JP7401308B2 - セラミック材料に圧縮応力を印加するための膜 - Google Patents
セラミック材料に圧縮応力を印加するための膜 Download PDFInfo
- Publication number
- JP7401308B2 JP7401308B2 JP2019568049A JP2019568049A JP7401308B2 JP 7401308 B2 JP7401308 B2 JP 7401308B2 JP 2019568049 A JP2019568049 A JP 2019568049A JP 2019568049 A JP2019568049 A JP 2019568049A JP 7401308 B2 JP7401308 B2 JP 7401308B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- ceramic substrate
- substrate
- temperature
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0266—Details of the structure or mounting of specific components for a display module assembly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/225—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0676—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/308—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/20—Aluminium oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
- C03C2217/281—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/152—Deposition methods from the vapour phase by cvd
- C03C2218/153—Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/32—After-treatment
- C03C2218/322—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/80—Optical properties, e.g. transparency or reflexibility
- C04B2111/805—Transparent material
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Telephone Set Structure (AREA)
- Surface Treatment Of Glass (AREA)
Description
σ=E[(αf-αs)(Td-Tc)+(αfc-αs)(Td-TRT)]+Eintrinsic
一実施形態では、AlOaNb膜(a+b<1.5)が、AlON、サファイアまたはアルミナの基板に堆積される。この例では、膜のCTEは、基板よりも低い。一例では、aの値が0.0であるが、典型的にはaの値は0.0から0.5まで変化する。また、堆積したAlOaNb膜の屈折率は基板の屈折率よりも高く、その差が0.10よりも大きい。これは、膜のaとbの値を調整する処理により実現される。堆積温度は500℃~2,500℃の範囲で変えることができるが、典型的には堆積温度は800℃~1,700℃である。膜は、スパッタリング、物理的気相成、蒸発、CVDまたはHVPEを用いた方法で堆積することができる。膜は、100A(オングストローム)から10μmまでの様々な厚さとすることができる。堆積プロセス中の微細構造は、非晶質から多結晶まで様々なものとすることができる。
本実施例における膜は、サファイア、アルミナはAlON基板に500℃~2,500℃の間の温度で堆積されたSiCaNbOc(a+b+c<2.0)膜である。この場合、膜のCTEは基板よりも低い。また、膜の組成は、膜の屈折率が基板の屈折率よりも高く、その差(|(nfilm)-(ns)|)が少なくとも0.10を超える値となるように制御される。膜は、スパッタリング、蒸発、PVDまたはCVDにより堆積することができる。堆積後、変質プロセスを行うため、100℃以上温度を下げる。変質プロセスでは、膜を酸化し、炭素または窒素の量を減少させ、膜中の酸素含有量を増加させる。変質プロセス後の膜と基板の屈折率はほぼ同じ(|(nfilm)-(ns)|≦0.10)である。
本実施例では、ガラス基板に、-200℃~1,200℃の温度でSiNaOb(a+b<2.0)を含む膜が堆積される。この場合、膜のCTEは基板よりも高い。また、膜の組成は、膜の屈折率が基板の屈折率よりも高く、その差(|(nfilm)-(ns)|)が少なくとも0.10を超える値となるように制御される。膜は、スパッタリング、蒸発、PVDまたはCVDにより堆積することができる。堆積後、変質プロセスを行うため、100℃以上温度を上げることができる。変質プロセスでは、膜を酸化し、窒素の量を減少させ、膜中の酸素含有量を増加させる。変質プロセス後の膜と基板の屈折率はほぼ同じ(|(nfilm)-(ns)|≦0.10)である。膜は、非晶質とすることも、10A(オングストローム)から100μmまでの様々な粒径を有する多結晶とすることもできる。膜の硬度は、ビッカース硬度値500Kg/mm2~4,500/mm2、または、ヌープ硬度値500~4000とすることができる。基板は、一例として、実質的にシリカを基材としたガラス基板である。温度Tcで変質した後の変質膜は、SiO2であることができる。膜を室温範囲まで冷却した後の圧縮熱応力は、0.01GPa~2GPaの範囲である。膜の硬度は、通常、6.0を超えるモース硬度、または、1,000GPaを超えるビッカース硬度である。
101 ステップ
102 ステップ
103 ステップ
200 素子
210 セラミック基板
220 膜
300 携帯電話
311 読み取り専用メモリ(ROM)
312 ランダムアクセスメモリ(RAM)
315 プロセッサ
316 デジタル/アナログコンバータ(DAC)
317 アナログ/デジタルコンバータ(ADC)
318 無線周波数(RF)部
319 コーデック(コーダ/デコーダ)
320 デジタルシグナルプロセッサ(DSP)
328 Tx/Rxスイッチ
329 アンテナ
332 バッテリ
333 マイク(MIC)
334 スピーカ
335 ディスプレイ
336 キーパッド
337 オン/オフスイッチ
338 加入者識別モジュール(SIM)カード
Claims (16)
- 基板に圧縮応力を与える方法であって、
堆積温度(Td)でセラミック基板に膜を堆積して素子を形成すること、ここで前記Tdにおける前記膜と前記セラミック基板の熱膨張係数(CTE)差が1.0×10-6/K以上で、かつ、屈折率差が0.10より大であり、
前記Tdと100℃以上の差がある変更後温度(Tc)となるように前記Tdから温度を下げるまたは上げることで前記膜を変質すること、ここで変質条件は、変質膜の厚さの少なくとも一部において、(i)10mol%以上の酸素含有量の増加、10mol%以上の窒素含有量の減少、10mol%以上の炭素含有量の減少のうちの少なくとも1つが存在する組成の変化、(ii)ある結晶相から異なる結晶相への相変態、および、(iii)20%以上の平均粒径の増大を伴う微細構造の変化、のうちの少なくとも1つが起こり、前記Tcにおける前記変質膜と前記セラミック基板の前記屈折率差の絶対値が0.10以下(屈折率差≦|0.10|)を満たすものであり、および
前記素子の温度を前記Tcから室温まで下げること
を含むことを特徴とする方法。 - 前記基板はサファイアを含み、前記変質の前の前記膜はAlON、AlNまたはSiONを含む、請求項1に記載の方法。
- 前記変質は、炭素含有ガス、酸素含有ガスまたは窒素含有ガスのうちの1またはそれ以上を流すことを含む、請求項1に記載の方法。
- 前記素子は光学的に透明である、請求項1に記載の方法。
- 前記基板は、シリカ系ガラス、サファイア、アルミナまたはスピネルを含む、請求項1に記載の方法。
- 前記変質膜の前記一部は圧縮応力下にあり、前記基板は引張応力下にある、請求項1に記載の方法。
- 前記素子は、携帯電話のディスプレイスクリーンを含む、請求項1に記載の方法。
- 前記変質膜の前記一部は、10%~80%である、請求項1に記載の方法。
- 前記変質の後の前記膜と前記セラミック基板の前記屈折率差の絶対値は、0.05以下である、請求項1に記載の方法。
- 前記変質の後の前記膜の圧縮応力は、1MPa~10GPaである、請求項1に記載の方法。
- 前記変質の後の前記膜は、アルミニウムを10%以上含む、請求項1に記載の方法。
- 携帯電話であって、
アンテナに接続され、トランシーバと、RF周波数アップコンバータと、RF周波数ダウンコンバータとを含み、デジタル/アナログコンバータ(DAC)およびアナログ/デジタルコンバータ(ADC)を介して少なくとも1つのプロセッサに接続された無線周波数(RF)部を備え、
前記携帯電話の透明ディスプレイスクリーンは、下層の透明なセラミック基板とは組成および相のうちの少なくとも1つが異なる材料をその厚さの少なくとも一部に含む透明な膜を含み、
前記膜と前記セラミック基板の屈折率差の絶対値が0.10以下であり、
前記セラミック基板は、厚さが100μm~3mmの範囲の単結晶サファイア基板を含み、
前記膜の前記一部は、αアルミナまたはAlON多結晶相を含み、
前記膜の圧縮応力は、1MPa~10GPaである、
ことを特徴とする携帯電話。 - 携帯電話であって、
アンテナに接続され、トランシーバと、RF周波数アップコンバータと、RF周波数ダウンコンバータとを含み、デジタル/アナログコンバータ(DAC)およびアナログ/デジタルコンバータ(ADC)を介して少なくとも1つのプロセッサに接続された無線周波数(RF)部を備え、
前記携帯電話の透明ディスプレイスクリーンは、下層の透明なセラミック基板とは組成および相のうちの少なくとも1つが異なる材料をその厚さの少なくとも一部に含む透明な膜を含み、
前記膜と前記セラミック基板の屈折率差の絶対値が0.10以下であり、
前記セラミック基板はサファイアであり、
前記膜は、アルミニウムを10%以上含む、
ことを特徴とする携帯電話。 - 前記膜と前記セラミック基板の前記屈折率差の絶対値が0.05以下である、請求項12又は13に記載の携帯電話。
- 前記膜の前記一部は圧縮応力下にあり、前記セラミック基板は引張応力下にある、請求項12又は13に記載の携帯電話。
- 透明ディスプレイスクリーンを形成するための方法であって、
堆積温度(T d )でセラミック基板に膜を堆積して素子を形成すること、ここで前記T d における前記膜と前記セラミック基板の熱膨張係数(CTE)差が1.0×10 -6 /K以上で、かつ、屈折率差が0.10より大であり、
前記T d と100℃以上の差がある変更後温度(T c )となるように前記T d から温度を下げるまたは上げることで前記膜を変質すること、ここで変質条件は、変質膜の厚さの少なくとも一部において、(i)10mol%以上の酸素含有量の増加、10mol%以上の窒素含有量の減少、10mol%以上の炭素含有量の減少のうちの少なくとも1つが存在する組成の変化、(ii)ある結晶相から異なる結晶相への相変態、および、(iii)20%以上の平均粒径の増大を伴う微細構造の変化、のうちの少なくとも1つが起こり、前記T c における前記変質膜と前記セラミック基板の前記屈折率差の絶対値が0.10以下(屈折率差≦|0.10|)を満たすものであり、および
前記素子の温度を前記T c から室温まで下げることにより、前記変質後の前記膜と前記セラミック基板とを含む透明ディスプレイスクリーンを形成すること、
を含み、前記変質膜の前記一部は圧縮応力下にある、
ことを特徴とする方法。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762524105P | 2017-06-23 | 2017-06-23 | |
| US62/524,105 | 2017-06-23 | ||
| PCT/US2018/039090 WO2018237318A1 (en) | 2017-06-23 | 2018-06-22 | Film for applying compressive stress to ceramic materials |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2020525378A JP2020525378A (ja) | 2020-08-27 |
| JPWO2018237318A5 JPWO2018237318A5 (ja) | 2022-12-14 |
| JP7401308B2 true JP7401308B2 (ja) | 2023-12-19 |
Family
ID=62904673
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019568049A Active JP7401308B2 (ja) | 2017-06-23 | 2018-06-22 | セラミック材料に圧縮応力を印加するための膜 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10868899B2 (ja) |
| EP (1) | EP3642168A1 (ja) |
| JP (1) | JP7401308B2 (ja) |
| KR (1) | KR102346421B1 (ja) |
| CN (1) | CN111094205A (ja) |
| WO (1) | WO2018237318A1 (ja) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102784317B1 (ko) | 2019-07-30 | 2025-03-24 | 삼성디스플레이 주식회사 | 표시장치 |
| CN116462447A (zh) * | 2023-04-03 | 2023-07-21 | 三福(东营)新材料技术有限公司 | 一种汽车尾气后处理用多晶氧化铝衬垫及其制备方法 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014532332A (ja) | 2011-09-21 | 2014-12-04 | モバイル ジュース、インコーポレイテッド | アセンブリ |
| JP2015535804A (ja) | 2012-10-03 | 2015-12-17 | コーニング インコーポレイテッド | 表面改質ガラス基板 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01176067A (ja) * | 1987-12-29 | 1989-07-12 | Hoya Corp | 窒化シリコン膜の成膜方法 |
| US5579341A (en) * | 1994-12-29 | 1996-11-26 | Motorola, Inc. | Multi-channel digital transceiver and method |
| US6118586A (en) * | 1995-10-03 | 2000-09-12 | Asahi Glass Company Ltd. | Optical head device including an optically anisotropic diffraction grating and production method thereof |
| US8088475B2 (en) * | 2004-03-03 | 2012-01-03 | Hitachi, Ltd. | Anti-reflecting membrane, and display apparatus, optical storage medium and solar energy converting device having the same, and production method of the membrane |
| US7259055B2 (en) * | 2005-02-24 | 2007-08-21 | Sharp Laboratories Of America, Inc. | Method of forming high-luminescence silicon electroluminescence device |
| US8138104B2 (en) * | 2005-05-26 | 2012-03-20 | Applied Materials, Inc. | Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure |
| US7838133B2 (en) * | 2005-09-02 | 2010-11-23 | Springworks, Llc | Deposition of perovskite and other compound ceramic films for dielectric applications |
| WO2010035337A1 (ja) * | 2008-09-26 | 2010-04-01 | 富士電機ホールディングス株式会社 | 有機elデバイスおよびその製造方法 |
| WO2010119345A1 (en) * | 2009-04-13 | 2010-10-21 | Quanzu Yang | Method for making functional ceramic films on ceramic materials |
| US8668990B2 (en) * | 2011-01-27 | 2014-03-11 | Guardian Industries Corp. | Heat treatable four layer anti-reflection coating |
| US8872246B1 (en) * | 2012-01-26 | 2014-10-28 | Sandia Corporation | Memristor using a transition metal nitride insulator |
| CN104247173B (zh) * | 2012-06-29 | 2015-06-24 | 松下电器产业株式会社 | 氮化物半导体发光元件 |
| US9929310B2 (en) * | 2013-03-14 | 2018-03-27 | Applied Materials, Inc. | Oxygen controlled PVD aluminum nitride buffer for gallium nitride-based optoelectronic and electronic devices |
| EP2778252A3 (en) * | 2013-03-15 | 2014-12-10 | Apple Inc. | Layered Coatings For Sapphire Structure |
| WO2015127583A1 (en) * | 2014-02-25 | 2015-09-03 | Schott Ag | Chemically toughened glass article with low coefficient of thermal expansion |
| FR3024554B1 (fr) * | 2014-07-30 | 2016-09-09 | Essilor Int | Lentille ophtalmique comportant un revetement minimisant les reflets ultraviolets et procede de fabrication d'une telle lentille |
-
2018
- 2018-06-22 EP EP18740485.0A patent/EP3642168A1/en not_active Withdrawn
- 2018-06-22 WO PCT/US2018/039090 patent/WO2018237318A1/en not_active Ceased
- 2018-06-22 KR KR1020207000983A patent/KR102346421B1/ko active Active
- 2018-06-22 JP JP2019568049A patent/JP7401308B2/ja active Active
- 2018-06-22 CN CN201880046378.1A patent/CN111094205A/zh active Pending
- 2018-06-22 US US16/015,428 patent/US10868899B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014532332A (ja) | 2011-09-21 | 2014-12-04 | モバイル ジュース、インコーポレイテッド | アセンブリ |
| JP2015535804A (ja) | 2012-10-03 | 2015-12-17 | コーニング インコーポレイテッド | 表面改質ガラス基板 |
Non-Patent Citations (1)
| Title |
|---|
| Liu C.M.,The effect of annealing, precipitation-strengthening, and compressive coating processes on sapphire strength,Materials Science and Engineering A,2006年,vol.420,p.212-219 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2020525378A (ja) | 2020-08-27 |
| US20180375978A1 (en) | 2018-12-27 |
| EP3642168A1 (en) | 2020-04-29 |
| WO2018237318A1 (en) | 2018-12-27 |
| CN111094205A (zh) | 2020-05-01 |
| KR102346421B1 (ko) | 2022-01-05 |
| KR20200021985A (ko) | 2020-03-02 |
| US10868899B2 (en) | 2020-12-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2779213B1 (en) | Semiconductor wafer with a layer of AlzGa1-zN and process for producing it | |
| WO2009066466A1 (ja) | 窒化物半導体および窒化物半導体の結晶成長方法ならびに窒化物半導体発光素子 | |
| EP2251897A1 (en) | A method for producing a wafer comprising a silicon single crystal substrate having a front and a back side and a layer of SiGe deposited on the front side | |
| JP7401308B2 (ja) | セラミック材料に圧縮応力を印加するための膜 | |
| JP2018080103A (ja) | 多結晶質窒化アルミニウム焼結体の熱膨張処理、および半導体製造へのその応用 | |
| WO2012067015A1 (ja) | GaN系膜の製造方法 | |
| JP7116985B2 (ja) | 半導体基板の製造方法 | |
| US20080075857A1 (en) | Method of facbricating buffer layer on substrate | |
| Nagashima et al. | Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy | |
| Peng et al. | Structural and optical properties of AlN sputtering deposited on sapphire substrates with various orientations | |
| Mogami et al. | Enhanced Strain Relaxation in AlGaN Layers Grown on Sputter‐Based AlN Templates | |
| Soomro et al. | Modified pulse growth and misfit strain release of an AlN heteroepilayer with a Mg–Si codoping pair by MOCVD | |
| JP4481118B2 (ja) | 高結晶性窒化アルミニウム積層基板の製造方法 | |
| KR101792594B1 (ko) | 사파이어 글래스 및 그의 제조방법 | |
| Liang et al. | Influence of sputtered AlN buffer on GaN epilayer grown by MOCVD | |
| EP2287370A1 (en) | A l X G a 1-X N SINGLE CRYSTAL AND ELECTROMAGNETIC WAVE TRANSMISSION BODY | |
| CN110499533B (zh) | 氮化物晶体基板以及氮化物晶体基板的制造方法 | |
| Volinsky et al. | Residual stress in CVD-grown 3C-SiC films on Si substrates | |
| Patouillard | Optimization of innovative AlN-based stacks and texturing on 2D-MoS2-Applications to acoustic wave resonators and power electronics | |
| KR100643155B1 (ko) | 실리콘 기판-단결정 GaN 박막 적층체의 제조방법 | |
| Dai et al. | Comparisons of structural and optical properties of ZnO films grown on (0 0 0 1) sapphire and GaN/(0 0 0 1) sapphire template by atmospheric-pressure MOCVD | |
| KR100447686B1 (ko) | Ⅲ족 질화물막의 제조 방법 | |
| Habel et al. | Hydride vapor phase epitaxial growth of thick GaN layers with improved surface flatness | |
| Horie et al. | Optical Characteristic of the Strain‐Controlled GaN Epitaxial Layer Grown on 6H‐SiC Substrate by an Adapting (GaN/AlN) Multibuffer Layer | |
| Kato et al. | Evaluation of strain in AlN thin films grown on sapphire and 6H‐SiC by metalorganic chemical vapor deposition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200811 |
|
| RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200827 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200924 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210616 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220620 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220930 |
|
| A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20221205 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230314 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230612 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230810 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230914 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231128 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231207 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7401308 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |