[go: up one dir, main page]

JP7465739B2 - Gas sensor and protective cover - Google Patents

Gas sensor and protective cover Download PDF

Info

Publication number
JP7465739B2
JP7465739B2 JP2020127253A JP2020127253A JP7465739B2 JP 7465739 B2 JP7465739 B2 JP 7465739B2 JP 2020127253 A JP2020127253 A JP 2020127253A JP 2020127253 A JP2020127253 A JP 2020127253A JP 7465739 B2 JP7465739 B2 JP 7465739B2
Authority
JP
Japan
Prior art keywords
gas
protective cover
cross
space
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020127253A
Other languages
Japanese (ja)
Other versions
JP2021060385A (en
Inventor
洋介 足立
丈史 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to CN202011030588.7A priority Critical patent/CN112611834B/en
Priority to DE102020005914.7A priority patent/DE102020005914A1/en
Priority to US17/038,099 priority patent/US11371975B2/en
Publication of JP2021060385A publication Critical patent/JP2021060385A/en
Application granted granted Critical
Publication of JP7465739B2 publication Critical patent/JP7465739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、ガスセンサ及び保護カバーに関する。 The present invention relates to a gas sensor and a protective cover.

従来、自動車の排気ガスなどの被測定ガスにおけるNOxや酸素などの所定のガス濃度を検出するガスセンサが知られている。例えば、特許文献1には、センサ素子と、センサ素子の先端が内部に配置される内側保護カバーと、内側保護カバーの外側に配置された外側保護カバーと、を備えたガスセンサが記載されている。また、特許文献1には、外側保護カバーに配設され被測定ガスの外部からの入口である1以上の外側入口の合計断面積S1と、外側保護カバーに配設され被測定ガスの外部への出口である1以上の外側出口の合計断面積S2と、の比である断面積比S1/S2を値2.0超過値5.0以下とすることで、ガス濃度検出の応答性をより高めることが記載されている。 Conventionally, gas sensors that detect the concentration of a predetermined gas, such as NOx or oxygen, in a measurement gas, such as automobile exhaust gas, are known. For example, Patent Document 1 describes a gas sensor that includes a sensor element, an inner protective cover in which the tip of the sensor element is disposed, and an outer protective cover disposed on the outside of the inner protective cover. Patent Document 1 also describes that the responsiveness of gas concentration detection is improved by setting the cross-sectional area ratio S1/S2, which is the ratio between the total cross-sectional area S1 of one or more outer inlets, which are disposed in the outer protective cover and serve as inlets from the outside of the measurement gas, and the total cross-sectional area S2 of one or more outer outlets, which are disposed in the outer protective cover and serve as outlets to the outside of the measurement gas, to a value exceeding 2.0 and not exceeding 5.0.

特開2017-223620号公報JP 2017-223620 A

ところで、ガス濃度検出の応答性は、ガスセンサの周辺を流れる被測定ガスの流速によっても変化し、流速が低い場合(例えば2m/s未満)には応答性が低下しやすいという問題があった。 However, the responsiveness of gas concentration detection also varies depending on the flow speed of the measured gas flowing around the gas sensor, and there is a problem in that the responsiveness is easily reduced when the flow speed is low (for example, less than 2 m/s).

本発明はこのような課題を解決するためになされたものであり、被測定ガスの低流速時の応答性の低下を低減することを主目的とする。 The present invention was made to solve these problems, and its main objective is to reduce the decrease in responsiveness when the flow rate of the measured gas is low.

本発明は、上述した主目的を達成するために以下の手段を採った。 The present invention takes the following measures to achieve the above-mentioned main objective.

本発明のガスセンサは、
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子と、
前記センサ素子の先端及び前記ガス導入口が内部に配置されるセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、前記センサ素子を囲む筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記センサ素子の前記先端から後端に向かう方向を上方向とし、前記センサ素子の前記後端から前記先端に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm2以上6.4mm2以下である、
ものである。
The gas sensor of the present invention comprises:
a sensor element having a gas inlet for introducing a gas to be measured and capable of detecting a specific gas concentration of the gas to be measured that has flowed into the sensor element through the gas inlet;
a cylindrical inner protective cover having a sensor element chamber therein in which the tip of the sensor element and the gas inlet are disposed, the sensor element chamber having one or more element chamber inlets which are inlets to the sensor element chamber and one or more element chamber outlets which are outlets from the sensor element chamber;
a cylindrical outer protective cover provided with one or more outer inlets which are inlets for the measurement gas from the outside and one or more outer outlets which are outlets for the measurement gas to the outside, the outer protective cover being disposed outside the inner protective cover;
Equipped with
the outer protective cover and the inner protective cover define, as a space therebetween, a first gas chamber which functions as a flow path for the measurement gas between the outer inlet and the element chamber inlet, and a second gas chamber which functions as a flow path for the measurement gas between the outer outlet and the element chamber outlet and does not directly communicate with the first gas chamber,
the inner protective cover has a cylindrical first member surrounding the sensor element and a cylindrical second member surrounding the first member,
the first member and the second member define the element chamber inlet as a gap therebetween,
a direction parallel to the axial direction of the inner protective cover and from the front end to the rear end of the sensor element is defined as an upward direction, and a direction from the rear end to the front end of the sensor element is defined as a downward direction, and the first gas chamber has: a first space which is a space between the outer protective cover and the second member and functions as a flow path of the measurement gas from the outer inlet toward the upward direction; and a second space which is a space above an upper end of the second member and between the outer protective cover and the first member and functions as a flow path of the measurement gas from the first space to the element chamber inlet,
a cross-sectional area Cs of the second space, which is a flow path cross-sectional area when the measurement gas passes directly above the second member from the outside to the inside of the second member, is 14.0 mm2 or more,
A cross-sectional area Ds, which is a cross-sectional area perpendicular to the circumferential direction of the inner protective cover in the second space, is 0.5 mm 2 or more and 6.4 mm 2 or less.
It is something.

このガスセンサでは、ガスセンサの周囲を流れる被測定ガスは、外側保護カバーの外側入口から第1ガス室のうち第1空間に流入し、第1空間内を上方向に流れて第2空間に到達し、第2空間内を第2部材の外側から内側へ向かって流れて素子室入口に到達し、素子室入口を通ってセンサ素子室内のガス導入口に到達する。ここで、被測定ガスの流速が低流速の場合には、外側入口から流入する被測定ガスの流量が小さいため、素子室入口を通って素子室内に流入する被測定ガスの流量も小さくなり、特定ガス濃度検出の応答性が低下しやすくなる。これに対し、本発明のガスセンサでは、断面積Csが14.0mm2以上であることで、被測定ガスが第2空間内で第2部材の外側から内側へ向かって移動しやすくなる。すなわち第1空間内の被測定ガスが第2空間を通過して素子室入口に向かいやすくなる。これにより、素子室入口に到達する被測定ガスの流量を大きくすることができ、被測定ガスが低流速である場合の特定ガス濃度検出の応答性の低下を抑制できる。また、断面積Dsが6.4mm2以下であることで、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れてしまうことによる応答性の低下を抑制できる。ここで、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れると、被測定ガスが第2空間を通過して素子室入口に到達するまでの時間が長くなって応答性が低下する場合がある。これに対し、断面積Dsが6.4mm2以下であることで、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れにくくなる。したがって、上記のような被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れてしまうことに起因する応答性の低下を抑制できる。以上により、本発明のガスセンサは、被測定ガスの低流速時の応答性の低下を低減できる。断面積Dsは上記の通り値が小さい方が好ましいが、断面積Dsは0.5mm2以上としてもよい。 In this gas sensor, the measurement gas flowing around the gas sensor flows from the outer inlet of the outer protective cover into the first space of the first gas chamber, flows upward in the first space to reach the second space, flows in the second space from the outside to the inside of the second member to reach the element chamber inlet, and reaches the gas inlet in the sensor element chamber through the element chamber inlet. Here, when the flow rate of the measurement gas is low, the flow rate of the measurement gas flowing in from the outer inlet is small, so that the flow rate of the measurement gas flowing into the element chamber through the element chamber inlet is also small, and the response of the specific gas concentration detection is likely to decrease. In contrast, in the gas sensor of the present invention, the cross-sectional area Cs is 14.0 mm 2 or more, so that the measurement gas moves easily from the outside to the inside of the second member in the second space. That is, the measurement gas in the first space passes through the second space and easily moves toward the element chamber inlet. This makes it possible to increase the flow rate of the measurement gas reaching the element chamber inlet, and suppress the decrease in the response of the specific gas concentration detection when the measurement gas flows at a low flow rate. In addition, by making the cross-sectional area Ds 6.4 mm 2 or less, it is possible to suppress a decrease in responsiveness caused by the measurement gas flowing in the second space along the circumferential direction of the inner protective cover. Here, if the measurement gas flows in the second space along the circumferential direction of the inner protective cover, the time it takes for the measurement gas to pass through the second space and reach the inlet of the element chamber may be extended, and the responsiveness may decrease. In contrast, by making the cross-sectional area Ds 6.4 mm 2 or less, it becomes difficult for the measurement gas to flow in the second space along the circumferential direction of the inner protective cover. Therefore, it is possible to suppress a decrease in responsiveness caused by the measurement gas flowing in the second space along the circumferential direction of the inner protective cover. As described above, the gas sensor of the present invention can reduce a decrease in responsiveness when the measurement gas flows at a low flow rate. Although the cross-sectional area Ds is preferably small as described above, the cross-sectional area Ds may be 0.5 mm 2 or more.

本発明のガスセンサにおいて、前記断面積Csが22.9mm2以上であってもよい。こうすれば、被測定ガスが第2空間内で第2部材の外側から内側へ向かってさらに移動しやすくなるため、被測定ガスの低流速時の応答性の低下をより抑制できる。 In the gas sensor of the present invention, the cross-sectional area Cs may be 22.9 mm2 or more. This allows the measurement gas to move more easily from the outside to the inside of the second member in the second space, thereby further suppressing a decrease in responsiveness when the measurement gas flows at a low flow rate.

本発明のガスセンサにおいて、前記断面積Dsが5.0mm2以下であってもよい。こうすれば、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れることをさらに抑制できるため、被測定ガスの低流速時の応答性の低下をより抑制できる。 In the gas sensor of the present invention, the cross-sectional area Ds may be 5.0 mm2 or less. This can further prevent the measurement gas from flowing in the second space along the circumferential direction of the inner protective cover, thereby further preventing a decrease in responsiveness when the measurement gas flows at a low flow rate.

本発明のガスセンサにおいて、前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asと前記1以上の素子室入口の合計断面積である断面積Bsとの断面積比As/Bsが1.41以上4.70以下であってもよい。ここで、断面積Asが小さすぎると、第1空間内の被測定ガスが第2空間内に流入しにくくなり、結果として被測定ガスが素子室入口内に流入しにくくなる。また、断面積Bsが小さすぎると、第2空間内の被測定ガスが素子室入口内に流入しにくくなる。これに対し、断面積比As/Bsが1.41以上4.70以下であれば、断面積As,Bsの大きさのバランスがよいことで、第1空間内の被測定ガスが第2空間を通過して素子室入口に流入しやすくなるため、被測定ガスの低流速時の応答性の低下をより抑制できる。 In the gas sensor of the present invention, the cross-sectional area ratio As/Bs between the cross-sectional area As of the second space inlet, which is the inlet for the measurement gas from the first space to the second space, and the cross-sectional area Bs, which is the total cross-sectional area of the one or more element chamber inlets, may be 1.41 or more and 4.70 or less. Here, if the cross-sectional area As is too small, the measurement gas in the first space does not easily flow into the second space, and as a result, the measurement gas does not easily flow into the element chamber inlet. Also, if the cross-sectional area Bs is too small, the measurement gas in the second space does not easily flow into the element chamber inlet. On the other hand, if the cross-sectional area ratio As/Bs is 1.41 or more and 4.70 or less, the cross-sectional areas As and Bs are well balanced in size, so that the measurement gas in the first space passes through the second space and easily flows into the element chamber inlet, and the decrease in responsiveness at low flow rates of the measurement gas can be further suppressed.

本発明のガスセンサにおいて、前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asが47.3mm2以上68.1mm2以下であってもよい。また、前記1以上の素子室入口の合計断面積である断面積Bsが14.5mm2以上33.4mm2以下であってもよい。 In the gas sensor of the present invention, a cross-sectional area As of a second space inlet, which is an inlet for the measurement gas to flow from the first space to the second space, may be 47.3 mm2 or more and 68.1 mm2 or less. Also, a cross-sectional area Bs which is a total cross-sectional area of the one or more element chamber inlets may be 14.5 mm2 or more and 33.4 mm2 or less.

本発明のガスセンサにおいて、前記第1部材及び前記第2部材は、前記素子室入口のうち前記センサ素子室側の開口部である素子側開口部が前記下方向に向けて開口するように該素子室入口を形成していてもよい。こうすれば、素子側開口部から流出した被測定ガスがセンサ素子の表面(ガス導入口以外の表面)に垂直に当たることを抑制したり、センサ素子の表面上を長い距離通過してからガス導入口に到達することを抑制したりできる。これにより、センサ素子の冷えを抑制できる。しかも、素子側開口部の開口の向きを調整することでセンサ素子の冷えを抑制しており、内側保護カバー内の被測定ガスの流量や流速を減らしているわけではないため、特定ガス濃度検出の応答性の低下も低減できる。これらにより、センサ素子の応答性の低下を抑制しつつ、センサ素子の保温性の低下も抑制できる。ここで、「素子側開口部が下方向に向けて開口する」とは、下方向と平行に開口している場合と、下方に向かうにつれてセンサ素子に近づくように下方向から傾斜して開口している場合とを含む。 In the gas sensor of the present invention, the first member and the second member may form the element chamber inlet such that the element side opening, which is the opening on the sensor element chamber side of the element chamber inlet, opens toward the downward direction. In this way, it is possible to prevent the measured gas flowing out from the element side opening from hitting the surface of the sensor element (surface other than the gas inlet) perpendicularly, or from passing a long distance on the surface of the sensor element before reaching the gas inlet. This can prevent the sensor element from cooling down. Moreover, since the sensor element is prevented from cooling down by adjusting the opening direction of the element side opening, and the flow rate or flow speed of the measured gas in the inner protective cover is not reduced, the deterioration of the responsiveness of the specific gas concentration detection can also be reduced. As a result, the deterioration of the responsiveness of the sensor element can be prevented while the deterioration of the heat retention of the sensor element can be prevented. Here, "the element side opening opens toward the downward direction" includes the case where it opens parallel to the downward direction and the case where it opens at an angle from the downward direction so as to approach the sensor element as it goes downward.

本発明のガスセンサにおいて、前記第1部材は、前記センサ素子を囲む第1円筒部を有しており、前記第2部材は、前記第1円筒部よりも大径の第2円筒部を有しており、前記素子室入口は、前記第1円筒部の外周面と前記第2円筒部の内周面との間の円筒状の隙間であってもよい。 In the gas sensor of the present invention, the first member has a first cylindrical portion surrounding the sensor element, the second member has a second cylindrical portion having a larger diameter than the first cylindrical portion, and the element chamber inlet may be a cylindrical gap between the outer peripheral surface of the first cylindrical portion and the inner peripheral surface of the second cylindrical portion.

本発明の保護カバーは、
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子、を保護するための保護カバーであって、
前記センサ素子の先端及び前記ガス導入口を内部に配置するためのセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記外側保護カバーの底部から該底部とは反対側に向かう方向を上方向とし、前記外側保護カバーの該底部とは反対側から該底部に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm2以上6.4mm2以下である、
ものである。
The protective cover of the present invention is
A protective cover for protecting a sensor element having a gas inlet for introducing a measurement gas and capable of detecting a specific gas concentration of the measurement gas flowing into the sensor element from the gas inlet,
a cylindrical inner protective cover having a sensor element chamber therein for arranging the tip of the sensor element and the gas inlet therein, the sensor element chamber having one or more element chamber inlets which are inlets to the sensor element chamber and one or more element chamber outlets which are outlets from the sensor element chamber;
a cylindrical outer protective cover provided with one or more outer inlets which are inlets for the measurement gas from the outside and one or more outer outlets which are outlets for the measurement gas to the outside, the outer protective cover being disposed outside the inner protective cover;
Equipped with
the outer protective cover and the inner protective cover define, as a space therebetween, a first gas chamber which functions as a flow path for the measurement gas between the outer inlet and the element chamber inlet, and a second gas chamber which functions as a flow path for the measurement gas between the outer outlet and the element chamber outlet and does not directly communicate with the first gas chamber,
The inner protective cover has a cylindrical first member and a cylindrical second member surrounding the first member,
the first member and the second member define the element chamber inlet as a gap therebetween,
a direction parallel to the axial direction of the inner protective cover and from the bottom of the outer protective cover toward the opposite side of the bottom is defined as an upward direction, and a direction from the opposite side of the outer protective cover toward the bottom is defined as a downward direction, the first gas chamber has: a first space which is a space between the outer protective cover and the second member and functions as a flow path of the measurement gas from the outer inlet toward the upward direction; and a second space which is a space above an upper end of the second member and between the outer protective cover and the first member and functions as a flow path of the measurement gas from the first space to the element chamber inlet,
a cross-sectional area Cs of the second space, which is a flow path cross-sectional area when the measurement gas passes directly above the second member from the outside to the inside of the second member, is 14.0 mm2 or more,
A cross-sectional area Ds, which is a cross-sectional area perpendicular to the circumferential direction of the inner protective cover in the second space, is 0.5 mm 2 or more and 6.4 mm 2 or less.
It is something.

この保護カバーのセンサ素子室にセンサ素子の先端及びガス導入口を配置することで、上述した本発明のガスセンサと同様に、被測定ガスの低流速時の応答性の低下を低減する効果が得られる。本発明の保護カバーにおいて、上述したガスセンサの種々の態様を採用してもよい。 By arranging the tip of the sensor element and the gas inlet in the sensor element chamber of this protective cover, the effect of reducing the decrease in responsiveness when the flow rate of the measured gas is low can be obtained, similar to the gas sensor of the present invention described above. Various aspects of the gas sensor described above may be adopted in the protective cover of the present invention.

配管20へのガスセンサ100の取り付け状態の概略説明図。FIG. 2 is a schematic explanatory diagram of a state in which the gas sensor 100 is attached to a pipe 20. 図1のA-A断面図。2 is a cross-sectional view taken along line AA in FIG. 1 . 図2のB-B断面図。3 is a cross-sectional view taken along the line B-B of FIG. 2 . 図3のC-C断面図。3C-C cross-sectional view of FIG. 図3の外側保護カバー140のC-C断面図。4 is a cross-sectional view of the outer protective cover 140 taken along the line CC of FIG. 3. 図3のD視図。FIG. 図4のE-E断面の一部を拡大した断面図。FIG. 5 is an enlarged cross-sectional view of a portion of the E-E cross section of FIG. 4. 変形例のガスセンサ200の縦断面図。FIG. 4 is a vertical cross-sectional view of a gas sensor 200 according to a modified example. 図8の外側保護カバー240のF-F断面図。9 is a cross-sectional view of the outer protective cover 240 taken along the line FF in FIG. 8 . 図8のG視図。FIG. 変形例の素子室入口327を示す断面図。FIG. 13 is a cross-sectional view showing a modified example of an element chamber inlet 327. 変形例のガスセンサ400の縦断面図。FIG. 11 is a vertical cross-sectional view of a gas sensor 400 according to a modified example. 実験例1~4の各々の流速と応答時間との関係を示すグラフ。1 is a graph showing the relationship between flow rate and response time in each of Experimental Examples 1 to 4. 実験例1~4の各々の高さC,断面積Cs,Ds,体積Vと流速1m/sにおける応答時間との関係を示すグラフ。1 is a graph showing the relationship between height C, cross-sectional area Cs, Ds, volume V, and response time at a flow velocity of 1 m/s for each of Experimental Examples 1 to 4.

次に、本発明を実施するための形態を図面を用いて説明する。図1は配管20へのガスセンサ100の取り付け状態の概略説明図である。図2は、図1のA-A断面図である。図3は、図2のB-B断面図である。図4は、図3のC-C断面図である。図5は、図3の外側保護カバー140のC-C断面図である。なお、図5は、図4から第1円筒部134,第2円筒部136,先端部138及びセンサ素子110を除いた図に相当する。図6は、図3のD視図である。図7は、図4のE-E断面の一部を拡大した断面図である。なお、保護カバー120の軸方向に平行且つセンサ素子110の先端から後端に向かう方向(図3,7の上方向)を上方向とし、保護カバー120の軸方向に平行且つセンサ素子110の後端から先端に向かう方向(図3,7の下方向)を下方向とする。 Next, the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram of the state in which the gas sensor 100 is attached to the pipe 20. FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1. FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 2. FIG. 4 is a cross-sectional view taken along the line C-C in FIG. 3. FIG. 5 is a cross-sectional view taken along the line C-C of the outer protective cover 140 in FIG. 3. FIG. 5 corresponds to a view in which the first cylindrical portion 134, the second cylindrical portion 136, the tip portion 138, and the sensor element 110 are removed from FIG. 4. FIG. 6 is a view taken along the line D in FIG. 3. FIG. 7 is a cross-sectional view in which a part of the cross section E-E in FIG. 4 is enlarged. The direction parallel to the axial direction of the protective cover 120 and from the tip to the rear end of the sensor element 110 (the upward direction in FIGS. 3 and 7) is defined as the upward direction, and the direction parallel to the axial direction of the protective cover 120 and from the rear end to the tip of the sensor element 110 (the downward direction in FIGS. 3 and 7) is defined as the downward direction.

図1に示すように、ガスセンサ100は車両のエンジンからの排気経路である配管20内に取り付けられており、エンジンから排出された被測定ガスとしての排気ガスに含まれるNOx,アンモニア,O2等のガス成分のうち少なくともいずれか1つの特定ガスの濃度である特定ガス濃度を検出するようになっている。このガスセンサ100は、図2に示すように、ガスセンサ100の中心軸が配管20内の被測定ガスの流れに垂直な状態で配管20内に固定されている。なお、ガスセンサ100の中心軸が配管20内の被測定ガスの流れに垂直且つ鉛直方向に対して所定の角度(例えば45°)だけ傾いた状態で配管20内に固定されていてもよい。 As shown in Fig. 1, the gas sensor 100 is attached in a pipe 20 which is an exhaust path from a vehicle engine, and is adapted to detect a specific gas concentration, which is the concentration of at least one specific gas among gas components such as NOx, ammonia, O2, etc. contained in exhaust gas as a measurement gas discharged from the engine. As shown in Fig. 2, the gas sensor 100 is fixed in the pipe 20 with the central axis of the gas sensor 100 perpendicular to the flow of the measurement gas in the pipe 20. The gas sensor 100 may be fixed in the pipe 20 with the central axis perpendicular to the flow of the measurement gas in the pipe 20 and tilted at a predetermined angle (e.g., 45°) with respect to the vertical direction.

ガスセンサ100は、図3に示すように、被測定ガス中の特定ガス濃度(NOx,アンモニア,O2等の濃度)を検出する機能を有するセンサ素子110と、このセンサ素子110を保護する保護カバー120とを備えている。また、ガスセンサ100は、金属製のハウジング102及び外周面におねじが設けられた金属製のボルト103を備えている。ハウジング102は配管20に溶接され内周面にめねじが設けられた固定用部材22内に挿入されており、さらにボルト103が固定用部材22内に挿入されることでハウジング102が固定用部材22内に固定されている。これにより、ガスセンサ100が配管20内に固定されている。なお、配管20内の被測定ガスの流れる向きは、図3における左から右に向かう方向である。 As shown in Fig. 3, the gas sensor 100 includes a sensor element 110 having a function of detecting a specific gas concentration (concentration of NOx, ammonia, O2 , etc.) in a measurement gas, and a protective cover 120 for protecting the sensor element 110. The gas sensor 100 also includes a metal housing 102 and a metal bolt 103 having a male thread on its outer circumferential surface. The housing 102 is inserted into a fixing member 22 which is welded to the pipe 20 and has a female thread on its inner circumferential surface, and the housing 102 is fixed in the fixing member 22 by inserting the bolt 103 into the fixing member 22. In this way, the gas sensor 100 is fixed in the pipe 20. The direction of flow of the measurement gas in the pipe 20 is from left to right in Fig. 3.

センサ素子110は、細長な長尺の板状体形状の素子であり、ジルコニア(ZrO2)等の酸素イオン伝導性固体電解質層を複数積層した構造を有している。センサ素子110は、被測定ガスを自身の内部に導入するガス導入口111を有しており、ガス導入口111から内部に流入した被測定ガスの特定ガス濃度を検出可能に構成されている。本実施形態では、ガス導入口111は、センサ素子110の先端面(図3におけるセンサ素子110の下面)に開口しているものとした。センサ素子110は、センサ素子110を加熱して保温する温度調整の役割を担うヒーターを内部に備えている。このようなセンサ素子110の構造や特定ガス濃度を検出する原理は公知であり、例えば特開2008-164411号公報に記載されている。センサ素子110は、先端(図3の下端)及びガス導入口111がセンサ素子室124内に配置されている。なお、センサ素子110の後端から先端に向かう方向(下方向)を先端方向とも称する。 The sensor element 110 is an element in the shape of a long and thin plate, and has a structure in which a plurality of oxygen ion conductive solid electrolyte layers such as zirconia (ZrO 2 ) are laminated. The sensor element 110 has a gas inlet 111 for introducing a measurement gas into itself, and is configured to be able to detect a specific gas concentration of the measurement gas that flows into the inside from the gas inlet 111. In this embodiment, the gas inlet 111 is opened on the tip surface of the sensor element 110 (the lower surface of the sensor element 110 in FIG. 3). The sensor element 110 has a heater inside that plays a role in adjusting the temperature by heating and keeping the sensor element 110 warm. The structure of such a sensor element 110 and the principle of detecting a specific gas concentration are publicly known, and are described in, for example, Japanese Patent Application Laid-Open No. 2008-164411. The sensor element 110 has a tip (the lower end of FIG. 3) and the gas inlet 111 arranged in a sensor element chamber 124. The direction from the rear end of the sensor element 110 toward the front end (downward direction) is also referred to as the front end direction.

また、センサ素子110は、表面の少なくとも一部を覆う多孔質保護層110aを備えている。本実施形態では、多孔質保護層110aは、センサ素子110の6つの表面のうち5面に形成されて、センサ素子室124内に露出した表面のほとんどを覆っている。具体的には、多孔質保護層110aは、センサ素子110のうちガス導入口111が形成された先端面(下面)を全て覆っている。また、多孔質保護層110aは、センサ素子110の先端面に接続される4つの表面(図4のセンサ素子110における上下左右の面)のうちセンサ素子110の先端面に近い側を覆っている。多孔質保護層110aは、例えば、被測定ガス中の水分等が付着してセンサ素子110にクラックが生じるのを抑制する役割を果たす。また、多孔質保護層110aは、被測定ガスに含まれるオイル成分等がセンサ素子110の表面の図示しない電極等に付着するのを抑制する役割を果たす。多孔質保護層110aは、例えばアルミナ多孔質体、ジルコニア多孔質体、スピネル多孔質体、コージェライト多孔質体,チタニア多孔質体、マグネシア多孔質体などの多孔質体からなる。多孔質保護層110aは、例えばプラズマ溶射,スクリーン印刷,ディッピングなどにより形成することができる。なお、多孔質保護層110aは、ガス導入口111も覆っているが、多孔質保護層110aが多孔質体であるため、被測定ガスは多孔質保護層110aの内部を流通してガス導入口111に到達可能である。多孔質保護層110aの厚さは例えば100μm~700μmである。 The sensor element 110 also includes a porous protective layer 110a that covers at least a portion of the surface. In this embodiment, the porous protective layer 110a is formed on five of the six surfaces of the sensor element 110, covering most of the surface exposed in the sensor element chamber 124. Specifically, the porous protective layer 110a covers the entire tip surface (lower surface) of the sensor element 110 on which the gas inlet 111 is formed. The porous protective layer 110a also covers the side closer to the tip surface of the sensor element 110 among the four surfaces (upper, lower, left, and right surfaces of the sensor element 110 in FIG. 4) connected to the tip surface of the sensor element 110. The porous protective layer 110a, for example, plays a role in suppressing the occurrence of cracks in the sensor element 110 due to the adhesion of moisture in the measured gas. The porous protective layer 110a also plays a role in suppressing the adhesion of oil components contained in the measured gas to electrodes (not shown) on the surface of the sensor element 110. The porous protective layer 110a is made of a porous body such as alumina, zirconia, spinel, cordierite, titania, or magnesia. The porous protective layer 110a can be formed by, for example, plasma spraying, screen printing, or dipping. The porous protective layer 110a also covers the gas inlet 111, but since the porous protective layer 110a is a porous body, the gas to be measured can flow through the inside of the porous protective layer 110a and reach the gas inlet 111. The thickness of the porous protective layer 110a is, for example, 100 μm to 700 μm.

保護カバー120は、センサ素子110の周囲を取り囲むように配置されている。この保護カバー120は、センサ素子110の先端を覆う有底筒状の内側保護カバー130と、内側保護カバー130を覆う有底筒状の外側保護カバー140とを有している。また、内側保護カバー130と外側保護カバー140とに囲まれた空間として第1ガス室122,第2ガス室126が形成され、内側保護カバー130に囲まれた空間としてセンサ素子室124が形成されている。なお、ガスセンサ100,センサ素子110,内側保護カバー130,外側保護カバー140の中心軸は同軸になっている。保護カバー120は、金属(例えばSUS310Sなどのステンレス鋼)で形成されている。 The protective cover 120 is arranged to surround the sensor element 110. The protective cover 120 has a cylindrical inner protective cover 130 with a bottom that covers the tip of the sensor element 110, and a cylindrical outer protective cover 140 with a bottom that covers the inner protective cover 130. A first gas chamber 122 and a second gas chamber 126 are formed as spaces surrounded by the inner protective cover 130 and the outer protective cover 140, and a sensor element chamber 124 is formed as a space surrounded by the inner protective cover 130. The central axes of the gas sensor 100, the sensor element 110, the inner protective cover 130, and the outer protective cover 140 are coaxial. The protective cover 120 is made of metal (e.g., stainless steel such as SUS310S).

内側保護カバー130は、第1部材131と、第2部材135と、を備えている。第1部材131は、円筒状の大径部132と、円筒状で大径部132よりも径の小さい第1円筒部134と、大径部132と第1円筒部134とを接続する段差部133と、を有している。第1円筒部134は、センサ素子110の周囲を囲んでいる。第2部材135は、第1円筒部134よりも径が大きい第2円筒部136と、第2円筒部136よりもセンサ素子110の先端方向(下方向)に位置する先端部138と、先端部138の上端に接続して配設され先端部138の外周面よりも外側に突出する段差部139と、第2円筒部136の下端と段差部139とを接続する接続部137と、を有している。先端部138は、側部138dと底部138eとを有している。先端部138には、センサ素子室124と第2ガス室126とに通じ、センサ素子室124からの被測定ガスの出口である1以上の素子室出口138aが形成されている。素子室出口138aは、側部138dに等間隔に形成された複数(本実施形態では4個)の円形の横孔138bを有している。素子室出口138aは、先端部138の底部138eには配設されていない。素子室出口138aの径は、例えば0.5mm~2.6mmである。本実施形態では、複数の横孔138bの径はいずれも同じ値とした。素子室出口138aは、ガス導入口111よりもセンサ素子110の先端方向(下方向)の位置に形成されている。換言すると、素子室出口138aは、センサ素子110の後端(図3におけるセンサ素子110の図示しない上端)から見てガス導入口111よりも遠く(下方向)に位置している。 The inner protective cover 130 includes a first member 131 and a second member 135. The first member 131 includes a cylindrical large diameter portion 132, a cylindrical first cylindrical portion 134 having a smaller diameter than the large diameter portion 132, and a step portion 133 connecting the large diameter portion 132 and the first cylindrical portion 134. The first cylindrical portion 134 surrounds the periphery of the sensor element 110. The second member 135 includes a second cylindrical portion 136 having a larger diameter than the first cylindrical portion 134, a tip portion 138 located in the tip direction (downward direction) of the sensor element 110 than the second cylindrical portion 136, a step portion 139 connected to the upper end of the tip portion 138 and protruding outward from the outer circumferential surface of the tip portion 138, and a connection portion 137 connecting the lower end of the second cylindrical portion 136 and the step portion 139. The tip portion 138 has a side portion 138d and a bottom portion 138e. The tip portion 138 is formed with one or more element chamber outlets 138a which communicate with the sensor element chamber 124 and the second gas chamber 126 and serve as outlets for the measurement gas from the sensor element chamber 124. The element chamber outlets 138a have a plurality of (four in this embodiment) circular horizontal holes 138b formed at equal intervals on the side portion 138d. The element chamber outlets 138a are not provided on the bottom portion 138e of the tip portion 138. The diameter of the element chamber outlets 138a is, for example, 0.5 mm to 2.6 mm. In this embodiment, the diameters of the multiple horizontal holes 138b are all the same value. The element chamber outlets 138a are formed at a position toward the tip (downward) of the sensor element 110 relative to the gas inlet 111. In other words, the element chamber outlet 138a is located farther (downward) than the gas inlet 111 when viewed from the rear end of the sensor element 110 (the upper end of the sensor element 110, not shown in FIG. 3).

大径部132,第1円筒部134,第2円筒部136,先端部138は中心軸が同一である。大径部132は、ハウジング102に内周面が当接しており、これにより第1部材131がハウジング102に固定されている。第2部材135は、接続部137の外周面が外側保護カバー140の内周面と当接しており溶接などにより固定されている。なお、接続部137の先端側(下端側)の外径を外側保護カバー140の先端部146の内径よりわずかに大きく形成し、接続部137の先端部分を先端部146内に圧入することで、第2部材135を固定してもよい。 The large diameter portion 132, the first cylindrical portion 134, the second cylindrical portion 136, and the tip portion 138 share the same central axis. The large diameter portion 132 has an inner peripheral surface that abuts against the housing 102, thereby fixing the first member 131 to the housing 102. The second member 135 has an outer peripheral surface of a connection portion 137 that abuts against an inner peripheral surface of the outer protective cover 140 and is fixed by welding or the like. The outer diameter of the tip side (lower end side) of the connection portion 137 may be formed slightly larger than the inner diameter of the tip portion 146 of the outer protective cover 140, and the tip portion of the connection portion 137 may be press-fitted into the tip portion 146 to fix the second member 135.

第2円筒部136の内周面には、第1円筒部134の外周面に向けて突出してこの外周面に接している複数の突出部136aが形成されている。図4に示すように、突出部136aは3個設けられ、第2円筒部136の内周面の周方向に沿って均等に配置されている。突出部136aは、略半球形状に形成されている。このような突出部136aが設けられていることで、突出部136aによって第1円筒部134と第2円筒部136との位置関係が固定されやすくなっている。なお、突出部136aは、第1円筒部134の外周面を径方向内側に向けて押圧していることが好ましい。こうすれば、突出部136aによって第1円筒部134と第2円筒部136との位置関係をより確実に固定できる。なお、突出部136aは、3個に限らず2個や4個以上としてもよい。なお、第1円筒部134と第2円筒部136との固定が安定化しやすいため、突出部136aは3個以上とすることが好ましい。 On the inner peripheral surface of the second cylindrical portion 136, a plurality of protruding portions 136a are formed, which protrude toward the outer peripheral surface of the first cylindrical portion 134 and contact this outer peripheral surface. As shown in FIG. 4, three protruding portions 136a are provided and are evenly arranged along the circumferential direction of the inner peripheral surface of the second cylindrical portion 136. The protruding portions 136a are formed in an approximately hemispherical shape. By providing such protruding portions 136a, the positional relationship between the first cylindrical portion 134 and the second cylindrical portion 136 is easily fixed by the protruding portions 136a. It is preferable that the protruding portions 136a press the outer peripheral surface of the first cylindrical portion 134 toward the inside in the radial direction. In this way, the positional relationship between the first cylindrical portion 134 and the second cylindrical portion 136 can be more reliably fixed by the protruding portions 136a. It is preferable that the number of protruding portions 136a is not limited to three, but may be two or four or more. In addition, it is preferable to have three or more protrusions 136a, as this makes it easier to stabilize the fixation between the first cylindrical portion 134 and the second cylindrical portion 136.

この内側保護カバー130は、第1部材131と第2部材135との隙間でありセンサ素子室124への被測定ガスの入口である素子室入口127(図3,4,7参照)を形成している。素子室入口127は、より具体的には、第1円筒部134の外周面と第2円筒部136の内周面との間の円筒状の隙間(ガス流路)として形成されている。素子室入口127は、外側入口144aの配置された空間である第1ガス室122側の開口部である外側開口部128と、ガス導入口111の配置された空間であるセンサ素子室124側の開口部である素子側開口部129と、を有している。外側開口部128は、素子側開口部129よりもセンサ素子110の後端側(上側)に形成されている。そのため、外側入口144aからガス導入口111に達するまでの被測定ガスの経路中で、素子室入口127はセンサ素子110の後端側(上側)から先端側(下側)へ向かう流路となっている。また、素子室入口127は、センサ素子110の後端-先端方向に平行な流路(上下方向に平行な流路)となっている。 This inner protective cover 130 forms an element chamber inlet 127 (see Figs. 3, 4, and 7) which is a gap between the first member 131 and the second member 135 and is an inlet for the measured gas to the sensor element chamber 124. More specifically, the element chamber inlet 127 is formed as a cylindrical gap (gas flow path) between the outer peripheral surface of the first cylindrical portion 134 and the inner peripheral surface of the second cylindrical portion 136. The element chamber inlet 127 has an outer opening 128 which is an opening on the first gas chamber 122 side, which is the space in which the outer inlet 144a is arranged, and an element side opening 129 which is an opening on the sensor element chamber 124 side, which is the space in which the gas inlet 111 is arranged. The outer opening 128 is formed on the rear end side (upper side) of the sensor element 110 than the element side opening 129. Therefore, in the path of the measurement gas from the outer inlet 144a to the gas introduction port 111, the element chamber inlet 127 is a flow path from the rear end (upper side) to the tip end (lower side) of the sensor element 110. In addition, the element chamber inlet 127 is a flow path parallel to the rear end-to-tip direction of the sensor element 110 (a flow path parallel to the up-down direction).

素子側開口部129は、センサ素子110の後端から先端へ向かう方向(下方向)に開口し且つセンサ素子110の後端-先端方向(上下方向)に平行に開口している。すなわち、素子側開口部129は、下方向と平行に開口している。そのため、センサ素子110は、素子側開口部129から素子室入口127を仮想的に延長した領域(図3,7における素子側開口部129の真下の領域)以外の位置に、配置されている。これにより、素子側開口部129から流出した被測定ガスがセンサ素子110の表面に直接当たることを抑制でき、センサ素子110の冷えを抑制できる。 The element side opening 129 opens in the direction from the rear end to the tip of the sensor element 110 (downward) and parallel to the rear end-to-tip direction (up-down direction) of the sensor element 110. That is, the element side opening 129 opens parallel to the downward direction. Therefore, the sensor element 110 is disposed at a position other than the region that is a virtual extension of the element chamber entrance 127 from the element side opening 129 (the region directly below the element side opening 129 in Figures 3 and 7). This prevents the measurement gas flowing out from the element side opening 129 from directly hitting the surface of the sensor element 110, and prevents the sensor element 110 from cooling down.

第1円筒部134の外周面と第2円筒部136の内周面とは、素子側開口部129において円筒の径方向に距離A4(図7参照)だけ離れており、外側開口部128において円筒の径方向に距離A5だけ離れている。また、第1円筒部134の外周面と第2円筒部136の内周面とは、突出部136aと第1円筒部134とが接触する部分(図4に示した断面)において距離A7だけ離れている。距離A4,距離A5,距離A7は、例えばそれぞれ0.3mm~2.4mmである。距離A4,距離A5,距離A7は、0.51mm以上としてもよいし、1.18mm以下としてもよい。距離A4,距離A5の値を調整することで、素子側開口部129の開口面積や外側開口部128の開口面積を調整することができる。本実施形態では、距離A4,距離A5,距離A7は等しいものとし、素子側開口部129の開口面積と外側開口部128の開口面積とが等しいものとした。なお、本実施形態では、距離A4(距離A5,距離A7)は、第1円筒部134の外径と第2円筒部136の内径との差の半分の値と同じである。また、素子側開口部129と外側開口部128との上下方向の距離、すなわち素子室入口127の上下方向の距離L(素子室入口127の経路長に相当)は、例えば0mm超過6.6mm以下である。距離Lは3mm以上としてもよいし、5mm以下としてもよい。また、第1円筒部134の下端と接続部137との最小距離を、距離A6とする(図7参照)。距離A6は距離A4,A5,A7よりも大きい値としてもよいし、同じ値としてもよいし、小さい値としてもよい。 The outer peripheral surface of the first cylindrical portion 134 and the inner peripheral surface of the second cylindrical portion 136 are separated by a distance A4 (see FIG. 7) in the radial direction of the cylinder at the element side opening 129, and are separated by a distance A5 in the radial direction of the cylinder at the outer opening 128. The outer peripheral surface of the first cylindrical portion 134 and the inner peripheral surface of the second cylindrical portion 136 are separated by a distance A7 at the portion where the protrusion 136a and the first cylindrical portion 134 contact each other (the cross section shown in FIG. 4). The distances A4, A5, and A7 are, for example, 0.3 mm to 2.4 mm, respectively. The distances A4, A5, and A7 may be 0.51 mm or more, or 1.18 mm or less. By adjusting the values of the distances A4 and A5, the opening area of the element side opening 129 and the opening area of the outer opening 128 can be adjusted. In this embodiment, the distances A4, A5, and A7 are equal, and the opening area of the element side opening 129 is equal to the opening area of the outer opening 128. In this embodiment, the distance A4 (distance A5, distance A7) is equal to half the difference between the outer diameter of the first cylindrical portion 134 and the inner diameter of the second cylindrical portion 136. In addition, the vertical distance between the element side opening 129 and the outer opening 128, that is, the vertical distance L of the element chamber inlet 127 (corresponding to the path length of the element chamber inlet 127) is, for example, more than 0 mm and 6.6 mm or less. The distance L may be 3 mm or more, or 5 mm or less. The minimum distance between the lower end of the first cylindrical portion 134 and the connection portion 137 is the distance A6 (see FIG. 7). The distance A6 may be greater than, equal to, or smaller than the distances A4, A5, and A7.

外側保護カバー140は、図3に示すように、円筒状の大径部142と、大径部142に接続しており大径部142よりも径の小さい円筒状の胴部143と、有底筒状で胴部143よりも内径の小さい先端部146とを有している。また、胴部143は、外側保護カバー140の中心軸方向(上下方向)に沿った側面をもつ側部143aと、胴部143の底部であり側部143aと先端部146とを接続する段差部143bと、を有している。なお、大径部142,胴部143,先端部146の中心軸はいずれも内側保護カバー130の中心軸と同一である。大径部142は、ハウジング102及び大径部132に内周面が当接しており、これにより外側保護カバー140がハウジング102に固定されている。胴部143は、第1円筒部134,第2円筒部136の外周を覆うように位置している。大径部142と胴部143とは、径が同じであってもよい。先端部146は、先端部138を覆うように位置していると共に、内周面が接続部137の外周面と当接している。先端部146は、外側保護カバー140の中心軸方向(上下方向)に沿った側面を有し外径が側部143aの内径よりも小さい側部146aと、外側保護カバー140の底部である底部146bと、側部146aと底部146bとを接続し側部146aから底部146bに向けて縮径するテーパー部146cと、を有している。先端部146は、胴部143よりも先端方向側(下側)に位置している。この外側保護カバー140は、胴部143に形成され被測定ガスの外部からの入口である1以上(本実施形態では複数であり、具体的には12個)の外側入口144aと、先端部146に形成され被測定ガスの外部への出口である1以上の外側出口147aとを有している。 As shown in FIG. 3, the outer protective cover 140 has a cylindrical large diameter portion 142, a cylindrical body portion 143 that is connected to the large diameter portion 142 and has a smaller diameter than the large diameter portion 142, and a tip portion 146 that is a bottomed tube with an inner diameter smaller than the body portion 143. The body portion 143 has a side portion 143a that has a side surface along the central axis direction (up and down direction) of the outer protective cover 140, and a step portion 143b that is the bottom of the body portion 143 and connects the side portion 143a and the tip portion 146. The central axes of the large diameter portion 142, the body portion 143, and the tip portion 146 are all the same as the central axis of the inner protective cover 130. The inner peripheral surface of the large diameter portion 142 abuts against the housing 102 and the large diameter portion 132, thereby fixing the outer protective cover 140 to the housing 102. The body 143 is positioned so as to cover the outer periphery of the first cylindrical portion 134 and the second cylindrical portion 136. The large diameter portion 142 and the body 143 may have the same diameter. The tip portion 146 is positioned so as to cover the tip portion 138, and the inner peripheral surface abuts against the outer peripheral surface of the connecting portion 137. The tip portion 146 has a side portion 146a having a side surface along the central axis direction (vertical direction) of the outer protective cover 140 and an outer diameter smaller than the inner diameter of the side portion 143a, a bottom portion 146b which is the bottom portion of the outer protective cover 140, and a tapered portion 146c which connects the side portion 146a and the bottom portion 146b and reduces in diameter from the side portion 146a to the bottom portion 146b. The tip portion 146 is positioned on the tip direction side (lower side) than the body 143. This outer protective cover 140 has one or more (in this embodiment, multiple, specifically 12) outer inlets 144a formed in the body 143, which are inlets for the measured gas from the outside, and one or more outer outlets 147a formed in the tip 146, which are outlets for the measured gas to the outside.

外側入口144aは、外側保護カバー140の外側(外部)と第1ガス室122とに通じる孔である。外側入口144aは、側部143aに等間隔に形成された複数(本実施形態では6個)の横孔144bと、段差部143bに等間隔に形成された複数(本実施形態では6個)の縦孔144cとを有している(図3~6)。この外側入口144a(横孔144b及び縦孔144c)は、円形(真円)に開けられた孔である。この12個の外側入口144aの径は、例えば0.5mm~2mmである。外側入口144aの径は、1.5mm以下としてもよい。なお、本実施形態では、複数の横孔144bの径はいずれも同じ値とし、複数の縦孔144cの径はいずれも同じ値とした。また、横孔144bの径は縦孔144cの径よりも大きい値とした。なお、外側入口144aは、図4,5に示すように、外側保護カバー140の周方向に沿って横孔144bと縦孔144cとが交互に等間隔に位置するように形成されている。すなわち、図4,5における横孔144bの中心と外側保護カバー140の中心軸とを結んだ線と、その横孔144bに隣接する縦孔144cの中心と外側保護カバー140の中心軸とを結んだ線と、のなす角が30°(360°/12個)となっている。 The outer inlet 144a is a hole that connects the outside (outside) of the outer protective cover 140 to the first gas chamber 122. The outer inlet 144a has a plurality of (six in this embodiment) horizontal holes 144b formed at equal intervals in the side portion 143a and a plurality of (six in this embodiment) vertical holes 144c formed at equal intervals in the step portion 143b (FIGS. 3 to 6). The outer inlet 144a (horizontal holes 144b and vertical holes 144c) are holes that are opened in a circular (perfect circle). The diameter of the 12 outer inlets 144a is, for example, 0.5 mm to 2 mm. The diameter of the outer inlet 144a may be 1.5 mm or less. In this embodiment, the diameters of the multiple horizontal holes 144b are all the same value, and the diameters of the multiple vertical holes 144c are all the same value. The diameter of the horizontal holes 144b is also set to a value larger than the diameter of the vertical holes 144c. As shown in Figures 4 and 5, the outer inlet 144a is formed such that the horizontal holes 144b and the vertical holes 144c are alternately positioned at equal intervals along the circumferential direction of the outer protective cover 140. That is, the angle between the line connecting the center of the horizontal hole 144b in Figures 4 and 5 to the central axis of the outer protective cover 140 and the line connecting the center of the vertical hole 144c adjacent to the horizontal hole 144b to the central axis of the outer protective cover 140 is 30° (360°/12 pieces).

外側出口147aは、外側保護カバー140の外側(外部)と第2ガス室126とに通じる孔である。この外側出口147aは、先端部146の底部146bの中心に形成された1つの縦孔147cを有している(図3,5,6参照)。なお、外側入口144aとは異なり、外側出口147aは、外側保護カバー140の側部(ここでは先端部146の側部146a)には配設されていない。この外側出口147a(ここでは縦孔147c)は、円形(真円)に開けられた孔である。この外側出口147aの径は、例えば0.5mm~2.5mmである。外側出口147aの径は、1.5mm以下としてもよい。なお、本実施形態では、縦孔147cの径は、横孔144bや縦孔144cの径よりも大きい値とした。 The outer outlet 147a is a hole that communicates with the outside (outside) of the outer protective cover 140 and the second gas chamber 126. The outer outlet 147a has one vertical hole 147c formed in the center of the bottom 146b of the tip 146 (see Figures 3, 5, and 6). Unlike the outer inlet 144a, the outer outlet 147a is not disposed on the side of the outer protective cover 140 (here, the side 146a of the tip 146). The outer outlet 147a (here, the vertical hole 147c) is a hole that is opened in a circular shape (a perfect circle). The diameter of the outer outlet 147a is, for example, 0.5 mm to 2.5 mm. The diameter of the outer outlet 147a may be 1.5 mm or less. In this embodiment, the diameter of the vertical hole 147c is set to a value larger than the diameters of the horizontal hole 144b and the vertical hole 144c.

外側保護カバー140及び内側保護カバー130は、胴部143と内側保護カバー130との間の空間として第1ガス室122を形成している。より具体的には、第1ガス室122は、段差部133,第1円筒部134,第2円筒部136,側部143a、段差部143bにより囲まれた空間である。センサ素子室124は、内側保護カバー130により囲まれた空間である。外側保護カバー140及び内側保護カバー130は、先端部146と内側保護カバー130との間の空間として第2ガス室126を形成している。より具体的には、第2ガス室126は、先端部138と先端部146とに囲まれた空間である。なお、先端部146の内周面が接続部137の外周面と当接しているため、第1ガス室122と第2ガス室126とは直接には連通していない。 The outer protective cover 140 and the inner protective cover 130 form a first gas chamber 122 as a space between the body 143 and the inner protective cover 130. More specifically, the first gas chamber 122 is a space surrounded by the step portion 133, the first cylindrical portion 134, the second cylindrical portion 136, the side portion 143a, and the step portion 143b. The sensor element chamber 124 is a space surrounded by the inner protective cover 130. The outer protective cover 140 and the inner protective cover 130 form a second gas chamber 126 as a space between the tip portion 146 and the inner protective cover 130. More specifically, the second gas chamber 126 is a space surrounded by the tip portion 138 and the tip portion 146. Note that since the inner peripheral surface of the tip portion 146 abuts against the outer peripheral surface of the connection portion 137, the first gas chamber 122 and the second gas chamber 126 are not directly connected.

また、図7に示すように、第1ガス室122は、第1空間122aと、第2空間122bと、を有している。第1空間122aは、外側保護カバー140と内側保護カバー130の第2部材135との間の空間であり、外側入口144aから上方向に向かう被測定ガスの流路として機能する。第1空間122aは、より具体的には、側部143a,段差部143b,第2円筒部136で囲まれた空間であり、第2部材135の上端(ここでは第2円筒部136の上端)よりも下方の空間である。第1空間122aは、外側保護カバー140の内周面と第2円筒部136の外周面との間の円筒状の隙間である。第2空間122bは、第2部材135の上端(ここでは第2円筒部136の上端)よりも上方且つ外側保護カバー140と第1部材131(ここでは第1円筒部134)との間の空間である。第2空間122bは、第1空間122aから素子室入口127までの被測定ガスの流路として機能する。第2空間122bは、外側保護カバー140の内周面と第1円筒部134の外周面との間の円筒状の隙間である。 7, the first gas chamber 122 has a first space 122a and a second space 122b. The first space 122a is a space between the outer protective cover 140 and the second member 135 of the inner protective cover 130, and functions as a flow path of the measurement gas from the outer inlet 144a upward. More specifically, the first space 122a is a space surrounded by the side portion 143a, the step portion 143b, and the second cylindrical portion 136, and is a space below the upper end of the second member 135 (here, the upper end of the second cylindrical portion 136). The first space 122a is a cylindrical gap between the inner circumferential surface of the outer protective cover 140 and the outer circumferential surface of the second cylindrical portion 136. The second space 122b is a space above the upper end of the second member 135 (here, the upper end of the second cylindrical portion 136) and between the outer protective cover 140 and the first member 131 (here, the first cylindrical portion 134). The second space 122b functions as a flow path for the measurement gas from the first space 122a to the element chamber inlet 127. The second space 122b is a cylindrical gap between the inner circumferential surface of the outer protective cover 140 and the outer circumferential surface of the first cylindrical portion 134.

第1空間122aから第2空間122bへの被測定ガスの流入口を第2空間入口122cと称する。第2空間入口122cは、外側保護カバー140の内周面と第2円筒部136の外周面の上端との間のリング状の隙間である。外側入口144aは、いずれも、第2空間入口122cよりも下方に位置している。言い換えると、外側入口144aは、いずれも、第2部材135の上端(ここでは第2円筒部136の上端)よりも下方に位置している。第2空間入口122cの径方向の幅、すなわち、外側保護カバー140の内周面の半径と第2円筒部136の外周面の上端の半径との差を、距離A1と称する(図7参照)。また、第2空間入口122cの断面積(開口面積)を、断面積Asと称する。断面積Asは、上下方向に垂直な面の面積とする。本実施形態では、断面積As=(側部143aの内径を直径とする円の面積)-(第2円筒部136の外径を直径とする円の面積)である。距離A1は、例えば1.18mm以上としてもよいし、1.85mm以下としてもよい。距離A1は、距離A4,A5,A7以上の値としてもよい。比A/A4は、1.0以上3.63以下としてもよい。比A/A5及び比A/A7についても同様に、1.0以上3.63以下としてもよい。断面積Asは、例えば47.3mm2以上としてもよいし、68.1mm2以下としてもよい。 The inlet of the measurement gas from the first space 122a to the second space 122b is called the second space inlet 122c. The second space inlet 122c is a ring-shaped gap between the inner circumferential surface of the outer protective cover 140 and the upper end of the outer circumferential surface of the second cylindrical portion 136. All of the outer inlets 144a are located below the second space inlet 122c. In other words, all of the outer inlets 144a are located below the upper end of the second member 135 (here, the upper end of the second cylindrical portion 136). The radial width of the second space inlet 122c, that is, the difference between the radius of the inner circumferential surface of the outer protective cover 140 and the radius of the upper end of the outer circumferential surface of the second cylindrical portion 136, is called the distance A1 (see FIG. 7). The cross-sectional area (opening area) of the second space inlet 122c is called the cross-sectional area As. The cross-sectional area As is the area of a surface perpendicular to the up-down direction. In this embodiment, the cross-sectional area As=(area of a circle having a diameter equal to the inner diameter of the side portion 143a)−(area of a circle having a diameter equal to the outer diameter of the second cylindrical portion 136). The distance A1 may be, for example, 1.18 mm or more, or 1.85 mm or less. The distance A1 may be a value equal to or greater than the distances A4, A5, and A7. The ratio A/A4 may be 1.0 or more and 3.63 or less. Similarly, the ratios A/A5 and A/A7 may be 1.0 or more and 3.63 or less. The cross-sectional area As may be, for example, 47.3 mm 2 or more, or 68.1 mm 2 or less.

上述した外側開口部128は、第2空間122bから素子室入口127への出口(第2空間出口)でもある。また、素子室入口127の断面積(流路断面積)を、断面積Bsと称する。断面積Bsは、素子室入口127を通過する被測定ガスの向き(ここでは下方向)に垂直な方向の面積とする。また、素子室入口127内の被測定ガスの流路断面積が一定ではない場合には、その最小値を断面積Bsとする。例えば、本実施形態では、距離A4,A5が等しいため外側開口部128と素子側開口部129とは開口面積(=流路断面積)が等しいが、これらの開口面積よりも、素子室入口127のうち突出部136aが存在する部分における流路断面積の方が断面積が小さくなっている。そのため、本実施形態では、素子室入口127のうち突出部136aが最も突出している断面、すなわち図4に示す断面における素子室入口127の断面積を、断面積Bsとする。そのため、本実施形態では、断面積Bs=(第2円筒部136の内径を直径とする円の面積)-(第1円筒部134の外径を直径とする円の面積)-(図4の断面における突出部136aによる素子室入口127の断面積の減少分の絶対値)×(突出部136aの個数)である。断面積Bsは、例えば14.5mm2以上としてもよいし、33.4mm2以下としてもよい。 The outer opening 128 described above is also an outlet (second space outlet) from the second space 122b to the element chamber inlet 127. The cross-sectional area (flow path cross-sectional area) of the element chamber inlet 127 is referred to as the cross-sectional area Bs. The cross-sectional area Bs is an area in a direction perpendicular to the direction (here, downward) of the measurement gas passing through the element chamber inlet 127. In addition, when the flow path cross-sectional area of the measurement gas in the element chamber inlet 127 is not constant, the minimum value is taken as the cross-sectional area Bs. For example, in this embodiment, the distances A4 and A5 are equal, so that the outer opening 128 and the element side opening 129 have the same opening area (=flow path cross-sectional area), but the flow path cross-sectional area of the part of the element chamber inlet 127 where the protruding portion 136a exists is smaller than these opening areas. Therefore, in this embodiment, the cross-sectional area of the element chamber inlet 127 at the cross section where the protruding portion 136a of the element chamber inlet 127 is most protruding, that is, the cross-sectional area of the element chamber inlet 127 at the cross section shown in FIG. 4 is taken as the cross-sectional area Bs. Therefore, in this embodiment, cross-sectional area Bs = (area of a circle whose diameter is the inner diameter of second cylindrical portion 136) - (area of a circle whose diameter is the outer diameter of first cylindrical portion 134) - (absolute value of reduction in cross-sectional area of element chamber inlet 127 due to protruding portions 136a in the cross section of Figure 4) x (number of protruding portions 136a). Cross-sectional area Bs may be, for example, 14.5 mm2 or more, or 33.4 mm2 or less.

第2空間122bのうち、被測定ガスが第2部材135の直上(ここでは第2円筒部136の直上)を第2部材135の外側から内側へ向かって通過(図7では左から右へ通過)する際の断面を、流路断面122dと称する。また、流路断面122dの上下方向の長さを高さCと称し、流路断面122dの断面積を断面積Csと称する。断面積Csは、直径が第2円筒部136の内径と同じである高さCの円柱の外周面の面積と同じである。すなわち断面積Cs=(第2円筒部136の内径)×π×(高さC)である。流路断面122dは、第2空間122bのうち内側保護カバー130の中心へ向かう径方向に垂直な面且つ第2円筒部136の直上の面の断面であり、第2部材135の直上のうち断面積が最も小さくなるような位置の断面として定める。例えば、本実施形態では、第2円筒部136の外周面の直上よりも第2円筒部136の内周面の直上の方が径方向に垂直な第2空間122bの断面積は小さくなる。そのため、第2空間122bのうち内側保護カバー130の径方向に垂直且つ第2円筒部136の内周面の直上の断面を、流路断面122dとして定める。高さCは、例えば0.47mm以上としてもよいし、0.75mm以上としてもよい。高さCは、2.35mm以下としてもよいし、1.87mm以下としてもよい。 In the second space 122b, the cross section when the measurement gas passes from the outside to the inside of the second member 135 (here, directly above the second cylindrical portion 136) (passing from left to right in FIG. 7) is called the flow passage cross section 122d. The vertical length of the flow passage cross section 122d is called the height C, and the cross-sectional area of the flow passage cross section 122d is called the cross-sectional area Cs. The cross-sectional area Cs is the same as the area of the outer circumferential surface of a cylinder of height C whose diameter is the same as the inner diameter of the second cylindrical portion 136. That is, the cross-sectional area Cs = (inner diameter of the second cylindrical portion 136) x π x (height C). The flow passage cross section 122d is a cross section of a surface perpendicular to the radial direction toward the center of the inner protective cover 130 in the second space 122b and a surface directly above the second cylindrical portion 136, and is defined as the cross section at the position directly above the second member 135 where the cross-sectional area is the smallest. For example, in this embodiment, the cross-sectional area of the second space 122b perpendicular to the radial direction is smaller directly above the inner peripheral surface of the second cylindrical portion 136 than directly above the outer peripheral surface of the second cylindrical portion 136. Therefore, the cross section of the second space 122b perpendicular to the radial direction of the inner protective cover 130 and directly above the inner peripheral surface of the second cylindrical portion 136 is defined as the flow path cross section 122d. The height C may be, for example, 0.47 mm or more, or 0.75 mm or more. The height C may be 2.35 mm or less, or 1.87 mm or less.

第2空間122bのうち、内側保護カバー130の周方向に垂直な断面積を、断面積Dsと称する。断面積Dsは、図7の断面で図示されている第2空間122bの面積(略四角形状の面積)である。本実施形態では、断面積Ds={(側部143aの内径)-(第1円筒部134の外径)}÷2×(高さC)である。言い換えると、断面積Ds={A+A5+(第2円筒部136の厚さ)}×(高さC)である。 Within the second space 122b, a cross-sectional area perpendicular to the circumferential direction of the inner protective cover 130 is referred to as a cross-sectional area Ds. The cross-sectional area Ds is the area of the second space 122b (the area of a substantially rectangular shape) shown in the cross section of Fig. 7. In this embodiment, the cross-sectional area Ds = {(inner diameter of the side portion 143a) - (outer diameter of the first cylindrical portion 134)} ÷ 2 x (height C). In other words, the cross-sectional area Ds = {A 1 + A5 + (thickness of the second cylindrical portion 136)} x (height C).

第2空間122bの体積Vは、例えば43mm3以上としてもよいし、70mm3以上としてもよい。第2空間122bの体積Vは、例えば223mm3以下としてもよいし、174mm3以下としてもよい。本実施形態では、体積V={(側部143aの内径を直径とする円の面積)-(第1円筒部134の外径を直径とする円の面積)}×(高さC)である。 The volume V of the second space 122b may be, for example, 43 mm3 or more, or 70 mm3 or more. The volume V of the second space 122b may be, for example, 223 mm3 or less, or 174 mm3 or less. In this embodiment, volume V = {(area of a circle whose diameter is the inner diameter of the side portion 143a) - (area of a circle whose diameter is the outer diameter of the first cylindrical portion 134)} x (height C).

ここで、ガスセンサ100が特定ガス濃度を検出する際の保護カバー120内の被測定ガスの流れについて説明する。配管20内を流れる被測定ガスは、まず、複数の外側入口144a(横孔144b及び縦孔144c)の少なくともいずれかを通って第1ガス室122内に流入する。次に、被測定ガスは、第1ガス室122から外側開口部128を経て素子室入口127に流入し、素子室入口127を経て素子側開口部129から流出して、センサ素子室124に流入する。素子側開口部129からセンサ素子室124内に流入した被測定ガスは、少なくとも一部がセンサ素子110のガス導入口111に到達する。被測定ガスがガス導入口111に到達してセンサ素子110の内部に流入すると、この被測定ガス中の特定ガス濃度に応じた電気信号(電圧又は電流)をセンサ素子110が発生させ、この電気信号に基づいて特定ガス濃度が検出される。また、センサ素子室124内の被測定ガスは、素子室出口138a(横孔138b)の少なくともいずれかを通って第2ガス室126に流入し、そこから外側出口147aを通って外部に流出する。なお、センサ素子110は、所定の温度を保つように内部のヒーターの出力が例えば図示しないコントローラによって制御される。 Here, the flow of the measurement gas in the protective cover 120 when the gas sensor 100 detects the specific gas concentration will be described. The measurement gas flowing in the piping 20 first flows into the first gas chamber 122 through at least one of the multiple outer inlets 144a (horizontal hole 144b and vertical hole 144c). Next, the measurement gas flows from the first gas chamber 122 through the outer opening 128 into the element chamber inlet 127, and flows out of the element side opening 129 through the element chamber inlet 127 and into the sensor element chamber 124. At least a portion of the measurement gas that flows into the sensor element chamber 124 from the element side opening 129 reaches the gas inlet 111 of the sensor element 110. When the measurement gas reaches the gas inlet 111 and flows into the inside of the sensor element 110, the sensor element 110 generates an electrical signal (voltage or current) corresponding to the specific gas concentration in the measurement gas, and the specific gas concentration is detected based on this electrical signal. The gas to be measured in the sensor element chamber 124 flows into the second gas chamber 126 through at least one of the element chamber outlets 138a (horizontal holes 138b), and then flows out through the outer outlet 147a to the outside. The output of the internal heater of the sensor element 110 is controlled by, for example, a controller (not shown) so as to maintain a predetermined temperature.

上述した被測定ガスの流れのうち、第1ガス室122内及び素子室入口127内の流れについて詳細に説明する。外側入口144aから外側保護カバー140の内部に流入した被測定ガスは、まず第1ガス室122のうち第1空間122aに流入し、第1空間122a内を上方向に流れる。続いて、被測定ガスは第2空間入口122cから第2空間122b内に到達し、第2空間122b内を第2部材135の外側から内側へ向かって流れて、すなわち第2空間122b内を保護カバー120の中心軸に向かって径方向に流れて、素子室入口127の外側開口部128に到達する。そして、被測定ガスは外側開口部128から素子室入口127内を下方向に向かって流れて、素子側開口部129からセンサ素子室124内に到達する。 Among the above-mentioned flows of the measurement gas, the flows in the first gas chamber 122 and the element chamber inlet 127 will be described in detail. The measurement gas that flows into the inside of the outer protective cover 140 from the outer inlet 144a first flows into the first space 122a of the first gas chamber 122 and flows upward in the first space 122a. Next, the measurement gas reaches the second space 122b from the second space inlet 122c, flows in the second space 122b from the outside to the inside of the second member 135, that is, flows radially in the second space 122b toward the central axis of the protective cover 120, and reaches the outer opening 128 of the element chamber inlet 127. Then, the measurement gas flows downward from the outer opening 128 in the element chamber inlet 127 and reaches the sensor element chamber 124 from the element side opening 129.

ここで、一般に、被測定ガスの流速が低流速(例えば2m/s未満)の場合には、外側入口144aから流入する被測定ガスの流量が小さいため、素子室入口127を通ってセンサ素子室124内に流入する被測定ガスの流量も小さくなり、特定ガス濃度検出の応答性が低下しやすくなる。これに対し、本実施形態のガスセンサ100では、上述した断面積Csが14.0mm2以上であることで、被測定ガスが第2空間122b内で第2部材135の外側から内側へ向かって移動しやすくなる。すなわち、第1空間122a内の被測定ガスが第2空間122bを通過して素子室入口127に向かいやすくなる。これにより、素子室入口127に到達する被測定ガスの流量を大きくすることができ、被測定ガスが低流速である場合の特定ガス濃度検出の応答性の低下を抑制できる。 Generally, when the flow rate of the measurement gas is low (for example, less than 2 m/s), the flow rate of the measurement gas flowing in from the outer inlet 144a is small, so that the flow rate of the measurement gas flowing into the sensor element chamber 124 through the element chamber inlet 127 is also small, and the response of the specific gas concentration detection is likely to decrease. In contrast, in the gas sensor 100 of this embodiment, the above-mentioned cross-sectional area Cs is 14.0 mm 2 or more, so that the measurement gas is likely to move from the outside to the inside of the second member 135 in the second space 122b. That is, the measurement gas in the first space 122a is likely to pass through the second space 122b and move toward the element chamber inlet 127. This makes it possible to increase the flow rate of the measurement gas reaching the element chamber inlet 127, and to suppress the decrease in the response of the specific gas concentration detection when the measurement gas flows at a low flow rate.

また、本実施形態のガスセンサ100では、断面積Dsが6.4mm2以下であることで、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れてしまうことによる応答性の低下を抑制できる。ここで、一般に、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れると、被測定ガスが第2空間122bを通過して素子室入口127に到達するまでの時間が長くなって応答性が低下する場合がある。また、一般に、外側入口144aが複数存在する場合において、複数の外側入口144aのうち外側保護カバー140の周囲を流れる被測定ガスの下流側に近い位置にある外側入口144aから被測定ガスが外部に流出してしまう現象が生じる場合がある。例えば図3では被測定ガスは外側保護カバー140の周囲を左から右に流れるため、図3でセンサ素子110よりも右側に図示されている横孔144bや縦孔144cなどが、下流側に近い位置にある外側入口144aに相当する。そして、第2空間122b内を内側保護カバー130の周方向に沿って流れる被測定ガスの流量が多いほど、このような下流側に近い位置の外側入口144aから外部に流出する被測定ガスの流量が多くなりやすい。そして、被測定ガスが外側入口144aから外部に流出すると、その分だけ素子室入口127に到達する被測定ガスが減少するため、特定ガス濃度検出の応答性が低下する。このように、一般に、第2空間122b内を内側保護カバー130の周方向に沿って流れる被測定ガスの流量が多いほど、特定ガス濃度検出の応答性が低下しやすい。これに対し、本実施形態のガスセンサ100では、断面積Dsが6.4mm2以下であることで、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れにくくなる。したがって、上記のような被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れてしまうことに起因する応答性の低下を抑制できる。以上により、本実施形態のガスセンサ100は、被測定ガスの低流速時の応答性の低下を低減できる。断面積Dsは上記の通り値が小さい方が好ましいが、断面積Dsは0.5mm2以上としてもよい。 In addition, in the gas sensor 100 of this embodiment, the cross-sectional area Ds is 6.4 mm2 or less, so that the deterioration of the response caused by the measurement gas flowing in the second space 122b along the circumferential direction of the inner protective cover 130 can be suppressed. Here, generally, when the measurement gas flows in the second space 122b along the circumferential direction of the inner protective cover 130, the time until the measurement gas passes through the second space 122b and reaches the element chamber inlet 127 becomes long, and the response may be deteriorated. In addition, generally, when there are multiple outer inlets 144a, the measurement gas may flow out to the outside from the outer inlet 144a located near the downstream side of the measurement gas flowing around the outer protective cover 140 among the multiple outer inlets 144a. For example, in FIG. 3, the measurement gas flows from left to right around the outer protective cover 140, so that the horizontal hole 144b and the vertical hole 144c shown on the right side of the sensor element 110 in FIG. 3 correspond to the outer inlet 144a located near the downstream side. The greater the flow rate of the measurement gas flowing in the second space 122b along the circumferential direction of the inner protective cover 130, the greater the flow rate of the measurement gas flowing out from the outer inlet 144a located near the downstream side. When the measurement gas flows out from the outer inlet 144a, the amount of measurement gas reaching the element chamber inlet 127 decreases accordingly, and the response of the specific gas concentration detection decreases. In this way, generally, the greater the flow rate of the measurement gas flowing in the second space 122b along the circumferential direction of the inner protective cover 130, the more likely the response of the specific gas concentration detection decreases. In contrast, in the gas sensor 100 of this embodiment, the cross-sectional area Ds is 6.4 mm 2 or less, so that the measurement gas does not easily flow in the second space 122b along the circumferential direction of the inner protective cover 130. Therefore, the decrease in response caused by the measurement gas flowing in the second space 122b along the circumferential direction of the inner protective cover 130 can be suppressed. As described above, the gas sensor 100 of this embodiment can reduce the decrease in responsiveness when the flow rate of the measurement gas is low. As described above, it is preferable that the cross-sectional area Ds is small, but the cross-sectional area Ds may be 0.5 mm2 or more.

以上詳述した本実施形態のガスセンサ100によれば、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下であることで、被測定ガスの低流速時の応答性の低下を低減できる。 According to the gas sensor 100 of this embodiment described above in detail, by setting the cross-sectional area Cs to 14.0 mm 2 or more and the cross-sectional area Ds to 6.4 mm 2 or less, it is possible to reduce a decrease in responsiveness when the flow velocity of the measurement gas is low.

