JP7405817B2 - Soft magnetic powder and dust core - Google Patents
Soft magnetic powder and dust core Download PDFInfo
- Publication number
- JP7405817B2 JP7405817B2 JP2021200314A JP2021200314A JP7405817B2 JP 7405817 B2 JP7405817 B2 JP 7405817B2 JP 2021200314 A JP2021200314 A JP 2021200314A JP 2021200314 A JP2021200314 A JP 2021200314A JP 7405817 B2 JP7405817 B2 JP 7405817B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- soft magnetic
- loss
- fesial alloy
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006247 magnetic powder Substances 0.000 title claims description 49
- 239000000428 dust Substances 0.000 title description 3
- 239000000843 powder Substances 0.000 claims description 165
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 103
- 239000000956 alloy Substances 0.000 claims description 53
- 229910045601 alloy Inorganic materials 0.000 claims description 53
- 239000002245 particle Substances 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 33
- 229910052742 iron Inorganic materials 0.000 description 33
- 239000010410 layer Substances 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 230000035699 permeability Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 229920002050 silicone resin Polymers 0.000 description 15
- 239000006087 Silane Coupling Agent Substances 0.000 description 14
- 238000009499 grossing Methods 0.000 description 13
- 238000001035 drying Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000011810 insulating material Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000000314 lubricant Substances 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 8
- 230000004907 flux Effects 0.000 description 6
- -1 propylphenyl Chemical group 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 125000003944 tolyl group Chemical group 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 125000005370 alkoxysilyl group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000009692 water atomization Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- QWOVEJBDMKHZQK-UHFFFAOYSA-N 1,3,5-tris(3-trimethoxysilylpropyl)-1,3,5-triazinane-2,4,6-trione Chemical compound CO[Si](OC)(OC)CCCN1C(=O)N(CCC[Si](OC)(OC)OC)C(=O)N(CCC[Si](OC)(OC)OC)C1=O QWOVEJBDMKHZQK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Chemical class 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- LAQFLZHBVPULPL-UHFFFAOYSA-N methyl(phenyl)silicon Chemical compound C[Si]C1=CC=CC=C1 LAQFLZHBVPULPL-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/08—Cores, Yokes, or armatures made from powder
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、軟磁性粉末及び圧粉磁心に関する。 The present invention relates to soft magnetic powder and powder magnetic core.
OA機器、太陽光発電システム、自動車など様々な用途にリアクトルといったコイル部品が用いられている。コイル部品は、コアにコイルが装着されている。そして、このコアとしては、圧粉磁心が用いられることが多い。 Coil parts such as reactors are used in a variety of applications such as office automation equipment, solar power generation systems, and automobiles. A coil component has a coil attached to a core. A powder magnetic core is often used as this core.
圧粉磁心は、例えば、軟磁性粉末の周囲に形成された絶縁層を形成させ、潤滑剤を添加したうえで、加圧成形することにより作製される。この加圧成形時の圧力は数ton~数十tonといったかなり高い圧力で、軟磁性粉末を押し固めている。 A powder magnetic core is produced, for example, by forming an insulating layer around soft magnetic powder, adding a lubricant, and then press-molding the powder. The pressure during this pressure molding is quite high, from several tons to several tens of tons, and the soft magnetic powder is compacted.
圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、小さな印加磁界で大きな磁束密度を得ることができる磁気特性と、磁束密度変化におけるエネルギー損失が小さいという磁気特性が求められる。磁束密度に関する磁気特性としては例えば透磁率(μ)が挙げられる。エネルギー損失に関する磁気特性としてはコアロスとも呼ばれる鉄損(Pcv)が挙げられる。鉄損(Pcv)は、ヒステリシス損失(Ph)と、渦電流損失(Pe)の和で表される。 Due to demands for improved energy exchange efficiency and low heat generation, powder magnetic cores are required to have magnetic properties that allow a large magnetic flux density to be obtained with a small applied magnetic field, and magnetic properties that minimize energy loss due to changes in magnetic flux density. Examples of magnetic properties related to magnetic flux density include magnetic permeability (μ). Magnetic properties related to energy loss include core loss (Pcv), also called core loss. Iron loss (Pcv) is expressed as the sum of hysteresis loss (Ph) and eddy current loss (Pe).
従来から鉄損の低減に関する研究や透磁率の向上に関する研究が進められている。例えば、特許文献1のように、結晶粒が粗大な場合に、低いヒステリシス損失が得られるなどといった研究が進められている。また、特許文献2のように、軟磁性粉末に熱処理を施すことで、軟磁性粉末内の結晶構造の歪みを減らして透磁率を高めるという研究が進められている。さらに、特許文献3のように、軟磁性粉末として絶縁被膜が表面に形成された鉄粒子にセンダストを30質量%以下混合することで、飽和磁束密度の低下を抑えるという研究が進められている。しかし、近年では、コイル部品の多様化に伴い、コイル部品の小型化・高性能化の要求が高まっており、高い透磁率及び鉄損の低減がより一層求められている。 Research on reducing iron loss and improving magnetic permeability has been progressing for some time. For example, as in Patent Document 1, research is underway to find that low hysteresis loss can be obtained when crystal grains are coarse. Further, as in Patent Document 2, research is underway to reduce distortion of the crystal structure within the soft magnetic powder and increase magnetic permeability by subjecting the soft magnetic powder to heat treatment. Further, as in Patent Document 3, research is underway to suppress a decrease in saturation magnetic flux density by mixing 30% by mass or less of sendust with iron particles having an insulating coating formed on the surface as soft magnetic powder. However, in recent years, with the diversification of coil components, the demand for smaller size and higher performance of coil components has increased, and higher magnetic permeability and lower iron loss are further required.
本発明は、上記課題を解決するためになされたものであり、その目的は、良好な直流重畳特性を維持しつつ、鉄損を低減させることができる軟磁性粉末及び圧粉磁心を提供することにある。 The present invention has been made to solve the above problems, and its purpose is to provide soft magnetic powder and powder magnetic core that can reduce iron loss while maintaining good DC superimposition characteristics. It is in.
上記目的を達成するため、本発明の軟磁性粉末は、純鉄粉末とFeSiAl合金粉末を混合して成る軟磁性粉末であって、前記純鉄粉末は、水アトマイズ粉末であり、平滑化された粉末であり、前記FeSiAl合金粉末は、ガスアトマイズ粉末であり、前記FeSiAl合金粉末の粒子径は、13.0μm以上31.8μm以下であり、前記軟磁性粉末に含まれる前記純鉄粉末の含有量は、80wt%以上95wt%以下であり、前記FeSiAl合金粉末の含有量は、5wt%以上20wt%以下であること、を特徴とする。 In order to achieve the above object, the soft magnetic powder of the present invention is a soft magnetic powder made by mixing pure iron powder and FeSiAl alloy powder, wherein the pure iron powder is water atomized powder and is smoothed. The FeSiAl alloy powder is a gas atomized powder, the particle size of the FeSiAl alloy powder is 13.0 μm or more and 31.8 μm or less, and the content of the pure iron powder contained in the soft magnetic powder is , 80 wt% or more and 95 wt% or less, and the content of the FeSiAl alloy powder is 5 wt% or more and 20 wt% or less.
また、この軟磁性粉末を含む圧粉磁心も本発明の一態様である。 Further, a dust core containing this soft magnetic powder is also an embodiment of the present invention.
本発明によれば、良好な直流重畳特性を維持しつつ、鉄損を低減させることができる軟磁性粉末及び圧粉磁心を得ることができる。 According to the present invention, it is possible to obtain soft magnetic powder and powder magnetic core that can reduce iron loss while maintaining good DC superimposition characteristics.
(実施形態)
本実施形態の軟磁性粉末及び圧粉磁心について説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。
(Embodiment)
The soft magnetic powder and powder magnetic core of this embodiment will be explained. Note that the present invention is not limited to the embodiments described below.
圧粉磁心は、OA機器、太陽光発電システム、自動車などに搭載されるリアクトルといったコイル部品のコアに用いられる磁性体である。圧粉磁心は、軟磁性粉末の周囲に絶縁層を形成し、加圧成形して圧粉成形体を作製する。そして、この圧粉成形体を熱処理することで圧粉磁心は作製される。 A powder magnetic core is a magnetic material used in the core of coil components such as reactors installed in office automation equipment, solar power generation systems, automobiles, and the like. A powder magnetic core is produced by forming an insulating layer around soft magnetic powder and press-molding it to produce a powder compact. Then, a powder magnetic core is produced by heat-treating this powder compact.
軟磁性粉末は、純鉄粉末とFeSiAl合金粉末を含み、これらの粉末を混合して成る。純鉄粉末とは、Feを99%以上含むものである。純鉄粉末は、水アトマイズ粉末から成る。即ち、純鉄粉末は、高温で溶融したFe粉末に水を吹き付けて粉末化し、その後、冷却して凝固させることで生成される。軟磁性粉末に含まれる純鉄粉末の含有量は、80wt%以上95wt%以下である。 The soft magnetic powder contains pure iron powder and FeSiAl alloy powder, and is made by mixing these powders. Pure iron powder is one that contains 99% or more of Fe. Pure iron powder consists of water atomized powder. That is, pure iron powder is produced by spraying water on Fe powder molten at high temperature to powder it, and then cooling and solidifying it. The content of pure iron powder contained in the soft magnetic powder is 80 wt% or more and 95 wt% or less.
純鉄粉末は、平滑化処理が施されており、平滑化された状態の粉末である。平滑化された状態とは、純鉄粉末の表面の凹凸を均した状態を指し、純鉄粉末の表面の突起と滑らかになっている状態や全体として丸みを帯びている状態、球形化された状態を含む。平滑化処理が施された純鉄粉末の円形度は、0.95以上であることが好ましい。 Pure iron powder has been subjected to a smoothing treatment and is a powder in a smoothed state. A smoothed state refers to a state in which the irregularities on the surface of pure iron powder are leveled out, and a state in which the protrusions on the surface of pure iron powder are smooth, a state in which the entire surface is rounded, a state in which the surface is spherical, or a state in which the surface of pure iron powder is smooth. Contains state. The circularity of the smoothed pure iron powder is preferably 0.95 or more.
純鉄粉末は、平滑化処理を施した後で、FeSiAl合金粉末と混合する前に、熱処理を行う方が好ましい。この粉末熱処理を行うことで、平滑化処理を施した時に生じた純鉄粉末内の加工歪を熱処理することで除去することができる。この粉末熱処理は、非酸化雰囲気中、望ましくは水素ガス、又は窒素と水素の混合ガス等の還元雰囲気において、温度は900℃以上1100℃以下、望ましくは950℃以上1050℃以下で行う。 It is preferable to heat-treat the pure iron powder after smoothing it and before mixing it with the FeSiAl alloy powder. By performing this powder heat treatment, processing strain in the pure iron powder that occurs when smoothing treatment is performed can be removed by heat treatment. This powder heat treatment is performed in a non-oxidizing atmosphere, preferably in a reducing atmosphere such as hydrogen gas or a mixed gas of nitrogen and hydrogen, at a temperature of 900° C. or more and 1100° C. or less, preferably 950° C. or more and 1050° C. or less.
FeSiAl合金粉末は、鉄と珪素とアルミニウムを含む粉末である。FeSiAl系合金粉末は、例えば、Feに対して、7wt%から11wt%程度のSiと、4wt%から8wt%程度のAlとを含有させている。FeSiAl系合金粉末には、例えば、Feに対して1wt%から3wt%程度のNiが含まれていてもよい。さらに、FeSiAl系合金粉末にはCo、Cr又はMnが含まれていてもよい。 FeSiAl alloy powder is a powder containing iron, silicon, and aluminum. The FeSiAl alloy powder contains, for example, about 7 wt% to 11 wt% of Si and about 4 wt% to 8 wt% of Al with respect to Fe. The FeSiAl alloy powder may contain, for example, about 1 wt% to 3 wt% Ni with respect to Fe. Furthermore, the FeSiAl alloy powder may contain Co, Cr, or Mn.
FeSiAl合金粉末は、ガスアトマイズ粉末から成る。即ち、FeSiAl合金粉末は、高温で溶融したFeSiAl合金粉末にガスを吹き付けて粉末化し、その後、冷却して凝固させることで生成される。軟磁性粉末に含まれるFeSiAl合金粉末の含有量は、5wt%以上20wt%以下である。 The FeSiAl alloy powder consists of gas atomized powder. That is, FeSiAl alloy powder is produced by blowing gas onto FeSiAl alloy powder melted at high temperature to powder it, and then cooling and solidifying it. The content of the FeSiAl alloy powder contained in the soft magnetic powder is 5 wt% or more and 20 wt% or less.
FeSiAl合金粉末の粒子径は、13.0μm以上31.8μm以下であることが好ましく、13.0μm以上19.5μm以下であることが更に好ましい。粒子径とは、メジアン径D50のことを指す。FeSiAl合金粉末の粒子径をこの範囲にすることで、ヒステリシス損の低減、ひいては鉄損を低減させつつ、良好な直流重畳特性を維持することができる。 The particle size of the FeSiAl alloy powder is preferably 13.0 μm or more and 31.8 μm or less, more preferably 13.0 μm or more and 19.5 μm or less. The particle size refers to the median diameter D50. By setting the particle size of the FeSiAl alloy powder within this range, it is possible to maintain good DC superimposition characteristics while reducing hysteresis loss and, ultimately, iron loss.
純鉄粉末とFeSiAl合金粉末が混合して成る軟磁性粉末の周囲には、絶縁層が形成されている。絶縁層は、絶縁材料から成り、この絶縁材料が軟磁性粉末の周囲に付着している。絶縁層が軟磁性粉末の周囲に付着されていれば、絶縁材料の付着の態様については問わない。即ち、絶縁材料は、軟磁性粉末の周囲を全て覆うように付着していてもよいし、一部を覆うように付着し、軟磁性粉末の表面の一部が露出していてもよい。また、絶縁材料は、軟磁性粉末の各粒子の表面に付着していてもよいし、軟磁性粉末の凝集体の表面に付着していてもよいし、これらの付着の態様が混在するように付着していてもよい。 An insulating layer is formed around soft magnetic powder made of a mixture of pure iron powder and FeSiAl alloy powder. The insulating layer is made of an insulating material that is attached around the soft magnetic powder. As long as the insulating layer is attached around the soft magnetic powder, the manner in which the insulating material is attached does not matter. That is, the insulating material may be attached so as to cover the entire periphery of the soft magnetic powder, or may be attached so as to partially cover the soft magnetic powder so that a part of the surface of the soft magnetic powder is exposed. Further, the insulating material may be attached to the surface of each particle of the soft magnetic powder, or may be attached to the surface of the aggregate of the soft magnetic powder, or the insulating material may be attached to the surface of each particle of the soft magnetic powder, or the insulating material may be attached to the surface of the aggregate of the soft magnetic powder, or the insulating material may be attached to the surface of each particle of the soft magnetic powder, or it may be attached to the surface of the aggregate of the soft magnetic powder, or the insulating material may be attached to the surface of each particle of the soft magnetic powder. It may be attached.
絶縁材料としては、シランカップリング剤、シリコーンオリゴマー、シリコーンレジン、又はこれらの混合物を用いることができる。即ち、シランカップリング剤、シリコーンオリゴマー、シリコーンレジンをそれぞれ単体で用いてもよいし、例えば、シランカップリング剤とシリコーンオリゴマー、又は、シランカップリング剤とシリコーンレジンを混合させて用いてもよい。 As the insulating material, a silane coupling agent, a silicone oligomer, a silicone resin, or a mixture thereof can be used. That is, the silane coupling agent, the silicone oligomer, and the silicone resin may be used alone, or, for example, the silane coupling agent and the silicone oligomer, or the silane coupling agent and the silicone resin may be used as a mixture.
また、絶縁層は、単層であってもよいし、複数層であってもよい。例えば、絶縁層は、種類ごとに各層に分けた複数層で構成してもよいし、1種類又は2種類以上を混合した絶縁材料の単層で構成してもよい。本実施形態では、シランカップリング剤、シリコーンレジンを含んだ絶縁層が軟磁性粉末の周囲に形成されている。 Further, the insulating layer may be a single layer or may be a plurality of layers. For example, the insulating layer may be composed of a plurality of layers divided into layers for each type, or may be composed of a single layer of an insulating material of one type or a mixture of two or more types. In this embodiment, an insulating layer containing a silane coupling agent and a silicone resin is formed around the soft magnetic powder.
シランカップリング剤としては、アミノシラン系、エポキシシラン系、イソシアヌレート系のシランカップリング剤を使用することができ、特に、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレートが好ましい。 As the silane coupling agent, aminosilane-based, epoxysilane-based, and isocyanurate-based silane coupling agents can be used, and in particular, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, tris -(3-trimethoxysilylpropyl)isocyanurate is preferred.
シランカップリング剤の添加量としては、軟磁性粉末に対して、0.05wt%以上1.0wt%以下が好ましい。シランカップリング剤の添加量をこの範囲にすることで、軟磁性粉末の流動性を向上させるとともに、成形された圧粉磁心の密度、磁気特性、強度特性を向上させることができる。 The amount of the silane coupling agent added is preferably 0.05 wt% or more and 1.0 wt% or less based on the soft magnetic powder. By adjusting the amount of the silane coupling agent added within this range, it is possible to improve the fluidity of the soft magnetic powder and to improve the density, magnetic properties, and strength properties of the molded powder magnetic core.
絶縁材料としてシランカップリング剤を添加した場合、軟磁性粉末とシランカップリング剤の混合物を加熱乾燥する。乾燥温度は、25℃以上200℃以下が好ましい。乾燥温度が25℃より低いと、溶剤が残留し絶縁被膜が不完全となる場合があるためである。一方、乾燥温度が200℃より高いと、分解が進み絶縁被膜として形成されなくなる場合があるためである。乾燥時間は、2時間程度である。 When a silane coupling agent is added as an insulating material, a mixture of soft magnetic powder and silane coupling agent is heated and dried. The drying temperature is preferably 25°C or higher and 200°C or lower. This is because if the drying temperature is lower than 25° C., the solvent may remain and the insulation coating may become incomplete. On the other hand, if the drying temperature is higher than 200° C., decomposition may progress and the insulating film may not be formed. Drying time is about 2 hours.
シリコーンレジンは、シロキサン結合(Si-O-Si)を主骨格に持つ樹脂である。シリコーンレジンを用いることで可撓性に優れた被膜を形成することができる。シリコーンレジンは、メチル系、メチルフェニル系、プロピルフェニル系、エポキシ樹脂変性系、アルキッド樹脂変性系、ポリエステル樹脂変性系、ゴム系等を用いることができる。この中でも特に、メチルフェニル系のシリコーンレジンを用いた場合、加熱減量が少なく、耐熱性に優れた絶縁層を形成することができる。 Silicone resin is a resin having a siloxane bond (Si-O-Si) as its main skeleton. By using silicone resin, a film with excellent flexibility can be formed. As the silicone resin, methyl type, methylphenyl type, propylphenyl type, epoxy resin modified type, alkyd resin modified type, polyester resin modified type, rubber type, etc. can be used. Among these, in particular, when a methylphenyl silicone resin is used, it is possible to form an insulating layer with little heat loss and excellent heat resistance.
シリコーンレジンの添加量は、軟磁性粉末に対して、0.4wt%以上3.0wt%以下である。より好ましくは、0.6wt%以上2.0wt%以下である。シリコーンレジンの添加量が少ないと、成形体を熱処理する際に軟磁性粉末間を引き寄せる収縮作用が弱く、高い密度が確保できず、透磁率を上げることができない。一方で、添加量が多いと、軟磁性粉末の周囲に形成される絶縁層が厚くなり過ぎ、高い密度が確保できず、透磁率を上げることができない。 The amount of silicone resin added is 0.4 wt% or more and 3.0 wt% or less based on the soft magnetic powder. More preferably, it is 0.6 wt% or more and 2.0 wt% or less. If the amount of silicone resin added is small, the shrinkage effect that draws the soft magnetic powder together during heat treatment of the molded body will be weak, making it impossible to ensure high density and making it impossible to increase magnetic permeability. On the other hand, if the amount added is large, the insulating layer formed around the soft magnetic powder becomes too thick, making it impossible to ensure high density and making it impossible to increase magnetic permeability.
シリコーンレジンを添加した後、軟磁性粉末とシリコーンレジンの混合物を加熱乾燥する。乾燥温度は、100℃以上250℃以下が好ましい。乾燥温度が100℃より小さいと絶縁被膜の形成が不完全となり、渦電流損失が高くなる場合があるためである。一方、乾燥温度が250℃より大きいと粉末が無機物となりバインダーとしての役割を果たさず、保形成が悪くなり、成形体の密度及び透磁率が低下する場合があるためである。乾燥時間は、2時間程度である。 After adding the silicone resin, the mixture of soft magnetic powder and silicone resin is heated and dried. The drying temperature is preferably 100°C or higher and 250°C or lower. This is because if the drying temperature is lower than 100° C., the formation of the insulating film may be incomplete and eddy current loss may increase. On the other hand, if the drying temperature is higher than 250° C., the powder becomes inorganic and does not function as a binder, resulting in poor formation retention and a decrease in the density and magnetic permeability of the compact. Drying time is about 2 hours.
シリコーンオリゴマーとしては、アルコキシシリル基を有し、反応性官能基を有さないメチル系、メチルフェニル系のものや、アルコキシシリル基及び反応性官能基を有するエポキシ系、エポキシメチル系、メルカプト系、メルカプトメチル系、アクリルメチル系、メタクリルメチル系、ビニルフェニル系のもの、又はアルコキシシリル基ではなく、反応性官能基を有する脂環式エポキシ系のもの等を用いることができる。特に、メチル系またはメチルフェニル系のシリコーンオリゴマーを用いることで厚く硬い絶縁層を形成することができる。また、絶縁層の形成のしやすさを考慮して、粘度の比較的低いメチル系、メチルフェニル系を用いてもよい。 Examples of silicone oligomers include methyl-based and methylphenyl-based ones that have an alkoxysilyl group and no reactive functional group; epoxy-based, epoxymethyl-based, and mercapto-based ones that have an alkoxysilyl group and a reactive functional group; Mercaptomethyl, acrylicmethyl, methacrylmethyl, vinylphenyl, or alicyclic epoxy having a reactive functional group instead of an alkoxysilyl group can be used. In particular, a thick and hard insulating layer can be formed by using a methyl-based or methylphenyl-based silicone oligomer. Furthermore, in consideration of ease of forming an insulating layer, a methyl-based or methylphenyl-based material having a relatively low viscosity may be used.
シリコーンオリゴマーの添加量は、軟磁性粉末に対して0.1wt%以上2.0wt%以下が好ましい。添加量が0.1wt%より少ないと絶縁被膜として機能せず、渦電流損失が増加することにより磁気特性が低下する。添加量が2.0wt%より多いと、圧粉磁心の密度低下を招く。 The amount of silicone oligomer added is preferably 0.1 wt% or more and 2.0 wt% or less based on the soft magnetic powder. If the amount added is less than 0.1 wt%, it will not function as an insulating film, and magnetic properties will deteriorate due to increased eddy current loss. If the amount added is more than 2.0 wt%, the density of the powder magnetic core will decrease.
シリコーンオリゴマーを添加した後、軟磁性粉末とシリコーンオリゴマーの混合物を加熱乾燥する。乾燥温度は、25℃~350℃が好ましい。乾燥温度が25℃未満であると膜の形成が不完全となり、渦電流損失が高くなり、損失が増大する。一方、乾燥温度350℃より大きいと粉末が酸化することによりヒステリシス損失が高くなり、損失が増大する。乾燥時間は、2時間程度である。 After adding the silicone oligomer, the mixture of soft magnetic powder and silicone oligomer is heated and dried. The drying temperature is preferably 25°C to 350°C. If the drying temperature is less than 25° C., the film formation will be incomplete, resulting in high eddy current loss and increased loss. On the other hand, if the drying temperature is higher than 350° C., the hysteresis loss increases due to oxidation of the powder, which increases the loss. Drying time is about 2 hours.
絶縁層が周囲に形成された軟磁性粉末に対して、潤滑剤を添加し、混合する。潤滑剤としては、例えば、ステアリン酸及びその金属塩並びにエチレンビスステアルアミド、エチレンビスステアロアマイド、エチレンビスステアレートアミドなどが挙げられる。 A lubricant is added to the soft magnetic powder around which an insulating layer is formed and mixed. Examples of the lubricant include stearic acid and its metal salts, ethylene bis stearamide, ethylene bis stearamide, and ethylene bis stearate amide.
潤滑剤を添加した後、所望の金型に軟磁性粉末を充填し、加圧成形して、圧粉成形体が作製される。成形時の圧力は10~20ton/cm2である。 After adding a lubricant, a desired mold is filled with soft magnetic powder and pressure molded to produce a powder compact. The pressure during molding is 10 to 20 tons/cm 2 .
その後、作製された圧粉成形体は熱処理される。この熱処理は、非酸化雰囲気中、望ましくは水素ガス又は窒素と水素の混合ガス等の還元雰囲気中にて、600℃以上且つ軟磁性粉末の周囲に形成された絶縁層が破壊される温度(例えば、900℃とする)よりも低い温度で、圧粉成形体の熱処理を行う。この熱処理を経ることで圧粉磁心が作製される。 Thereafter, the produced powder compact is heat treated. This heat treatment is performed in a non-oxidizing atmosphere, preferably in a reducing atmosphere such as hydrogen gas or a mixed gas of nitrogen and hydrogen, at a temperature of 600°C or higher and at which the insulating layer formed around the soft magnetic powder is destroyed (e.g. , 900°C). A powder magnetic core is produced through this heat treatment.
(実施例)
実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
(Example)
The present invention will be explained in more detail based on examples. Note that the present invention is not limited to the following examples.
まず、表1に示すように、複数の純鉄粉末及びFeSiAl合金粉末を用意した。
表1に示す粉末A及びB(以下、表1に示す種類に記載した粉末を粉末A、粉末B・・粉末Hという。)は、純鉄粉末であり、Aが水アトマイズ法により生成したものであり、BがA同様、水アトマイズ法により生成した純鉄粉末を平滑化処理したものである。平滑化処理は、高速気流衝突法によって行った。平滑化処理の条件は、ローター回転数4800rpmで5分間である。 Powders A and B shown in Table 1 (hereinafter, the powders listed in the types shown in Table 1 are referred to as Powder A, Powder B...Powder H) are pure iron powders, and A was produced by the water atomization method. Similarly to A, B is smoothed pure iron powder produced by water atomization. The smoothing process was performed using the high-speed airflow impingement method. The conditions for the smoothing treatment are a rotor rotation speed of 4800 rpm and a duration of 5 minutes.
ここで、平滑化処理の条件を変えた場合における純鉄粉末の円形度を表2に示す。条件1はローター回転数8000rpmで5分間平滑化処理し、条件2はローター回転数6400rpmで5分間平滑化処理し、条件3はローター回転数6400rpmで10分間平滑化処理し、条件4はローター回転数4800rpmで5分間平滑化処理した。
上記表2に示すように、回転数が最も少ない条件4においても、円形度は、D10で0.781、D50で0.952となっている。即ち、ローター回転数4800rpmで5分間平滑化処理を行うことで、上記粉末Bのように高い円形度となる純鉄粉末を得ることはできる。 As shown in Table 2 above, even under condition 4, where the number of rotations is the lowest, the circularity is 0.781 for D10 and 0.952 for D50. That is, by performing the smoothing treatment at a rotor rotation speed of 4800 rpm for 5 minutes, it is possible to obtain a pure iron powder having a high degree of circularity like the powder B described above.
表1に示す粉末C~Hは、FeSiAl合金粉末である。粉末C~Gは、ガスアトマイズ法により生成されたFeSiAl合金粉末であり、各粉末は表1に示すように粒子径が異なる。粉末Hは、粉砕法により生成されたFeSiAl合金粉末であり、粉末C~Gとは生成方法が異なる。 Powders C to H shown in Table 1 are FeSiAl alloy powders. Powders C to G are FeSiAl alloy powders produced by gas atomization, and each powder has a different particle size as shown in Table 1. Powder H is a FeSiAl alloy powder produced by a pulverization method, and the production method is different from powders C to G.
(FeSiAl合金粉末の種類・添加量の比較)
まず、実施例1~3及び比較例1~5の圧粉磁心を作製した。実施例1は、表1に示す粉末Bに対してアルミナ粉末(1次粒径が13nm)を1.0wt%添加・混合し、水素濃度5%の雰囲気において、温度1000℃で2時間熱処理を行った。そして、熱処理後の粉末Bに対して、粉末熱処理を行っていない粉末Dを5wt%添加して混合し、複合粉末を作製した。
(Comparison of types and amounts of FeSiAl alloy powder)
First, powder magnetic cores of Examples 1 to 3 and Comparative Examples 1 to 5 were produced. In Example 1, 1.0 wt% of alumina powder (primary particle size: 13 nm) was added and mixed with Powder B shown in Table 1, and the mixture was heat-treated at a temperature of 1000°C for 2 hours in an atmosphere with a hydrogen concentration of 5%. went. Then, 5 wt % of powder D, which had not been subjected to powder heat treatment, was added to and mixed with powder B after heat treatment to produce a composite powder.
粉末Bと粉末Dを混合した後、シランカップリング剤を0.5wt%、シリコーンレジンを2.0wt%添加して混合し、温度150℃で2時間乾燥させた。凝集を解消する目的で絶縁層が形成された複合粉末を目開き500μmの篩に通し、潤滑剤としてエチレンビシステアラミドを0.5wt%添加・混合した。 After mixing powder B and powder D, 0.5 wt% of a silane coupling agent and 2.0 wt% of a silicone resin were added and mixed, and the mixture was dried at a temperature of 150° C. for 2 hours. For the purpose of eliminating agglomeration, the composite powder on which an insulating layer was formed was passed through a sieve with an opening of 500 μm, and 0.5 wt % of ethylene bicystearamide was added and mixed as a lubricant.
潤滑剤を混合した後、この粉末を金型に充填し、加圧成形を行い、外径20.85mm、内径12.4mm、高さ5.0mmの圧粉成形体を得た。プレス成形の圧力は、12ton/cm2で行った。圧粉成形体が作製された後、この圧粉成形体を水素濃度5%の雰囲気下において、温度600℃で2時間熱処理を行った。これにより、実施例1の圧粉磁心が作製された。 After mixing the lubricant, this powder was filled into a mold and pressure molded to obtain a green compact with an outer diameter of 20.85 mm, an inner diameter of 12.4 mm, and a height of 5.0 mm. Press molding was performed at a pressure of 12 tons/cm 2 . After the powder compact was produced, the powder compact was heat-treated at a temperature of 600° C. for 2 hours in an atmosphere with a hydrogen concentration of 5%. In this way, the powder magnetic core of Example 1 was produced.
実施例2は、粉末Dの添加量が10wt%である点を除いて、製造方法及び製造条件は実施例1と同一である。実施例3は、粉末Dの添加量が20wt%である点を除いて、製造方法及び製造条件は実施例1と同一である。 In Example 2, the manufacturing method and manufacturing conditions are the same as in Example 1, except that the amount of powder D added is 10 wt%. In Example 3, the manufacturing method and manufacturing conditions are the same as in Example 1, except that the amount of powder D added is 20 wt%.
比較例1は、純鉄粉末として粉末Bではなく、平滑化処理されていない粉末Aを用いた。粉末Aは、実施例1の粉末Bの熱処理と同様の条件・方法で熱処理を行った。また、実施例1とは異なり、FeSiAl合金粉末を混合させず、粉末A(純鉄粉末)のみで圧粉磁心を作製した。その他の製造方法及び製造条件は実施例1と同一である。 Comparative Example 1 used powder A, which had not been smoothed, instead of powder B as the pure iron powder. Powder A was heat treated under the same conditions and method as the heat treatment of Powder B in Example 1. Further, unlike in Example 1, a powder magnetic core was produced using only powder A (pure iron powder) without mixing FeSiAl alloy powder. Other manufacturing methods and manufacturing conditions are the same as in Example 1.
比較例2は、純鉄粉末として粉末Bを用いた点は実施例1と同様であるが、FeSiAl合金粉末を混合していない点が異なる。その他の製造方法及び製造条件は実施例1と同一である。 Comparative Example 2 is similar to Example 1 in that Powder B was used as the pure iron powder, but differs in that FeSiAl alloy powder was not mixed. Other manufacturing methods and manufacturing conditions are the same as in Example 1.
比較例3及び4は、実施例1とは粉末Dの添加量のみが異なる。比較例3は、25.0wt%、比較例4は30.0wt%添加した。その他の製造方法及び製造条件は実施例1と同一である。 Comparative Examples 3 and 4 differ from Example 1 only in the amount of powder D added. Comparative Example 3 added 25.0 wt%, and Comparative Example 4 added 30.0 wt%. Other manufacturing methods and manufacturing conditions are the same as in Example 1.
比較例5は、実施例1とはFeSiAl合金粉末の種類が異なる。即ち、比較例5は、ガスアトマイズ法によって生成された粉末Dではなく、粉砕法によって生成された粉末Hを用いた。また、粉末Hの添加量が20wt%であることを除き、その他の製造方法及び製造条件は実施例1と同一である。 Comparative Example 5 differs from Example 1 in the type of FeSiAl alloy powder. That is, in Comparative Example 5, powder H produced by the pulverization method was used instead of powder D produced by the gas atomization method. Further, except that the amount of powder H added was 20 wt%, other manufacturing methods and manufacturing conditions were the same as in Example 1.
このように作製された各圧粉磁心の密度を測定した。密度(g/cm3)は、見かけ密度である。圧粉磁心の外径、内径、及び高さを測り、これらの値から各圧粉成形体の体積(cm3)を、π×(外径2-内径2)×高さに基づき算出した。そして、圧粉磁心の重量を測定し、測定した重量を算出した体積で除して密度を算出した。 The density of each powder magnetic core produced in this way was measured. Density (g/cm 3 ) is apparent density. The outer diameter, inner diameter, and height of the powder magnetic core were measured, and from these values, the volume (cm 3 ) of each powder compact was calculated based on π×(outer diameter 2 − inner diameter 2 )×height. Then, the weight of the dust core was measured, and the density was calculated by dividing the measured weight by the calculated volume.
また、各圧粉磁心に、φ0.5mmの銅線で1次巻線30ターン、2次巻線30ターンの巻線を巻回し、鉄損及び透磁率を測定した。測定条件は、周波数20kHz、最大磁束密度Bm=200mTとした。磁気計測機器は、BHアナライザ(岩通計測株式会社:SY-8219)を用いた。そして、次の(1)~(3)式で最小2乗法により、ヒステリシス損失係数を算出することで、最終的にヒステリシス損失を算出した。 Further, each powder magnetic core was wound with a primary winding of 30 turns and a secondary winding of 30 turns using a copper wire of φ0.5 mm, and the iron loss and magnetic permeability were measured. The measurement conditions were a frequency of 20 kHz and a maximum magnetic flux density Bm of 200 mT. A BH analyzer (Iwatsu Keizoku Co., Ltd.: SY-8219) was used as the magnetic measurement device. Then, the hysteresis loss coefficient was calculated using the least squares method using the following equations (1) to (3) to finally calculate the hysteresis loss.
Pcv =Kh×f+Ke×f2・・(1)
Ph =Kh×f・・(2)
Pe =Ke×f2・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Ph :ヒステリシス損失
Pe :渦電流損失
Pcv =Kh×f+Ke×f 2 ...(1)
Ph = Kh×f...(2)
Pe = Ke×f 2 ...(3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss
透磁率は、鉄損の測定時に最大磁束密度Bmを設定したときの振幅透磁率とし、LCRメータ(アジレント・テクノロジー株式会社製:4284A)を使用して算出した。透磁率は、直流電流を重畳させずに磁界がゼロの初透磁率(0A/m)及び磁界を10kA/m印加した場合の透磁率(10kA/m)を測定した。 The magnetic permeability was calculated using an LCR meter (manufactured by Agilent Technologies, Inc.: 4284A) as the amplitude permeability when the maximum magnetic flux density Bm was set during the measurement of iron loss. The magnetic permeability was measured by measuring the initial magnetic permeability (0 A/m) when no magnetic field was applied without superimposing a direct current and the magnetic permeability (10 kA/m) when a magnetic field of 10 kA/m was applied.
測定結果を表3に示す。また、実施例1~3と比較例2~4のFeSiAl合金粉末(粉末D)の添加量と鉄損、ヒステリシス損失及び渦電流損失の関係を示すグラフを図1に示す。実施例1~3と比較例2~4のFeSiAl合金粉末(粉末D)の添加量と直流重畳特性の関係を示すグラフを図2に示す。 The measurement results are shown in Table 3. Further, FIG. 1 shows a graph showing the relationship between the amount of FeSiAl alloy powder (powder D) added and iron loss, hysteresis loss, and eddy current loss in Examples 1 to 3 and Comparative Examples 2 to 4. FIG. 2 is a graph showing the relationship between the amount of FeSiAl alloy powder (powder D) added and the DC superimposition characteristics in Examples 1 to 3 and Comparative Examples 2 to 4.
まず、純鉄粉末として平滑化処理行った粉末Bを用いた比較例2は、平滑化処理を行っていない粉末Aを用いた比較例1よりも直流重畳特性が上昇し、かつ、ヒステリシス損失、渦電流損失及び鉄損の何れも低下していることが確認された。即ち、水アトマイズ法により生成された純鉄粉末は、平滑化処理を行うと直流重畳特性が上昇し、ヒステリシス損失、渦電流損失及び鉄損の何れも低下していることが確認された。 First, Comparative Example 2 using Powder B that was smoothed as a pure iron powder had higher DC superimposition characteristics than Comparative Example 1 that used Powder A that had not been smoothed, and also had hysteresis loss and It was confirmed that both eddy current loss and iron loss were reduced. That is, it was confirmed that when the pure iron powder produced by the water atomization method was subjected to the smoothing treatment, the direct current superimposition characteristics increased, and all of the hysteresis loss, eddy current loss, and iron loss decreased.
さらに、実施例1~3は、直流重畳特性は、比較例1よりも向上し、良好な値を維持している。これに加えて、実施例1~3のヒステリシス損失、渦電流損失及び鉄損は、粉末Dの添加量が多いほど、低下する傾向にあり、何れも比較例2よりも低下している。特に、実施例1~3のヒステリシス損失は、1000(kW/m3)よりも低下し、FeSiAl合金粉末を添加していない比較例2よりも低下していることが確認された。 Furthermore, in Examples 1 to 3, the DC superimposition characteristics were improved compared to Comparative Example 1 and maintained good values. In addition, the hysteresis loss, eddy current loss, and iron loss of Examples 1 to 3 tend to decrease as the amount of powder D added increases, and all of them are lower than those of Comparative Example 2. In particular, it was confirmed that the hysteresis loss of Examples 1 to 3 was lower than 1000 (kW/m 3 ), and lower than that of Comparative Example 2 in which no FeSiAl alloy powder was added.
また、FeSiAl合金粉末の添加量が同量の実施例3と比較例5を比較すると、実施例3の方が直流重畳特性は良好な値を維持し、ヒステリシス損失、渦電流損失及び鉄損が低下している。これにより、純鉄粉末に混合するFeSiAl合金粉末は、ガスアトマイズ粉末であると直流重畳特性が良好で、低鉄損となることが確認された。 Furthermore, when comparing Example 3 and Comparative Example 5, in which the same amount of FeSiAl alloy powder was added, Example 3 maintains a better DC superposition characteristic, and has lower hysteresis loss, eddy current loss, and iron loss. It is declining. As a result, it was confirmed that the FeSiAl alloy powder to be mixed with the pure iron powder is a gas atomized powder, which has good direct current superimposition characteristics and low iron loss.
さらに、粉末Dの添加量を増加させるにつれてヒステリシス損失、渦電流損失及び鉄損が低減させることが確認された。もっとも、比較例3及び4の結果を見ると、ヒステリシス損失、渦電流損失及び鉄損は低下しているものの、直流重畳特性が32以下になり、比較例1と同程度に低下してしまう。そのため、粉末Dの添加量は、5.0wt%以上20wt%以下にすると、良好な直流重畳特性を維持しつつ、ヒステリシス損失、渦電流損失及び鉄損を低下させることができることが確認された。 Furthermore, it was confirmed that as the amount of powder D added was increased, hysteresis loss, eddy current loss, and iron loss were reduced. However, looking at the results of Comparative Examples 3 and 4, although the hysteresis loss, eddy current loss, and iron loss are reduced, the DC superposition characteristic is 32 or less, which is the same level as Comparative Example 1. Therefore, it was confirmed that when the amount of powder D added is 5.0 wt% or more and 20 wt% or less, hysteresis loss, eddy current loss, and iron loss can be reduced while maintaining good DC superimposition characteristics.
(FeSiAl合金粉末の粒子径の比較)
次に、実施例4~6及び比較例6の圧粉磁心を作製し、上記と同様の測定条件、測定方法で密度、鉄損及び透磁率を測定した。
(Comparison of particle sizes of FeSiAl alloy powder)
Next, powder magnetic cores of Examples 4 to 6 and Comparative Example 6 were produced, and the density, iron loss, and magnetic permeability were measured using the same measurement conditions and method as above.
実施例4~6及び比較例6は、実施例1とFeSiAl合金粉末の粒子径が異なるのみである。実施例4(粉末C)の粒子径(D50)は31.8μmで、実施例1(粉末D)の粒子径(D50)は19.5μmで、実施例5(粉末E)の粒子径(D50)は16.4μmで、実施例6(粉末F)の粒子径(D50)は13.0μmで、比較例5(粉末G)の粒子径(D50)は5.5μmである。その他の製造方法及び製造条件は実施例1と同一である。 Examples 4 to 6 and Comparative Example 6 differ from Example 1 only in the particle size of the FeSiAl alloy powder. The particle size (D50) of Example 4 (powder C) was 31.8 μm, the particle size (D50) of Example 1 (powder D) was 19.5 μm, and the particle size (D50) of Example 5 (powder E) was 31.8 μm. ) is 16.4 μm, the particle size (D50) of Example 6 (powder F) is 13.0 μm, and the particle size (D50) of Comparative Example 5 (powder G) is 5.5 μm. Other manufacturing methods and manufacturing conditions are the same as in Example 1.
測定結果を表4に示す。
表4に示すように、粒子径31.8μmのFeSiAl合金粉末を用いた実施例4は、初期の透磁率が高い値を維持しつつ、低鉄損化できている。また、FeSiAl合金粉末の粒子径が小さくなるほど、ヒステリシス損失が増大し、鉄損が大きくなる。特に、比較例6は、ヒステリシス損失が900(kW/m3)となり、鉄損も1000(kW/m3)を超えている。特に、実施例3、5及び6は、直流重畳特性が34であり、鉄損も940(kW/m3)よりも小さく、良好な直流重畳特性を維持しつつ、低鉄損化できることが確認された。即ち、FeSiAl合金粉末の粒子径は、13.0μm以上19.5μm以下がより望ましいことが確認された。 As shown in Table 4, in Example 4 using FeSiAl alloy powder with a particle size of 31.8 μm, iron loss was reduced while maintaining a high initial magnetic permeability. Furthermore, as the particle size of the FeSiAl alloy powder becomes smaller, hysteresis loss increases and iron loss increases. In particular, in Comparative Example 6, the hysteresis loss was 900 (kW/m 3 ), and the iron loss also exceeded 1000 (kW/m 3 ). In particular, in Examples 3, 5, and 6, the DC superposition characteristic was 34, and the iron loss was also smaller than 940 (kW/m 3 ), confirming that it was possible to reduce the iron loss while maintaining good DC superposition characteristics. It was done. That is, it was confirmed that the particle diameter of the FeSiAl alloy powder is more preferably 13.0 μm or more and 19.5 μm or less.
(製法を変えた比較)
次に、純鉄粉末とFeSiAl合金粉末の混合のタイミングを変えた実施例7~9の圧粉磁心を作製し、上記と同様の測定条件、測定方法で密度、鉄損及び透磁率を測定した。
(Comparison using different manufacturing methods)
Next, powder magnetic cores of Examples 7 to 9 were prepared in which the timing of mixing pure iron powder and FeSiAl alloy powder was changed, and the density, iron loss, and magnetic permeability were measured using the same measurement conditions and method as above. .
実施例7~9は、まず、純鉄粉末である粉末Bを実施例1と同様の条件で熱処理行った。熱処理を行った粉末Bに、シランカップリング剤を0.5wt%、シリコーンレジンを2.0wt%添加・混合して、150℃の温度で2時間乾燥させた。そして、凝集を解消する目的で絶縁層が形成された粉末Bを目開き500μmの篩に通し、潤滑剤としてエチレンビシステアラミドを0.5wt%添加・混合した。 In Examples 7 to 9, Powder B, which is a pure iron powder, was first heat-treated under the same conditions as in Example 1. 0.5 wt% of a silane coupling agent and 2.0 wt% of a silicone resin were added and mixed to the heat-treated powder B, and the mixture was dried at a temperature of 150° C. for 2 hours. Then, Powder B on which an insulating layer was formed was passed through a sieve with an opening of 500 μm for the purpose of eliminating agglomeration, and 0.5 wt % of ethylene bicystearamide was added and mixed as a lubricant.
一方で、FeSiAl合金粉末である粉末Dは、粉末熱処理を行わず、シランカップリング剤を0.5wt%、シリコーンレジンを2.0wt%添加・混合して、150℃の温度で2時間乾燥させた。そして、凝集を解消する目的で絶縁層が形成された粉末Dを目開き500μmの篩に通し、潤滑剤としてエチレンビシステアラミドを0.5wt%添加・混合した。 On the other hand, Powder D, which is a FeSiAl alloy powder, was not subjected to powder heat treatment, but 0.5 wt% of a silane coupling agent and 2.0 wt% of a silicone resin were added and mixed, and the mixture was dried at a temperature of 150°C for 2 hours. Ta. Then, Powder D on which an insulating layer was formed for the purpose of eliminating agglomeration was passed through a sieve with an opening of 500 μm, and 0.5 wt % of ethylene bicystearamide was added and mixed as a lubricant.
そして、それぞれ絶縁層が形成された粉末B及び粉末Dを下記表5に示す添加量で粉末BとDを添加・混合した。即ち、実施例7は粉末Dの添加量を5wt%、実施例8は粉末Dの添加量を10wt%、実施例8は粉末Dの添加量を20wt%添加した。その後の工程は実施例1と同様である。 Then, Powder B and Powder D, each having an insulating layer formed thereon, were added and mixed in the amounts shown in Table 5 below. That is, in Example 7, the amount of powder D added was 5 wt%, in Example 8, the amount of powder D added was 10 wt%, and in Example 8, the amount of powder D added was 20 wt%. The subsequent steps are the same as in Example 1.
測定結果を表5に示す。
表5に示すように、実施例7~9は、FeSiAl合金粉末を添加していない比較例2と比べても、良好な直流重畳特性は維持しつつ、ヒステリシス損失、渦電流損失及び鉄損が低減できていることが確認された。また、FeSiAl合金粉末の添加量を増加させるにつれて、ヒステリシス損失、渦電流損失及び鉄損が低減されており、表3に示すものと同様の傾向が確認された。即ち、純鉄粉末とFeSiAl合金粉末を混合してから絶縁層を形成させる製法であっても、純鉄粉末とFeSiAl合金粉末にそれぞれ絶縁層を形成させた後、混合させる製法であっても本発明の効果を得ることができることが確認された。
(成形体の熱処理温度を変えた比較)
As shown in Table 5, Examples 7 to 9 maintain good DC superimposition characteristics and have lower hysteresis loss, eddy current loss, and iron loss than Comparative Example 2 in which no FeSiAl alloy powder is added. It was confirmed that the reduction was achieved. Furthermore, as the amount of FeSiAl alloy powder added was increased, hysteresis loss, eddy current loss, and iron loss were reduced, and the same trends as shown in Table 3 were confirmed. In other words, whether the manufacturing method is to mix pure iron powder and FeSiAl alloy powder and then form an insulating layer, or the manufacturing method is to form an insulating layer on pure iron powder and FeSiAl alloy powder and then mix them. It was confirmed that the effects of the invention can be obtained.
(Comparison of different heat treatment temperatures for molded bodies)
次に、実施例1とは圧粉成形体の熱処理温度のみを変えた実施例10、11を作製した。実施例10は、圧粉成形体を650℃で熱処理し、実施例11は、圧粉成形体を675℃で熱処理した。 Next, Examples 10 and 11 were prepared in which only the heat treatment temperature of the powder compact was changed from Example 1. In Example 10, the compact was heat-treated at 650°C, and in Example 11, the compact was heat-treated at 675°C.
一方、比較例2とは圧粉成形体の熱処理温度のみを変えた比較例7、8を作製した。比較例7は、圧粉成形体を650℃で熱処理し、比較例8は、圧粉成形体を675℃で熱処理した。 On the other hand, Comparative Examples 7 and 8 were prepared in which only the heat treatment temperature of the compact was changed from Comparative Example 2. In Comparative Example 7, the compact was heat-treated at 650°C, and in Comparative Example 8, the compact was heat-treated at 675°C.
さらに、比較例5とは圧粉成形体の熱処理温度のみを変えた比較例9、10を作製した。比較例9は、圧粉成形体を650℃で熱処理し、比較例10は、圧粉成形体を675℃で熱処理した。 Furthermore, Comparative Examples 9 and 10 were prepared in which only the heat treatment temperature of the compact was changed from Comparative Example 5. In Comparative Example 9, the compact was heat-treated at 650°C, and in Comparative Example 10, the compact was heat-treated at 675°C.
上記と同様の測定条件、測定方法で密度、鉄損及び透磁率を測定した。その結果を表6に示す。
ガスアトマイズ粉末であるFeSiAl合金粉末(粉末C)を含有させた実施例1、10及び11は、圧粉成形体の熱処理温度上げても良好な渦電流損失を維持していることが確認された。一方、FeSiAl合金粉末を添加していない比較例2、7、8及び粉砕紛であるFeSiAl合金粉末を添加した比較例5、9、10を見ると、熱処理温度を675℃に上げると渦電流損失が大幅に増加することが確認された。 It was confirmed that Examples 1, 10, and 11 containing FeSiAl alloy powder (powder C), which is a gas atomized powder, maintained good eddy current loss even when the heat treatment temperature of the compact was increased. On the other hand, looking at Comparative Examples 2, 7, and 8 in which no FeSiAl alloy powder was added, and Comparative Examples 5, 9, and 10 in which pulverized FeSiAl alloy powder was added, it was found that when the heat treatment temperature was increased to 675°C, eddy current loss was confirmed to increase significantly.
これは推測でありこれに限定されるものではないが、実施例1、10及び11が良好な渦電流損失を維持している理由としては下記のことが考えられる。ガスアトマイズ粉末のFeSiAl合金粉末(粉末C)は、球形のため絶縁層が粉末表面に均一に形成されやすい。一般的に、絶縁層が均一に形成されず薄い部分が生じる場合、熱処理温度を上げていくと、この薄い部分の絶縁層が破壊されてしまう。そのため、均一に絶縁層が形成された粉末が一定量含まれる実施例1、10及び11は、絶縁層が薄い部分が減少し、高い温度で熱処理を行っても絶縁層が破壊されなかったと推察する。一方で、粉砕紛のFeSiAl合金粉末(粉末H)は角ばっており、この角部分は絶縁層を均一に形成しにくく薄い部分が生じやすく、また、他の粉末に角部分が食い込むことで絶縁層が薄くなる要因となる。そのため、ガスアトマイズ粉末であるFeSiAl合金粉末よりも絶縁層が破壊されやすく、渦電流損失が増加したものと推察する。なお、上記実施例では、粉末Cを用いて実験を行ったが、粉末D~Fについても同様の結果になるものと推察する。 Although this is speculation and is not limited to this, the following may be considered as the reason why Examples 1, 10, and 11 maintain good eddy current loss. Since the FeSiAl alloy powder (powder C), which is a gas atomized powder, is spherical, an insulating layer is easily formed uniformly on the powder surface. Generally, when an insulating layer is not formed uniformly and has thin parts, increasing the heat treatment temperature will destroy the insulating layer in these thin parts. Therefore, in Examples 1, 10, and 11, which contained a certain amount of powder with a uniform insulating layer formed, it is assumed that the thin part of the insulating layer was reduced and the insulating layer was not destroyed even when heat treated at a high temperature. do. On the other hand, the pulverized FeSiAl alloy powder (powder H) is angular, and it is difficult to form an insulating layer uniformly at these corner parts, resulting in thin parts, and the corner parts bite into other powders, resulting in poor insulation. This causes the layer to become thinner. Therefore, it is presumed that the insulating layer was more easily destroyed than the FeSiAl alloy powder, which is a gas atomized powder, and the eddy current loss increased. In the above example, the experiment was conducted using powder C, but it is assumed that the same results would be obtained for powders D to F.
(他の実施形態)
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。上記のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
Although embodiments according to the present invention have been described in this specification, these embodiments are presented as examples and are not intended to limit the scope of the invention. The embodiments described above can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. The embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.
Claims (3)
前記純鉄粉末は、水アトマイズ粉末であり、平滑化された粉末であり、
前記FeSiAl合金粉末は、ガスアトマイズ粉末であり、
前記FeSiAl合金粉末の粒子径は、13.0μm以上31.8μm以下であり、
前記軟磁性粉末に含まれる前記純鉄粉末の含有量は、80wt%以上95wt%以下であり、前記FeSiAl合金粉末の含有量は、5wt%以上20wt%以下であること、
を特徴とする軟磁性粉末。 A soft magnetic powder made by mixing pure iron powder and FeSiAl alloy powder,
The pure iron powder is a water atomized powder and a smoothed powder,
The FeSiAl alloy powder is a gas atomized powder,
The particle size of the FeSiAl alloy powder is 13.0 μm or more and 31.8 μm or less,
The content of the pure iron powder contained in the soft magnetic powder is 80 wt% or more and 95 wt% or less, and the content of the FeSiAl alloy powder is 5 wt% or more and 20 wt% or less;
A soft magnetic powder characterized by
を特徴すると請求項1に記載の軟磁性粉末。 The circularity of the smoothed pure iron powder is 0.95 or more;
The soft magnetic powder according to claim 1 , characterized by:
を特徴すると圧粉磁心。
Containing the soft magnetic powder of claim 1 or 2 ,
Features a powder magnetic core.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021200314A JP7405817B2 (en) | 2021-12-09 | 2021-12-09 | Soft magnetic powder and dust core |
| CN202211535789.1A CN116259461A (en) | 2021-12-09 | 2022-12-02 | Soft magnetic powder and powder magnetic core |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021200314A JP7405817B2 (en) | 2021-12-09 | 2021-12-09 | Soft magnetic powder and dust core |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2023085967A JP2023085967A (en) | 2023-06-21 |
| JP7405817B2 true JP7405817B2 (en) | 2023-12-26 |
Family
ID=86679977
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2021200314A Active JP7405817B2 (en) | 2021-12-09 | 2021-12-09 | Soft magnetic powder and dust core |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP7405817B2 (en) |
| CN (1) | CN116259461A (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002093612A (en) | 2000-09-18 | 2002-03-29 | Daido Steel Co Ltd | Magnetic element and method of manufacturing the same |
| JP2003129104A (en) | 2001-10-24 | 2003-05-08 | Sanyo Special Steel Co Ltd | Powder for dust core |
| JP2005303007A (en) | 2004-04-12 | 2005-10-27 | Sumitomo Electric Ind Ltd | Soft magnetic material, dust core, and method for producing soft magnetic material |
| JP2006302958A (en) | 2005-04-15 | 2006-11-02 | Sumitomo Electric Ind Ltd | Soft magnetic material and dust core |
| WO2010073590A1 (en) | 2008-12-25 | 2010-07-01 | 三菱マテリアル株式会社 | Composite soft magnetic material and method for producing same |
| JP2010236020A (en) | 2009-03-31 | 2010-10-21 | Mitsubishi Materials Corp | Soft magnetic composite material, method for producing the same, and electromagnetic circuit component |
| WO2011155494A1 (en) | 2010-06-09 | 2011-12-15 | 新東工業株式会社 | Iron group-based soft magnetic powder |
| JP2014090152A (en) | 2012-10-03 | 2014-05-15 | Kobe Steel Ltd | Soft magnetic powder mixture |
| JP2021025083A (en) | 2019-08-02 | 2021-02-22 | 株式会社タムラ製作所 | Soft magnetic powder, dust core constituted thereof, method for manufacturing soft magnetic powder and method for manufacturing dust core |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04298006A (en) * | 1991-03-26 | 1992-10-21 | Sanyo Special Steel Co Ltd | Manufacture of fe-si-al alloy sintered soft magnetic substance |
-
2021
- 2021-12-09 JP JP2021200314A patent/JP7405817B2/en active Active
-
2022
- 2022-12-02 CN CN202211535789.1A patent/CN116259461A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002093612A (en) | 2000-09-18 | 2002-03-29 | Daido Steel Co Ltd | Magnetic element and method of manufacturing the same |
| JP2003129104A (en) | 2001-10-24 | 2003-05-08 | Sanyo Special Steel Co Ltd | Powder for dust core |
| JP2005303007A (en) | 2004-04-12 | 2005-10-27 | Sumitomo Electric Ind Ltd | Soft magnetic material, dust core, and method for producing soft magnetic material |
| JP2006302958A (en) | 2005-04-15 | 2006-11-02 | Sumitomo Electric Ind Ltd | Soft magnetic material and dust core |
| WO2010073590A1 (en) | 2008-12-25 | 2010-07-01 | 三菱マテリアル株式会社 | Composite soft magnetic material and method for producing same |
| JP2010236020A (en) | 2009-03-31 | 2010-10-21 | Mitsubishi Materials Corp | Soft magnetic composite material, method for producing the same, and electromagnetic circuit component |
| WO2011155494A1 (en) | 2010-06-09 | 2011-12-15 | 新東工業株式会社 | Iron group-based soft magnetic powder |
| US20130076477A1 (en) | 2010-06-09 | 2013-03-28 | Yasushi Kino | Fe-GROUP-BASED SOFT MAGNETIC POWDER |
| JP2014090152A (en) | 2012-10-03 | 2014-05-15 | Kobe Steel Ltd | Soft magnetic powder mixture |
| JP2021025083A (en) | 2019-08-02 | 2021-02-22 | 株式会社タムラ製作所 | Soft magnetic powder, dust core constituted thereof, method for manufacturing soft magnetic powder and method for manufacturing dust core |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116259461A (en) | 2023-06-13 |
| JP2023085967A (en) | 2023-06-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6471260B2 (en) | Soft magnetic materials, dust cores using soft magnetic materials, reactors using dust cores | |
| US8409707B2 (en) | Iron-based soft magnetic powder for dust core and dust core | |
| JP4308864B2 (en) | Soft magnetic alloy powder, green compact and inductance element | |
| JP5470683B2 (en) | Metal powder for dust core and method for producing dust core | |
| CN102361716A (en) | composite magnetic material | |
| JP2007231330A (en) | Metal powder for dust core and method for producing dust core | |
| JP7307603B2 (en) | Powder magnetic core and method for manufacturing powder magnetic core | |
| JP7418194B2 (en) | Manufacturing method of powder magnetic core | |
| JP7405817B2 (en) | Soft magnetic powder and dust core | |
| CN1938114B (en) | Manufacturing method of soft magnetic material, soft magnetic powder and powder magnetic core | |
| JP7603759B2 (en) | Soft magnetic powder and dust cores | |
| JP2006100292A (en) | Powder magnetic core manufacturing method and powder magnetic core using the same | |
| JP7536818B2 (en) | Powder for dust core, method for producing powder for dust core, dust core and method for producing dust core | |
| JP6168382B2 (en) | Manufacturing method of dust core | |
| JP7633974B2 (en) | Manufacturing method of powder for dust core | |
| JP7202333B2 (en) | Powder magnetic core and its manufacturing method | |
| JP7623327B2 (en) | Manufacturing method of powder for dust core | |
| JP6713018B2 (en) | Soft magnetic material, dust core, and method for manufacturing dust core | |
| JP7337127B2 (en) | Method for manufacturing dust core | |
| US20250033113A1 (en) | Hybrid soft magnetic mixed powder, a method of preparing the same, and a method of preparing a hybrid soft magnetic material | |
| KR102839350B1 (en) | SOFT MAGNETIC PARTICLES COMPRISING IRON(Fe)-SILICON(Si) ALLOY POWDER, SOFT MAGNETIC CORE COMPRISING THE SAME, AND METHOD FOR MANUFACTURING THE SAME | |
| JP2009259979A (en) | Dust core, manufacturing method of dust core, choke coil, and its manufacturing method | |
| JP7194098B2 (en) | Method for manufacturing dust core | |
| JP2023131894A (en) | powder magnetic core | |
| JP2023139453A (en) | Powder for powder magnetic core and powder magnetic core |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221215 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231005 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231010 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231109 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231205 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231214 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7405817 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |