[go: up one dir, main page]

JP7469789B2 - Ice maker and refrigerator equipped with ice maker - Google Patents

Ice maker and refrigerator equipped with ice maker Download PDF

Info

Publication number
JP7469789B2
JP7469789B2 JP2019234062A JP2019234062A JP7469789B2 JP 7469789 B2 JP7469789 B2 JP 7469789B2 JP 2019234062 A JP2019234062 A JP 2019234062A JP 2019234062 A JP2019234062 A JP 2019234062A JP 7469789 B2 JP7469789 B2 JP 7469789B2
Authority
JP
Japan
Prior art keywords
liquid
liquid container
ice
rod
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234062A
Other languages
Japanese (ja)
Other versions
JP2021103032A (en
Inventor
利治 倉谷
真輔 設楽
賢宏 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aqua Co Ltd
Original Assignee
Aqua Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aqua Co Ltd filed Critical Aqua Co Ltd
Priority to JP2019234062A priority Critical patent/JP7469789B2/en
Priority to CN202080086050.XA priority patent/CN114787567B/en
Priority to US17/788,292 priority patent/US20230026532A1/en
Priority to EP20908248.6A priority patent/EP4083543B1/en
Priority to PCT/CN2020/136817 priority patent/WO2021129485A1/en
Publication of JP2021103032A publication Critical patent/JP2021103032A/en
Application granted granted Critical
Publication of JP7469789B2 publication Critical patent/JP7469789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/08Producing ice by immersing freezing chambers, cylindrical bodies or plates into water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、液体を凍らせて氷を生成する製氷機及びこの製氷機を備えた冷蔵庫に関する。 The present invention relates to an ice maker that freezes liquid to produce ice, and a refrigerator equipped with this ice maker.

液体を凍らせて氷を生成する製氷機の中には、トレー内の液体に浸かった冷却突起を冷蔵庫の冷却システムの冷媒を用いて冷却することにより、製氷を行うものが提案されている(例えば、特許文献1参照)。 Among ice makers that freeze liquid to produce ice, there is one that makes ice by cooling protrusions immersed in liquid in a tray using the refrigerant from the refrigerator's cooling system (see, for example, Patent Document 1).

特開2004-150785号公報JP 2004-150785 A

しかしながら、特許文献1に記載の製氷機では、冷却突起の周囲で凍結した液体以外のトレー内に残留した液体は排出される。このため、新たに製氷を行う場合には、冷却されていない新たな液体をトレーに供給して行うので、冷却効率も低く製氷サイクルも長くなる。 However, in the ice maker described in Patent Document 1, any liquid remaining in the tray other than the liquid that has frozen around the cooling protrusions is discharged. Therefore, when making new ice, new uncooled liquid must be supplied to the tray, resulting in low cooling efficiency and a long ice making cycle.

従って、本発明の目的は、上記の課題を解決するものであり、冷却効率が高く、短時間に製氷が可能な製氷機、及びこの製氷機を備えた冷蔵庫を提供することにある。 Therefore, the object of the present invention is to solve the above problems and to provide an ice maker that has high cooling efficiency and can make ice in a short time, and a refrigerator equipped with this ice maker.

本発明の製氷機は、
冷媒が流れる流路を有するヒートシンクと、
金属製の棒状部材が基端部から先端部にかけて下側に延びるように取り付けられた金属板と
を有し、前記ヒートシンクにより前記棒状部材が冷却される冷却部と、
液体を貯蔵可能な液体容器と、
前記液体容器に液体を供給する液体供給部と、
前記液体容器を回転移動させる移動機構と、
前記棒状部材の温度、液体供給部の作動及び前記移動機構の作動を制御する制御部と、
を備え、
前記制御部の制御により、
前記液体供給部が、製氷位置において上方が開口した前記液体容器に液体を供給する給液工程と、
前記給液工程の後、所定の時間、製氷温度にした前記棒状部材の前記先端部から所定の領域が前記液体容器に収容された液体に浸かった状態にする製氷工程と、
前記製氷工程の後、前記移動機構が、残留した液体を前記液体容器内に貯蔵したまま、前記液体容器を前記製氷位置から前記棒状部材の下側に前記液体容器が存在しない待避位置まで回転移動させる待避工程と、
前記待避工程の後、前記棒状部材を離氷温度にして、前記棒状部材の周囲に生成された氷を前記棒状部材から落下させる離氷工程と、
前記離氷工程の後、前記移動機構が、残留した液体を前記液体容器内に貯蔵したまま、前記液体容器を前記待避位置から前記製氷位置へ回転移動させる復帰工程と、
を行う製氷プロセスを複数回繰り返し、
前記液体容器が、前記待避位置において所定の量の液体を収容可能な構造を有することを特徴とする。
The ice maker of the present invention comprises:
a heat sink having a flow path through which a coolant flows;
a cooling section including a metal plate to which a metal rod-shaped member is attached so as to extend downward from a base end to a tip end, the cooling section cooling the rod-shaped member by the heat sink;
A liquid container capable of storing liquid;
a liquid supply unit that supplies liquid to the liquid container;
a moving mechanism for rotating and moving the liquid container;
a control unit for controlling the temperature of the rod-shaped member, the operation of the liquid supply unit, and the operation of the movement mechanism;
Equipped with
Under the control of the control unit,
a liquid supplying step in which the liquid supplying unit supplies liquid to the liquid container, the liquid container having an open upper portion at an ice making position;
an ice making step of immersing a predetermined area of the rod-shaped member, which has been heated to an ice making temperature, in the liquid contained in the liquid container for a predetermined time after the liquid supply step;
a retreat step in which, after the ice making step, the moving mechanism rotates and moves the liquid container from the ice making position to a retreat position where the liquid container is not present below the rod-shaped member while keeping the remaining liquid stored in the liquid container;
an ice-removing step in which the rod-shaped member is heated to an ice-removing temperature after the retreating step, and ice generated around the rod-shaped member is dropped from the rod-shaped member;
a return step in which, after the ice removing step, the moving mechanism rotates and moves the liquid container from the retreat position to the ice making position while keeping the remaining liquid stored in the liquid container;
The ice making process is repeated several times.
The liquid container is characterized by having a structure capable of containing a predetermined amount of liquid in the retracted position.

本発明によれば、前の製氷プロセスの製氷工程で液体容器内に残留した液体を、次の製氷プロセスの製氷工程で使用できるので、前の製氷プロセスで冷却された低温の液体を用いて製氷ができる。よって、冷却効率が高く、短時間に製氷が可能な製氷機を提供できる。 According to the present invention, the liquid remaining in the liquid container from the previous ice-making process can be used in the next ice-making process, so ice can be made using low-temperature liquid cooled in the previous ice-making process. This makes it possible to provide an ice-making machine that has high cooling efficiency and can make ice in a short time.

また、本発明は、
前記液体容器内に残留する液体を除去する液体除去部を更に備え、
前記制御部の制御により、
前記製氷工程の後、前記液体除去部が前記液体容器内に残留する液体の一部を除去して、前記液体容器内に残留する液体の量を前記所定の量以下にする除液工程を行った後、前記待避工程を行うことを特徴とする。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
a liquid removal unit that removes liquid remaining in the liquid container;
Under the control of the control unit,
The method is characterized in that after the ice making process, the liquid removal unit performs a liquid removal process to remove a portion of the liquid remaining in the liquid container to reduce the amount of liquid remaining in the liquid container to below the predetermined amount, and then the evacuation process is performed.

本発明によれば、液体除去部により液体容器内に残留する液体の量を所定の量以下にすることができるので、確実に残留した液体を液体容器内に貯蔵したまま、液体容器を待避位置へ回転移動させることができる。 According to the present invention, the amount of liquid remaining in the liquid container can be reduced to a predetermined amount or less by the liquid removal unit, so that the liquid container can be rotated to the waiting position while reliably storing the remaining liquid in the liquid container.

また、本発明は、
複数の前記製氷プロセスを繰り返した後、
前記制御部の制御により、
前記製氷位置または前記待避位置にある前記液体容器内に残留した残留液を冷凍環境下に置いて凍結させる残留液凍結工程と、
前記残留液凍結工程の後、前記移動機構が、弾性を有する前記液体容器の一部を拘束した状態で前記液体容器を更に回転移動させることにより前記液体容器を捻って、凍結した前記残留液を前記液体容器から落下させる残留液離氷工程と、
を行うことを特徴とする。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
After repeating the ice making process several times,
Under the control of the control unit,
a residual liquid freezing step of freezing the residual liquid remaining in the liquid container at the ice making position or the retreat position in a freezing environment;
a residual liquid freezing step in which, after the residual liquid freezing step, the moving mechanism further rotates and moves the liquid container while constraining a part of the liquid container having elasticity, thereby twisting the liquid container and causing the frozen residual liquid to fall from the liquid container;
The present invention is characterized by carrying out the following steps.

本発明によれば、一連の製氷プロセスが終了した後、残留した液体を液体容器から流出させることなく。凍結させて液体容器から離氷させることができので、効率の高い製氷サイクルが実現できる。 According to the present invention, after the ice making process is completed, the remaining liquid can be frozen and released from the liquid container without spilling out, realizing a highly efficient ice making cycle.

また、本発明は、
前記ヒートシンク及び前記金属板の間に配置され、一方の面が前記ヒートシンクの面と接し、他方の面が前記金属板の前記棒状部材が取り付けられた面と反対側の面に接するペルチェ素子を更に備え、
前記製氷工程において、前記ペルチェ素子の前記ヒートシンクと接する側が放熱側となり、前記金属板と接する側が吸熱側となるように、前記ペルチェ素子に電力を供給することにより前記製氷温度の前記棒状部材の更なる冷却を行い、
前記離氷工程において、前記ペルチェ素子の前記ヒートシンクと接する側が吸熱側となり、前記金属板と接する側が放熱側となるように、前記ペルチェ素子に電力を供給して前記棒状部材を前記離氷温度にすることを特徴とする。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
a Peltier element disposed between the heat sink and the metal plate, one surface of which contacts a surface of the heat sink and the other surface of which contacts a surface of the metal plate opposite to the surface to which the rod-shaped member is attached;
In the ice making process, the rod-shaped member is further cooled to the ice making temperature by supplying power to the Peltier element so that the side of the Peltier element that contacts the heat sink becomes a heat dissipation side and the side of the Peltier element that contacts the metal plate becomes a heat absorption side;
In the ice-removal process, power is supplied to the Peltier element so that the side of the Peltier element in contact with the heat sink becomes the heat absorption side and the side in contact with the metal plate becomes the heat dissipation side, thereby heating the rod-shaped member to the ice-removal temperature.

本発明によれば、ペルチェ素子により、棒状部材を有する金属板側から吸熱して、ヒートシンク側に放熱するので、冷媒が流れる流路を有するヒートシンクによる冷却に加えて、ペルチェ素子による冷却が加わり、金属板の棒状部材の温度を、冷媒だけを用いた場合の温度よりも更に低い温度にすることができる。これにより、金属板の棒状部材の周囲に短時間に氷を生成することができる。更に、ペルチェ素子の通電の向きを上記と逆転させることにより、速やかに棒状部材の温度を上げて、離氷を実現できる。これにより、短い製氷サイクルを確実に実現できる。 According to the present invention, the Peltier element absorbs heat from the metal plate having the rod-shaped member and dissipates it to the heat sink side, so in addition to the cooling by the heat sink having a flow path through which the refrigerant flows, the Peltier element also cools, making it possible to lower the temperature of the rod-shaped member of the metal plate to a temperature lower than the temperature when only a refrigerant is used. This allows ice to be produced around the rod-shaped member of the metal plate in a short period of time. Furthermore, by reversing the direction of current flow through the Peltier element, the temperature of the rod-shaped member can be quickly raised, allowing ice to be removed. This ensures a short ice-making cycle.

また、本発明は、
前記離氷工程において、前記液体容器の端部領域を回転中心にして、前記製氷位置から前記待避位置まで前記液体容器を70度から120度の範囲で回転させ、
前記液体容器に、前記液体容器を構成する側壁部と繋がり、上方の開口を一部覆うリブが設けられ、前記待避位置において、前記所定の量の液体が前記リブにより前記液体容器内に堰き止められることを特徴とする。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
In the ice removing step, the liquid container is rotated from the ice making position to the retreat position through a range of 70 degrees to 120 degrees around an end region of the liquid container as a rotation center,
The liquid container is provided with a rib that is connected to a side wall portion that constitutes the liquid container and partially covers the upper opening, and in the retracted position, the predetermined amount of liquid is blocked within the liquid container by the rib.

本発明によれば、液体容器に上方の開口の一部覆うリブを設けることにより、簡単な構造でありながら、確実に待避位置において、所定の量の液体を液体容器内に貯蔵することができる。 According to the present invention, by providing a rib that partially covers the upper opening of the liquid container, a predetermined amount of liquid can be stored in the liquid container reliably in the retracted position, despite the simple structure.

また、本発明の冷蔵庫は、
上記の製氷機を備え、
庫内を冷却するための冷却システムから分岐して、冷媒を前記製氷機の前記ヒートシンクへ供給することを特徴とする。
In addition, the refrigerator of the present invention is
Equipped with the above ice maker,
The present invention is characterized in that a refrigerant is branched off from a cooling system for cooling the interior of the refrigerator and supplied to the heat sink of the ice maker.

本発明によれば、冷却効率が高く、短時間に製氷が可能な冷蔵庫を提供できる。 The present invention provides a refrigerator that has high cooling efficiency and can make ice in a short time.

以上のように、本発明においては、冷却効率が高く、短時間に製氷が可能な製氷機、及びこの製氷機を備えた冷蔵庫を提供することができる。 As described above, the present invention provides an ice maker that has high cooling efficiency and can make ice in a short time, and a refrigerator equipped with this ice maker.

本発明の1つの実施形態に係る製氷機を斜め上側から見た斜視図である。1 is a perspective view of an ice making machine according to one embodiment of the present invention, seen obliquely from above. 本発明の1つの実施形態に係る製氷機を斜め下側から見た斜視図である。1 is a perspective view of an ice making machine according to one embodiment of the present invention, seen obliquely from below. 図1Aの矢印A-Aから見た側面図である。FIG. 1B is a side view taken along the arrows AA in FIG. 1A. 図1AのB-B断面図であって、本発明の1つの実施形態に係る製氷機を模式的に示す側面断面図である。FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A, which is a side cross-sectional view that illustrates a schematic diagram of an ice making machine according to one embodiment of the present invention. 図3と同じ断面を示す図であって、本発明の1つの実施形態に係る製氷機の変形例を模式的に示す側面断面図である。FIG. 4 is a side cross-sectional view showing the same cross section as FIG. 3, and is a schematic diagram showing a modified example of an ice making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係るヒートシンクの平面形状及びヒートシンクに接続された冷却システムを模式的に示す図である。1 is a diagram showing a schematic diagram of a planar shape of a heat sink and a cooling system connected to the heat sink according to one embodiment of the present invention; 本発明の1つの実施形態に係る製氷機の制御構成を示すブロック線図である。FIG. 2 is a block diagram showing a control configuration of an ice making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される給液工程を模式的に示す側面断面図である。FIG. 2 is a side cross-sectional view showing a liquid supply process performed in an ice making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される製氷工程を模式的に示す側面断面図である。1 is a side cross-sectional view showing a schematic diagram of an ice-making process performed in an ice-making machine according to one embodiment of the present invention; 本発明の1つの実施形態に係る製氷機で実施される除液工程を模式的に示す側面断面図である。FIG. 2 is a side cross-sectional view showing a liquid removing process performed in an ice making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される待避工程を模式的に示す側面断面図である。1 is a side cross-sectional view showing a schematic diagram of an evacuation process performed in an ice making machine according to one embodiment of the present invention. FIG. 本発明の1つの実施形態に係る製氷機で実施される離氷工程を模式的に示す側面断面図である。FIG. 2 is a side cross-sectional view showing a schematic diagram of an ice removal process performed in an ice making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される復帰工程を模式的に示す側面断面図である。1 is a side cross-sectional view showing a schematic diagram of a return process performed in an ice making machine according to one embodiment of the present invention; 本発明の1つの実施形態に係る製氷機で実施される次の製氷プロセスにおける給液工程を模式的に示す側面断面図である。FIG. 11 is a side cross-sectional view that illustrates a liquid supply step in the next ice-making process performed in an ice-making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される残留液凍結工程を模式的に示す側面断面図である。FIG. 2 is a side cross-sectional view showing a schematic diagram of a residual liquid freezing process carried out in an ice-making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される残留液離氷工程において、液体容器を捻るところを模式的に示す側面断面図である。FIG. 2 is a cross-sectional side view that shows a schematic diagram of a liquid container being twisted during a residual liquid ice-releasing process performed in an ice-making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る製氷機で実施される残留液離氷工程において、凍結した残留液を液体容器から落下させるところを模式的に示す側面断面図である。FIG. 2 is a cross-sectional side view that shows a schematic diagram of frozen residual liquid being dropped from a liquid container during a residual liquid ice-releasing process performed in an ice-making machine according to one embodiment of the present invention. 本発明の1つの実施形態に係る冷蔵庫を模式的に示す側面断面図である。1 is a side cross-sectional view illustrating a refrigerator according to an embodiment of the present invention.

以下、図面を参照しながら、本発明を実施するための実施形態を説明する。なお、以下に説明する製氷機及び冷蔵庫は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。各図面中、同一の機能を有する部材には、同一符号を付している場合がある。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。以下の記載及び図面では、製氷機及び冷蔵庫が水平面に設置された場合を想定して、上下方向を示してある。 Below, an embodiment for carrying out the present invention will be described with reference to the drawings. Note that the ice maker and refrigerator described below are intended to embody the technical concept of the present invention, and unless otherwise specified, the present invention is not limited to the following. In each drawing, components having the same function may be given the same reference numerals. The size and positional relationship of components shown in each drawing may be exaggerated to clarify the explanation. In the following description and drawings, the up and down directions are shown assuming that the ice maker and refrigerator are installed on a horizontal surface.

(1つの実施形態に係る製氷機)
図1Aは、本発明の1つの実施形態に係る製氷機2を斜め上側から見た斜視図である。図1Bは、本発明の1つの実施形態に係る製氷機2を斜め下側から見た斜視図である。図2は、図1Aの矢印A-Aから見た側面図である。図3は、図1AのB-B断面図であって、本発明の1つの実施形態に係る製氷機を模式的に示す側面断面図である。図4は、図3と同じ断面を示す図であって、本発明の1つの実施形態に係る製氷機の変形例を模式的に示す側面断面図である。図5は、本発明の1つの実施形態に係るヒートシンクの平面形状及びヒートシンクに接続された冷却システムを模式的に示す図である。図6は、本発明の1つの実施形態に係る製氷機の制御構成を示すブロック線図である。
はじめに、図1A、図1B、図2、図3、図4、図5及び図6を参照しながら、本発明の1つの実施形態に係る製氷機2の概要を説明する。
(Ice maker according to one embodiment)
FIG. 1A is a perspective view of an ice-making machine 2 according to an embodiment of the present invention, as viewed from an obliquely upper side. FIG. 1B is a perspective view of an ice-making machine 2 according to an embodiment of the present invention, as viewed from an obliquely lower side. FIG. 2 is a side view as viewed from the arrow A-A in FIG. 1A. FIG. 3 is a cross-sectional view taken along line B-B in FIG. 1A, and is a side cross-sectional view that typically shows an ice-making machine according to an embodiment of the present invention. FIG. 4 is a cross-sectional view of the same cross section as FIG. 3, and is a side cross-sectional view that typically shows a modified example of an ice-making machine according to an embodiment of the present invention. FIG. 5 is a diagram that typically shows the planar shape of a heat sink according to an embodiment of the present invention and a cooling system connected to the heat sink. FIG. 6 is a block diagram showing the control configuration of an ice-making machine according to an embodiment of the present invention.
First, an overview of an ice making machine 2 according to one embodiment of the present invention will be described with reference to FIGS. 1A, 1B, 2, 3, 4, 5 and 6.

製氷機2は、液体を凍らせて氷を生成可能な冷却部40と、液体を貯蔵可能な液体容器50と、液体容器50を回転移動させる移動機構60と、液体容器50に液体を供給する液体供給部72と、液体容器50内の液体を除去する液体除去部74とを備える。図1Aや図1Bには、実際に液体容器50に液体を供給し、液体容器50から液体を除去する給除液管70が示されている。給除液管70は、液体供給部72及び液体除去部74の両方の機能を果たす部材である。
本実施形態に係る製氷機2は、独立した製氷機として構成されており、冷却部40に冷媒を供給するための冷却システム80を備える。ただし、これに限られるものではなく、後述するように、冷蔵庫に組み込まれて、冷蔵庫の冷却システムから冷媒が供給される場合もあり得る。製氷機2は、更に、製氷機2の構成機器を制御する制御部90を備える。凍結させて氷を生成する液体として、飲料水をはじめとする任意の液体を用いることができる。
The ice maker 2 includes a cooling unit 40 capable of freezing liquid to produce ice, a liquid container 50 capable of storing liquid, a moving mechanism 60 that rotates and moves the liquid container 50, a liquid supply unit 72 that supplies liquid to the liquid container 50, and a liquid removal unit 74 that removes the liquid in the liquid container 50. Figures 1A and 1B show a liquid supply/removal pipe 70 that actually supplies liquid to the liquid container 50 and removes liquid from the liquid container 50. The liquid supply/removal pipe 70 is a member that fulfills the functions of both the liquid supply unit 72 and the liquid removal unit 74.
Ice maker 2 according to the present embodiment is configured as an independent ice maker, and includes a cooling system 80 for supplying a refrigerant to cooling unit 40. However, the present invention is not limited to this, and as will be described later, it may be incorporated in a refrigerator and a refrigerant may be supplied from the cooling system of the refrigerator. Ice maker 2 further includes a control unit 90 that controls the components of ice maker 2. Any liquid, including drinking water, may be used as the liquid to be frozen to produce ice.

<冷却部>
冷却部40は、図3に示す1つの実施形態及び図4に示す1つの実施形態の変形例によって、構成部材が異なる。
[1つの実施形態]
1つの実施形態では、冷却部40は、上側から下側にかけて、ヒートシンク10及び金属板20を備え、ヒートシンク10の下面と金属板20の上面が接合されている。金属板20は、板状のベース部22の下側の面に複数の棒状部材24が取り付けられている。
[変形例]
変形例では、冷却部40は、上側から下側にかけて、順にヒートシンク10、ペルチェ素子30、及び金属板20を備える。金属板20は、板状のベース部22の下側の面に複数の棒状部材24が取り付けられている。ペルチェ素子30は、ヒートシンク10と、金属板20との間に配置され、一方の面(上面)がヒートシンク10の面(下面)と接し、他方の面(下面)が金属板20の棒状部材24が取り付けられた面と反対側の面(上面)に接するようになっている。
<Cooling section>
The cooling unit 40 has different components depending on the modified example of the embodiment shown in FIG. 3 and the embodiment shown in FIG.
[One embodiment]
In one embodiment, the cooling unit 40 includes, from top to bottom, a heat sink 10 and a metal plate 20, and the bottom surface of the heat sink 10 is joined to the top surface of the metal plate 20. The metal plate 20 has a plurality of rod-shaped members 24 attached to the bottom surface of a plate-shaped base portion 22.
[Modification]
In the modified example, the cooling unit 40 includes, from top to bottom, a heat sink 10, a Peltier element 30, and a metal plate 20. The metal plate 20 has a plurality of rod-shaped members 24 attached to the lower surface of a plate-shaped base portion 22. The Peltier element 30 is disposed between the heat sink 10 and the metal plate 20, with one surface (upper surface) contacting the surface (lower surface) of the heat sink 10 and the other surface (lower surface) contacting the surface (upper surface) of the metal plate 20 opposite to the surface to which the rod-shaped members 24 are attached.

[ヒートシンク]
ヒートシンク10は、平板状の形状を有し、アルミ、銅のような熱伝導率の高い金属から形成される。ヒートシンク10は、内部に液状または霧状の冷媒が流れる流路12が設けられている。図5では、冷媒の流れを点線の矢印で示してある。図5には、平面視で3つの折り返し部を有する略M字形の流路12が示されているが、これに限られるものではない。ヒートシンク10の大きさに応じて、1つの折り返し部を有する流路や、3つより多い折り返し部を有する流路を用いることもできる。流路12の両端には、接続管14A,14Bが取り付けられている。
ヒートシンク10の構造として、金属板に溝状の流路が形成されているものや、金属薄板に流路となる冷却パイプが接合されているものを例示できる。後者の場合、金属薄板の片面に冷却パイプが接合されている場合も、冷却パイプの周囲を覆うよう金属薄板が接合されている場合もあり得る。熱伝導を考慮すると、冷却パイプ及び金属薄板が面で接触することが好ましい。金属薄板の厚みとして1~20mm程度を例示できる。ヒートシンク10の平面寸法は、後述する金属板20の平面寸法と同様である。
[heat sink]
The heat sink 10 has a flat plate shape and is made of a metal with high thermal conductivity such as aluminum or copper. The heat sink 10 has a flow path 12 inside through which a liquid or mist-like coolant flows. In FIG. 5, the flow of the coolant is indicated by dotted arrows. In FIG. 5, the flow path 12 is shown to be substantially M-shaped with three turning parts in a plan view, but is not limited to this. Depending on the size of the heat sink 10, a flow path with one turning part or a flow path with more than three turning parts can also be used. Connecting pipes 14A and 14B are attached to both ends of the flow path 12.
Examples of the structure of the heat sink 10 include a metal plate having groove-shaped flow paths formed therein, and a metal plate having a cooling pipe that serves as a flow path joined thereto. In the latter case, the cooling pipe may be joined to one side of the metal plate, or the metal plate may be joined to cover the cooling pipe. In consideration of thermal conduction, it is preferable that the cooling pipe and the metal plate are in surface contact. Examples of the thickness of the metal plate are about 1 to 20 mm. The planar dimensions of the heat sink 10 are the same as those of the metal plate 20 described below.

本実施形態に係る冷却システム80では、圧縮器82で圧縮された高圧の冷媒ガスが、凝縮器84で放熱して液体に戻り、毛細管内を通過中に減圧されて沸点が下がり、乾燥器86を経て、接続管14Aからヒートシンク10の流路12に入る。流路12を通過中に、液状または霧状の冷媒は周囲から熱を吸収して蒸発する。気化した冷媒は、接続管14Bから冷却システム80の配管を経て、圧縮器82に戻り、再び圧縮されるというサイクルを繰り返す。このような冷却サイクルにより、ヒートシンク10を氷点下の温度まで冷却することができる。 In the cooling system 80 according to this embodiment, the high-pressure refrigerant gas compressed in the compressor 82 releases heat in the condenser 84 and returns to liquid, and while passing through the capillary tube, the pressure is reduced and the boiling point is lowered, and the gas passes through the dryer 86 and enters the flow path 12 of the heat sink 10 from the connecting tube 14A. While passing through the flow path 12, the liquid or mist refrigerant absorbs heat from the surroundings and evaporates. The evaporated refrigerant passes through the connecting tube 14B and the piping of the cooling system 80, returns to the compressor 82, and is compressed again, repeating this cycle. This cooling cycle allows the heat sink 10 to be cooled to a temperature below freezing.

[金属板]
金属板20は、アルミ、銅のような熱伝導率の高い金属から形成される。金属板20は、平板状のベース部22、及びベース部22に取り付けられた複数の金属製の棒状部材24を有する。棒状部材24は、基端部24Aから先端部24Bにかけて下側に延びるようにベース部22の下面に取り付けられている。
[Metal plate]
The metal plate 20 is made of a metal with high thermal conductivity such as aluminum or copper. The metal plate 20 has a flat base portion 22 and a plurality of metal rod-shaped members 24 attached to the base portion 22. The rod-shaped members 24 are attached to the lower surface of the base portion 22 so as to extend downward from a base end portion 24A to a tip end portion 24B.

図1A,1Bでは、6本の棒状部材24がベース部22に取り付けられている場合を示す。棒状部材24は、円形の断面形状を有し、外径が5~20mm程度、長さが30~80mm程度を例示することができる。棒状部材24の大きさ及び取り付ける本数により、ベース部22の平面形状が定まる。ヒートシンク10も、金属板20のベース部22とほぼ同様な平面形状が採用される。ヒートシンク10及び金属板20のベース部22の平面寸法として、縦及び横の寸法が、40~400mm程度を例示できる。ベース部22の厚みとしては、2~10mm程度を例示できる。 Figures 1A and 1B show a case where six rod-shaped members 24 are attached to the base portion 22. The rod-shaped members 24 have a circular cross-sectional shape, and can have an outer diameter of about 5 to 20 mm and a length of about 30 to 80 mm. The planar shape of the base portion 22 is determined by the size of the rod-shaped members 24 and the number of rods attached. The heat sink 10 also adopts a planar shape substantially similar to that of the base portion 22 of the metal plate 20. The planar dimensions of the heat sink 10 and the base portion 22 of the metal plate 20 can be, for example, approximately 40 to 400 mm in length and width. The thickness of the base portion 22 can be, for example, approximately 2 to 10 mm.

本実施形態に係る金属板20は、棒状部材24の基端部24A側に雄ネジが設けられ、ベース部22に設けられた孔部に形成された雌ネジと螺合するようになっている。このような構造により、棒状部材24を容易に交換して取り付けることができる。本実施形態に係る棒状部材24は、円形の断面形状を有するが、これに限られるものではなく、多角形、星形、ハート形をはじめとする任意の断面形状を有する棒状部材に取り替えることもできる。また、溶接や蝋付けにより、棒状部材24をベース部22に接合することもできる。棒状部材24の冷却効果を考慮すると、中実の棒状部材24が好ましいが、加工性等を考慮して、中空の棒状部材24を採用することもできる。 The metal plate 20 according to this embodiment has a male screw on the base end 24A side of the rod-shaped member 24, which is adapted to screw into a female screw formed in a hole provided in the base portion 22. This structure allows the rod-shaped member 24 to be easily replaced and attached. The rod-shaped member 24 according to this embodiment has a circular cross-sectional shape, but this is not limited thereto, and it can be replaced with a rod-shaped member having any cross-sectional shape, including a polygonal, star-shaped, or heart-shaped shape. The rod-shaped member 24 can also be joined to the base portion 22 by welding or brazing. Considering the cooling effect of the rod-shaped member 24, a solid rod-shaped member 24 is preferable, but considering workability, etc., a hollow rod-shaped member 24 can also be used.

[ペルチェ素子]
ペルチェ素子30は、異なる2種類の金属または半導体を接合して電流を流すと、接合点で熱の吸収・放出が起こるペルチェ効果を利用した素子である。ペルチェ素子30に対して、所定の方向に電流を流すと、一方の面が吸熱側となり、他方の面が放熱側となる。そして、ペルチェ素子30に対して、逆の方向に電流を流すと、吸熱側となる面及び放熱側となる面が逆転する。本実施形態では、既知の任意のペルチェ素子を用いることができる。
本実施形態に係るペルチェ素子30の幅、奥行き寸法として、20~100m程度を例示でき、厚みとして2~20mm程度を例示できる。ヒートシンク1や金属板20の大きさに合わせて、複数のペルチェ素子30を配置することもできる。
[Peltier element]
The Peltier element 30 is an element that utilizes the Peltier effect, in which heat is absorbed and released at the junction when two different types of metals or semiconductors are joined and a current is passed through them. When a current is passed through the Peltier element 30 in a specific direction, one surface becomes the heat absorption side and the other surface becomes the heat release side. When a current is passed through the Peltier element 30 in the opposite direction, the surfaces that become the heat absorption side and the heat release side are reversed. In this embodiment, any known Peltier element can be used.
The Peltier element 30 according to the present embodiment may have a width and depth of about 20 to 100 mm, and a thickness of about 2 to 20 mm. A plurality of Peltier elements 30 may be disposed according to the size of the heat sink 1 and the metal plate 20.

[冷却部の固定構造]
ペルチェ素子30を備えない場合には、ヒートシンク10の下面及び金属板20の上面と密着するように、例えば、ボルトナットのような締結部材を用いて互いに固定することができる。
一方、ペルチェ素子30を備える場合には、ペルチェ素子30の両面がヒートシンク10の面下及び金属板20の上面と密着するような固定構造を有する。例えば、ペルチェ素子30を挟み込むように配置されたヒートシンク10及び金属板20を、ボルトナットのような締結部材を用いて互いに固定することができる。ボルト軸に引張応力がかかるように締結することにより、ヒートシンク10の下面及びペルチェ素子30の上面を密着させ、ペルチェ素子30の下面及び金属板20の上面を密着させることができる。
ただし、この固定方法に限られるものではなく、その他の任意の固定手段を用いて、冷却部40の固定構造を形成することができる。
[Cooling unit fixing structure]
In the case where the Peltier element 30 is not provided, the lower surface of the heat sink 10 and the upper surface of the metal plate 20 can be fixed to each other using fastening members such as bolts and nuts so that they are in close contact with each other.
On the other hand, when the Peltier element 30 is provided, the Peltier element 30 has a fixing structure in which both sides of the Peltier element 30 are in close contact with the underside of the heat sink 10 and the upper surface of the metal plate 20. For example, the heat sink 10 and the metal plate 20, which are arranged to sandwich the Peltier element 30, can be fixed to each other using fastening members such as bolts and nuts. By fastening the Peltier element 30 so that a tensile stress is applied to the bolt shaft, the lower surface of the heat sink 10 and the upper surface of the Peltier element 30 can be in close contact with each other, and the lower surface of the Peltier element 30 and the upper surface of the metal plate 20 can be in close contact with each other.
However, the fixing method is not limited to this, and any other fixing means can be used to form the fixing structure of the cooling part 40.

<液体容器>
液体容器50は、例えば、弾性を有する樹脂材料から形成される。液体容器50は、底面部50Aと底面部50Aから立設した側壁部50Bとに囲まれた液体貯蔵領域Rを有する。液体貯蔵領域Rの上方は開口している。金属板20の棒状部材24は、この開口を介して、液体貯蔵領域R内に挿入され、棒状部材24の先端部24Bから所定の領域が液体貯蔵領域R内に配置されるようになっている。
<Liquid container>
The liquid container 50 is formed, for example, from an elastic resin material. The liquid container 50 has a liquid storage region R surrounded by a bottom surface portion 50A and a side wall portion 50B erected from the bottom surface portion 50A. The upper part of the liquid storage region R is open. The rod-shaped member 24 of the metal plate 20 is inserted into the liquid storage region R through this opening, and a predetermined region from the tip end 24B of the rod-shaped member 24 is arranged within the liquid storage region R.

本実施形態に係る製氷機2では、冷媒により冷却されたヒートシンク10からの冷却により、金属製の棒状部材24が氷点下の温度となる。棒状部材24の先端部24Bから所定の領域が液体容器50の液体貯蔵領域内に配置されるようになっているので、棒状部材24の液体に浸かった部分の周囲に氷を生成することができる。所定の領域として、棒状部材24の先端部24Bから8~40mm程度を例示することができる。
更に、ペルチェ素子30を備える場合には、ヒートシンク10による冷却に加え、ペルチェ素子30による冷却も加わるので更に低い温度で冷却でき、金属板20の棒状部材24の周囲に短時間に氷を生成することができる。
In ice maker 2 according to this embodiment, metal rod member 24 is cooled below freezing point by the cooling from heat sink 10 cooled by the refrigerant. A predetermined area from tip 24B of rod member 24 is arranged within the liquid storage area of liquid container 50, so that ice can be produced around the portion of rod member 24 that is immersed in the liquid. An example of the predetermined area is approximately 8 to 40 mm from tip 24B of rod member 24.
Furthermore, when the Peltier element 30 is provided, cooling by the Peltier element 30 is added to cooling by the heat sink 10, allowing cooling to be performed at an even lower temperature, and ice can be generated around the rod-shaped member 24 of the metal plate 20 in a short period of time.

本実施形態では、6本の棒状部材24が略直線状に並んでおり、液体貯蔵領域Rもそれに沿って細長く延びている。液体貯蔵領域Rの延びた方向に略直交する断面を示す図3及び図4に示すように、液体貯蔵領域Rの底面を形成する底面部50A及び側面を形成する側壁部50Bは滑らかな曲線部を介して繋がり、上方が開口している。更に、液体容器50を構成する側壁部50Bと繋がり、上方の開口を一部覆うリブ50Cが設けられている。 In this embodiment, six rod-shaped members 24 are arranged in a substantially straight line, and the liquid storage region R extends in an elongated manner along the line. As shown in Figures 3 and 4, which show cross sections substantially perpendicular to the extension direction of the liquid storage region R, the bottom surface portion 50A forming the bottom surface of the liquid storage region R and the side wall portion 50B forming the side surface are connected via a smooth curved portion, and are open at the top. Furthermore, a rib 50C is provided that is connected to the side wall portion 50B constituting the liquid container 50 and partially covers the upper opening.

図2に示す側面視において、液体貯蔵領域Rの横側の領域には、液体貯蔵領域Rの延在方向に沿って延びたシャフト部52が設けられている。図1A、1Bに示すように、液体容器50のシャフト部52の一方の端部は、後述する移動機構60の駆動軸に連結されている。一方、液体容器50のシャフト部52の他方の端部は、製氷装置2のフレーム部に設けられた軸受部62に回転自在に支持されている。このような構成により、シャフト部52の中心の点Cを回転中心として、液体容器50が回転可能になっている。つまり、移動機構60の駆動力により、液体容器50の端部領域に位置する点Cを回転中心にして、液体容器50を回転移動させることができる。
また、液体容器50には、突起54が設けられている。後述するように、突起54を製氷装置2のフレーム部と当接させた状態で、移動機構60により液体容器50を回転させることにより、弾性を有する液体容器50を捻って、液体容器50内の氷を離氷させることができる。
In the side view shown in Fig. 2, a shaft portion 52 extending along the extension direction of the liquid storage region R is provided in a region on the side of the liquid storage region R. As shown in Figs. 1A and 1B, one end of the shaft portion 52 of the liquid container 50 is connected to a drive shaft of a moving mechanism 60 described later. Meanwhile, the other end of the shaft portion 52 of the liquid container 50 is rotatably supported by a bearing portion 62 provided in a frame portion of the ice making device 2. With this configuration, the liquid container 50 is rotatable around a point C at the center of the shaft portion 52. In other words, the liquid container 50 can be rotated around the point C located in the end region of the liquid container 50 by the driving force of the moving mechanism 60.
Furthermore, liquid container 50 is provided with protrusions 54. As will be described later, by rotating liquid container 50 by movement mechanism 60 with protrusions 54 in contact with the frame of ice-making device 2, liquid container 50, which has elasticity, can be twisted to release the ice within liquid container 50.

<移動機構>
移動機構60は、液体容器50を回転移動させるように構成されている。移動機構60の駆動モータが起動して駆動軸が回転すると、液体容器50は点Cを回転中心として回転する。移動機構60は、例えば、駆動モータの駆動力により、液体容器50を時計回り・反時計回りに回転移動させることができる(図1Bの両矢印参照)。
<Moving mechanism>
The moving mechanism 60 is configured to rotationally move the liquid container 50. When the drive motor of the moving mechanism 60 is started and the drive shaft rotates, the liquid container 50 rotates about point C as the center of rotation. The moving mechanism 60 can, for example, use the driving force of the drive motor to rotationally move the liquid container 50 clockwise and counterclockwise (see the double arrows in FIG. 1B ).

図3,4に示すような液体容器50の位置を製氷位置と称する。液体容器50が製氷位置にいる場合には、液体容器50の開口が上方を向いて、液体を液体貯蔵領域R内に貯蔵可能であり、金属板20の棒状部材24が、この開口を介して先端部から所定の領域が液体貯蔵領域R内に配置される。
移動機構60により、液体容器50を製氷位置から点Cを回転中心として回転させ、図2に示すような、金属板20の棒状部材24の下側に液体容器50が存在しない状態まで回転させることができる。この液体容器50の位置を待避位置と称する。製氷位置及び待避位置の間の液体容器50の回転角度は、主に、金属板20の棒状部材24及び液体容器50の位置関係、並びに回転中心となる点Cの位置によって異なるが、70度から120度の範囲が適切であると考えられる。
3 and 4 is referred to as the ice-making position. When liquid container 50 is in the ice-making position, the opening of liquid container 50 faces upward, allowing liquid to be stored in liquid storage region R, and a predetermined area from the tip of rod-shaped member 24 of metal plate 20 is disposed in liquid storage region R through this opening.
The movement mechanism 60 can rotate the liquid container 50 from the ice-making position around point C as the center of rotation until the liquid container 50 is no longer present below the rod-shaped member 24 of the metal plate 20, as shown in Figure 2. This position of the liquid container 50 is referred to as the retreat position. The rotation angle of the liquid container 50 between the ice-making position and the retreat position mainly depends on the relative positions of the rod-shaped member 24 of the metal plate 20 and the liquid container 50, and the position of point C, which is the center of rotation, but it is considered appropriate to rotate it at an angle between 70 degrees and 120 degrees.

移動機構60により、液体容器50を製氷位置から点Cを回転中心として回転させ、待避位置を通り越して、後述するように、図8B、8Cに示すような、液体容器50の開口が下方を向く位置まで回転させることもできる。この場合、液体容器50の外面に設けられた突起54が製氷装置2のフレーム部と当接し、この状態で移動機構60により液体容器50を更に回転させることにより、弾性を有する液体容器50を捻って、液体容器50の底面部50A近傍で凍結した氷を離氷させることができる。 The moving mechanism 60 can rotate the liquid container 50 from the ice-making position around point C as the center of rotation, past the waiting position, and to a position in which the opening of the liquid container 50 faces downward, as shown in Figures 8B and 8C, as described below. In this case, the protrusions 54 on the outer surface of the liquid container 50 come into contact with the frame of the ice-making device 2, and by further rotating the liquid container 50 in this state using the moving mechanism 60, the elastic liquid container 50 can be twisted, and the ice frozen near the bottom surface 50A of the liquid container 50 can be released.

<液体供給部/液体除去部>
本実施形態では、液体容器50内に液体を供給する液体供給部72、及び液体容器50内から液体を排出する液体除去部74を兼用した機構を有する。この液体供給部72及び液体除去部74の兼用機構は、主に、液体を貯蔵する貯蔵容器と、吸引方向及び吐出方向を逆転可能な給除液ポンプと、給除液管70と、それらを接続する給除液流路とから構成される。液体供給部72及び液体除去部74を兼用することにより、部品点数を減らし、特に、給除液管70だけが液体容器50内に挿入されるので、液体容器50周りの省スペースが図れる。
<Liquid supply section/Liquid removal section>
In this embodiment, there is a mechanism that serves both as a liquid supply unit 72 that supplies liquid into the liquid container 50 and as a liquid removal unit 74 that discharges liquid from inside the liquid container 50. This mechanism that serves both as a liquid supply unit 72 and a liquid removal unit 74 is mainly composed of a storage container that stores liquid, a liquid supply/removal pump that can reverse the suction and discharge directions, a liquid supply/removal pipe 70, and a liquid supply/removal flow path that connects them. By using a combined mechanism that serves both as the liquid supply unit 72 and the liquid removal unit 74, the number of parts is reduced, and in particular, since only the liquid supply/removal pipe 70 is inserted into the liquid container 50, space around the liquid container 50 can be saved.

