
In addition, using a microchip for detecting large particles, the prepared untreated liposome preparation was sent to the inlet 14a at a flow rate of 16 μL/hour, and 1×PBS containing 0.05% (v/v) Tween 20 was sent to the inlet 14b. was pumped at a pressure of 400 mbar. Subsequently, based on the electrical detection example described above, the particles flowing into the particle collection channel 102a are detected for 2 minutes, the particles flowing into the particle recovery channel 102c are detected for 4 minutes, and the particles flowing into the particle recovery channel 102b are detected for 4 minutes. Detected.
The measurement results of particles with a diameter of less than 0.5 μm detected with the microchip 10 and particles with a diameter of 0.5 μm or more detected with the large particle detection microchip are summarized in a histogram as shown in FIG. 25(a). At this time, the liposome was converted into a weight concentration (μg/mL) as a true sphere with a specific gravity of 1.05 μg/mL, and summarized as a histogram.
As shown in FIG. 25(a), the untreated liposome preparation has a wide distribution from several tens of nanometers to several micrometers, so in addition to the microchip 10, a large particle detection microchip that can measure larger particles is used in combination. By using the measurement results with the microchip 10 for particles less than 0.5 μm and the measurement results with the large particle detection microchip for particles larger than 0.5 μm, the histogram shown in FIG. 25(a) can be created. Obtained.
Furthermore, the stored liposome preparation was measured in the same manner, and the histogram shown in FIG. 25(b) was obtained.
Comparing the two, distribution of large particles that appear to be aggregates or fusions in the region of 0.5 μm or more is seen in both cases, and furthermore, in the stored liposome preparations, the amount of aggregates or fusions ranges from 0.6 μg/mL to 0.6 μg/mL. It was confirmed that the concentration had increased to 1.2 μg/mL.

(比較例4)
未処理リポソーム製剤と保管リポソーム製剤を動的光散乱法(大塚電子工業、ゼータ電位・粒径測定システム)を用いて測定し、図26(a)、(b)に示す測定結果が得られた。なお、動的光散乱法は、粒子群にレーザー光を照射し、そこから発せられる散乱光強度の時間変化から計算によって粒子径分布を求める手法であり、粒子径に応じた粒子の分離は行っていない。また、動的光散乱法はリポソーム製剤の粒子径測定時に一般に用いられる手法で、厚生労働省から発行されているリポソーム製剤の開発に関するガイドラインにおいても、主たる粒子径分布測定方法として記載されているため、比較例として用いた。
なお、図26より動的光散乱法においては凝集体または融合体とみられる大粒子の分布が双方見られないことから、前記凝集体または融合体の検出が難しいことが確認された。
(Comparative example 4)
Untreated liposome preparations and stored liposome preparations were measured using a dynamic light scattering method (Otsuka Electronics, Zeta potential/particle size measurement system), and the measurement results shown in Figures 26(a) and (b) were obtained. . Note that the dynamic light scattering method is a method in which a group of particles is irradiated with a laser beam and the particle size distribution is calculated from the temporal change in the intensity of the scattered light emitted from the group, and particles are not separated according to their size. Not yet. In addition, dynamic light scattering is a method commonly used to measure the particle size of liposome formulations, and it is also listed as the main particle size distribution measurement method in the guidelines for the development of liposome formulations published by the Ministry of Health, Labor and Welfare. This was used as a comparative example.
In addition, from FIG. 26, it was confirmed that it was difficult to detect the aggregates or fusions since the distribution of large particles that appeared to be aggregates or fusions was not observed in the dynamic light scattering method.

10 マイクロチップ
11 基板
13 流路
14、14a、14b インレット
16 狭窄流路
16a サンプル液側狭窄流路壁面
16b シース液側狭窄流路壁面
17 拡大流路
17a サンプル液側拡大流路壁面
17b シース液側狭拡大路壁面
18a、18b 入口側分岐流路
19 拡大開始点
21 領域
22 ドレイン流路
23 アウトレット
24a、24b 角度
40 スロープ部分
50 粒子
51 粒子の流れる方向
52 アパーチャ形成構造
53 アパーチャ
54、54a、54b 電極
55 導線
56 電気測定器
57 電源
58 導電性溶液
59 電極挿入口
60 中継流路
61 解析部
62 粒子検出流路
100 流体
100P 流体
100N 流体
101 粒子導入流路
102a~c 粒子回収流路
103a~c 粒子検出部
104a~c アウトレット
110 粒子分離流路
110A 分岐部
110B 粒子拡散流路
10 Microchip 11 Substrate 13 Channel 14, 14a, 14b Inlet 16 Constricted channel 16a Sample liquid side narrowed channel wall 16b Sheath liquid side narrowed channel wall 17 Enlarged channel 17a Sample liquid side enlarged channel wall 17b Sheath liquid side Narrow expansion channel wall surface 18a, 18b Entrance side branch channel 19 Enlargement start point 21 Region 22 Drain channel 23 Outlet 24a, 24b Angle 40 Slope portion 50 Particle 51 Particle flow direction 52 Aperture forming structure 53 Aperture 54, 54a, 54b Electrode 55 Lead wire 56 Electrical measuring device 57 Power supply 58 Conductive solution 59 Electrode insertion port 60 Relay channel 61 Analysis section 62 Particle detection channel 100 Fluid 100P Fluid 100N Fluid 101 Particle introduction channel 102a-c Particle collection channel 103a-c Particle Detection section 104a-c Outlet 110 Particle separation channel 110A Branch section 110B Particle diffusion channel

Claims (5)

ナノ粒子医薬品中に含まれる粒子を検出する方法であって、
粒子をその粒子径に応じて流体の流れに対して垂直方向へ分離し、
分離された粒子を2以上の流路に分断し、
前記流路に設置されたアパーチャを挟んで配置された電極を含む電気検出器で前記粒子を検出し、
前記アパーチャの断面積が異なることで、前記電気検出器で検出できる粒子径範囲が異なることを特徴とする、前記方法。
A method for detecting particles contained in nanoparticle pharmaceuticals, the method comprising:
Separates particles in the direction perpendicular to the fluid flow according to their particle size,
dividing the separated particles into two or more channels,
detecting the particles with an electric detector including electrodes placed across an aperture installed in the flow path ;
The method described above, characterized in that the range of particle diameters that can be detected by the electric detector differs depending on the cross-sectional area of the aperture .
前記電気検出器の検出できる粒子径範囲の一部が重複していることを特徴とする、請求項1に記載の方法。 2. The method according to claim 1 , wherein part of the particle size ranges that can be detected by the electric detectors overlap. 前記流路の本数、分岐部の形状、幅、高さ、長さのうち少なくとも1つのパラメーターが調整され、ある一定以上の大きさの粒子が混入しない流路構造とすることで、粒子を2以上の流路に分断することを特徴とする、請求項1または2に記載の方法。 By adjusting at least one parameter among the number of channels, the shape, width, height, and length of the branch part, and creating a channel structure that does not allow particles of a certain size or more to mix in, particles can be The method according to claim 1 or 2 , characterized in that the flow path is divided into a plurality of channels. ピンチドフローフラクショネーションの原理を利用して、粒子を分離することを特徴とする、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , characterized in that the particles are separated using the principle of pinched flow fractionation. 請求項1~4のいずれかに記載の方法でナノ粒子医薬品中の粒子、凝集体、会合体、融合体のうち少なくとも1つを検出し、
粒子径分布、平均粒径、モード径、中間粒子径、各粒子の体積割合、濃度、個数、積算濃度、積算個数のうち少なくとも1つのパラメーターまたは前記パラメーターの経時変化を測定する方法。
Detecting at least one of particles, aggregates, aggregates, and fusions in nanoparticle pharmaceuticals by the method according to any one of claims 1 to 4 ,
A method for measuring at least one parameter among particle size distribution, average particle size, mode diameter, intermediate particle size, volume ratio of each particle, concentration, number, cumulative concentration, and cumulative number, or a change over time in the parameter.
JP2019115486A 2018-07-25 2019-06-21 Particle detection method Active JP7342448B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018139510 2018-07-25
JP2018139510 2018-07-25
JP2018188426 2018-10-03
JP2018188426 2018-10-03

Publications (2)

Publication Number Publication Date
JP2020056778A JP2020056778A (en) 2020-04-09
JP7342448B2 true JP7342448B2 (en) 2023-09-12

Family

ID=70107097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115486A Active JP7342448B2 (en) 2018-07-25 2019-06-21 Particle detection method

Country Status (1)

Country Link
JP (1) JP7342448B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017440A (en) 2005-07-07 2007-01-25 Fei Co Method and apparatus for statistically characterizing nanoparticles
JP2015058394A (en) 2013-09-18 2015-03-30 凸版印刷株式会社 Component separation method, component analysis method, and component separator
WO2015151226A1 (en) 2014-04-01 2015-10-08 株式会社日立製作所 Particle analysis device and particle analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017440A (en) 2005-07-07 2007-01-25 Fei Co Method and apparatus for statistically characterizing nanoparticles
JP2015058394A (en) 2013-09-18 2015-03-30 凸版印刷株式会社 Component separation method, component analysis method, and component separator
WO2015151226A1 (en) 2014-04-01 2015-10-08 株式会社日立製作所 Particle analysis device and particle analysis method

Also Published As

Publication number Publication date
JP2020056778A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
CN104968417B (en) Efficient separation and manipulation of particles and cells
EP1979467B1 (en) Device and method for particle manipulation in fluid
Ko et al. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices
US20180364186A1 (en) Counting particles using an electrical differential counter
Grenvall et al. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration
CN110506201B (en) Particle detection device and particle detection method
US11633737B2 (en) Microfluidic chip for focussing a stream of particulate containing fluid
Zhang et al. Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing
EP3473317A1 (en) Method for replacing liquid medium and flow path device for said method
Rajawat et al. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry
Fakhfouri et al. Fully microfabricated surface acoustic wave tweezer for collection of submicron particles and human blood cells
Bolze et al. A microfluidic split-flow technology for product characterization in continuous low-volume nanoparticle synthesis
Mohammadi et al. Label-free isolation of circulating tumor cells using negative lateral dielectrophoresis-assisted inertial microfluidics
JP7342448B2 (en) Particle detection method
CN114164104B (en) A single-cell non-Newtonian droplet encapsulation device and method based on microfluidic chip
Liot et al. Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature
JP6403190B2 (en) Microchannel structure and particle separation method
JP7162291B2 (en) Particle separation device and particle separation method
CN105190286A (en) Method for enriching and isolating cells having concentrations over several logarithmic steps
Lim et al. Advanced design of indented-standing surface acoustic wave (i-SSAW) device for platelet-derived microparticle separation from whole blood
JP7103591B2 (en) Particle detector and particle detection method
JP7452022B2 (en) Particle detection fluid
Bagi et al. Size-Based Microparticle Separation via Inertial Lift and Dean Flow in a Spiral Microchannel Device
McPherson et al. A microfluidic passive pumping Coulter counter
JP2019117049A (en) Particle detector and method for detecting particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R151 Written notification of patent or utility model registration

Ref document number: 7342448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151