また、断面積Csは20.0mm2以上が好ましく、20.9mm2以上がより好ましく、22.9mm2以上がさらに好ましく、30mm2以上が一層好ましく、40mm2以上がより一層好ましい。断面積Csが大きいほど、被測定ガスが第2空間122b内で第2部材135の外側から内側へ向かって移動しやすくなるため、被測定ガスの低流速時の応答性の低下を抑制する効果が高まる。さらに、前記断面積Dsは6.0mm2以下が好ましく、5.9mm2以下がより好ましく、5.0mm2以下がさらに好ましく、4.0mm2以下が一層好ましい。断面積Dsが小さいほど、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れることを抑制できるため、被測定ガスの低流速時の応答性の低下を抑制する効果が高まる。また、断面積Csは、例えば73.1mm2以下としてもよいし、70.0mm2以下としてもよいし、60.0mm2以下としてもよいし、57.0mm2以下としてもよい。また、断面積Dsは、例えば1.2mm2以上としてもよいし、1.5mm2以上としてもよいし、2.0mm2以上としてもよい。 Moreover, the cross-sectional area Cs is preferably 20.0 mm 2 or more, more preferably 20.9 mm 2 or more, even more preferably 22.9 mm 2 or more, even more preferably 30 mm 2 or more, and even more preferably 40 mm 2 or more. The larger the cross-sectional area Cs, the easier it is for the measurement gas to move from the outside to the inside of the second member 135 in the second space 122b, so the effect of suppressing the decrease in responsiveness at a low flow rate of the measurement gas is enhanced. Furthermore, the cross-sectional area Ds is preferably 6.0 mm 2 or less, more preferably 5.9 mm 2 or less, even more preferably 5.0 mm 2 or less, and even more preferably 4.0 mm 2 or less. The smaller the cross-sectional area Ds, the more it is possible to suppress the measurement gas from flowing in the second space 122b along the circumferential direction of the inner protective cover 130, so the effect of suppressing the decrease in responsiveness at a low flow rate of the measurement gas is enhanced. The cross-sectional area Cs may be, for example, 73.1 mm2 or less, 70.0 mm2 or less, 60.0 mm2 or less, or 57.0 mm2 or less. The cross-sectional area Ds may be, for example, 1.2 mm2 or more, 1.5 mm2 or more, or 2.0 mm2 or more.

さらに、断面積Asと断面積Bsとの断面積比As/Bsは、1.0以上であることが好ましく、1.41以上4.70以下であることがより好ましい。ここで、断面積Asが小さすぎると、第1空間122a内の被測定ガスが第2空間122b内に流入しにくくなり、結果として被測定ガスが素子室入口127内に流入しにくくなる。また、断面積Bsが小さすぎると、第2空間122b内の被測定ガスが素子室入口127内に流入しにくくなる。これに対し、断面積比As/Bsが1.41以上4.70以下であれば、断面積As,Bsの大きさのバランスがよいことで、第1空間122a内の被測定ガスが第2空間122bを通過して素子室入口127に流入しやすくなるため、被測定ガスの低流速時の応答性の低下をより抑制できる。 Furthermore, the cross-sectional area ratio As/Bs between the cross-sectional area As and the cross-sectional area Bs is preferably 1.0 or more, and more preferably 1.41 or more and 4.70 or less. Here, if the cross-sectional area As is too small, the measured gas in the first space 122a does not easily flow into the second space 122b, and as a result, the measured gas does not easily flow into the element chamber inlet 127. Also, if the cross-sectional area Bs is too small, the measured gas in the second space 122b does not easily flow into the element chamber inlet 127. On the other hand, if the cross-sectional area ratio As/Bs is 1.41 or more and 4.70 or less, the cross-sectional areas As and Bs are well balanced in size, so that the measured gas in the first space 122a passes through the second space 122b and easily flows into the element chamber inlet 127, and the decrease in responsiveness at low flow rates of the measured gas can be further suppressed.

さらにまた、ガスセンサ100において、第1部材131及び第2部材135は、素子側開口部129が下方向に向けて開口するように素子室入口127を形成している。そのため、素子側開口部129から流出した被測定ガスがセンサ素子110の表面(ガス導入口111以外の表面)に垂直に当たることを抑制したり、センサ素子110の表面上を長い距離通過してからガス導入口111に到達することを抑制したりできる。これにより、センサ素子110の冷えを抑制できる。しかも、素子側開口部129の開口の向きを調整することでセンサ素子110の冷えを抑制しており、内側保護カバー130内の被測定ガスの流量や流速を減らしているわけではないため、特定ガス濃度検出の応答性の低下も低減できる。これらにより、センサ素子110の応答性の低下を抑制しつつ、保温性の低下も抑制できる。 Furthermore, in the gas sensor 100, the first member 131 and the second member 135 form the element chamber inlet 127 so that the element side opening 129 opens downward. Therefore, it is possible to prevent the measurement gas flowing out from the element side opening 129 from hitting the surface of the sensor element 110 (surface other than the gas inlet 111) perpendicularly, or to prevent the measurement gas from passing a long distance on the surface of the sensor element 110 before reaching the gas inlet 111. This can prevent the sensor element 110 from cooling. Moreover, the sensor element 110 is prevented from cooling by adjusting the opening direction of the element side opening 129, and the flow rate or flow speed of the measurement gas in the inner protective cover 130 is not reduced, so the decrease in responsiveness of the specific gas concentration detection can also be reduced. As a result, the decrease in responsiveness of the sensor element 110 can be prevented while the decrease in heat retention can also be prevented.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施しうることは言うまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various forms as long as they fall within the technical scope of the present invention.

例えば、保護カバー120の形状は上述した実施形態に限られない。保護カバー120の形状や素子室入口127,素子室出口138a,外側入口144a,外側出口147aの形状,個数,配置などは、適宜変更してもよい。例えば、外側保護カバー140の先端部146は、有底筒状で、側部146aと底部146bとテーパー部146cとを有するものとしたが、テーパー部146cを省略した円筒形状としてもよい。また、内側保護カバー130の先端部138は、側部138dの外径が一定で側部138dと底部138eとが同径となるような形状としたが、例えば円錐台を逆さにした形状など、側部138dの外径が底部138eに近づくほど小さくなるような形状としてもよい。図8は、外側保護カバー140の先端部146をテーパー部146cを省略した円筒形状とし、内側保護カバー130の先端部138を円錐台を逆さにした形状としたガスセンサ200の縦断面図(ガスセンサ100のB-B断面図に相当)である。図8には第2空間122b周辺の拡大図も併せて示した。図9は図8の外側保護カバー240のF-F断面図であり、図10は図8のG視図である。図8~10では、ガスセンサ100と同じ構成要素については同じ符号を付して、詳細な説明を省略する。図8に示すように、ガスセンサ200の保護カバー220は、内側保護カバー130に代えて内側保護カバー230を備え、外側保護カバー140に代えて外側保護カバー240を備えている。内側保護カバー230の第2部材235は、先端部138及び段差部139に代えて円錐台を逆さにした形状の先端部238を有している。また、先端部238には、センサ素子室124と第2ガス室126とに通じ、センサ素子室124からの被測定ガスの出口である素子室出口238aが形成されている。素子室出口238aは、先端部238の底面の中心に形成された円形の縦穴を1つ有している。外側保護カバー240は、先端部146に代えて、有底筒状(円筒形状)で胴部143よりも内径の小さい先端部246を有している。先端部246は、外側保護カバー240の中心軸方向(図8の上下方向)に沿った側面を有し外径が側部143aの内径よりも小さい側部246aと、外側保護カバー240の底部である底部246bと、を有している。また、先端部246には、被測定ガスの外部への出口である外側出口247aが形成されている。外側出口247aは、先端部246の底部246bに外側保護カバー240の周方向に沿って等間隔に形成された複数(ここでは6個)の縦孔247cを有している(図8,9,10参照)。こうしたガスセンサ200でも、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下であることで、上述した実施形態と同様の効果が得られる。 For example, the shape of the protective cover 120 is not limited to the above embodiment. The shape of the protective cover 120, the shape, number, arrangement, etc. of the element chamber inlet 127, the element chamber outlet 138a, the outer inlet 144a, and the outer outlet 147a may be changed as appropriate. For example, the tip 146 of the outer protective cover 140 is a bottomed tube having a side 146a, a bottom 146b, and a tapered portion 146c, but may be a cylindrical shape with the tapered portion 146c omitted. In addition, the tip 138 of the inner protective cover 130 is shaped so that the outer diameter of the side 138d is constant and the side 138d and the bottom 138e have the same diameter, but may be shaped so that the outer diameter of the side 138d becomes smaller as it approaches the bottom 138e, such as an inverted truncated cone shape. FIG. 8 is a longitudinal sectional view (corresponding to the B-B sectional view of the gas sensor 100) of the gas sensor 200 in which the tip 146 of the outer protective cover 140 is cylindrical with the tapered portion 146c omitted, and the tip 138 of the inner protective cover 130 is shaped like an inverted truncated cone. FIG. 8 also shows an enlarged view of the periphery of the second space 122b. FIG. 9 is a sectional view of the outer protective cover 240 of FIG. 8 along the line F-F, and FIG. 10 is a view seen from the direction G of FIG. 8. In FIGS. 8 to 10, the same components as those in the gas sensor 100 are given the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 8, the protective cover 220 of the gas sensor 200 includes an inner protective cover 230 instead of the inner protective cover 130, and an outer protective cover 240 instead of the outer protective cover 140. The second member 235 of the inner protective cover 230 includes a tip 238 shaped like an inverted truncated cone instead of the tip 138 and the step portion 139. The tip 238 is also provided with an element chamber outlet 238a which is connected to the sensor element chamber 124 and the second gas chamber 126 and is an outlet for the measured gas from the sensor element chamber 124. The element chamber outlet 238a has one circular vertical hole formed in the center of the bottom surface of the tip 238. The outer protective cover 240 has a tip 246 which is a bottomed tubular (cylindrical) shape and has a smaller inner diameter than the body 143, instead of the tip 146. The tip 246 has a side portion 246a which has a side surface along the central axis direction of the outer protective cover 240 (the vertical direction in FIG. 8) and has an outer diameter smaller than the inner diameter of the side portion 143a, and a bottom portion 246b which is the bottom of the outer protective cover 240. The tip 246 is also provided with an outer outlet 247a which is an outlet for the measured gas to the outside. The outer outlet 247a has a plurality of (six in this embodiment) vertical holes 247c formed at equal intervals along the circumferential direction of the outer protective cover 240 in the bottom 246b of the tip portion 246 (see FIGS. 8, 9 and 10). With this gas sensor 200 as well, the same effects as those of the above-described embodiment can be obtained by setting the cross-sectional area Cs to 14.0 mm2 or more and the cross-sectional area Ds to 6.4 mm2 or less.

上述した実施形態では、素子室入口127は第1部材131の第1円筒部134と第2部材135の第2円筒部136との間の円筒状の隙間としたが、これに限らず、素子室入口は第1部材131と第2部材135との間の隙間であればどのような形状であってもよい。例えば素子室入口が図3の上下方向から傾斜した隙間であってもよい(後述する図12も参照)。また、素子室入口127の数は1つに限らず複数でもよい(後述する図11も参照)。素子室出口138a,外側入口144a,外側出口147aについても、孔に限らず保護カバー120を構成する複数の部材の隙間であってもよいし、各々の数は1以上であればよい。また、外側入口144aは横孔144bと縦孔144cとを有するものとしたが、いずれか一方のみを有するものとしてもよい。また、横孔144b及び縦孔144cに加えて又は代えて、側部143aと段差部143bとの境界の角部に角孔を形成してもよい。素子室出口138a,外側出口147aについても、同様に横孔,縦孔,角孔のいずれか1以上を有するものとしてもよい。また、外側出口147aは、テーパー部146cに設けられた貫通孔を有するものとしてもよい。 In the above embodiment, the element chamber inlet 127 is a cylindrical gap between the first cylindrical portion 134 of the first member 131 and the second cylindrical portion 136 of the second member 135, but the element chamber inlet may have any shape as long as it is a gap between the first member 131 and the second member 135. For example, the element chamber inlet may be a gap inclined from the vertical direction of FIG. 3 (see also FIG. 12 described later). The number of element chamber inlets 127 is not limited to one, but may be multiple (see also FIG. 11 described later). The element chamber outlet 138a, the outer inlet 144a, and the outer outlet 147a are not limited to holes, but may be gaps between multiple members constituting the protective cover 120, and each number may be one or more. The outer inlet 144a has a horizontal hole 144b and a vertical hole 144c, but may have only one of them. In addition to or instead of the horizontal hole 144b and the vertical hole 144c, a square hole may be formed at the corner of the boundary between the side portion 143a and the step portion 143b. Similarly, the element chamber outlet 138a and the outer outlet 147a may have one or more of a horizontal hole, a vertical hole, and a rectangular hole. The outer outlet 147a may have a through hole provided in the tapered portion 146c.

上述した実施形態では、突出部136aは第2円筒部136の内周面に形成されているが、これに限られない。第1円筒部134の外周面と第2円筒部136の内周面との少なくとも一方の面に、他方の面に向けて突出してその面に接する複数の突出部が形成されていればよい。また、上述した実施形態では、図3,4に示すように、第2円筒部136のうち突出部136aが形成されている部分の外周面は内側に窪んでいるが、これに限らず外周面が窪んでいなくてもよい。また、突出部136aは半球形状に限らずどのような形状であってもよい。なお、第1円筒部134の外周面及び第2円筒部136の内周面に突出部136aが形成されていなくてもよい。 In the above embodiment, the protrusion 136a is formed on the inner peripheral surface of the second cylindrical portion 136, but this is not limited thereto. It is sufficient that a plurality of protrusions are formed on at least one of the outer peripheral surface of the first cylindrical portion 134 and the inner peripheral surface of the second cylindrical portion 136, protruding toward the other surface and contacting the surface. In addition, in the above embodiment, as shown in Figures 3 and 4, the outer peripheral surface of the second cylindrical portion 136 where the protrusion 136a is formed is recessed inward, but this is not limited thereto and the outer peripheral surface does not have to be recessed. In addition, the protrusion 136a is not limited to a hemispherical shape and may have any shape. Note that the protrusion 136a does not have to be formed on the outer peripheral surface of the first cylindrical portion 134 and the inner peripheral surface of the second cylindrical portion 136.

上述した実施形態では、素子室入口127は第1円筒部134の外周面と第2円筒部136の内周面との間の筒状の隙間としたが、これに限られない。例えば、第1円筒部の外周面と第2円筒部の内周面との少なくとも一方に凹部(溝)が形成されており、素子室入口は、凹部により形成された第1円筒部と第2円筒部との隙間としてもよい。図11は、変形例の素子室入口327を示す断面図である。図11に示すように、第1円筒部334の外周面と第2円筒部336の内周面とは接しており、第1円筒部334の外周面には複数(図11では4個)の凹部334aが等間隔に形成されている。この凹部334aと第2円筒部336の内周面との間の隙間が、素子室入口327となっている。この素子室入口327のように素子室入口が複数(図11では4箇所)存在する場合は、各々の素子室入口の断面積の合計すなわち合計断面積を、断面積Bsとする。 In the above embodiment, the element chamber inlet 127 is a cylindrical gap between the outer peripheral surface of the first cylindrical portion 134 and the inner peripheral surface of the second cylindrical portion 136, but is not limited thereto. For example, a recess (groove) may be formed on at least one of the outer peripheral surface of the first cylindrical portion and the inner peripheral surface of the second cylindrical portion, and the element chamber inlet may be a gap between the first cylindrical portion and the second cylindrical portion formed by the recess. FIG. 11 is a cross-sectional view showing an element chamber inlet 327 of a modified example. As shown in FIG. 11, the outer peripheral surface of the first cylindrical portion 334 and the inner peripheral surface of the second cylindrical portion 336 are in contact with each other, and a plurality of recesses 334a (four in FIG. 11) are formed at equal intervals on the outer peripheral surface of the first cylindrical portion 334. The gap between the recesses 334a and the inner peripheral surface of the second cylindrical portion 336 is the element chamber inlet 327. When there are a plurality of element chamber inlets (four in FIG. 11) like this element chamber inlet 327, the sum of the cross-sectional areas of the element chamber inlets, i.e., the total cross-sectional area, is taken as the cross-sectional area Bs.

上述した実施形態では、素子室入口127は、センサ素子110の後端-先端方向に平行な流路(図3における上下方向に平行な流路)としたが、これに限られない。例えば、素子室入口は、下方に向かうにつれてセンサ素子110に近づくように上下方向から傾斜した流路としてもよい。図12は、この場合の変形例のガスセンサ400の縦断面図である。図12には第2空間122b周辺の拡大図も併せて示した。図12では、ガスセンサ100,200と同じ構成要素については同じ符号を付して、詳細な説明を省略する。図12に示すように、ガスセンサ400の保護カバー420は、内側保護カバー230に代えて内側保護カバー430を備えている。内側保護カバー430は、第1部材431と、第2部材435と、を備えている。第1部材431は、第1部材131と比べて、第1円筒部134を備えない代わりに、円筒状の胴部434aと、下方に向かうにつれて縮径する円筒状の第1円筒部434bと、を備えている。第1円筒部434bは、上端部で胴部434aと接続されている。第2部材435は、第2部材235と比べて、第2円筒部136及び接続部137を備えない代わりに、下方に向かうにつれて縮径する円筒状の第2円筒部436を備えている。第2円筒部436は、先端部238と接続されている。第1円筒部434bの外周面と第2円筒部436の内周面とは接しておらず、両者により形成される隙間が素子室入口427となっている。素子室入口427は、第1ガス室122側の開口部である外側開口部428と、センサ素子室124側の開口部である素子側開口部429と、を有している。この素子室入口427は、第1円筒部434b及び第2円筒部436の形状によって、下方に向かうにつれてセンサ素子110に近づくように(内側保護カバー430の中心軸に近づくように)上下方向から傾斜した流路となっている。同様に、素子側開口部429は、下方に向かうにつれてセンサ素子110に近づくように上下方向から傾斜して開口している(図12の拡大図参照)。このように素子室入口427が上下方向に対して傾斜した流路である場合や素子側開口部429が上下方向に対して傾斜して開口している場合、素子側開口部429からセンサ素子室124に流出する被測定ガスの流れる向きは上下方向から傾斜した向きになる。これにより、上述した実施形態の素子室入口127や素子側開口部129と同様の効果が得られる。すなわち、被測定ガスがセンサ素子110の表面(ガス導入口111以外の表面)に垂直に当たることを抑制したり、センサ素子110の表面上を長い距離通過してからガス導入口111に到達することを抑制したりできる。これにより、センサ素子110の冷えを抑制できる。また、図12では、素子室入口427の幅は、センサ素子110の下方に向かうにつれて狭くなっている。そのため、素子側開口部429の開口面積は外側開口部428の開口面積よりも小さい。換言すると、素子室入口427は、図7を用いて説明した距離A5よりも距離A4の方が小さくなっている。これにより、被測定ガスが外側開口部428から流入して素子側開口部429から流出することで流入時と比べて流出時の被測定ガスの流速が高まる。そのため、特定ガス濃度検出の応答性を向上させることができる。このガスセンサ400では、外側保護カバー240と第2部材435の第2円筒部436との間の空間が第1空間122aとなっている。また、第2円筒部436の上端よりも上方且つ外側保護カバー240と第1部材431の胴部434aとの間の空間が第2空間122bとなっている。なお、図12では、素子室入口427が上下方向から傾斜した流路となっており、素子側開口部429が上下方向から傾斜して開口し、且つ素子側開口部429の開口面積が外側開口部428の開口面積よりも小さくなるようにしているが、これらの3つの特徴のうち1以上を省略してもよいし、ガスセンサがこれらの3つの特徴のうち1以上の特徴を有するようにしてもよい。こうしたガスセンサ400でも、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下であることで、上述した実施形態と同様の効果が得られる。なお、図12のガスセンサ400では、ガスセンサ200のように、外側保護カバー240の先端部246をテーパー部を省略した円筒形状とし、内側保護カバー430の先端部238を円錐台を逆さにした形状としたが、これに代えて、ガスセンサ400がガスセンサ100のような先端部138,段差部139,及び先端部146を有するものとしてもよい。 In the above-described embodiment, the element chamber inlet 127 is a flow path parallel to the rear end-front end direction of the sensor element 110 (a flow path parallel to the vertical direction in FIG. 3), but is not limited thereto. For example, the element chamber inlet may be a flow path inclined from the vertical direction so as to approach the sensor element 110 as it goes downward. FIG. 12 is a vertical cross-sectional view of a gas sensor 400 of a modified example in this case. FIG. 12 also shows an enlarged view of the periphery of the second space 122b. In FIG. 12, the same components as those of the gas sensors 100 and 200 are given the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 12, the protective cover 420 of the gas sensor 400 includes an inner protective cover 430 instead of the inner protective cover 230. The inner protective cover 430 includes a first member 431 and a second member 435. The first member 431 does not include the first cylindrical portion 134 as compared to the first member 131, but includes a cylindrical body portion 434a and a cylindrical first cylindrical portion 434b whose diameter decreases toward the bottom. The first cylindrical portion 434b is connected to the body portion 434a at the upper end. The second member 435 does not include the second cylindrical portion 136 and the connecting portion 137 as compared to the second member 235, but includes a cylindrical second cylindrical portion 436 whose diameter decreases toward the bottom. The second cylindrical portion 436 is connected to the tip portion 238. The outer peripheral surface of the first cylindrical portion 434b and the inner peripheral surface of the second cylindrical portion 436 are not in contact with each other, and the gap formed by the two is the element chamber inlet 427. The element chamber inlet 427 has an outer opening 428 which is an opening on the first gas chamber 122 side, and an element side opening 429 which is an opening on the sensor element chamber 124 side. The element chamber inlet 427 is a flow path that is inclined from the vertical direction so as to approach the sensor element 110 as it goes downward (so as to approach the central axis of the inner protective cover 430) due to the shapes of the first cylindrical portion 434b and the second cylindrical portion 436. Similarly, the element side opening 429 opens at an incline from the vertical direction so as to approach the sensor element 110 as it goes downward (see the enlarged view of FIG. 12). In this way, when the element chamber inlet 427 is a flow path that is inclined with respect to the vertical direction or when the element side opening 429 opens at an incline with respect to the vertical direction, the flow direction of the measurement gas flowing from the element side opening 429 to the sensor element chamber 124 becomes an inclined direction from the vertical direction. This provides the same effect as the element chamber inlet 127 and the element side opening 129 of the above-mentioned embodiment. That is, it is possible to prevent the measurement gas from hitting the surface of the sensor element 110 (surface other than the gas inlet 111) perpendicularly, or to prevent the measurement gas from passing a long distance over the surface of the sensor element 110 before reaching the gas inlet 111. This prevents the sensor element 110 from cooling down. 12, the width of the element chamber inlet 427 narrows toward the bottom of the sensor element 110. Therefore, the opening area of the element side opening 429 is smaller than the opening area of the outer opening 428. In other words, the element chamber inlet 427 is smaller at the distance A4 than the distance A5 described with reference to FIG. 7. As a result, the measurement gas flows in from the outer opening 428 and flows out from the element side opening 429, so that the flow rate of the measurement gas increases when it flows out compared to when it flows in. Therefore, the response of the specific gas concentration detection can be improved. In this gas sensor 400, the space between the outer protective cover 240 and the second cylindrical portion 436 of the second member 435 is the first space 122a. Moreover, the space above the upper end of the second cylindrical portion 436 and between the outer protective cover 240 and the body portion 434a of the first member 431 is the second space 122b. In Fig. 12, the element chamber inlet 427 is a flow path inclined from the vertical direction, the element side opening 429 opens at an incline from the vertical direction, and the opening area of the element side opening 429 is smaller than the opening area of the outer opening 428, but one or more of these three features may be omitted, or the gas sensor may have one or more of these three features. In such a gas sensor 400, the same effect as the above-mentioned embodiment can be obtained by setting the cross-sectional area Cs to 14.0 mm2 or more and the cross-sectional area Ds to 6.4 mm2 or less. In the gas sensor 400 in Fig. 12, the tip 246 of the outer protective cover 240 is cylindrical in shape without a tapered portion, and the tip 238 of the inner protective cover 430 is in the shape of an inverted truncated cone, as in the gas sensor 200, but instead, the gas sensor 400 may have the tip 138, the step portion 139, and the tip 146 as in the gas sensor 100.

上述した実施形態では、素子側開口部129は下方向に向けて開口していたが、これに限らず、例えば下方向と垂直な方向に向けてセンサ素子室124に開口していてもよい。 In the above-described embodiment, the element side opening 129 opens downward, but this is not limited thereto, and it may open into the sensor element chamber 124 in a direction perpendicular to the downward direction, for example.

上述した実施形態では、第2空間122bの上端を規定する面は第1部材131の段差部133の下面であったが、これに限られない。例えば、ハウジング102の下面が第2空間122bの上端を規定する面であってもよい。 In the above embodiment, the surface that defines the upper end of the second space 122b is the lower surface of the step portion 133 of the first member 131, but this is not limited to this. For example, the lower surface of the housing 102 may be the surface that defines the upper end of the second space 122b.

上述した実施形態では、内側保護カバー130は、第1部材131と第2部材135との2つの部材を備えていたが、第1部材131と第2部材135とは一体化された部材であってもよい。 In the above-described embodiment, the inner protective cover 130 includes two members, the first member 131 and the second member 135, but the first member 131 and the second member 135 may be an integrated member.

上述した実施形態では、ガス導入口111は、センサ素子110の先端面(図3におけるセンサ素子110の下面)に開口しているものとしたが、これに限られない。例えば、センサ素子110の側面(図4におけるセンサ素子110の上下左右の面)に開口していてもよい。 In the above embodiment, the gas inlet 111 is open to the tip surface of the sensor element 110 (the bottom surface of the sensor element 110 in FIG. 3), but this is not limited to this. For example, it may be open to the side surface of the sensor element 110 (the top, bottom, left, and right surfaces of the sensor element 110 in FIG. 4).

上述した実施形態では、センサ素子110は多孔質保護層110aを備えているが、多孔質保護層110aを備えていなくてもよい。 In the above-described embodiment, the sensor element 110 is provided with a porous protective layer 110a, but may not be provided with the porous protective layer 110a.

上述した実施形態では、保護カバー120をガスセンサ100の一部として説明したが、保護カバー120は単独で流通してもよい。 In the above embodiment, the protective cover 120 is described as part of the gas sensor 100, but the protective cover 120 may be distributed separately.

上述した実施形態では説明しなかったが、ガスセンサ100は、以下の第1条件及び第2条件を共に満たすことが好ましい。第1条件は、外側入口144a,素子室出口138a,外側出口147aのいずれもが、直径1.5mmの球が通過できる孔を少なくとも1つ有していることである。第2条件は、外側入口144aからガス導入口111まで直径0.8mmの球が到達できるように、保護カバー120内の被測定ガスの流路の幅が調整されていることである。第2条件は、言い換えると、外側入口144aからガス導入口111までの間における被測定ガスが必ず通過する必要のある流路のうちの流路幅の最小値(最小流路幅と称する)が、0.8mm以上であることである。例えば、上述した実施形態のガスセンサ100において、図7に示した距離A6が図4,7に示した距離A4,距離A5及び距離A7のいずれよりも小さい場合には、最小流路幅は距離A6の値となる。この場合、距離A6が0.8mm以上であれば第2条件を満たす。配管20内を流れる被測定ガスには煤が含まれている場合があるが、この第1条件及び第2条件を共に満たすことで、ガスセンサ100の耐煤性が向上する。例えば、距離A6が0.8mm未満である場合には、第1円筒部134の下端と接続部137との間の隙間で煤が目詰まりを起こす場合がある。これに対し、距離A6が0.8mm以上であれば、そのような煤の目詰まりを抑制できる。第1条件及び第2条件を共に満たすことで耐煤性が向上する効果は、上述した断面積Csが14.0mm2以上であるか否かや断面積Dsが0.5mm2以上6.4mm2以下であるか否かに関わらず得られる。また、ガスセンサ100に限らず、上述した種々の変形例などの他の形状の保護カバーを備えたガスセンサであっても、第1条件及び第2条件を共に満たすことで耐煤性が向上する効果が得られる。例えば、ガスセンサ100において図7に示した距離A6よりも距離A4,距離A5及び距離A7のうちの最小値が小さい場合には、最小流路幅はその最小値となる。この場合、その最小値が0.8mm以上であれば(言い換えると距離A4,距離A5及び距離A7がいずれも0.8mm以上であれば)、第2条件を満たす。この場合、さらに第1条件も満たしていれば、耐煤性が向上する効果が得られる。また、外側入口144aが複数の孔を有する場合、第1条件を満たすためにはこの複数の孔のうち直径1.5mmの球が通過できる孔が1以上存在すればよいが、直径1.5mmの球が通過できる孔がこの複数の孔のうちの60%以上の数を占めているか、又は直径1.5mmの球が通過できる孔の開口面積の合計がこの複数の孔の開口面積の合計の60%以上を占めていることが好ましい。素子室出口138a及び外側出口147aについても同様である。また、第1条件及び第2条件に加えて、以下の第3条件も満たすことが好ましい。第3条件は、ガス導入口111から外側出口147aまで直径0.8mmの球が到達できるように、保護カバー120内の被測定ガスの流路の幅が調整されていることである。 Although not described in the above embodiment, it is preferable that the gas sensor 100 satisfies both the following first and second conditions. The first condition is that each of the outer inlet 144a, the element chamber outlet 138a, and the outer outlet 147a has at least one hole through which a sphere with a diameter of 1.5 mm can pass. The second condition is that the width of the flow path of the measurement gas in the protective cover 120 is adjusted so that a sphere with a diameter of 0.8 mm can reach from the outer inlet 144a to the gas inlet 111. In other words, the second condition is that the minimum value of the flow path width (referred to as the minimum flow path width) of the flow paths through which the measurement gas must pass between the outer inlet 144a and the gas inlet 111 is 0.8 mm or more. For example, in the gas sensor 100 of the above embodiment, when the distance A6 shown in FIG. 7 is smaller than any of the distances A4, A5, and A7 shown in FIGS. 4 and 7, the minimum flow path width is the value of the distance A6. In this case, if the distance A6 is 0.8 mm or more, the second condition is satisfied. The measurement gas flowing through the pipe 20 may contain soot, and by satisfying both the first and second conditions, the soot resistance of the gas sensor 100 is improved. For example, when the distance A6 is less than 0.8 mm, soot may clog the gap between the lower end of the first cylindrical portion 134 and the connecting portion 137. In contrast, when the distance A6 is 0.8 mm or more, such clogging by soot can be suppressed. The effect of improving the soot resistance by satisfying both the first and second conditions can be obtained regardless of whether the cross-sectional area Cs is 14.0 mm 2 or more and whether the cross-sectional area Ds is 0.5 mm 2 or more and 6.4 mm 2 or less. In addition, not only the gas sensor 100 but also gas sensors equipped with protective covers of other shapes such as the various modified examples described above can have the effect of improving the soot resistance by satisfying both the first and second conditions. For example, in the gas sensor 100, when the minimum value of the distances A4, A5, and A7 is smaller than the distance A6 shown in FIG. 7, the minimum flow path width is the minimum value. In this case, if the minimum value is 0.8 mm or more (in other words, if the distances A4, A5, and A7 are all 0.8 mm or more), the second condition is satisfied. In this case, if the first condition is also satisfied, the effect of improving soot resistance can be obtained. In addition, when the outer inlet 144a has a plurality of holes, in order to satisfy the first condition, it is sufficient that one or more holes through which a 1.5 mm diameter ball can pass exist among the plurality of holes, but it is preferable that the number of holes through which a 1.5 mm diameter ball can pass occupies 60% or more of the plurality of holes, or that the total opening area of the holes through which a 1.5 mm diameter ball can pass occupies 60% or more of the total opening area of the plurality of holes. The same applies to the element chamber outlet 138a and the outer outlet 147a. In addition to the first and second conditions, it is preferable to also satisfy the following third condition. The third condition is that the width of the flow path of the measurement gas inside the protective cover 120 is adjusted so that a sphere having a diameter of 0.8 mm can reach from the gas inlet 111 to the outer outlet 147a.

以下には、ガスセンサを具体的に作製した例を実施例として説明する。実験例2~4,6~8,10~12,14~16,18,19が本発明の実施例に相当し、実験例1,5,9,13,17が比較例に相当する。なお、本発明は以下の実施例に限定されるものではない。 Specific examples of gas sensors that have been fabricated are described below as examples. Experimental Examples 2 to 4, 6 to 8, 10 to 12, 14 to 16, 18, and 19 correspond to examples of the present invention, and Experimental Examples 1, 5, 9, 13, and 17 correspond to comparative examples. Note that the present invention is not limited to the following examples.

[実験例1]
図8~10に示したガスセンサ200を実験例1とした。具体的には、内側保護カバー230の第1部材131は、板厚が0.3mm、軸方向長さが10.2mm、大径部132の軸方向長さが1.8mm、大径部132の外径が14.4mm、第1円筒部134の軸方向長さが8.4mm、第1円筒部134の外径が8.48mm、第1円筒部134の外径の半径Br2が4.24mmとした。第2部材235は、板厚が0.3mm、軸方向長さが11.5mm、第2円筒部136の軸方向長さが4.941mm、第2円筒部136の内径が9.7mm、第2円筒部136の外径の半径Ar2が5.15mm、第2円筒部136の内径の半径Br1が4.85mm、先端部238の軸方向長さが4.9mm、先端部238の底面の径が3.0mmとした。素子室出口238aの径は1.5mmとした。外側保護カバー240は、板厚が0.4mm、軸方向長さが24.35mm、大径部142の軸方向長さが5.75mm、大径部142の外径が15.2mm、胴部143の軸方向長さが9.0mm(胴部143の上端から段差部143bの上面までの軸方向長さが8.7mm)、胴部143の外径が14.6mm、胴部143の内径の半径Ar1が6.9mm、先端部246の軸方向長さが9.6mm、先端部246の外径が8.7mmとした。外側入口144aは、径1.5mmの横孔144bを6個、径1mmの縦孔144cを6個、それぞれ交互に等間隔(隣接する孔のなす角が30°)に形成した。外側出口247aは横孔を備えず、縦孔247cを6個備えるものとし、縦孔247cの径は1mmとした。保護カバー220の材質は、SUS310Sとした。また、ガスセンサ200のセンサ素子110は、幅(図4における左右長さ)が4mm、厚さ(図4における上下長さ)が1.5mmとした。多孔質保護層110aはアルミナ多孔質体とし、厚さは400μmとした。第2空間122bの高さCは3.759mmとし、断面積Asは66.2mm2とし、断面積Bsは15.9mm2とし、断面積Csは114.5mm2とし、断面積Dsは10.0mm2とした。断面積比As/Bsは4.2とし、第2空間122bの体積Vは349.94mm3とした。
[Experimental Example 1]
8 to 10 was used as Experimental Example 1. Specifically, the first member 131 of the inner protective cover 230 had a plate thickness of 0.3 mm, an axial length of 10.2 mm, an axial length of the large diameter portion 132 of 1.8 mm, an outer diameter of the large diameter portion 132 of 14.4 mm, an axial length of the first cylindrical portion 134 of 8.4 mm, an outer diameter of the first cylindrical portion 134 of 8.48 mm, and a radius Br2 of the outer diameter of the first cylindrical portion 134 of 4.24 mm. The second member 235 had a plate thickness of 0.3 mm, an axial length of 11.5 mm, an axial length of the second cylindrical portion 136 of 4.941 mm, an inner diameter of the second cylindrical portion 136 of 9.7 mm, an outer radius Ar2 of the second cylindrical portion 136 of 5.15 mm, an inner radius Br1 of the second cylindrical portion 136 of 4.85 mm, an axial length of the tip portion 238 of 4.9 mm, and a diameter of the bottom surface of the tip portion 238 of 3.0 mm. The diameter of the element chamber outlet 238a was 1.5 mm. The outer protective cover 240 had a plate thickness of 0.4 mm, an axial length of 24.35 mm, an axial length of the large diameter portion 142 of 5.75 mm, an outer diameter of the large diameter portion 142 of 15.2 mm, an axial length of the body portion 143 of 9.0 mm (an axial length from the upper end of the body portion 143 to the upper surface of the step portion 143b of 8.7 mm), an outer diameter of the body portion 143 of 14.6 mm, an inner diameter radius Ar1 of the body portion 143 of 6.9 mm, an axial length of the tip portion 246 of 9.6 mm, and an outer diameter of the tip portion 246 of 8.7 mm. The outer inlet 144a had six horizontal holes 144b with a diameter of 1.5 mm and six vertical holes 144c with a diameter of 1 mm, which were alternately formed at equal intervals (an angle between adjacent holes of 30°). The outer outlet 247a does not have a horizontal hole, but has six vertical holes 247c, and the diameter of the vertical holes 247c is 1 mm. The material of the protective cover 220 is SUS310S. The sensor element 110 of the gas sensor 200 has a width (horizontal length in FIG. 4) of 4 mm and a thickness (vertical length in FIG. 4) of 1.5 mm. The porous protective layer 110a is made of alumina porous body and has a thickness of 400 μm. The height C of the second space 122b is 3.759 mm, the cross-sectional area As is 66.2 mm 2 , the cross-sectional area Bs is 15.9 mm 2 , the cross-sectional area Cs is 114.5 mm 2 , and the cross-sectional area Ds is 10.0 mm 2. The cross-sectional area ratio As/Bs is 4.2, and the volume V of the second space 122b is 349.94 mm 3 .

[実験例2]
第2円筒部136の軸方向長さを長くする(6.5mm)ことで高さCを2.2mmにした点以外は、実験例1と同じガスセンサ200を実験例2とした。実験例2では、断面積Asは66.2mm2とし、断面積Bsは15.9mm2とし、断面積Csは67.0mm2とし、断面積Dsは5.9mm2とし、断面積比As/Bsは4.2とし、体積Vは204.80mm3とした。
[Experimental Example 2]
Experimental Example 2 was a gas sensor 200 similar to Experimental Example 1, except that the height C was set to 2.2 mm by increasing the axial length of the second cylindrical portion 136 (6.5 mm). In Experimental Example 2, the cross-sectional area As was set to 66.2 mm2, the cross-sectional area Bs was set to 15.9 mm2 , the cross-sectional area Cs was set to 67.0 mm2 , the cross-sectional area Ds was set to 5.9 mm2 , the cross-sectional area ratio As/Bs was set to 4.2, and the volume V was set to 204.80 mm3 .

[実験例3]
図3~7に示したガスセンサ100を実験例3とした。具体的には、内側保護カバー130の第1部材131は、板厚が0.3mm、軸方向長さが10.2mm、大径部132の軸方向長さが1.8mm、大径部132の外径が14.4mm、第1円筒部134の軸方向長さが8.4mm、第1円筒部134の外径が8.48mm、第1円筒部134の外径の半径Br2が4.24mmとした。第2部材135は、板厚が0.3mm、軸方向長さが15.1mm、第2円筒部136の軸方向長さが7.326mm、第2円筒部136の内径が9.7mm、第2円筒部136の外径の半径Ar2が5.15mm、第2円筒部136の内径の半径Br1が4.85mm、先端部138の軸方向長さが4.9mm、先端部138の側部138dの外径が5.6mmとした。素子室出口138aは、径1.5mmの横孔138bを4個、等間隔に形成した。外側保護カバー140は、板厚が0.4mm、軸方向長さが24.35mm、大径部142の軸方向長さが5.75mm、大径部142の外径が15.2mm、胴部143の軸方向長さが9.0mm(胴部143の上端から段差部143bの上面までの軸方向長さが8.7mm)、胴部143の外径が14.6mm、胴部143の内径の半径Ar1が6.9mm、先端部146の軸方向長さが9.6mm、先端部146の側部146aの軸方向長さが6.9mm、先端部146の外径が8.7mm、先端部146の底部146bの径が2.6mmとした。外側入口144aは、径1.5mmの横孔144bを6個、径1.0mmの縦孔144cを6個、それぞれ交互に等間隔に形成した。外側出口147a(縦孔147c)の径は、2.0mmとした。保護カバー120の材質は、SUS310Sとした。また、ガスセンサ100のセンサ素子110は、幅(図4における左右長さ)が4mm、厚さ(図4における上下長さ)が1.5mmとした。多孔質保護層110aはアルミナ多孔質体とし、厚さは400μmとした。実験例3では、高さCは1.374mmとし、断面積Asは66.2mm2とし、断面積Bsは15.9mm2とし、断面積Csは41.9mm2とし、断面積Dsは3.7mm2とし、断面積比As/Bsは4.2とし、体積Vは127.91mm3とした。
[Experimental Example 3]
3 to 7 was used as Experimental Example 3. Specifically, the first member 131 of the inner protective cover 130 had a plate thickness of 0.3 mm, an axial length of 10.2 mm, an axial length of the large diameter portion 132 of 1.8 mm, an outer diameter of the large diameter portion 132 of 14.4 mm, an axial length of the first cylindrical portion 134 of 8.4 mm, an outer diameter of the first cylindrical portion 134 of 8.48 mm, and a radius Br2 of the outer diameter of the first cylindrical portion 134 of 4.24 mm. The second member 135 had a plate thickness of 0.3 mm, an axial length of 15.1 mm, an axial length of the second cylindrical portion 136 of 7.326 mm, an inner diameter of the second cylindrical portion 136 of 9.7 mm, an outer diameter radius Ar2 of the second cylindrical portion 136 of 5.15 mm, an inner diameter radius Br1 of the second cylindrical portion 136 of 4.85 mm, an axial length of the tip portion 138 of 4.9 mm, and an outer diameter of a side portion 138d of the tip portion 138 of 5.6 mm. The element chamber outlet 138a had four lateral holes 138b with a diameter of 1.5 mm formed at equal intervals. The outer protective cover 140 has a plate thickness of 0.4 mm, an axial length of 24.35 mm, an axial length of the large diameter portion 142 of 5.75 mm, an outer diameter of the large diameter portion 142 of 15.2 mm, an axial length of the body portion 143 of 9.0 mm (an axial length from the upper end of the body portion 143 to the upper surface of the step portion 143b of 8.7 mm), an outer diameter of the body portion 143 of 14.6 mm, an inner diameter radius Ar1 of the body portion 143 of 6.9 mm, an axial length of the tip portion 146 of 9.6 mm, an axial length of the side portion 146a of the tip portion 146 of 6.9 mm, an outer diameter of the tip portion 146 of 8.7 mm, and a diameter of the bottom portion 146b of the tip portion 146 of 2.6 mm. The outer inlet 144a has six horizontal holes 144b with a diameter of 1.5 mm and six vertical holes 144c with a diameter of 1.0 mm, which are alternately formed at equal intervals. The diameter of the outer outlet 147a (vertical hole 147c) was 2.0 mm. The material of the protective cover 120 was SUS310S. The sensor element 110 of the gas sensor 100 had a width (horizontal length in FIG. 4) of 4 mm and a thickness (vertical length in FIG. 4) of 1.5 mm. The porous protective layer 110a was made of alumina porous body and had a thickness of 400 μm. In the experimental example 3, the height C was 1.374 mm, the cross-sectional area As was 66.2 mm 2 , the cross-sectional area Bs was 15.9 mm 2 , the cross-sectional area Cs was 41.9 mm 2 , the cross-sectional area Ds was 3.7 mm 2 , the cross-sectional area ratio As/Bs was 4.2, and the volume V was 127.91 mm 3 .

[実験例4]
第2円筒部136の軸方向長さを長くする(8.015mm)ことで高さCを0.685mmにした点以外は、実験例3と同じガスセンサ100を実験例4とした。実験例4では、断面積Asは66.2mm2とし、断面積Bsは15.9mm2とし、断面積Csは20.9mm2とし、断面積Dsは1.8mm2とし、断面積比As/Bsは4.2とし、体積Vは63.77mm3とした。
[Experimental Example 4]
Experimental Example 4 was the same gas sensor 100 as Experimental Example 3, except that the axial length of the second cylindrical portion 136 was increased (8.015 mm) to set the height C to 0.685 mm. In Experimental Example 4, the cross-sectional area As was 66.2 mm2 , the cross-sectional area Bs was 15.9 mm2 , the cross-sectional area Cs was 20.9 mm2 , the cross-sectional area Ds was 1.8 mm2 , the cross-sectional area ratio As/Bs was 4.2, and the volume V was 63.77 mm3 .

[実験例5~8]
第2円筒部136の径を変更して半径Ar2を5.3mmとし半径Br1を5.0mmとした点以外は、実験例1~4の各々と同じガスセンサを、実験例5~8とした。
[Experimental Examples 5 to 8]
Experimental Examples 5 to 8 were gas sensors identical to those of Experimental Examples 1 to 4, except that the diameters of the second cylindrical portion 136 were changed so that the radius Ar2 was 5.3 mm and the radius Br1 was 5.0 mm.

[実験例9~12]
第2円筒部136の径を変更して半径Ar2を5.45mmとし半径Br1を5.15mmとした点以外は、実験例1~4の各々と同じガスセンサを、実験例9~12とした。
[Experimental Examples 9 to 12]
Experimental Examples 9 to 12 were the same gas sensors as Experimental Examples 1 to 4, except that the diameters of the second cylindrical portion 136 were changed to a radius Ar2 of 5.45 mm and a radius Br1 of 5.15 mm.

[実験例13~16]
第2円筒部136の径を変更して半径Ar2を5.6mmとし半径Br1を5.3mmとした点以外は、実験例1~4の各々と同じガスセンサを、実験例13~16とした。
[Experimental Examples 13 to 16]
Experimental Examples 13 to 16 were gas sensors similar to those of Experimental Examples 1 to 4, except that the diameters of the second cylindrical portion 136 were changed so that the radius Ar2 was 5.6 mm and the radius Br1 was 5.3 mm.

[実験例17~19]
第2円筒部136の径を変更して半径Ar2を5.75mmとし半径Br1を5.45mmとした点以外は、実験例1~3の各々と同じガスセンサを、実験例17~19とした。
[Experimental Examples 17 to 19]
Experimental Examples 17 to 19 were gas sensors similar to those of Experimental Examples 1 to 3, except that the diameters of the second cylindrical portion 136 were changed to set the radius Ar2 to 5.75 mm and the radius Br1 to 5.45 mm.

[応答性及び保温性の評価]
実験例1~19のガスセンサをそれぞれ図1,2と同様に配管に取り付けた。大気に酸素を混合して任意の酸素濃度に調節したガスを被測定ガスとし、この被測定ガスを配管内に流速0.73m/sで流した。そして、配管内に流す被測定ガスの酸素濃度を23.6%から20.9%に変化させた場合における、センサ素子の出力の時間変化を調べた。酸素濃度を変化させる直前のセンサ素子の出力値を0%、酸素濃度の変化後にセンサ素子の出力が変化して安定したときの出力値を100%として、出力値が10%を越えたときから90%を越えるまでの経過時間を特定ガス濃度検出の応答時間(sec)とした。この応答時間が短いほど特定ガス濃度検出の応答性が高いことを意味する。応答時間の測定は、各実験例について複数回行い、各々の平均値を各実験例についての応答時間とした。実験例1~19の各々について、被測定ガスの流速を1m/sとした場合についても、同様に応答時間の測定を行った。実験例1~4の各々について、被測定ガスの流速を2m/s及び4m/sとした場合についても、同様に応答時間の測定を行った。また、実験例1,2については、被測定ガスの流速を8m/sとした場合についても、同様に応答時間の測定を行った。
[Evaluation of responsiveness and heat retention]
The gas sensors of Experimental Examples 1 to 19 were attached to the pipes as in Figs. 1 and 2. The gas to be measured was a gas adjusted to an arbitrary oxygen concentration by mixing oxygen with the atmosphere, and this gas to be measured was flowed through the pipes at a flow rate of 0.73 m/s. Then, the change in the output of the sensor element over time was examined when the oxygen concentration of the measured gas flowing through the pipes was changed from 23.6% to 20.9%. The output value of the sensor element immediately before the oxygen concentration was changed was set to 0%, and the output value when the output of the sensor element changed and stabilized after the oxygen concentration change was set to 100%, and the elapsed time from when the output value exceeded 10% to when it exceeded 90% was set as the response time (sec) of the specific gas concentration detection. The shorter this response time, the higher the response of the specific gas concentration detection. The response time was measured multiple times for each experimental example, and the average value of each was set as the response time for each experimental example. For each of Experimental Examples 1 to 19, the response time was also measured in the same manner when the flow rate of the measured gas was set to 1 m/s. For each of Experimental Examples 1 to 4, the response time was also measured in the same manner when the flow velocity of the measured gas was set to 2 m/s and 4 m/s. For Experimental Examples 1 and 2, the response time was also measured in the same manner when the flow velocity of the measured gas was set to 8 m/s.

表1に、実験例1~19のガスセンサにおける半径Ar1,Ar2,Br1,Br2,高さC,断面積As~Ds,断面積比As/Bs,体積V,応答時間,及び応答性の評価結果をまとめた。表1では、被測定ガスの流速を1m/sとした場合の応答時間を応答性の評価に用い、この応答時間が2.5秒以下の場合に応答性が非常に良好(A)、3秒以下の場合に応答性が良好(B)、3秒超過の場合に応答性が不良(F)と判定した。また、図13は、実験例1~4の各々の流速と応答時間との関係を示すグラフである。図14は、実験例1~4の各々の高さCと流速1m/sにおける応答時間との関係を示すグラフである。図14には、高さCと応答時間との関係を示す近似曲線(3次の多項式による近似)も示した。また、この近似曲線に基づいて応答時間が3秒となる高さCや応答時間が2.5秒となる高さCを算出し、図14に併せて示した。また、実験例1~4は、いずれも高さCのみを変更することで断面積Cs,Ds,体積Vを変更しているため、断面積Cs,Ds,体積Vはいずれも高さCと比例した値になっている。すなわち、断面積Cs,Ds,体積Vの各々と応答時間との関係も、図14のグラフと横軸の値が異なる点以外は同じとなる。そこで、図14には、応答時間が3秒となる断面積Cs,Ds,体積Vの値、及び応答時間が2.5秒となる断面積Cs,Ds,体積Vの値も併せて示した。 Table 1 summarizes the evaluation results of the radii Ar1, Ar2, Br1, and Br2, height C, cross-sectional areas As to Ds, cross-sectional area ratio As/Bs, volume V, response time, and responsiveness of the gas sensors of Experimental Examples 1 to 19. In Table 1, the response time when the flow velocity of the measured gas is 1 m/s is used to evaluate the responsiveness, and the response is judged to be very good (A) when the response time is 2.5 seconds or less, good (B) when the response time is 3 seconds or less, and poor (F) when the response time exceeds 3 seconds. FIG. 13 is a graph showing the relationship between the flow velocity and the response time of each of Experimental Examples 1 to 4. FIG. 14 is a graph showing the relationship between the height C of each of Experimental Examples 1 to 4 and the response time at a flow velocity of 1 m/s. FIG. 14 also shows an approximation curve (approximation by a third-order polynomial) showing the relationship between the height C and the response time. Based on this approximation curve, the height C at which the response time becomes 3 seconds and the height C at which the response time becomes 2.5 seconds were calculated, and are also shown in FIG. 14. In addition, in all of Experimental Examples 1 to 4, the cross-sectional areas Cs, Ds, and volume V were changed by changing only the height C, so the cross-sectional areas Cs, Ds, and volume V all have values proportional to the height C. In other words, the relationship between the cross-sectional areas Cs, Ds, and volume V and the response time is the same as that in the graph of FIG. 14, except that the values on the horizontal axis are different. Therefore, FIG. 14 also shows the values of the cross-sectional areas Cs, Ds, and volume V that result in a response time of 3 seconds, and the values of the cross-sectional areas Cs, Ds, and volume V that result in a response time of 2.5 seconds.

Figure 0007465739000001
Figure 0007465739000001

表1及び図13に示すように、実験例1~4のいずれも、流速が低いほど応答時間が長くなる(応答性が低下する)傾向にあることがわかった。また、流速が2m/s以上では実験例1~4間で応答時間にほとんど差は見られないが、流速が2m/未満では実験例1~4間の応答時間の差が大きくなった。また、表1及び図13に示すように、実験例1よりも実験例2~4は応答時間が短く、特に実験例3の応答時間が最も短かった。また、図14の近似曲線からわかるように、高さC、断面積Cs、断面積Ds、体積Vのいずれについても、値が大きすぎても小さすぎても応答時間が長くなることがわかった。高さC、断面積Cs、断面積Ds、体積Vが小さすぎるときに応答時間が長くなるのは、これらのうち特に断面積Csが小さすぎることが原因と考えられる。すなわち、上述したように、断面積Csが小さすぎると被測定ガスが第2空間122b内で第2部材の外側から内側へ向かって移動しにくい(保護カバーの径方向内側に向かって移動しにくい)ことから、応答性が低下していると考えられる。また、高さC、断面積Cs、断面積Ds、体積Vが大きすぎるときに応答時間が長くなるのは、これらのうち特に断面積Dsが大きすぎることが原因と考えられる。すなわち、上述したように、断面積Dsが大きすぎると被測定ガスが第2空間122b内を内側保護カバーの周方向に沿って流れやすくなることから、応答性が低下していると考えられる。そして、図14の近似曲線と応答時間との関係から、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下であれば、流速1m/sにおける応答時間が3秒以下となり被測定ガスの低流速時の応答性の低下を低減できると考えられる。また、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下であれば、流速1m/sにおける応答時間が2.5秒以下となり、被測定ガスの低流速時の応答性の低下をより低減できると考えられる。 As shown in Table 1 and FIG. 13, it was found that in all of Experimental Examples 1 to 4, the response time tends to be longer (response is reduced) as the flow velocity is lower. In addition, there is almost no difference in the response time between Experimental Examples 1 to 4 when the flow velocity is 2 m/s or more, but the difference in the response time between Experimental Examples 1 to 4 becomes larger when the flow velocity is less than 2 m/ s . In addition, as shown in Table 1 and FIG. 13, the response time is shorter in Experimental Examples 2 to 4 than in Experimental Example 1, and in particular, the response time of Experimental Example 3 was the shortest. In addition, as can be seen from the approximation curve in FIG. 14, it was found that the response time becomes longer when the values of height C, cross-sectional area Cs, cross-sectional area Ds, and volume V are too large or small. The reason why the response time becomes longer when height C, cross-sectional area Cs, cross-sectional area Ds, and volume V are too small is thought to be due to the cross-sectional area Cs being too small. That is, as described above, if the cross-sectional area Cs is too small, the measurement gas does not easily move from the outside to the inside of the second member in the second space 122b (does not easily move toward the radial inside of the protective cover), and therefore the responsiveness is considered to be reduced. In addition, the reason why the response time is long when the height C, cross-sectional area Cs, cross-sectional area Ds, and volume V are too large is considered to be that the cross-sectional area Ds is particularly large. That is, as described above, if the cross-sectional area Ds is too large, the measurement gas tends to flow in the second space 122b along the circumferential direction of the inner protective cover, and therefore the responsiveness is considered to be reduced. And, from the relationship between the approximation curve in FIG. 14 and the response time, if the cross-sectional area Cs is 14.0 mm 2 or more and the cross-sectional area Ds is 6.4 mm 2 or less, the response time at a flow velocity of 1 m/s is 3 seconds or less, and the decrease in responsiveness at a low flow velocity of the measurement gas can be reduced. Furthermore, if the cross-sectional area Cs is 22.9 mm2 or more and the cross-sectional area Ds is 5.0 mm2 or less, the response time at a flow velocity of 1 m/s is 2.5 seconds or less, and it is considered that the decrease in responsiveness when the flow velocity of the measured gas is low can be further reduced.

なお、図14にも示したように、「断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下」に対応する高さCの数値範囲は0.46mm以上2.40mm以下であり、対応する体積Vの数値範囲は43mm3以上223mm3以下であった。「断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下」に対応する高さCの数値範囲は0.75mm以上1.87mm以下であり、対応する体積Vの数値範囲は70mm3以上174mm3以下であった。 14, the numerical range of the height C corresponding to "cross-sectional area Cs is 14.0 mm2 or more and cross-sectional area Ds is 6.4 mm2 or less" was 0.46 mm or more and 2.40 mm or less, and the numerical range of the corresponding volume V was 43 mm3 or more and 223 mm3 or less. The numerical range of the height C corresponding to "cross-sectional area Cs is 22.9 mm2 or more and cross-sectional area Ds is 5.0 mm2 or less" was 0.75 mm or more and 1.87 mm or less, and the numerical range of the corresponding volume V was 70 mm3 or more and 174 mm3 or less.

実験例5~19についても、実験例1~4と同様に、流速が低いほど応答時間が長くなる(応答性が低下する)傾向がみられた。実験例5~19についても、断面積Cs及び断面積Dsの値と、低流速時の応答性との間に、実験例1~4と同様の傾向が確認された。例えば、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下となっている実験例6~8,10~12,14~16,18,19は、流速1m/sにおける応答時間が3秒以下(応答性の評価が「B」以上)であった。また、断面積Asが互いに同じ且つ断面積Bsの値が互いに同じである実験例5~8間で比較すると、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例7が応答時間が最も短かった。同様に、実験例9~12間で比較すると、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例11が応答時間が最も短かった。実験例13~16間で比較すると、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例15が、流速0.73m/sにおける応答時間が最も短かった。なお、流速1m/sにおける応答時間は実験例15よりも実験例14の方が短かったが、この差はわずかであり誤差と考えられる。実験例17~19間で比較すると、実験例18と断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例19とで流速1m/sにおける応答時間は同じ値であったが、流速0.73m/sにおける応答時間は実験例17~19の中で実験例19が最も短かった。そのため、全体としては実験例17~19間では実験例19が応答時間が最も短い傾向が確認された。 As with Experimental Examples 1 to 4, Experimental Examples 5 to 19 also showed a tendency that the response time became longer (response decreased) as the flow velocity became lower. As with Experimental Examples 1 to 4, Experimental Examples 5 to 19 also showed a tendency between the values of the cross-sectional area Cs and the cross-sectional area Ds and the responsiveness at low flow velocity. For example, Experimental Examples 6 to 8, 10 to 12, 14 to 16, 18, and 19, in which the cross-sectional area Cs was 14.0 mm 2 or more and the cross-sectional area Ds was 6.4 mm 2 or less, had a response time of 3 seconds or less at a flow velocity of 1 m/s (response evaluation of "B" or more). In addition, when comparing Experimental Examples 5 to 8, which have the same cross-sectional area As and the same cross-sectional area Bs, Experimental Example 7, which satisfies the conditions that the cross-sectional area Cs is 22.9 mm 2 or more and the cross-sectional area Ds is 5.0 mm 2 or less, had the shortest response time. Similarly, when comparing Experimental Examples 9 to 12, Experimental Example 11, which satisfied the conditions that the cross-sectional area Cs was 22.9 mm 2 or more and the cross-sectional area Ds was 5.0 mm 2 or less, had the shortest response time. When comparing Experimental Examples 13 to 16, Experimental Example 15, which satisfied the conditions that the cross-sectional area Cs was 22.9 mm 2 or more and the cross-sectional area Ds was 5.0 mm 2 or less, had the shortest response time at a flow velocity of 0.73 m/s. Note that the response time at a flow velocity of 1 m/s was shorter in Experimental Example 14 than in Experimental Example 15, but this difference was small and considered to be an error. When comparing Experimental Examples 17 to 19, the response time at a flow velocity of 1 m/s was the same for Experimental Example 18 and Experimental Example 19, which satisfied the conditions that the cross-sectional area Cs was 22.9 mm 2 or more and the cross-sectional area Ds was 5.0 mm 2 or less, but the response time at a flow velocity of 0.73 m/s was the shortest among Experimental Examples 17 to 19. Therefore, overall, it was confirmed that among Experimental Examples 17 to 19, Experimental Example 19 tended to have the shortest response time.

また、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下となっている実験例2~4,6~8,10~12,14~16,18,19のうち、互いに断面積Asが同じ且つ互いに断面積比As/Bsが同じである実験例2~4を第1グループとし、同様に実験例6~8を第2グループ、実験例10~12を第3グループ、実験例14~16を第4グループ、実験例18,19を第5グループとする。この第1~第5グループ間を比較すると、断面積Asが47.3mm2以上68.1mm2以下の範囲内にある第1~第4グループの方が、断面積Asがこの範囲内から外れている第5グループと比較して、低流速時の応答時間が短い傾向が確認された。そのため、断面積Asは47.3mm2以上68.1mm2以下が好ましいと考えられる。ただし、第5グループでも、応答性の評価が「」であり、被測定ガスの低流速時の応答性の低下を低減する効果は得られている。 In addition, among the experimental examples 2 to 4, 6 to 8, 10 to 12, 14 to 16, 18, and 19 in which the cross-sectional area Cs is 14.0 mm 2 or more and the cross-sectional area Ds is 6.4 mm 2 or less, the experimental examples 2 to 4 in which the cross-sectional area As and the cross-sectional area ratio As/Bs are the same are classified as the first group, the experimental examples 6 to 8 are classified as the second group, the experimental examples 10 to 12 are classified as the third group, the experimental examples 14 to 16 are classified as the fourth group, and the experimental examples 18 and 19 are classified as the fifth group. When comparing the first to fifth groups, it was confirmed that the first to fourth groups in which the cross-sectional area As is in the range of 47.3 mm 2 or more and 68.1 mm 2 or less tend to have a shorter response time at low flow rates compared to the fifth group in which the cross-sectional area As is outside this range. Therefore, it is considered that the cross-sectional area As is preferably 47.3 mm 2 or more and 68.1 mm 2 or less. However, even in the fifth group, the evaluation of the responsiveness was " A ", and the effect of reducing the decrease in responsiveness when the flow velocity of the gas to be measured is low is obtained.

20 配管、22 固定用部材、100,200,400 ガスセンサ、102 ハウジング、103 ボルト、110 センサ素子、110a 多孔質保護層、111 ガス導入口、120,220,420 保護カバー、122 第1ガス室、122a 第1空間、122b 第2空間、122c 第2空間入口、122d 流路断面、124 センサ素子室、126 第2ガス室、127,327,427 素子室入口、128,428 外側開口部、129,429 素子側開口部、130,230,430 内側保護カバー、131,431 第1部材、132 大径部、133 段差部、134,334 第1円筒部、135,235,435 第2部材、136,336,436 第2円筒部、136a 突出部、137 接続部、138,238 先端部、138a,238a 素子室出口、138b 横孔、138d 側部、138e 底部、139 段差部、140,240 外側保護カバー、142 大径部、143 胴部、143a 側部、143b 段差部、144a 外側入口、144b 横孔、144c 縦孔、146,246 先端部、146a,246a 側部、146b,246b 底部、146c テーパー部、147a,247a 外側出口、147c,247c 縦孔、334a 凹部、434a 胴部、434b 第1円筒部。 20 piping, 22 fixing member, 100, 200, 400 gas sensor, 102 housing, 103 bolt, 110 sensor element, 110a porous protective layer, 111 gas inlet, 120, 220, 420 protective cover, 122 first gas chamber, 122a first space, 122b second space, 122c second space inlet, 122d flow passage cross section, 124 sensor element chamber, 126 second gas chamber, 127, 327, 427 element chamber inlet, 128, 428 outer opening, 129, 429 element side opening, 130, 230, 430 inner protective cover, 131, 431 first member, 132 large diameter portion, 133 step portion, 134, 334 first cylindrical portion, 135, 235, 435 Second member, 136, 336, 436 Second cylindrical portion, 136a Protruding portion, 137 Connection portion, 138, 238 Tip portion, 138a, 238a Element chamber outlet, 138b Horizontal hole, 138d Side portion, 138e Bottom portion, 139 Step portion, 140, 240 Outer protective cover, 142 Large diameter portion, 143 Body portion, 143a Side portion, 143b Step portion, 144a Outer inlet, 144b Horizontal hole, 144c Vertical hole, 146, 246 Tip portion, 146a, 246a Side portion, 146b, 246b Bottom portion, 146c Tapered portion, 147a, 247a Outer outlet, 147c, 247c Vertical hole, 334a Recess, 434a Body portion, 434b First cylindrical section.

Claims (9)

被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子と、
前記センサ素子の先端及び前記ガス導入口が内部に配置されるセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、前記センサ素子を囲む筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記センサ素子の前記先端から後端に向かう方向を上方向とし、前記センサ素子の前記後端から前記先端に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm2以上6.4mm2以下である、
ガスセンサ。
a sensor element having a gas inlet for introducing a gas to be measured and capable of detecting a specific gas concentration of the gas to be measured that has flowed into the sensor element through the gas inlet;
a cylindrical inner protective cover having a sensor element chamber therein in which the tip of the sensor element and the gas inlet are disposed, the sensor element chamber having one or more element chamber inlets which are inlets to the sensor element chamber and one or more element chamber outlets which are outlets from the sensor element chamber;
a cylindrical outer protective cover provided with one or more outer inlets which are inlets for the measurement gas from the outside and one or more outer outlets which are outlets for the measurement gas to the outside, the outer protective cover being disposed outside the inner protective cover;
Equipped with
the outer protective cover and the inner protective cover define, as a space therebetween, a first gas chamber which functions as a flow path for the measurement gas between the outer inlet and the element chamber inlet, and a second gas chamber which functions as a flow path for the measurement gas between the outer outlet and the element chamber outlet and does not directly communicate with the first gas chamber,
the inner protective cover has a cylindrical first member surrounding the sensor element and a cylindrical second member surrounding the first member,
the first member and the second member define the element chamber inlet as a gap therebetween,
a direction parallel to the axial direction of the inner protective cover and from the front end to the rear end of the sensor element is defined as an upward direction, and a direction from the rear end to the front end of the sensor element is defined as a downward direction, and the first gas chamber has: a first space which is a space between the outer protective cover and the second member and functions as a flow path of the measurement gas from the outer inlet toward the upward direction; and a second space which is a space above an upper end of the second member and between the outer protective cover and the first member and functions as a flow path of the measurement gas from the first space to the element chamber inlet,
a cross-sectional area Cs of the second space, which is a flow path cross-sectional area when the measurement gas passes directly above the second member from the outside to the inside of the second member, is 14.0 mm2 or more,
A cross-sectional area Ds, which is a cross-sectional area perpendicular to the circumferential direction of the inner protective cover in the second space, is 0.5 mm 2 or more and 6.4 mm 2 or less.
Gas sensor.
前記断面積Csが22.9mm2以上である、
請求項1に記載のガスセンサ。
The cross-sectional area Cs is 22.9 mm 2 or more.
2. The gas sensor according to claim 1.
前記断面積Dsが5.0mm2以下である、
請求項1又は2に記載のガスセンサ。
The cross-sectional area Ds is 5.0 mm2 or less.
3. The gas sensor according to claim 1 or 2.
前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asと前記1以上の素子室入口の合計断面積である断面積Bsとの断面積比As/Bsが1.41以上4.70以下である、
請求項1~3のいずれか1項に記載のガスセンサ。
a cross-sectional area ratio As/Bs of a cross-sectional area As of a second space inlet which is an inlet for the measurement gas from the first space to the second space to a cross-sectional area Bs which is a total cross-sectional area of the one or more element chamber inlets is 1.41 or more and 4.70 or less;
The gas sensor according to any one of claims 1 to 3.
前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asが47.3mm2以上68.1mm2以下である、
請求項1~4のいずれか1項に記載のガスセンサ。
a cross-sectional area As of a second space inlet, which is an inlet for the measurement gas from the first space to the second space, is 47.3 mm2 or more and 68.1 mm2 or less;
The gas sensor according to any one of claims 1 to 4.
前記1以上の素子室入口の合計断面積である断面積Bsが14.5mm2以上33.4mm2以下である、
請求項1~5のいずれか1項に記載のガスセンサ。
a cross-sectional area Bs, which is a total cross-sectional area of the one or more element chamber inlets, is 14.5 mm2 or more and 33.4 mm2 or less;
The gas sensor according to any one of claims 1 to 5.
前記第1部材及び前記第2部材は、前記素子室入口のうち前記センサ素子室側の開口部である素子側開口部が前記下方向に向けて開口するように該素子室入口を形成している、
請求項1~6のいずれか1項に記載のガスセンサ。
the first member and the second member form the element chamber inlet such that an element side opening, which is an opening of the element chamber inlet on the sensor element chamber side, opens in the downward direction,
The gas sensor according to any one of claims 1 to 6.
前記第1部材は、前記センサ素子を囲む第1円筒部を有しており、
前記第2部材は、前記第1円筒部よりも大径の第2円筒部を有しており、
前記素子室入口は、前記第1円筒部の外周面と前記第2円筒部の内周面との間の円筒状の隙間である、
請求項1~7のいずれか1項に記載のガスセンサ。
The first member has a first cylindrical portion surrounding the sensor element,
The second member has a second cylindrical portion having a larger diameter than the first cylindrical portion,
the element chamber inlet is a cylindrical gap between an outer circumferential surface of the first cylindrical portion and an inner circumferential surface of the second cylindrical portion;
The gas sensor according to any one of claims 1 to 7.
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子、を保護するための保護カバーであって、
前記センサ素子の先端及び前記ガス導入口を内部に配置するためのセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記外側保護カバーの底部から該底部とは反対側に向かう方向を上方向とし、前記外側保護カバーの該底部とは反対側から該底部に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm2以上6.4mm2以下である、
保護カバー。
A protective cover for protecting a sensor element having a gas inlet for introducing a measurement gas and capable of detecting a specific gas concentration of the measurement gas flowing into the sensor element from the gas inlet,
a cylindrical inner protective cover having a sensor element chamber therein for arranging the tip of the sensor element and the gas inlet therein, the sensor element chamber having one or more element chamber inlets which are inlets to the sensor element chamber and one or more element chamber outlets which are outlets from the sensor element chamber;
a cylindrical outer protective cover provided with one or more outer inlets which are inlets for the measurement gas from the outside and one or more outer outlets which are outlets for the measurement gas to the outside, the outer protective cover being disposed outside the inner protective cover;
Equipped with
the outer protective cover and the inner protective cover define, as a space therebetween, a first gas chamber which functions as a flow path for the measurement gas between the outer inlet and the element chamber inlet, and a second gas chamber which functions as a flow path for the measurement gas between the outer outlet and the element chamber outlet and does not directly communicate with the first gas chamber,
The inner protective cover has a cylindrical first member and a cylindrical second member surrounding the first member,
the first member and the second member define the element chamber inlet as a gap therebetween,
a direction parallel to the axial direction of the inner protective cover and from the bottom of the outer protective cover toward the opposite side of the bottom is defined as an upward direction, and a direction from the opposite side of the outer protective cover toward the bottom is defined as a downward direction, the first gas chamber has: a first space which is a space between the outer protective cover and the second member and functions as a flow path of the measurement gas from the outer inlet toward the upward direction; and a second space which is a space above an upper end of the second member and between the outer protective cover and the first member and functions as a flow path of the measurement gas from the first space to the element chamber inlet,
a cross-sectional area Cs of the second space, which is a flow path cross-sectional area when the measurement gas passes directly above the second member from the outside to the inside of the second member, is 14.0 mm2 or more,
A cross-sectional area Ds, which is a cross-sectional area perpendicular to the circumferential direction of the inner protective cover in the second space, is 0.5 mm 2 or more and 6.4 mm 2 or less.
Protective cover.
JP2020127253A 2019-10-03 2020-07-28 Gas sensor and protective cover Active JP7465739B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011030588.7A CN112611834B (en) 2019-10-03 2020-09-27 Gas sensor and protective cover
DE102020005914.7A DE102020005914A1 (en) 2019-10-03 2020-09-28 GAS SENSOR AND PROTECTIVE COVER
US17/038,099 US11371975B2 (en) 2019-10-03 2020-09-30 Gas sensor and protective cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183072 2019-10-03
JP2019183072 2019-10-03

Publications (2)

Publication Number Publication Date
JP2021060385A JP2021060385A (en) 2021-04-15
JP7465739B2 true JP7465739B2 (en) 2024-04-11

Family

ID=75380060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020127253A Active JP7465739B2 (en) 2019-10-03 2020-07-28 Gas sensor and protective cover

Country Status (1)

Country Link
JP (1) JP7465739B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109693A (en) 2014-12-02 2016-06-20 日本碍子株式会社 Gas sensor
JP2017223621A (en) 2016-06-17 2017-12-21 日本碍子株式会社 Gas sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109693A (en) 2014-12-02 2016-06-20 日本碍子株式会社 Gas sensor
JP2017223621A (en) 2016-06-17 2017-12-21 日本碍子株式会社 Gas sensor

Also Published As

Publication number Publication date
JP2021060385A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP7239434B2 (en) Gas sensor and protective cover
JP6740023B2 (en) Gas sensor
JP6740024B2 (en) Gas sensor
EP3029457B1 (en) Gas sensor
EP3006931B1 (en) Gas sensor
JP7288833B2 (en) Gas sensor and protective cover
US10775357B2 (en) Gas sensor
JP2003075396A (en) Gas sensor
JP6654416B2 (en) Gas sensor
JP7465739B2 (en) Gas sensor and protective cover
CN111417849A (en) Sensor device
US11371975B2 (en) Gas sensor and protective cover
JP2009145268A (en) Gas sensor
JP6512033B2 (en) Gas sensor mounting structure
US20170363598A1 (en) Gas sensor
JP7261717B2 (en) gas sensor
JP7487136B2 (en) Gas Sensors
JP7489936B2 (en) Gas Sensors
JP7609680B2 (en) Gas Sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401

R150 Certificate of patent or registration of utility model

Ref document number: 7465739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150