後述する制御部90の制御により、給除液ポンプを給液側に駆動すると、貯蔵容器内の液体が、給除液流路を介して、給排液ポンプから給除液管70に流れて、給除液管70の先端開口70Aから液体容器50内に流入する。
制御部90の制御により、給除液ポンプ除液側に駆動すると、液体容器50内の液体が給除液管70の先端開口70Aから吸い込まれ、給除液流路を介して、給除液管70から給排液ポンプを流れて貯蔵容器内に流入する。このとき、戻りの液体を貯蔵容器内に流入させる前に、フィルタを通過させることが好ましい。フィルタの濾過機能により、貯蔵容器内の液体の可溶物または不溶物の濃度上昇を抑えて、高品質な氷の生成が実現できる。
ただし、液体供給部72及び液体除去部74を兼用する機構は一例であって、液体供給部72及び液体除去部74ごとに、個別の給液ポンプ及び除液ポンプ、並びに個別の給液管及び除液管を備えることもできる。
When the supply/removal pump is driven to the supply side under the control of the control unit 90 described later, the liquid in the storage container flows from the supply/removal pump through the supply/removal flow path to the supply/removal tube 70, and then flows into the liquid container 50 from the tip opening 70A of the supply/removal tube 70.
When the supply/removal pump is driven to the liquid removal side under the control of the control unit 90, the liquid in the liquid container 50 is sucked in from the tip opening 70A of the supply/removal pipe 70, and flows through the supply/removal flow path from the supply/removal pipe 70 to the supply/removal pump and into the storage container. At this time, it is preferable to pass the returning liquid through a filter before allowing it to flow into the storage container. The filtering function of the filter suppresses an increase in the concentration of soluble or insoluble matter in the liquid in the storage container, thereby realizing the production of high-quality ice.
However, the mechanism that serves as both the liquid supply unit 72 and the liquid removal unit 74 is just one example, and each of the liquid supply unit 72 and the liquid removal unit 74 may be provided with its own individual liquid supply pump and liquid removal pump, as well as its own individual liquid supply pipe and liquid removal pipe.

何れの場合も、液体容器50は製氷位置において液体を貯蔵可能であって、上方が開口されている。よって、給除液管70(または給液管及び除液管)の先端領域を上方の開口部から液体容器50内に差し込むだけなので、液体容器50を回転移動させるときに、部材間の干渉を容易に防ぐことができる。ただし、図3,4から明らかなように、給除液管70の先端開口70Aは、液体容器50の底面から高さHの位置に配置されているので、給除液ポンプを除液側に駆動しても、底面から高さHまでの領域に液体が残留することになる。
仮に、給除液口を液体容器50の底部に設けた場合には、液体容器50内の全ての液体を排出することはできる。しかし、液体容器50を回転移動させるとき、他の部材との干渉が増え、給除液ホースの取り回しが複雑になるという問題が生じる。
In either case, the liquid container 50 is capable of storing liquid in the ice making position and is open at the top. Therefore, the tip region of the liquid supply/removal tube 70 (or the liquid supply tube and liquid removal tube) is simply inserted into the liquid container 50 from the upper opening, so that interference between the components can be easily prevented when the liquid container 50 is rotated. However, as is clear from Figures 3 and 4, the tip opening 70A of the liquid supply/removal tube 70 is located at a height H from the bottom surface of the liquid container 50, so that even if the liquid supply/removal pump is driven to the liquid removal side, liquid will remain in the region from the bottom surface to height H.
If the liquid supply/removal port were provided at the bottom of the liquid container 50, it would be possible to drain all of the liquid from the liquid container 50. However, when the liquid container 50 is rotated, there would be more interference with other components, and the layout of the liquid supply/removal hose would become complicated.

(制御部)
次に、図6を参照しながら、制御部90を含む本実施形態に係る製氷機2の制御構成の説明を行う。ここでは、ペルチェ素子30を含む制御構成を例にとって説明する。
制御部90は、移動機構60のモータの駆動制御により、液体容器50を回転させて、製氷位置及び待避位置の間を回転移動させるとともに、液体容器50を捻って離氷を行うことができる。
(Control Unit)
Next, a control configuration of ice making machine 2 according to this embodiment, including control unit 90, will be described with reference to Fig. 6. Here, a control configuration including Peltier element 30 will be described as an example.
The control unit 90 can control the drive of the motor of the moving mechanism 60 to rotate the liquid container 50 and move it between the ice-making position and the waiting position, and can also twist the liquid container 50 to release the ice.

制御部90は、液体供給部72として機能する給除液ポンプを制御して、給液側に駆動させることにより、液体容器50に液体を供給することができる。同様に、制御部90は、液体除去部74として機能する給除液ポンプを制御して、除液側に駆動させることにより、液体容器50内の液体を貯蔵容器に戻すことができる。更に、ペルチェ素子30を備える場合には、制御部90は、ペルチェ素子30に供給する電力の方向及び大きさを制御することにより、一方の面が吸熱側となり、他方の面が放熱側となるように両面間での温度差を形成することができる。 The control unit 90 can supply liquid to the liquid container 50 by controlling the liquid supply/removal pump functioning as the liquid supply unit 72 and driving it to the liquid supply side. Similarly, the control unit 90 can return the liquid in the liquid container 50 to the storage container by controlling the liquid supply/removal pump functioning as the liquid removal unit 74 and driving it to the liquid removal side. Furthermore, in the case where a Peltier element 30 is provided, the control unit 90 can create a temperature difference between the two sides so that one side becomes the heat absorption side and the other side becomes the heat dissipation side by controlling the direction and magnitude of the power supplied to the Peltier element 30.

以上のように、本実施形態に係る製氷機2は、冷媒が流れる流路12を有するヒートシンク10と、金属製の棒状部材24が基端部24Aから先端部24Bにかけて下側に延びるように取り付けられた金属板20とを有する冷却部40と、液体を貯蔵可能な液体容器50と、製氷位置にある液体容器50に液体を供給する液体供給部72と、液体容器50を製氷位置及び待避位置の間で回転移動させる移動機構60と、制御部90と、を備え、棒状部材24の先端部24Bから所定の領域が液体容器50の液体貯蔵領域内に配置されるようになっている。 As described above, the ice maker 2 according to this embodiment includes a heat sink 10 having a flow path 12 through which a refrigerant flows, a cooling section 40 having a metal plate 20 to which a metallic rod-shaped member 24 made of metal is attached so as to extend downward from a base end 24A to a tip end 24B, a liquid container 50 capable of storing liquid, a liquid supply section 72 that supplies liquid to the liquid container 50 in the ice-making position, a moving mechanism 60 that rotates and moves the liquid container 50 between the ice-making position and the waiting position, and a control section 90, and a predetermined area from the tip end 24B of the rod-shaped member 24 is arranged within the liquid storage area of the liquid container 50.

制御部90の制御により、液体供給部72が、製氷位置にある液体容器50の液体貯蔵領域内に液体を供給する。制御部90が、例えば冷却システム80内の切替弁を制御して、冷却システム80で低温になった冷媒をヒートシンク10内に流す。低温の冷媒が流れるヒートシンク10による冷却で、金属部20の棒状部材24を氷点下の製氷温度にすることができる。これにより、棒状部材24の液体に浸かった領域の周囲に氷を生成することができる。 Under the control of the control unit 90, the liquid supply unit 72 supplies liquid into the liquid storage area of the liquid container 50 in the ice making position. The control unit 90 controls, for example, a switching valve in the cooling system 80 to flow the refrigerant cooled in the cooling system 80 into the heat sink 10. The cooling by the heat sink 10 through which the low-temperature refrigerant flows can bring the rod-shaped member 24 of the metal part 20 to an ice making temperature below freezing. This allows ice to be generated around the area of the rod-shaped member 24 that is immersed in the liquid.

更に、ペルチェ素子30を備える場合には、低温の冷媒が流れるヒートシンク10による冷却に加え、ヒートシンク10及び金属板20の間に配置されたペルチェ素子30による冷却も加えることができるので、冷媒だけを用いて棒状部材24を冷却する構成よりも更に低い温度で冷却でき、金属板20の棒状部材24の周囲に短時間に氷を生成することができる。 Furthermore, when a Peltier element 30 is provided, in addition to the cooling provided by the heat sink 10 through which a low-temperature refrigerant flows, cooling can also be provided by the Peltier element 30 disposed between the heat sink 10 and the metal plate 20, so that cooling can be achieved at an even lower temperature than in a configuration in which the rod-shaped member 24 is cooled using only a refrigerant, and ice can be generated around the rod-shaped member 24 on the metal plate 20 in a short period of time.

制御部90が移動機構60を制御して、液体容器50を、製氷位置から金属板20の棒状部材24の下側に液体容器50が存在しない待避位置へ回転移動させる。そして、制御部90により、棒状部材24を氷点より高い離氷温度にすることにより、生成された氷を棒状部材24から落下させることができる。落下した棒状部材24は、下方に配置された氷収納容器56に収納される。 The control unit 90 controls the moving mechanism 60 to rotate and move the liquid container 50 from the ice making position to a waiting position where the liquid container 50 is not present below the rod-shaped member 24 of the metal plate 20. The control unit 90 then causes the rod-shaped member 24 to have an ice release temperature higher than the freezing point, causing the produced ice to fall from the rod-shaped member 24. The fallen rod-shaped member 24 is stored in the ice storage container 56 located below.

ペルチェ素子30を備えない場合には、棒状部材24を離氷温度にする1つの手段として、制御部90により冷却システム80内の切替弁を切り替えて、凝縮器84、毛細管を通過して低温になった冷媒の代わりに、圧縮器82を出た直後の高温の冷媒をヒートシンク10に流すことが考えられる、これにより、ヒートシンク10の温度が上昇し、熱伝導で金属部20の棒状部材24も温度が上昇して、氷点より高い離氷温度に達する。 If the Peltier element 30 is not provided, one possible method of bringing the rod-shaped member 24 to the ice-release temperature is to have the control unit 90 switch the switching valve in the cooling system 80 so that the high-temperature refrigerant immediately after leaving the compressor 82 flows into the heat sink 10, instead of the refrigerant that has been cooled by passing through the condenser 84 and the capillary tube. This causes the temperature of the heat sink 10 to rise, and the temperature of the rod-shaped member 24 of the metal part 20 also rises through thermal conduction, reaching a temperature higher than the freezing point.

ペルチェ素子30を備える場合には、制御部90により、ヒートシンク10の面と接する側が吸熱側となり、金属板20の面と接する側が発熱側となるように、ペルチェ素子30に通電することにより、金属板20の棒状部材24の温度を上げて、速やかに離氷温度にすることができる。この場合、ヒートシンク10に、冷却システム80で低温になった冷媒を流し状態でも、ペルチェ素子30により棒状部材24の温度を離氷温度にすることができる。 When the Peltier element 30 is provided, the control unit 90 applies electricity to the Peltier element 30 so that the side in contact with the surface of the heat sink 10 becomes the heat absorption side and the side in contact with the surface of the metal plate 20 becomes the heat generation side, thereby raising the temperature of the rod-shaped member 24 of the metal plate 20 and quickly bringing it to the ice-release temperature. In this case, even when the refrigerant cooled to a low temperature by the cooling system 80 is flowing through the heat sink 10, the Peltier element 30 can raise the temperature of the rod-shaped member 24 to the ice-release temperature.

(制御処理)
次に、制御部90による制御処理の説明を行う。図7Aから図7Gは、本発明の1つの実施形態に係る製氷機で実施される各工程を模式的に示す側面断面図であって、図7Aは給液工程を示し、図7Bは製氷工程を示し、図7Cは除液工程を示し、図7Dは待避工程を示し、図7Eは、離氷工程を示し、図7Fは復帰工程を示し、図7Gは次の冷却プロセスにおける給液工程を示す。
(Control Processing)
Next, the control process by the control unit 90 will be described. Figures 7A to 7G are side cross-sectional views that typically show each process carried out in an ice maker according to one embodiment of the present invention, with Figure 7A showing a liquid supply process, Figure 7B showing an ice making process, Figure 7C showing a liquid removal process, Figure 7D showing a retraction process, Figure 7E showing an ice removal process, Figure 7F showing a return process, and Figure 7G showing a liquid supply process in the next cooling process.

(製氷プロセス)
液体容器50が製氷位置にあり、液体容器50内に液体が貯蔵されていない初期状態から開始する場合を例にとって説明する。ここでは、液体容器50に液体を供給する給液工程、棒状部材24の周囲に氷を生成する製氷工程、液体容器50を製氷位置から待避位置へ回転移動させる待避工程、棒状部材24から生成された氷を落下させる離氷工程、液体容器50を待避位置から製氷位置へ回転移動させる復帰工程を行う製氷プロセスを複数回繰り返し行うことを詳細に説明する。
(Ice making process)
An example will be described in which liquid container 50 is in the ice-making position and starts from an initial state in which no liquid is stored in liquid container 50. Here, a detailed description will be given of the ice-making process, which is repeated multiple times and includes a liquid supply step of supplying liquid to liquid container 50, an ice-making step of forming ice around rod-shaped member 24, a retraction step of rotating liquid container 50 from the ice-making position to a retraction position, an ice release step of dropping the formed ice from rod-shaped member 24, and a return step of rotating liquid container 50 from the retraction position to the ice-making position.

<給液工程(図7A参照)>、
液体供給部72が、製氷位置において上方が開口した液体容器50に液体を供給する。具体的には、制御部90の制御により、液体供給部72の給除液ポンプの駆動モータを給液方向に駆動させる。これにより、給除液ポンプは、貯蔵容器内の液体を吸い上げ、給除液流路及び給除液管70を介して、液体容器50に液体を供給する。制御部90は、液面センサからの信号またはタイマの計時により、液体容器50内の液体の高さが所定の高さに達したと判別したとき、給除液ポンプの稼働を停止する。給液工程により、金属板20の棒状部材24の先端部24Bから所定の領域Lが液体容器50内の液体に浸かった状態となる。
<Liquid supply step (see FIG. 7A)>
The liquid supply unit 72 supplies liquid to the liquid container 50, which is open at the top in the ice making position. Specifically, under the control of the control unit 90, the drive motor of the liquid supply/removal pump of the liquid supply unit 72 is driven in the liquid supply direction. As a result, the liquid supply/removal pump sucks up the liquid in the storage container and supplies the liquid to the liquid container 50 via the liquid supply/removal flow path and the liquid supply/removal pipe 70. When the control unit 90 determines that the height of the liquid in the liquid container 50 has reached a predetermined height based on a signal from the liquid level sensor or timing of the timer, it stops the operation of the liquid supply/removal pump. Through the liquid supply process, a predetermined area L from the tip 24B of the rod-shaped member 24 of the metal plate 20 is immersed in the liquid in the liquid container 50.

<製氷工程図7B参照)>
上記の給液工程の後、所定の時間、製氷温度にした金属板20の棒状部材24の先端部24Bから所定の領域Lが液体容器50に収容された液体に浸かった状態にする製氷工程を行う。具体的には、制御部90の制御により、冷却システム80で低温になった冷媒をヒートシンク10に流す。内部の流路12を流れる冷媒の蒸発により氷点下の温度になったヒートシンク10による冷却で、金属板20の棒状部材24が氷点下の製氷温度になる。
<Ice making process (see Fig. 7B)>
After the liquid supply process, an ice-making process is performed in which a predetermined region L from the tip 24B of the rod-shaped member 24 of the metal plate 20 at the ice-making temperature is immersed in the liquid contained in the liquid container 50 for a predetermined time. Specifically, under the control of the control unit 90, the refrigerant cooled to a low temperature by the cooling system 80 is caused to flow into the heat sink 10. The rod-shaped member 24 of the metal plate 20 reaches the ice-making temperature below the freezing point due to cooling by the heat sink 10, which has reached a temperature below the freezing point due to evaporation of the refrigerant flowing through the internal flow path 12.

一方、ペルチェ素子30を備える場合には、制御部90の制御により、ペルチェ素子30のヒートシンク10と接する側が放熱側となり、金属板20と接する側が吸熱側となるように、ペルチェ素子30に電力を供給することにより、製氷温度の棒状部材24の更なる冷却を行う。
つまり、ペルチェ素子30により、棒状部材24を有する金属板20側から吸熱して、ヒートシンク10側に放熱するので、低温の冷媒が流れる流路を有するヒートシンクによる冷却に加えて、ペルチェ素子30による冷却が加わり、金属板20の棒状部材24の温度を、冷媒だけを用いた場合の温度よりも更に低い温度にすることができる。これにより、金属板20の棒状部材24の周囲に短時間に氷を生成することができる。
On the other hand, when the Peltier element 30 is provided, the control unit 90 controls the Peltier element 30 so that the side of the Peltier element 30 in contact with the heat sink 10 becomes the heat dissipation side and the side in contact with the metal plate 20 becomes the heat absorption side, thereby further cooling the rod-shaped member 24 to the ice-making temperature.
In other words, the Peltier element 30 absorbs heat from the metal plate 20 having the rod-shaped members 24 and dissipates the heat to the heat sink 10, so that in addition to the cooling by the heat sink having a flow path through which a low-temperature refrigerant flows, the Peltier element 30 also provides cooling, making it possible to lower the temperature of the rod-shaped members 24 of the metal plate 20 to a temperature lower than the temperature when only a refrigerant is used. This allows ice to be generated around the rod-shaped members 24 of the metal plate 20 in a short period of time.

そして、タイマによる計時により所定の時間Tが経過したと判別したとき、製氷工程を終了する。図7Bに示すように、金属板20の棒状部材24の先端部から所定の領域Lの周囲を覆うように氷Gを生成することができる。所定の時間Tは、ペルチェ素子30を備える場合と備えない場合に応じて、異なる値を設定できる。ペルチェ素子30を備える場合には、制御部90は、ペルチェ素子30への電力供給を停止する。 Then, when it is determined by the timer that the predetermined time T has elapsed, the ice making process ends. As shown in FIG. 7B, ice G can be produced so that it covers the periphery of a predetermined area L from the tip of the rod-shaped member 24 of the metal plate 20. The predetermined time T can be set to a different value depending on whether or not a Peltier element 30 is provided. If a Peltier element 30 is provided, the control unit 90 stops the power supply to the Peltier element 30.

<除液工程(図7C参照)>
上記の製氷工程の後、制御部90の制御により、液体除去部74が液体容器50内に残留する液体を除去する。具体的には、制御部90の制御により、給除液ポンプを除液方向に駆動させる。これにより、給除液ポンプは、給除液管70及び給除液流路を介して、液体容器50内の液体を吸い出して、貯蔵容器に戻す。このとき、貯蔵容器に戻る液体は、貯蔵容器の戻り経路入口に配置されたフィルタにより濾過された後、貯蔵容器に流入する。
<Liquid Removal Step (see FIG. 7C)>
After the above ice making process, liquid removal unit 74 removes the liquid remaining in liquid container 50 under the control of control unit 90. Specifically, under the control of control unit 90, the liquid supply/removal pump is driven in the liquid removal direction. As a result, the liquid supply/removal pump sucks out the liquid in liquid container 50 via liquid supply/removal pipe 70 and the liquid supply/removal flow path, and returns it to the storage container. At this time, the liquid returning to the storage container flows into the storage container after being filtered by a filter arranged at the return path inlet of the storage container.

上記のように、給除液管70の先端開口70Aは、液体容器50の底面から高さHの位置に配置されているので、少なくとも底面から高さHまでの領域に液体が残留する。後述する待避工程において、液体容器50を待避位置に回転移動するが、待避位置おいて、液体容器50は所定の量の液体を収容可能な構造を有する。除液工程後も液体容器50内に残留する底面から高さHまでの領域の液体の量は、待避位置で液体容器50に貯蔵能な所定の量以下になっている。
仮に、待避位置で液体容器50に貯蔵可能な所定の量が、液体容器50の底面から高さHまでの領域の液体の量より多い場合には、液体容器50内の液体の残存量が所定の量以下に達した時点で、給除液ポンプの稼働を停止することができる。
As described above, tip opening 70A of liquid supply/removal tube 70 is located at height H from the bottom surface of liquid container 50, so liquid remains at least in the area from the bottom surface to height H. In the retraction step described below, liquid container 50 is rotated to the retraction position, and in the retraction position, liquid container 50 has a structure that can hold a predetermined amount of liquid. Even after the liquid removal step, the amount of liquid remaining in liquid container 50 in the area from the bottom surface to height H is equal to or less than the predetermined amount that can be stored in liquid container 50 in the retraction position.
If the specified amount that can be stored in the liquid container 50 in the waiting position is greater than the amount of liquid in the area from the bottom of the liquid container 50 to height H, the operation of the liquid supply/removal pump can be stopped when the remaining amount of liquid in the liquid container 50 falls below the specified amount.

以上のように、除液工程では、製氷工程の後、液体除去部74が液体容器50内に残留する液体の一部を除去して、液体容器50内に残留する液体の量を所定の量以下にする。このように、液体除去部74により、液体容器50内に残留する液体の量を所定の量以下にすることができるので、後述する待避工程や復帰工程で、確実に残留した液体を液体容器50内に貯蔵したまま、液体容器50を回転移動させることができる。
仮に、待避位置で液体容器50に貯蔵可能な所定の量が、製氷工程終了時に液体容器50内に残存する液体の全量より多い場合には、除液工程を行わない場合もあり得る。
As described above, in the liquid removal process, after the ice making process, liquid removal unit 74 removes a portion of the liquid remaining in liquid container 50 to reduce the amount of liquid remaining in liquid container 50 to a predetermined amount or less. In this way, liquid removal unit 74 can reduce the amount of liquid remaining in liquid container 50 to a predetermined amount or less, so that in the evacuation process and return process described below, liquid container 50 can be rotated while the remaining liquid remains reliably stored in liquid container 50.
If the specified amount of liquid that can be stored in the liquid container 50 in the retreated position is greater than the total amount of liquid remaining in the liquid container 50 at the end of the ice making process, the liquid removal process may not be performed.

<待避工程(図7D参照)>
上記の製氷工程の後、制御部90の制御により、移動機構60が、残留した液体を液体容器50内に貯蔵したまま、液体容器50を製氷位置から金属部20の棒状部材24の下側に液体容器50が存在しない待避位置まで回転移動させる。移動機構60の駆動モータを駆動させることにより、製氷位置から待避位置まで、液体容器50を70度から120度の範囲で回転させる。このような移動回転角度により、後述する離氷工程で金属部20の棒状部材24から生成された氷Gを落下させても、液体容器50と干渉する虞がない。
<Retraction process (see FIG. 7D )>
After the above ice-making process, under the control of the control unit 90, the moving mechanism 60 rotates and moves the liquid container 50 from the ice-making position to a retracted position where the liquid container 50 is not present below the rod-shaped member 24 of the metal part 20, while leaving the remaining liquid stored in the liquid container 50. By driving the drive motor of the moving mechanism 60, the liquid container 50 is rotated in a range of 70 degrees to 120 degrees from the ice-making position to the retracted position. Due to this movement and rotation angle, even if the ice G made from the rod-shaped member 24 of the metal part 20 is dropped in the ice-releasing process described below, there is no risk of it interfering with the liquid container 50.

液体容器50には、液体容器50を構成する側壁部50Bと繋がり、上方の開口を一部覆うリブ50Cが設けられているので、待避位置において、所定の量の液体がリブ50Cにより液体容器50内に堰き止められるようになっている。このような液体容器50の構造により、待避工程における液体容器50の回転移動中、後述する離氷工程における待避位置にいる状態、及び後述する復帰工程における液体容器50の回転移動中において、液体容器50から液体が流出する虞がない。よって、周囲に液体が飛び散る、流出した液体が凍結して固着するといった問題を防ぐことができる。
このように、液体容器50の上方の開口の一部覆うリブ50Cを設けることにより、簡単な構造でありながら、確実に待避位置において、所定の量の液体を液体容器50内に貯蔵することができる。
The liquid container 50 is provided with a rib 50C that is connected to a side wall portion 50B constituting the liquid container 50 and partially covers the upper opening, so that in the retracted position, a predetermined amount of liquid is blocked within the liquid container 50 by the rib 50C. Due to this structure of the liquid container 50, there is no risk of liquid spilling out of the liquid container 50 during the rotational movement of the liquid container 50 in the retraction process, when the liquid container 50 is in the retracted position in the ice removal process described below, and during the rotational movement of the liquid container 50 in the return process described below. This makes it possible to prevent problems such as liquid splashing around and spilled liquid freezing and solidifying.
In this manner, by providing rib 50C which partially covers the upper opening of liquid container 50, a predetermined amount of liquid can be stored in liquid container 50 reliably in the retracted position, despite the simple structure.

<離氷工程(図7E参照)>
待避工程の後、制御部90の制御により、金属部20の棒状部材24を離氷温度にして、棒状部材の周囲に生成された氷Gを棒状部材24から落下させる。落下した氷Gは、下方に配置された氷収納容器56に収納される。
金属部20の棒状部材24を離氷温度にするには、ペルチェ素子30を備えない場合には、低温の冷媒の代わりに、圧縮器82を出た直後の高温の冷媒をヒートシンク10に流すことにより、ヒートシンク10の温度を上昇させ、熱伝導で金属部20の棒状部材24の温度を上昇させて、氷点より高い離氷温度にすることができる。
<Ice removal process (see FIG. 7E)>
After the retreat step, the control unit 90 controls the rod-shaped member 24 of the metal part 20 to be at an ice-release temperature, causing the ice G formed around the rod-shaped member to fall from the rod-shaped member 24. The fallen ice G is stored in the ice storage container 56 disposed below.
In order to raise the rod-shaped member 24 of the metal part 20 to the freezing temperature, if a Peltier element 30 is not provided, instead of a low-temperature refrigerant, high-temperature refrigerant immediately after leaving the compressor 82 is passed through the heat sink 10 to raise the temperature of the heat sink 10, and the temperature of the rod-shaped member 24 of the metal part 20 is raised through thermal conduction, thereby making it possible to raise the freezing temperature to a level higher than the freezing point.

一方、ペルチェ素子30を備える場合には、ヒートシンク10の面と接する側が吸熱側となり、金属板20の面と接する側が発熱側となるように、ペルチェ素子30に通電することにより、金属板20の棒状部材24の温度を上げて、速やかに離氷温度にすることができる。これにより、短い製氷サイクルを確実に実現できる。この場合、ヒートシンク10には、冷却システム80で低温になった冷媒を流したままの状態で、ペルチェ素子30により棒状部材24の温度を離氷温度にすることができる。 On the other hand, when a Peltier element 30 is provided, the temperature of the rod-shaped member 24 of the metal plate 20 can be raised to the ice-release temperature quickly by passing electricity through the Peltier element 30 so that the side in contact with the surface of the heat sink 10 becomes the heat absorption side and the side in contact with the surface of the metal plate 20 becomes the heat generation side. This ensures a short ice-making cycle. In this case, the temperature of the rod-shaped member 24 can be raised to the ice-release temperature by the Peltier element 30 while the refrigerant cooled to a low temperature by the cooling system 80 is still flowing through the heat sink 10.

<復帰工程(図7F参照)>
上記の離氷工程の後、制御部90の制御により、移動機構60が、残留した液体を液体容器50内に貯蔵したまま、液体容器50を待避位置から製氷位置へ回転移動させる。移動機構60の駆動モータを待避工程と反対側に駆動させて、液体容器50を反対向きに70度から120度の範囲で回転さて、元の製氷位置に戻す。これにより、1回目の製氷プロセスが終了し、2回目の製氷プロセスの給液工程を実施する。
<Restoring step (see FIG. 7F)>
After the above ice-removing step, under the control of the control unit 90, the moving mechanism 60 rotates and moves the liquid container 50 from the retreat position to the ice-making position while leaving the remaining liquid stored in the liquid container 50. The drive motor of the moving mechanism 60 is driven in the opposite direction to the retreat step, and the liquid container 50 is rotated in the opposite direction by a range of 70 degrees to 120 degrees, returning it to the original ice-making position. This ends the first ice-making process, and the liquid supply step of the second ice-making process is carried out.

<2回目以降の製氷プロセス(図7G参照)>
2回目の製氷プロセスの給液工程では、上記と同様に、制御部90の制御により、液体供給部72の給除液ポンプの駆動モータを給液方向に駆動させて、上方が開口した液体容器50に液体を供給する。図7Gは、次の製氷プロセスの給液工程で、液体容器50への液体の供給が完了したところを示す。
2回目以降の製氷プロセスの給液工程では、給液開始前に既に液体容器50の底面から高さH以上の領域に液体が貯まっている。このため、2回目の製氷プロセスの給液工程で液体容器50に供給される液体の量は、1回目の製氷プロセスに比べ、残留した液体の量の分だけ少なくなる。残留した液体は、前の製氷プロセスにおいて、金属板20の棒状部材24で冷却されており、新たに供給される液体の温度より低温になっている。このため、2回目以降の製氷プロセスの製氷工程では、凍結させる液体の温度が予め低いので、短時間に効率的に製氷を行うことができる。
<Second and subsequent ice making processes (see FIG. 7G)>
In the liquid supply step of the second ice-making process, similarly to the above, the drive motor of the liquid supply/removal pump of liquid supply unit 72 is driven in the liquid supply direction under the control of control unit 90 to supply liquid to the upwardly open liquid container 50. Figure 7G shows the state in which the supply of liquid to liquid container 50 is completed in the liquid supply step of the next ice-making process.
In the liquid supply step of the second or subsequent ice-making process, liquid is already stored in an area of liquid container 50 at height H or more from the bottom before liquid supply begins. Therefore, the amount of liquid supplied to liquid container 50 in the liquid supply step of the second ice-making process is less than that in the first ice-making process by the amount of remaining liquid. The remaining liquid has been cooled by rod-shaped member 24 of metal plate 20 in the previous ice-making process, and is at a lower temperature than the newly supplied liquid. Therefore, in the ice-making step of the second or subsequent ice-making process, the temperature of the liquid to be frozen is already low, so ice can be made efficiently in a short time.

以上のように、本実施形態に係る製氷機は、冷媒が流れる流路12を有するヒートシンク10と、金属製の棒状部材24が基端部24Aから先端部24Bにかけて下側に延びるように取り付けられた金属板20とを有し、ヒートシンク10により棒状部材24が冷却される冷却部40と、液体を貯蔵可能な液体容器50と、液体容器50に液体を供給する液体供給部72と、液体容器50を回転移動させる移動機構60と、棒状部材24の温度、液体供給部72の作動及び移動機構60の作動を制御する制御部90と、を備え、制御部90の制御により、液体供給部72が、製氷位置において上方が開口した液体容器50に液体を供給する給液工程と、給液工程の後、所定の時間、製氷温度にした棒状部材24の先端部24Bから所定の領域Lが液体容器50に収容された液体に浸かった状態にする製氷工程と、製氷工程の後、移動機構60が、残留した液体を液体容器50内に貯蔵したまま、液体容器50を製氷位置から棒状部材24の下側に液体容器50が存在しない待避位置まで回転移動させる待避工程と、待避工程の後、棒状部材24を離氷温度にして、棒状部材24の周囲に生成された氷を棒状部材24から落下させる離氷工程と、離氷工程の後、移動機構60が、残留した液体を液体容器50内に貯蔵したまま、液体容器50を待避位置から製氷位置へ回転移動させる復帰工程と、を行う製氷プロセスを複数回繰り返す。このとき、液体容器50が、待避位置において所定の量の液体を収容可能な構造を有する。 As described above, the ice making machine according to this embodiment includes a heat sink 10 having a flow path 12 through which a refrigerant flows, a metal plate 20 to which a metallic rod-shaped member 24 made of metal is attached so as to extend downward from a base end 24A to a tip end 24B, and includes a cooling section 40 in which the rod-shaped member 24 is cooled by the heat sink 10, a liquid container 50 capable of storing liquid, a liquid supply section 72 that supplies liquid to the liquid container 50, a moving mechanism 60 that rotates and moves the liquid container 50, and a control section 90 that controls the temperature of the rod-shaped member 24, the operation of the liquid supply section 72, and the operation of the moving mechanism 60. Under the control of the control section 90, the liquid supply section 72 performs a liquid supply process in which the liquid supply section 72 supplies liquid to the liquid container 50 that is open at the top at the ice making position, and after the liquid supply process, The ice making process is repeated multiple times, which includes an ice making process in which a predetermined area L from the tip 24B of the rod-shaped member 24, which has been heated to ice making temperature, is immersed in the liquid contained in the liquid container 50 for a predetermined time, a retreat process in which the moving mechanism 60 rotates the liquid container 50 from the ice making position to a retreat position where the liquid container 50 is not present below the rod-shaped member 24 while keeping the remaining liquid stored in the liquid container 50 after the ice making process, an ice releasing process in which the rod-shaped member 24 is heated to the ice releasing temperature after the retreat process, and the ice generated around the rod-shaped member 24 falls from the rod-shaped member 24, and a return process in which the moving mechanism 60 rotates the liquid container 50 from the retreat position to the ice making position while keeping the remaining liquid stored in the liquid container 50 after the ice releasing process. At this time, the liquid container 50 has a structure capable of storing a predetermined amount of liquid at the retreat position.

これにより、前の製氷プロセスの製氷工程で液体容器50内に残留した液体を、次の製氷プロセスの製氷工程で使用できるので、前の製氷プロセスで冷却された低温の液体を用いて製氷ができる。よって、冷却効率が高く、短時間に製氷が可能な製氷機を提供できる。
以上のような複数の製氷プロセスを繰り返して、所望の量の氷Gを氷収納容器56に収納した後、一連の製氷プロセスを完了させる。
This allows the liquid remaining in the liquid container 50 from the previous ice-making step to be used in the next ice-making step, making it possible to make ice using low-temperature liquid cooled in the previous ice-making process. This provides an ice-making machine with high cooling efficiency and capable of making ice in a short time.
The above-mentioned ice making process is repeated several times until a desired amount of ice G is stored in the ice storage container 56, and then the series of ice making processes is completed.

(複数の製氷プロセスの完了時の処理)
図8Aから図8Cは、本発明の1つの実施形態に係る製氷機2で実施される製氷プロセスの完了時の処理を模式的に示す側面断面図であり、図8Aは、残留液凍結工程を示し、図8Bは、残留液離氷工程において液体容器50を捻るところを示し、図8Cは、残留液離氷工程において、凍結した残留液を液体容器50から落下させるところを示す。
(Processing upon completion of multiple ice making processes)
Figures 8A to 8C are side cross-sectional views showing the processing at the completion of the ice making process performed in ice maker 2 according to one embodiment of the present invention, where Figure 8A shows the residual liquid freezing process, Figure 8B shows the liquid container 50 being twisted in the residual liquid release process, and Figure 8C shows the frozen residual liquid being allowed to fall from liquid container 50 in the residual liquid release process.

<残留液凍結工程(図8A参照)>
残留液凍結工程では、一連の製氷プロセス終了後、液体容器50に残留した残留液を凍結させる処理を行う。図8Aでは、液体容器50が製氷位置にいる状態で、残留液を凍結させるところを示す。
<Residual liquid freezing process (see FIG. 8A)>
In the residual liquid freezing step, after a series of ice making processes are completed, a process is performed to freeze the residual liquid remaining in the liquid container 50. Fig. 8A shows the residual liquid being frozen with the liquid container 50 in the ice making position.

残留液を凍結させる手段としては、例えば、冷却部40のヒートシンク10の外面に複数のフィンを設け、ファンにより、冷却部40のフィンの間を通過させた冷気を残留液に吹き付けることが考えられる。フィンの間の通過で零下の温度に冷却された冷気を、残留液に吹き付けることにより、残留液を凍結させることができる。また、冷却部40とは異なるヒートシンクやペルチェ素子等を用いて冷却した冷気を、残留した液体に吹き付けることも考えられる。 One possible means for freezing the residual liquid is to provide multiple fins on the outer surface of the heat sink 10 of the cooling unit 40 and use a fan to blow cold air that has passed between the fins of the cooling unit 40 onto the residual liquid. The residual liquid can be frozen by blowing the cold air, which has been cooled to below zero by passing between the fins, onto the residual liquid. It is also possible to blow cold air that has been cooled using a heat sink or Peltier element other than the cooling unit 40 onto the residual liquid.

更に、液体容器50の底面部50Aを熱伝導率の良い金属で形成して、熱伝導率の高い部材で冷却部40と接続したり、液体容器50を移動させて、冷却部40と接触させることも考えられる。また、下記のように、製氷機2が冷蔵庫に備えられている場合には、液体容器50を冷蔵庫の冷凍室に配置することにより、容易に残留液を凍結させることができる。 Furthermore, it is also possible to form the bottom portion 50A of the liquid container 50 from a metal with good thermal conductivity and connect it to the cooling unit 40 with a member with high thermal conductivity, or to move the liquid container 50 so that it comes into contact with the cooling unit 40. Also, as described below, if the ice maker 2 is installed in a refrigerator, the remaining liquid can be easily frozen by placing the liquid container 50 in the freezer compartment of the refrigerator.

<残留液離氷工程(図8B,8C参照)>
上記の残留液凍結工程の後、制御部90により、移動機構60の駆動モータを待避工程と同じ方向に駆動させて、液体容器50を回転移動させる。今回は、70度から120度回転させた待避位置を越えて、更に180度近傍まで回転させる。このとき、液体容器50の端部領域に設けられた突起54が製氷機2のフレームに当接する。この当接により弾性を有する液体容器50の一部が拘束された状態で、駆動モータの駆動を継続して液体容器50を更に回転させると、液体容器50が捻られる。液体容器50が捻られることによって変形し、図8Cに示すように、凍結した残留液が液体容器50から離脱して落下する。落下した凍結した残留液は、下方に配置された氷収納容器56に収納される。
<Residual liquid ice-removal process (see Figs. 8B and 8C)>
After the residual liquid freezing step, the control unit 90 drives the drive motor of the moving mechanism 60 in the same direction as the retraction step to rotate and move the liquid container 50. This time, the liquid container 50 is rotated further to about 180 degrees beyond the retraction position rotated from 70 degrees to 120 degrees. At this time, the protrusion 54 provided at the end region of the liquid container 50 abuts against the frame of the ice making machine 2. When the drive motor is continued to be driven to further rotate the liquid container 50 in a state in which a part of the liquid container 50 having elasticity is restrained by this abutment, the liquid container 50 is twisted. The liquid container 50 is deformed by being twisted, and the frozen residual liquid falls off the liquid container 50 as shown in FIG. 8C. The fallen frozen residual liquid is stored in the ice storage container 56 arranged below.

図8Aに示す例では、液体容器50が製氷位置にある状態で、底面部50A近傍に存在する残留液を凍結させている。これにより、液体容器50が捻られたとき、底面部50Aは比較的大きく変形する領域なので、液体容器50から凍結した残留液を離脱させ易くできる。更に、液体容器50から離脱した凍結した残留液が、ほぼ真下に落下するので、他の部材との干渉の虞が少ない。
ただし、これに限られるものではなく、例えば、液体容器50が待避位置にある状態で、残留液を凍結させることもできる。液体容器50から凍結した残留液を離脱させる手段としては、上記に限られるもではなく、既知の任意の製氷皿の離氷手段を採用することができる。
In the example shown in Figure 8A, when liquid container 50 is in the ice making position, residual liquid present near bottom portion 50A is frozen. As a result, when liquid container 50 is twisted, bottom portion 50A is an area that undergoes relatively large deformation, making it easier to remove frozen residual liquid from liquid container 50. Furthermore, since the frozen residual liquid that has been removed from liquid container 50 falls almost straight down, there is little risk of it interfering with other components.
However, the present invention is not limited to this, and for example, the remaining liquid may be frozen while the liquid container 50 is in the retreated position. The means for removing the frozen remaining liquid from the liquid container 50 is not limited to the above, and any known ice removing means for an ice tray may be used.

以上のように、複数の製氷プロセスを繰り返した後の完了時において、制御部90の制御により、製氷位置または待避位置にある液体容器50内に残留した液体を冷凍環境下に置いて凍結させる残留液凍結工程と、凍結した残留液を液体容器50から落下させる残留液離氷工程と、
を行う。これにより、一連の製氷プロセスが終了した後、残留した液体を液体容器50から流出させることなく、凍結させて液体容器50から離氷させることができるので、効率の高い製氷サイクルが実現できる。
As described above, when the ice making process is completed after repeating a plurality of ice making processes, the control unit 90 controls the remaining liquid container 50 at the ice making position or the waiting position to be placed in a freezing environment to freeze the remaining liquid, and the remaining liquid ice-releasing process to drop the frozen remaining liquid from the liquid container 50.
As a result, after the series of ice making processes is completed, the remaining liquid can be frozen and released from the liquid container 50 without flowing out of the liquid container 50, thereby realizing a highly efficient ice making cycle.

(本発明の1つの実施形態に係る冷蔵庫)
図9は、本発明の1つの実施形態に係る冷蔵庫100を模式的に示す側面断面図である。図9では、冷媒の流れを点線の矢印で示す。図9を参照しながら、本発明の1つの実施形態に係る冷蔵庫100の説明を行う。冷蔵庫100は、上記の実施形態に係る製氷機2を備えている。
(Refrigerator according to one embodiment of the present invention)
Fig. 9 is a side cross-sectional view showing a refrigerator 100 according to one embodiment of the present invention. In Fig. 9, the flow of a refrigerant is indicated by dotted arrows. The refrigerator 100 according to one embodiment of the present invention will be described with reference to Fig. 9. The refrigerator 100 includes the ice maker 2 according to the embodiment described above.

冷蔵庫100は、冷凍室102A及び冷蔵室102Bを備える。冷凍室102A及び冷蔵室102Bの背面側には、仕切板106で仕切られた入側流路104A,Bが設けられている。冷凍室102A側の入側流路104Aには、蒸発器140が配置され、その上方にファン170が配置される。冷凍室102Aの背面側の外部の機械室には、蒸発器140と連通した圧縮器110が配置されている。圧縮器110で圧縮された冷媒(気体)が凝縮器120で液化され、毛細管内を通過中に減圧されて沸点が下がり、乾燥器130を経て、三方弁160へ達する。図9では、乾燥器130が機械室内に示されているが、実際には三方弁160の近くに配置されている。 The refrigerator 100 includes a freezer compartment 102A and a refrigerator compartment 102B. The rear sides of the freezer compartment 102A and the refrigerator compartment 102B are provided with inlet flow paths 104A and B separated by a partition plate 106. An evaporator 140 is disposed in the inlet flow path 104A on the freezer compartment 102A side, and a fan 170 is disposed above it. A compressor 110 communicating with the evaporator 140 is disposed in an external machine room on the rear side of the freezer compartment 102A. The refrigerant (gas) compressed by the compressor 110 is liquefied in the condenser 120, and the pressure is reduced while passing through the capillary tube, lowering the boiling point, and the refrigerant passes through the dryer 130 and reaches the three-way valve 160. In FIG. 9, the dryer 130 is shown in the machine room, but in reality it is disposed near the three-way valve 160.

三方弁160により、冷媒は、冷蔵庫100の蒸発器140に直接流入する流路と、製氷機2のヒートシンク10内を流れた後、蒸発器140に流入する流路とに切り替えられる。製氷機2で製氷を行なわない場合には、冷媒が直接、蒸発器140に流入する。そして、冷媒は蒸発器140で庫内の気体の熱を奪って気化し、気化した冷媒が圧縮器110で再び圧縮されるというサイクルを繰り返す。以上のように、圧縮器110、凝縮器120、乾燥器130、蒸発器140等が連通した冷蔵庫の冷却システム150が構築されている。 Three-way valve 160 switches the refrigerant between a flow path that flows directly into evaporator 140 of refrigerator 100 and a flow path that flows through heat sink 10 of ice maker 2 and then flows into evaporator 140. When ice making is not performed in ice maker 2, the refrigerant flows directly into evaporator 140. The refrigerant then absorbs heat from the gas inside the refrigerator in evaporator 140 and vaporizes, and the vaporized refrigerant is compressed again in compressor 110, repeating this cycle. As described above, refrigerator cooling system 150 is constructed in which compressor 110, condenser 120, dryer 130, evaporator 140, etc. are connected.

製氷機2で製氷を行う場合には、三方弁160の切り替えにより、冷媒は、接続管14Aを介してヒートシンク10の流路12に流入する。流路12を通過中に、液状または霧状の冷媒の一部は周囲から熱を吸収して蒸発し、気化した冷媒が、接続管14Bを介して、蒸発器140の入側に達する。ヒートシンク10で気化する冷媒の量は、冷却システム150で循環する冷媒の容量に比べて小さいので、蒸発器140に入る時点で、冷媒は全体として液状または霧状の状態を保っている。よって、冷媒は蒸発器140で庫内の気体の熱を奪って気化し、気化した冷媒が圧縮器110で再び圧縮されるというサイクルを繰り返す。
三方弁160での切り替えを行わずに、常に、直接、蒸発器140に流入する冷媒の流れと、ヒートシンク10を経てから蒸発器140に流入する冷媒の流れとが生じるようにすることもできる。
When ice is made by ice maker 2, three-way valve 160 is switched so that the refrigerant flows into flow path 12 of heat sink 10 via connecting pipe 14A. While passing through flow path 12, a portion of the liquid or mist refrigerant absorbs heat from the surroundings and evaporates, and the vaporized refrigerant reaches the inlet side of evaporator 140 via connecting pipe 14B. Since the amount of refrigerant vaporized in heat sink 10 is small compared to the volume of refrigerant circulating in cooling system 150, the refrigerant as a whole remains in a liquid or mist state at the time of entering evaporator 140. Thus, the refrigerant absorbs heat from the gas in the container in evaporator 140 and vaporizes, and the vaporized refrigerant is compressed again in compressor 110, repeating this cycle.
It is also possible to always have a flow of refrigerant flowing directly into the evaporator 140 and a flow of refrigerant passing through the heat sink 10 before flowing into the evaporator 140 without switching using the three-way valve 160.

冷凍室102A側の入側流路104A及び冷蔵室102B側の入側流路104Bの間には、ダンパ180が配置されている。図9では、ダンパ180が閉の状態を示す。
ダンパ180が閉の状態では、圧縮器110及びファン170が駆動すると、冷凍室102A内の気体が流動し、蒸発器140を通過した冷気が仕切板106に設けられた吹出口106Aから、冷凍室102A内に流入する。図9の一点鎖線の矢印に示すように、流入した気体は、冷凍室102A内を循環して、再び、入側流路104A内の蒸発器140の下側に戻る。このような蒸発器140を通過して冷却された気体の循環により、冷凍室102A内を冷却することができる。ダンパ180が開の状態では、冷蔵室102B側にも冷気が循環する。
A damper 180 is disposed between the inlet flow path 104A on the freezing compartment 102A side and the inlet flow path 104B on the refrigerating compartment 102B side. In Fig. 9, the damper 180 is shown in a closed state.
When the damper 180 is closed, the compressor 110 and the fan 170 are driven, causing the gas in the freezing chamber 102A to flow, and the cold air that has passed through the evaporator 140 flows into the freezing chamber 102A from the air outlet 106A provided in the partition plate 106. As shown by the dashed-dotted arrow in Fig. 9, the gas that has flowed in circulates inside the freezing chamber 102A and returns again to the lower side of the evaporator 140 in the inlet flow path 104A. This circulation of the gas that has passed through the evaporator 140 and been cooled can cool the inside of the freezing chamber 102A. When the damper 180 is open, cold air also circulates to the refrigerator chamber 102B side.

以上のように、本実施形態に係る冷蔵庫100は、上記の実施形態に係る製氷機2を備え、庫内を冷却するための冷却システム150から分岐して、液状または霧状の低温の冷媒を製氷機2のヒートシンク10へ供給することができる。これにより、冷却部40の金属板20の棒状部材24を製氷温度にすることができる。
また、製氷機2がペルチェ素子30を備える場合には、冷蔵庫100の冷却システム150を利用したヒートシンク10による冷却に加え、ペルチェ素子30による冷却も加わるので、冷媒だけを用いた場合よりも、棒状部材24の製氷温度を更に低下させることができる。
As described above, refrigerator 100 according to this embodiment includes ice maker 2 according to the above embodiment, and is capable of supplying a liquid or mist-like low-temperature refrigerant to heat sink 10 of ice maker 2 by branching off from cooling system 150 for cooling the interior of the refrigerator. This allows rod-shaped members 24 of metal plate 20 of cooling unit 40 to be heated to an ice-making temperature.
Furthermore, when ice maker 2 is equipped with Peltier element 30, in addition to cooling by heat sink 10 utilizing cooling system 150 of refrigerator 100, cooling by Peltier element 30 is also performed, so that the ice-making temperature of rod-shaped member 24 can be further lowered than when only a refrigerant is used.

離氷工程においては、図示されていない切替弁を用いて、圧縮器110からの高温の冷媒を製氷機2のヒートシンク10へ供給することができる。これにより、冷却部40の金属板20の棒状部材24を氷点より高い離氷温度にすることができる。
また、製氷機2がペルチェ素子30を備える場合には、冷却システム150から低温の冷媒をヒートシンク10へ供給する状態のまま、ペルチェ素子30への通電方向を製氷時と逆転させることにより、金属板20の棒状部材24の温度を上げて、速やかに離氷することができる。
また、離氷工程では、三方弁160を切り替えて、冷媒がヒートシンク10に供給されないようにすることもできる。
In the ice-removing process, a switching valve (not shown) can be used to supply high-temperature refrigerant from the compressor 110 to the heat sink 10 of the ice-making machine 2. This allows the rod-shaped member 24 of the metal plate 20 of the cooling unit 40 to have a releasing temperature higher than the freezing point.
In addition, when the ice maker 2 is equipped with a Peltier element 30, by reversing the direction of current flow to the Peltier element 30 from that during ice making while keeping the cooling system 150 supplying low-temperature refrigerant to the heat sink 10, the temperature of the rod-shaped member 24 of the metal plate 20 can be raised, allowing ice to be quickly removed.
In addition, during the ice removal process, the three-way valve 160 can be switched so that the refrigerant is not supplied to the heat sink 10.

以上のように、上記の製氷機2を備え、庫内を冷却するための冷却システム150から分岐して、冷媒を製氷機2のヒートシンク10へ供給する冷蔵庫100においても、冷却効率が高く、短時間に製氷が可能である。
特に、製氷機2の液体容器50が冷凍室102A内に配置されているので、上記の残留液凍結工程において、容易に液体容器50の残留液を凍結させることができる。
As described above, refrigerator 100 is equipped with the above-mentioned ice maker 2, and branches off from cooling system 150 for cooling the interior of the refrigerator to supply refrigerant to heat sink 10 of ice maker 2, so that the cooling efficiency is high and ice can be made in a short time.
In particular, since liquid container 50 of ice maker 2 is disposed within freezing chamber 102A, the residual liquid in liquid container 50 can be easily frozen in the residual liquid freezing step described above.

本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。 Although the embodiments and modes of implementation of the present invention have been described, the disclosed contents may vary in the details of the configuration, and the combination and order of elements in the embodiments and modes of implementation may be changed without departing from the scope and concept of the claimed invention.

2 製氷機
10 ヒートシンク
12 流路
14A,14B 接続管
20 金属板
22 ベース部
24 棒状部材
24A 基端部
24B 先端部
30 ペルチェ素子
40 冷却部
50 液体容器
50A 底面部
50B 側壁部
50C リブ
52 シャフト部
54 突起
56 氷収納容器
60 移動機構
62 軸受部
70 給除液管
72 液体供給部
72A 先端開口
74 液体除去部
80 冷却システム
82 圧縮器
84 凝縮器
86 乾燥器
90 制御部
100 冷蔵庫
102A 冷凍室
102B 冷蔵室
104A,B 入側流路
106 仕切板
106A 吹出口
110 圧縮器
120 凝縮器
130 乾燥器
140 蒸発器
150 冷却システム
160 三方弁
170 ファン
180 ダンパ
2 Ice maker 10 Heat sink 12 Flow path 14A, 14B Connection pipe 20 Metal plate 22 Base portion 24 Rod-shaped member 24A Base end portion 24B Tip portion 30 Peltier element 40 Cooling portion 50 Liquid container 50A Bottom surface portion 50B Side wall portion 50C Rib 52 Shaft portion 54 Protrusion 56 Ice storage container 60 Movement mechanism 62 Bearing portion 70 Liquid supply/removal pipe 72 Liquid supply portion 72A Tip opening 74 Liquid removal portion 80 Cooling system 82 Compressor 84 Condenser 86 Dryer 90 Control portion 100 Refrigerator 102A Freezer compartment 102B Refrigerating compartments 104A, B Inlet flow path 106 Partition plate 106A Air outlet 110 Compressor 120 Condenser 130 Dryer 140 Evaporator 150 Cooling system 160 Three-way valve 170 Fan 180 damper

Claims (5)

冷媒が流れる流路を有するヒートシンクと、
金属製の棒状部材が基端部から先端部にかけて下側に延びるように取り付けられた金属板と
を有し、前記ヒートシンクにより前記棒状部材が冷却される冷却部と、
液体を貯蔵可能な液体容器と、
前記液体容器に液体を供給する液体供給部と、
前記液体容器を回転移動させる移動機構と、
前記棒状部材の温度、液体供給部の作動及び前記移動機構の作動を制御する制御部と、
を備え、
前記制御部の制御により、
前記液体供給部が、製氷位置において上方が開口した前記液体容器に液体を供給する給液工程と、
前記給液工程の後、所定の時間、製氷温度にした前記棒状部材の前記先端部から所定の領域が前記液体容器に収容された液体に浸かった状態にする製氷工程と、
前記製氷工程の後、前記移動機構が、残留した液体を前記液体容器内に貯蔵したまま、前記液体容器を前記製氷位置から前記棒状部材の下側に前記液体容器が存在しない待避位置まで回転移動させる待避工程と、
前記待避工程の後、前記棒状部材を離氷温度にして、前記棒状部材の周囲に生成された氷を前記棒状部材から落下させる離氷工程と、
前記離氷工程の後、前記移動機構が、残留した液体を前記液体容器内に貯蔵したまま、前記液体容器を前記待避位置から前記製氷位置へ回転移動させる復帰工程と、
を行う製氷プロセスを複数回繰り返し、
前記液体容器が、前記待避位置において所定の量の液体を収容可能な構造を有し、
前記液体容器内に残留する液体を除去する液体除去部を更に備え、
前記制御部の制御により、
前記製氷工程の後、前記液体除去部が前記液体容器内に残留する液体の一部を除去して、前記液体容器内に残留する液体の量を前記所定の量以下にする除液工程を行った後、前記待避工程を行うことを特徴とする製氷機。
a heat sink having a flow path through which a coolant flows;
a cooling section including a metal plate to which a metal rod-shaped member is attached so as to extend downward from a base end to a tip end, the cooling section cooling the rod-shaped member by the heat sink;
A liquid container capable of storing liquid;
a liquid supply unit that supplies liquid to the liquid container;
a moving mechanism for rotating and moving the liquid container;
a control unit for controlling the temperature of the rod-shaped member, the operation of the liquid supply unit, and the operation of the movement mechanism;
Equipped with
Under the control of the control unit,
a liquid supplying step in which the liquid supplying unit supplies liquid to the liquid container, the liquid container having an open upper portion at an ice making position;
an ice making step of immersing a predetermined area of the rod-shaped member, which has been heated to an ice making temperature, in the liquid contained in the liquid container for a predetermined time after the liquid supply step;
a retreat step in which, after the ice making step, the moving mechanism rotates and moves the liquid container from the ice making position to a retreat position where the liquid container is not present below the rod-shaped member while keeping the remaining liquid stored in the liquid container;
an ice-removing step in which the rod-shaped member is heated to an ice-removing temperature after the retreating step, and ice generated around the rod-shaped member is dropped from the rod-shaped member;
a return step in which, after the ice removing step, the moving mechanism rotates and moves the liquid container from the retreat position to the ice making position while keeping the remaining liquid stored in the liquid container;
The ice making process is repeated several times.
the liquid container has a structure capable of containing a predetermined amount of liquid in the retracted position,
a liquid removal unit that removes liquid remaining in the liquid container;
Under the control of the control unit,
an ice making machine characterized in that, after the ice making process, a liquid removal process is performed in which the liquid removal unit removes a portion of the liquid remaining in the liquid container to reduce the amount of liquid remaining in the liquid container to less than the predetermined amount, and then the evacuation process is performed .
冷媒が流れる流路を有するヒートシンクと、
金属製の棒状部材が基端部から先端部にかけて下側に延びるように取り付けられた金属板と
を有し、前記ヒートシンクにより前記棒状部材が冷却される冷却部と、
液体を貯蔵可能な液体容器と、
前記液体容器に液体を供給する液体供給部と、
前記液体容器を回転移動させる移動機構と、
前記棒状部材の温度、液体供給部の作動及び前記移動機構の作動を制御する制御部と、
を備え、
前記制御部の制御により、
前記液体供給部が、製氷位置において上方が開口した前記液体容器に液体を供給する給液工程と、
前記給液工程の後、所定の時間、製氷温度にした前記棒状部材の前記先端部から所定の領域が前記液体容器に収容された液体に浸かった状態にする製氷工程と、
前記製氷工程の後、前記移動機構が、残留した液体を前記液体容器内に貯蔵したまま、前記液体容器を前記製氷位置から前記棒状部材の下側に前記液体容器が存在しない待避位置まで回転移動させる待避工程と、
前記待避工程の後、前記棒状部材を離氷温度にして、前記棒状部材の周囲に生成された氷を前記棒状部材から落下させる離氷工程と、
前記離氷工程の後、前記移動機構が、残留した液体を前記液体容器内に貯蔵したまま、前記液体容器を前記待避位置から前記製氷位置へ回転移動させる復帰工程と、
を行う製氷プロセスを複数回繰り返し、
前記液体容器が、前記待避位置において所定の量の液体を収容可能な構造を有し、
複数の前記製氷プロセスを繰り返した後、
前記制御部の制御により、
前記製氷位置または前記待避位置にある前記液体容器内に残留した残留液を冷凍環境下に置いて凍結させる残留液凍結工程と、
前記残留液凍結工程の後、前記移動機構が、弾性を有する前記液体容器の一部を拘束した状態で前記液体容器を更に回転移動させることにより前記液体容器を捻って、凍結した前記残留液を前記液体容器から落下させる残留液離氷工程と、
を行うことを特徴とする製氷機。
a heat sink having a flow path through which a coolant flows;
a cooling section including a metal plate to which a metal rod-shaped member is attached so as to extend downward from a base end to a tip end, the cooling section cooling the rod-shaped member by the heat sink;
A liquid container capable of storing liquid;
a liquid supply unit that supplies liquid to the liquid container;
a moving mechanism for rotating and moving the liquid container;
a control unit for controlling the temperature of the rod-shaped member, the operation of the liquid supply unit, and the operation of the movement mechanism;
Equipped with
Under the control of the control unit,
a liquid supplying step in which the liquid supplying unit supplies liquid to the liquid container, the liquid container having an open upper portion at an ice making position;
an ice making step of immersing a predetermined area of the rod-shaped member from the tip end thereof in the liquid contained in the liquid container at an ice making temperature for a predetermined time after the liquid supply step;
a retreat step in which, after the ice making step, the moving mechanism rotates and moves the liquid container from the ice making position to a retreat position where the liquid container is not present below the rod-shaped member while keeping the remaining liquid stored in the liquid container;
an ice-removing step in which the rod-shaped member is heated to an ice-removing temperature after the retreating step, and ice generated around the rod-shaped member is dropped from the rod-shaped member;
a return step in which, after the ice removing step, the moving mechanism rotates and moves the liquid container from the retreat position to the ice making position while keeping the remaining liquid stored in the liquid container;
The ice making process is repeated several times.
the liquid container has a structure capable of containing a predetermined amount of liquid in the retracted position,
After repeating the ice making process several times,
Under the control of the control unit,
a residual liquid freezing step of freezing the residual liquid remaining in the liquid container at the ice making position or the retreat position in a freezing environment;
a residual liquid freezing step in which, after the residual liquid freezing step, the moving mechanism further rotates and moves the liquid container while constraining a part of the liquid container having elasticity, thereby twisting the liquid container and causing the frozen residual liquid to fall from the liquid container;
An ice maker characterized by performing the above steps.
前記ヒートシンク及び前記金属板の間に配置され、一方の面が前記ヒートシンクの面と接し、他方の面が前記金属板の前記棒状部材が取り付けられた面と反対側の面に接するペルチェ素子を更に備え、
前記製氷工程において、前記ペルチェ素子の前記ヒートシンクと接する側が放熱側となり、前記金属板と接する側が吸熱側となるように、前記ペルチェ素子に電力を供給することにより前記製氷温度の前記棒状部材の更なる冷却を行い、
前記離氷工程において、前記ペルチェ素子の前記ヒートシンクと接する側が吸熱側となり、前記金属板と接する側が放熱側となるように、前記ペルチェ素子に電力を供給して前記棒状部材を前記離氷温度にすることを特徴とする請求項1または2に記載の製氷機。
a Peltier element disposed between the heat sink and the metal plate, one surface of which contacts a surface of the heat sink and the other surface of which contacts a surface of the metal plate opposite to the surface to which the rod-shaped member is attached;
In the ice making process, the rod-shaped member is further cooled to the ice making temperature by supplying power to the Peltier element so that the side of the Peltier element that contacts the heat sink becomes a heat dissipation side and the side of the Peltier element that contacts the metal plate becomes a heat absorption side;
The ice making machine described in claim 1 or 2, characterized in that in the ice removal process, power is supplied to the Peltier element so that the side of the Peltier element in contact with the heat sink becomes the heat absorption side and the side in contact with the metal plate becomes the heat dissipation side , thereby heating the rod-shaped member to the ice removal temperature.
前記離氷工程において、前記液体容器の端部領域を回転中心にして、前記製氷位置から前記待避位置まで前記液体容器を70度から120度の範囲で回転させ、
前記液体容器に、前記液体容器を構成する側壁部と繋がり、上方の開口を一部覆うリブが設けられ、前記待避位置において、前記所定の量の液体が前記リブにより前記液体容器内に堰き止められることを特徴とする請求項1からの何れか1項に記載の製氷機。
In the ice removing step, the liquid container is rotated from the ice making position to the retreat position through a range of 70 degrees to 120 degrees around an end region of the liquid container as a rotation center,
An ice making machine as described in any one of claims 1 to 3, characterized in that the liquid container is provided with a rib that is connected to a side wall portion that constitutes the liquid container and partially covers an upper opening, and in the retracted position, the predetermined amount of liquid is blocked within the liquid container by the rib .
請求項1からの何れか1項に記載の製氷機を備え、
庫内を冷却するための冷却システムから分岐して、冷媒を前記製氷機の前記ヒートシンクへ供給することを特徴とする冷蔵庫。
供給することを特徴とする冷蔵庫。
The ice making machine according to any one of claims 1 to 4 is provided,
A refrigerator characterized in that a refrigerant is branched off from a cooling system for cooling an interior of the refrigerator and supplied to the heat sink of the ice maker.
A refrigerator characterized by supplying
JP2019234062A 2019-12-25 2019-12-25 Ice maker and refrigerator equipped with ice maker Active JP7469789B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019234062A JP7469789B2 (en) 2019-12-25 2019-12-25 Ice maker and refrigerator equipped with ice maker
CN202080086050.XA CN114787567B (en) 2019-12-25 2020-12-16 Ice maker and refrigerator having the same
US17/788,292 US20230026532A1 (en) 2019-12-25 2020-12-16 Ice maker and refrigerator having same
EP20908248.6A EP4083543B1 (en) 2019-12-25 2020-12-16 Ice maker
PCT/CN2020/136817 WO2021129485A1 (en) 2019-12-25 2020-12-16 Ice maker and refrigerator having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234062A JP7469789B2 (en) 2019-12-25 2019-12-25 Ice maker and refrigerator equipped with ice maker

Publications (2)

Publication Number Publication Date
JP2021103032A JP2021103032A (en) 2021-07-15
JP7469789B2 true JP7469789B2 (en) 2024-04-17

Family

ID=76573670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234062A Active JP7469789B2 (en) 2019-12-25 2019-12-25 Ice maker and refrigerator equipped with ice maker

Country Status (5)

Country Link
US (1) US20230026532A1 (en)
EP (1) EP4083543B1 (en)
JP (1) JP7469789B2 (en)
CN (1) CN114787567B (en)
WO (1) WO2021129485A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230243564A1 (en) * 2022-02-03 2023-08-03 Haier Us Appliance Solutions, Inc. Ice making assembly with chilled reservoir

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228333A (en) 2001-02-02 2002-08-14 Sanyo Electric Co Ltd Freezer/refrigerator
JP2004309105A (en) 2003-04-01 2004-11-04 Samsung Kwangju Electronics Co Ltd Ice making machine ice making plate
US20160282030A1 (en) 2013-11-06 2016-09-29 Coway Co., Ltd. Ice storage apparatus and ice making apparatus comprising same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158765A (en) * 1966-05-20 1969-07-16 Pietro Bartolini-Salimbe Vival Apparatus for making Ice Blocks
US4137724A (en) * 1974-04-22 1979-02-06 Armalite, Inc. Apparatus for producing ice
US5992167A (en) * 1998-04-07 1999-11-30 Varity Automotive Inc. Ice maker
US6205807B1 (en) * 1998-10-20 2001-03-27 John A. Broadbent Low cost ice making evaporator
DE10162917A1 (en) * 2001-12-20 2003-07-03 Bsh Bosch Siemens Hausgeraete ice maker
KR20040039092A (en) * 2002-10-31 2004-05-10 히데오 나까조 Ice making machine
CN1297790C (en) * 2003-10-30 2007-01-31 博罗耀峰电子有限公司 Four way valve and ice-making machine using the valve
JP2006118782A (en) * 2004-10-21 2006-05-11 Sharp Corp Ice making apparatus and refrigerator-freezer provided with the same
US8627677B2 (en) * 2006-03-31 2014-01-14 Whirlpool Corporation Icemaker assembly for a refrigerator
CN100516724C (en) * 2006-09-01 2009-07-22 徐文焕 multifunctional ice machine
KR101452762B1 (en) * 2007-12-18 2014-10-21 엘지전자 주식회사 Refrigerator
KR101421735B1 (en) * 2008-02-28 2014-07-22 엘지전자 주식회사 De-icing device of refrigerator
KR100982700B1 (en) * 2008-04-22 2010-09-17 웅진코웨이주식회사 Ice water purifier with two drip trays
JP2010019510A (en) * 2008-07-11 2010-01-28 Nidec Sankyo Corp Ice making device
JP2010019509A (en) * 2008-07-11 2010-01-28 Nidec Sankyo Corp Ice making device
WO2010099454A2 (en) * 2009-02-28 2010-09-02 Electrolux Home Products, Inc. Method and apparatus for making clear ice
KR101688133B1 (en) * 2009-06-22 2016-12-20 엘지전자 주식회사 Ice maker and refrigerator having the same and ice making method thereof
CN101995128B (en) * 2009-08-21 2012-07-04 珠海格力电器股份有限公司 Refrigeration water, ice making device and method
KR101156905B1 (en) * 2009-09-30 2012-06-21 웅진코웨이주식회사 Ice-maker and controlling method thereof
KR101718019B1 (en) * 2010-07-01 2017-04-04 엘지전자 주식회사 Power saving apparatus for ice maker and power saving method of ice maker
KR20120076327A (en) * 2010-12-29 2012-07-09 웅진코웨이주식회사 Ice making apparatus for manufacturing different shape ices
KR20120105186A (en) * 2011-03-15 2012-09-25 웅진코웨이주식회사 Ice maker and method for manufacturing cold water and ice using the same
US8756951B2 (en) * 2011-06-22 2014-06-24 Whirlpool Corporation Vertical ice maker producing clear ice pieces
KR20130033045A (en) * 2011-09-26 2013-04-03 코웨이 주식회사 Ice maker
KR102186818B1 (en) * 2013-08-30 2020-12-04 코웨이 주식회사 Ice maker
DE102016005522B4 (en) * 2016-04-29 2019-02-21 Emz-Hanauer Gmbh & Co. Kgaa Ice maker with freezer
CN106123420A (en) * 2016-07-13 2016-11-16 滁州富达机械电子有限公司 The aluminum groove ice machine that a kind of full-automatic low energy consumption AC and DC controls
US20180202699A1 (en) * 2017-01-19 2018-07-19 Fuji Electric Co., Ltd. Ice making apparatus
CN108895740B (en) * 2018-04-25 2020-09-29 青岛海尔股份有限公司 Ice Makers & Refrigerators
CN110274415B (en) * 2019-06-17 2021-04-27 合肥华凌股份有限公司 Ice maker control method, ice maker, and computer-readable storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228333A (en) 2001-02-02 2002-08-14 Sanyo Electric Co Ltd Freezer/refrigerator
JP2004309105A (en) 2003-04-01 2004-11-04 Samsung Kwangju Electronics Co Ltd Ice making machine ice making plate
US20160282030A1 (en) 2013-11-06 2016-09-29 Coway Co., Ltd. Ice storage apparatus and ice making apparatus comprising same

Also Published As

Publication number Publication date
EP4083543B1 (en) 2025-06-11
JP2021103032A (en) 2021-07-15
EP4083543A1 (en) 2022-11-02
CN114787567A (en) 2022-07-22
CN114787567B (en) 2023-11-03
WO2021129485A1 (en) 2021-07-01
EP4083543A4 (en) 2023-06-07
US20230026532A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US6588219B2 (en) Commercial ice making apparatus and method
CN105299994B (en) Ice maker and refrigerator
KR102392190B1 (en) Spherical or Polyhedral Ice Maker, Beverage Supplying Apparatus and Refrigerator Having the Ice Maker
KR20090066099A (en) Refrigerator ice maker
CN109997007A (en) The control method of water purifier
JPH0544587B2 (en)
JP7483241B2 (en) Ice maker and refrigerator equipped with ice maker
CN113108521B (en) Ice maker and refrigerator having the same
JP7469789B2 (en) Ice maker and refrigerator equipped with ice maker
CN113028694B (en) Ice maker and refrigerator including the same
KR101648669B1 (en) Ice and cold water maker using thermoelectric element
JP7617609B2 (en) Ice maker and control method for control unit of ice maker
JP5253944B2 (en) Automatic ice machine
JP2022103738A (en) Ice machine
JP6026966B2 (en) refrigerator
US11988432B2 (en) Refrigerator appliance having an air-cooled clear ice making assembly
CN116685815A (en) Ice maker
KR950002332Y1 (en) Defroster of Stirling Cycle Refrigerator
CN120627540A (en) High-efficiency ice making device for refrigerator
JP2017072328A (en) Ice plant
JPH10197115A (en) Operation control method for automatic ice making machine
JPH0712874U (en) Automatic ice machine
JPH01312372A (en) Control of deicing operation of automatic ice making machine
JPH10160306A (en) Ice machine
JPH04240369A (en) Automatic ice making machine for block ice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240329

R150 Certificate of patent or registration of utility model

Ref document number: 7469789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150