JP7413692B2 - Pretreatment method for samples containing cells - Google Patents
Pretreatment method for samples containing cells Download PDFInfo
- Publication number
- JP7413692B2 JP7413692B2 JP2019173721A JP2019173721A JP7413692B2 JP 7413692 B2 JP7413692 B2 JP 7413692B2 JP 2019173721 A JP2019173721 A JP 2019173721A JP 2019173721 A JP2019173721 A JP 2019173721A JP 7413692 B2 JP7413692 B2 JP 7413692B2
- Authority
- JP
- Japan
- Prior art keywords
- cells
- sugar
- target cells
- isotonic solution
- contaminant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は、細胞を含む試料の前処理方法に関する。特に本発明は、目的細胞および夾雑細胞を含む試料から、目的細胞の取りこぼしを抑えつつ、夾雑細胞は除去する、前処理方法に関する。 The present invention relates to a method for preprocessing a sample containing cells. In particular, the present invention relates to a pretreatment method for removing contaminant cells from a sample containing target cells and contaminant cells while suppressing the loss of target cells.
近年、血液などの体液や、臓器などの組織を溶液に懸濁もしくは分散して得られる組織標本試料や、細胞培養液などから細胞を選択的に分離回収し、当該分離回収した細胞を基礎研究や臨床診断、治療へ応用する研究が進められている。例えば、がん患者より採取した血液から腫瘍細胞(Circulating Tumor Cell、以下CTC)を採取し、当該細胞について形態学的分析、組織型分析や遺伝子分析を行ない、これら分析により得られた知見に基づき治療方針を判断する研究が進められている。 In recent years, cells have been selectively separated and recovered from tissue specimens obtained by suspending or dispersing tissues such as blood and organs in solutions, cell culture media, etc., and the separated and recovered cells have been used for basic research. Research is underway to apply this to clinical diagnosis and treatment. For example, tumor cells (Circulating Tumor Cells, hereinafter referred to as CTCs) are collected from blood taken from cancer patients, and the cells are subjected to morphological analysis, tissue type analysis, and genetic analysis, and based on the findings obtained from these analyses, Research is underway to determine treatment strategies.
しかしながら、がん患者より得られる血液試料中に含まれるCTC数は、血球細胞(赤血球や白血球、血小板)と比較して非常に少なく、前記血球細胞を除去する前処理が必須である。また血液試料中に含まれるCTC数は非常に少ないことから、CTCを高感度で検出するには、前記前処理によるCTCの取りこぼしを極力少なくする必要がある。さらに、前記前処理において夾雑物である血球細胞の残存量が多い場合、偽陽性が発生するおそれがあることから、正確にCTCを検出するには、極力血球細胞の残存量を少なくする必要がある。 However, the number of CTCs contained in blood samples obtained from cancer patients is very small compared to blood cells (red blood cells, white blood cells, platelets), and pretreatment to remove the blood cells is essential. Furthermore, since the number of CTCs contained in a blood sample is very small, in order to detect CTCs with high sensitivity, it is necessary to minimize the number of missed CTCs due to the pretreatment. Furthermore, if there is a large amount of blood cells remaining as contaminants in the pretreatment, there is a risk of false positives occurring, so in order to accurately detect CTCs, it is necessary to reduce the amount of remaining blood cells as much as possible. be.
前処理によるCTCの取りこぼしを極力抑えた、CTCの検出方法として、特許文献1では、溶血剤を用いて血液試料中に含まれる赤血球を溶血し除去した後、残りのすべての細胞を解析してCTCを検出する方法が開示されている。しかしながら、前記溶血処理後の溶液には白血球などの夾雑細胞が大量に含まれており、検出時間が膨大に掛かる課題があった。また偽陽性が発生するおそれもあった。 As a CTC detection method that minimizes missed CTCs due to pretreatment, Patent Document 1 discloses a method in which red blood cells contained in a blood sample are hemolyzed and removed using a hemolytic agent, and then all remaining cells are analyzed. A method for detecting CTCs is disclosed. However, the solution after the hemolytic treatment contains a large amount of contaminant cells such as white blood cells, and there is a problem that the detection time is extremely long. There was also the risk of false positives occurring.
血液試料中に含まれるCTC以外の夾雑細胞を除去する方法として、非特許文献1では溶血剤により血液試料中に含まれる赤血球を破砕(溶血)した後、夾雑細胞である白血球に特異的に結合可能な抗体である抗CD45抗体を修飾した磁性粒子を用いて白血球を除去する方法が開示されている。非特許文献1に開示の方法は、CTCをほとんど取りこぼすことなく白血球を除去できるものの、その除去率は約80%(すなわち約20%は残存)程度に留まっていた。 As a method for removing contaminant cells other than CTCs contained in a blood sample, Non-Patent Document 1 discloses a method in which red blood cells contained in a blood sample are disrupted (hemolysed) using a hemolytic agent, and then the cells specifically bind to white blood cells, which are contaminant cells. A method of removing leukocytes using magnetic particles modified with an anti-CD45 antibody is disclosed. Although the method disclosed in Non-Patent Document 1 can remove leukocytes without losing most of the CTCs, the removal rate remained at about 80% (that is, about 20% remained).
目的細胞および夾雑細胞を含む試料から目的細胞を検出するには、目的細胞を取りこぼすことなく、かつ目的細胞の検出において偽陽性の原因となる夾雑細胞を除去する、前処理が必要である。本発明の課題は、前記前処理を、目的細胞および夾雑細胞を含む試料中の溶媒置換で行なう方法を提供することにある。 In order to detect target cells from a sample containing target cells and contaminant cells, pretreatment is necessary to remove the contaminant cells that cause false positives in the detection of target cells without missing any target cells. An object of the present invention is to provide a method in which the pretreatment is performed by replacing a solvent in a sample containing target cells and contaminant cells.
上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。 In order to solve the above problems, the present inventors have made extensive studies and have arrived at the present invention.
すなわち本発明の第一の態様は、
(1)目的細胞および夾雑細胞を含む試料を遠心分離する工程と、
(2)(1)の工程で得た上清を除去し、目的細胞および夾雑細胞を含むペレットを得る工程と、
(3)(2)の工程で得たペレットを含む溶液に置換溶媒を添加し、遠心分離する工程と、
(4)(3)の工程で得た上清を除去し、目的細胞を含む懸濁液を得る工程と、
を含む、試料の前処理方法であって、
前記目的細胞の比重は、前記夾雑細胞の比重よりも大きく、
かつ前記置換溶媒の添加を、前記ペレットに含まれる夾雑細胞は前記置換溶媒に分散させる一方、前記ペレットに含まれる目的細胞は前記置換溶媒に分散させない条件で行なう、前記方法である。
That is, the first aspect of the present invention is
(1) A step of centrifuging a sample containing target cells and contaminant cells;
(2) removing the supernatant obtained in step (1) to obtain a pellet containing target cells and contaminant cells;
(3) Adding a replacement solvent to the solution containing the pellet obtained in step (2) and centrifuging it;
(4) removing the supernatant obtained in step (3) to obtain a suspension containing the target cells;
A sample pretreatment method comprising:
The specific gravity of the target cells is greater than the specific gravity of the contaminant cells,
and the above method, wherein the addition of the replacement solvent is carried out under conditions such that the contaminant cells contained in the pellet are dispersed in the replacement solvent, but the target cells contained in the pellet are not dispersed in the replacement solvent.
また本発明の第二の態様は、置換溶媒の添加を一定速度で行なう、前記第一の態様に記載の方法である。 A second aspect of the present invention is the method described in the first aspect, wherein the substitution solvent is added at a constant rate.
また本発明の第三の態様は、置換溶媒が糖を含む等張液である、前記第一または第二の態様に記載の方法である。 Further, a third aspect of the present invention is the method according to the first or second aspect, wherein the replacement solvent is an isotonic solution containing sugar.
さらに本発明の第四の態様は、(3)の遠心分離の条件が、遠心力が200×g以上2000×g以下であり、かつ遠心時間が1分以上30分以下である、前記第一から三のいずれかに記載の方法である。 Furthermore, the fourth aspect of the present invention is that the centrifugation conditions of (3) are that the centrifugal force is 200 x g or more and 2000 x g or less, and the centrifugation time is 1 minute or more and 30 minutes or less. The method described in any one of (3) to (3) above.
本発明の第五の態様は、以下の(I)から(IV)に示す工程を含む、試料中に含まれる目的細胞の検出方法である:
(I)前記第一から第四の態様のいずれかに記載の方法で試料の前処理を行ない、目的細胞を含む懸濁液を得る工程、
(II)(I)の工程で得た懸濁液を、保持部を有した細胞保持手段に導入する工程、
(III)誘電泳動力を利用して前記懸濁液に含まれる目的細胞および夾雑細胞を前記保持部に保持させる工程、
(IV)(III)で保持させた目的細胞および/または夾雑細胞を検出する工程。
A fifth aspect of the present invention is a method for detecting target cells contained in a sample, which includes the steps shown in (I) to (IV) below:
(I) pretreating the sample by the method according to any one of the first to fourth aspects to obtain a suspension containing target cells;
(II) a step of introducing the suspension obtained in step (I) into a cell holding means having a holding section;
(III) a step of holding target cells and contaminant cells contained in the suspension in the holding section using dielectrophoretic force;
(IV) Detecting the target cells and/or contaminant cells retained in (III).
さらに本発明の第六の態様は、前記第五の態様に記載の方法で検出した目的細胞および/または夾雑細胞を採取する工程をさらに含む、試料中に含まれる細胞の採取方法である。 Furthermore, a sixth aspect of the present invention is a method for collecting cells contained in a sample, further comprising a step of collecting target cells and/or contaminant cells detected by the method described in the fifth aspect.
以下、本発明を詳細に説明する。 The present invention will be explained in detail below.
本発明における試料は、後述する目的細胞ならびに夾雑細胞を少なくとも含む溶液または懸濁液であればよく、具体的には、全血、希釈血液、血清、血漿、髄液、臍帯血、成分採血液などの血液試料や、尿、唾液、精液、糞便、痰、羊水、腹水などの血液由来成分を含み得る試料や、肝臓、肺、脾臓、腎臓、皮膚、腫瘍、リンパ節などの組織の一片を懸濁させた組織懸濁液や、前述した試料または組織懸濁液より分離して得られる、試料または組織由来の細胞を含む画分、などがあげられる。このうち試料または組織由来の細胞を含む画分の一例として、試料や組織懸濁液を密度勾配形成用媒体の上に重層後、密度勾配遠心することで得られる画分があげられる。 The sample in the present invention may be a solution or suspension containing at least the target cells and contaminant cells described below, and specifically includes whole blood, diluted blood, serum, plasma, cerebrospinal fluid, umbilical cord blood, and blood component collection. samples that may contain blood-derived components such as urine, saliva, semen, feces, sputum, amniotic fluid, ascites, or pieces of tissue such as the liver, lungs, spleen, kidneys, skin, tumors, or lymph nodes. Examples include suspended tissue suspensions, and fractions containing sample- or tissue-derived cells obtained by separation from the aforementioned samples or tissue suspensions. Among these, an example of a fraction containing cells derived from a sample or tissue is a fraction obtained by layering a sample or tissue suspension on a density gradient forming medium and then performing density gradient centrifugation.
本発明において目的細胞とは、試料中に含まれる細胞のうち、本発明の前処理方法により除去される夾雑細胞の比重よりも大きい細胞のことをいう。目的細胞の一例として、血液循環腫瘍細胞(CTC)などの腫瘍細胞、循環血液内皮細胞(CEC)、循環血管内皮細胞(CEP)、循環胎児細胞(CFC)、各種幹細胞、B細胞があげられる。CTCを目的細胞とした場合、CTCの比重は1.040~1.065程度が一般的であるため、夾雑細胞の一例として、比重が前述のCTCの比重より小さい血小板(一般的な比重:1.032程度)や、好中球、好酸球、好塩基球、単球、リンパ球などの白血球(一般的な比重:1.063~1.085程度)のうち、比重が1.063~1.065程度の白血球があげられる。また前述した比重の条件である限り、目的細胞を特定の特徴を有した白血球とし、夾雑細胞を前記特徴を有さない白血球としてもよい。 In the present invention, target cells refer to cells contained in a sample that have a larger specific gravity than the contaminant cells to be removed by the pretreatment method of the present invention. Examples of target cells include tumor cells such as circulating tumor cells (CTC), circulating blood endothelial cells (CEC), circulating vascular endothelial cells (CEP), circulating fetal cells (CFC), various stem cells, and B cells. When CTCs are used as target cells, the specific gravity of CTCs is generally about 1.040 to 1.065. Therefore, as an example of contaminant cells, platelets (general specific gravity: 1. Among white blood cells such as neutrophils, eosinophils, basophils, monocytes, and lymphocytes (general specific gravity: about 1.063 to 1.085), specific gravity is 1.063 to 1.085. The white blood cell count is about 1.065. Further, as long as the specific gravity conditions described above are met, the target cells may be leukocytes with specific characteristics, and the contaminant cells may be leukocytes without the above-mentioned characteristics.
本発明における遠心分離工程は、当該工程により試料中に含まれる目的細胞が損傷を受けることのない条件で行なうと好ましい。具体的には、遠心力(相対遠心力:Relative Centrifugal force)として、200×g以上2000×g以下が好ましく、500×g以上1000×g以下がより好ましい。また遠心時間は、1分以上30分以下が好ましく、3分以上10分以下がさらに好ましい。本工程で用いる容器は、市販の遠心分離用のチューブであれば特に限定されない。前記容器の好ましい例として、50mL容量の遠心分離用チューブがあげられ、特に50mL容量のファルコンコニカルチューブ(コーニング社製、商品番号352070)に代表される市販の50mL容量のディスポーザブルコニカルチューブが好ましい。前述した容器に収容した試料を前述した条件で遠心分離することで、当該試料中に含まれる目的細胞および夾雑細胞が沈降し、前記容器底部にペレットが形成される。目的細胞の比重は夾雑細胞の比重よりも大きいため、形成されたペレットのうち、目的細胞は主に下層(底部)に存在し、夾雑細胞は主に上層に存在する。 The centrifugation step in the present invention is preferably carried out under conditions such that target cells contained in the sample are not damaged by the step. Specifically, the centrifugal force (Relative Centrifugal force) is preferably 200 x g or more and 2000 x g or less, more preferably 500 x g or more and 1000 x g or less. Further, the centrifugation time is preferably 1 minute or more and 30 minutes or less, more preferably 3 minutes or more and 10 minutes or less. The container used in this step is not particularly limited as long as it is a commercially available centrifuge tube. A preferred example of the container is a 50 mL centrifuge tube, and particularly preferred is a commercially available 50 mL disposable conical tube, such as the 50 mL Falcon Conical Tube (manufactured by Corning, product number 352070). By centrifuging the sample contained in the container described above under the conditions described above, target cells and contaminant cells contained in the sample are sedimented, and a pellet is formed at the bottom of the container. Since the specific gravity of the target cells is greater than the specific gravity of the contaminant cells, the target cells are mainly present in the lower layer (bottom) of the formed pellet, and the contaminant cells are mainly present in the upper layer.
遠心分離により、試料(溶液または懸濁液)をペレットと上清とに分離させた後、当該上清を除去する。上清を完全に除去しようとすると、吸引手段(ピペットチップなど)がペレットに接触したり、後述する置換溶媒を添加する際、添加した溶媒がペレットに直撃するおそれがある。そのため上清を少し残した状態(以下この状態を「ペレットを含む溶液」ともいう)で除去する。具体的には、遠心分離工程で用いた容器が50mL容量のチューブである場合、上清が0.5mL以上20mL以下残存するよう上清を除去すればよく、上清の残存量を1mL以上15mL以下とすると好ましく、上清の残存量を2mL以上10mL以下とするとより好ましい。 After the sample (solution or suspension) is separated into a pellet and a supernatant by centrifugation, the supernatant is removed. If an attempt is made to completely remove the supernatant, there is a risk that the suction means (such as a pipette tip) may come into contact with the pellet, or when adding a replacement solvent, which will be described later, the added solvent may directly hit the pellet. Therefore, the supernatant is removed while leaving a small amount of the supernatant (hereinafter, this state is also referred to as "a solution containing pellets"). Specifically, if the container used in the centrifugation step is a tube with a capacity of 50 mL, the supernatant may be removed so that 0.5 mL or more and 20 mL or less remains; The following is preferable, and the remaining amount of supernatant is more preferably 2 mL or more and 10 mL or less.
遠心分離によりペレットを含む溶液を得た後、置換溶媒を添加する。本発明で用いる置換溶媒は、少なくともその比重が目的細胞の比重より小さければよい。目的細胞がCTCなどの血液試料中に含まれる細胞の場合、置換溶媒として、赤血球を破砕可能な溶血剤もしくは緩衝液や、培養液や、糖を含む水溶液が例示できる。特に回収した細胞を誘電泳動を用いて操作する場合、生理的浸透圧と等張な、糖を含む水溶液(糖を含む等張液)を置換溶媒にすると好ましい。前記水溶液に含ませる糖の一例として、グルコースやガラクトースなどの単糖類、スクロースやトレハロースなどの二糖類、マンニトールやキシリトールなどの糖アルコール類、デキストランなどの多糖類があげられる。また糖を含む等張液の好ましい例として、230mM以上330mM以下のキシリトールまたはスクロース水溶液があげられる。 After obtaining a solution containing pellets by centrifugation, a replacement solvent is added. The replacement solvent used in the present invention only needs to have a specific gravity that is at least lower than the specific gravity of the target cells. When the target cells are cells contained in a blood sample such as CTCs, examples of the replacement solvent include a hemolytic agent or buffer solution capable of disrupting red blood cells, a culture solution, and an aqueous solution containing sugar. Particularly when the collected cells are manipulated using dielectrophoresis, it is preferable to use a sugar-containing aqueous solution (saccharide-containing isotonic solution) that is isotonic to physiological osmotic pressure as the replacement solvent. Examples of sugars to be included in the aqueous solution include monosaccharides such as glucose and galactose, disaccharides such as sucrose and trehalose, sugar alcohols such as mannitol and xylitol, and polysaccharides such as dextran. Preferred examples of isotonic solutions containing sugar include xylitol or sucrose aqueous solutions of 230 mM or more and 330 mM or less.
なお置換溶媒を添加する前に、夾雑細胞をあらかじめ除去する処理を行なってもよい。具体的には、夾雑細胞が赤血球や白血球の場合、溶血させたり、密度勾配遠心分離に供したり、夾雑細胞と結合可能な担体(一例として夾雑細胞が白血球の場合、抗CD45抗体固定化担体)に夾雑細胞を結合させたりして、除去すればよい。なおこれら除去操作は一つのみ行なってもよく、複数組み合わせて行なってもよい。 Note that before adding the replacement solvent, a treatment to remove contaminant cells may be performed in advance. Specifically, if the contaminant cells are red blood cells or white blood cells, they may be hemolyzed, subjected to density gradient centrifugation, or a carrier that can bind to the contaminant cells (for example, if the contaminant cells are white blood cells, an anti-CD45 antibody immobilized carrier) The contaminant cells may be removed by binding them to the cells. Note that these removal operations may be performed alone or in combination.
本発明では置換溶媒を添加する際、前記ペレットに含まれる夾雑細胞は前記置換溶媒に分散させる一方、前記ペレットに含まれる目的細胞は前記置換溶媒に分散させない条件で行なう。前述した通り、試料中に含まれる夾雑細胞の比重は同試料中に含まれる目的細胞の比重より小さいことから、前記ペレットにおいて夾雑細胞は上層に、目的細胞は下層(底部)に、それぞれ位置する。すなわち前記条件とは、置換溶媒を添加する際、前記ペレットの上層のみが解れ、当該上層に存在する夾雑細胞が前記置換溶媒に分散される条件のことをいう。具体的には、前記遠心分離工程で用いた容器を斜めに固定した後、遠心後の上清を残した状態で(ペレットを含む溶液に)、置換溶媒を前記ペレットに直撃しないよう、一定速度で添加すると好ましい。前記容器の固定角度は、チューブの開放部が真上を向いている状態を90度としたとき、20度以上70度以下が好ましく、30度以上60度以下がより好ましい。置換溶媒の添加速度は、置換溶媒の種類により適宜決定すればよいが、置換溶媒がキシリトールを含む溶液の場合、3.5mL/s以上7.5mL/s以下が好ましく、置換溶媒がスクロースを含む溶液とする場合、1mL/s以上3mL/s以下が好ましい。なお置換溶媒を添加する際、その添加速度が一定となるよう添加すると好ましいが、当該添加を電動ピペッターを用いて行なうと、正確かつ簡便に置換溶媒を一定速度で添加できる点で好ましい。さらに置換溶媒を添加する際は、遠心分離工程で用いた容器の壁面に沿って流れるように添加すると、置換溶媒の流れを安定にできる点で好ましい。置換溶媒を添加した後は、容器を再度遠心分離して目的細胞をペレット状にする。上清除去後、ペレットを残存した置換溶媒で懸濁し、目的細胞を含む懸濁液を得ればよい。なお、前記ペレットの回収(置換溶媒への懸濁)を行なう前に、前述した置換溶媒への溶液置換操作を繰り返し行なってもよい。 In the present invention, when adding a replacement solvent, contaminant cells contained in the pellet are dispersed in the replacement solvent, while target cells contained in the pellet are not dispersed in the replacement solvent. As mentioned above, since the specific gravity of the contaminant cells contained in a sample is smaller than the specific gravity of the target cells contained in the same sample, the contaminant cells are located in the upper layer and the target cells are located in the lower layer (bottom) of the pellet. . That is, the above-mentioned conditions refer to conditions under which only the upper layer of the pellet is dissolved and the contaminant cells present in the upper layer are dispersed in the replacement solvent when the replacement solvent is added. Specifically, after fixing the container used in the centrifugation step diagonally, the supernatant after centrifugation is left behind (into the solution containing the pellets), and the replacement solvent is heated at a constant speed so as not to directly hit the pellets. It is preferable to add it at The fixing angle of the container is preferably 20 degrees or more and 70 degrees or less, more preferably 30 degrees or more and 60 degrees or less, when the open part of the tube is 90 degrees. The addition rate of the replacement solvent may be determined as appropriate depending on the type of replacement solvent, but if the replacement solvent is a solution containing xylitol, it is preferably 3.5 mL/s or more and 7.5 mL/s or less, and the replacement solvent contains sucrose. When it is a solution, it is preferably 1 mL/s or more and 3 mL/s or less. When adding the replacement solvent, it is preferable to add the solvent at a constant rate; however, it is preferable to use an electric pipetter to add the replacement solvent, since the replacement solvent can be added accurately and easily at a constant rate. Furthermore, when adding the replacement solvent, it is preferable to add it so that it flows along the wall surface of the container used in the centrifugation step, since the flow of the replacement solvent can be stabilized. After adding the replacement solvent, centrifuge the container again to pellet the cells of interest. After removing the supernatant, the pellet may be suspended in the remaining replacement solvent to obtain a suspension containing the target cells. Note that before recovering the pellets (suspending them in a replacement solvent), the above-described solution replacement operation with the replacement solvent may be repeated.
本発明の方法により試料を前処理し、目的細胞を濃縮した懸濁液は、スライドに塗布したり、顕微鏡や光学検出器などで観察したり、フローサイトメトリーを用いたりすることで当該目的細胞を検出できる。なお顕微鏡や光学検出器などで観察して目的細胞を検出する場合、前記細胞を含む懸濁液を、前記細胞を保持可能な保持部を有した細胞保持手段に導入し、前記保持部に前記細胞を保持した後、顕微鏡や光学検出器などで観察するとよい。保持部の例として、前記細胞を収納可能な孔や、前記細胞を固定可能な材料(例えば、ポリ-L-リジン)で覆われた面があげられる。なお保持部の大きさを前記細胞を一つだけ保持可能な大きさとすると、特定細胞の採取および解析(形態学的分析、組織型分析、遺伝子分析など)が容易に行なえる点で好ましい。また細胞を保持部に保持させる際、誘電泳動力を用いると、保持部に細胞を効率的に保持できる点で好ましい。誘電泳動力を用いる場合、具体的には、交流電圧を印加することで誘電泳動を発生させ、保持部内へ細胞を導入すればよい。印加する交流電圧は、保持部内の細胞の充放電が周期的に繰り返される波形を有した交流電圧であると好ましく、周波数を100kHzから3MHzの間とし、電界強度を1×105から5×105V/mの間とすると特に好ましい(WO2011/149032号および特開2012-013549号公報参照)。 A suspension obtained by pretreating a sample by the method of the present invention and concentrating target cells can be used to detect the target cells by applying it to a slide, observing with a microscope or optical detector, or using flow cytometry. can be detected. Note that when detecting target cells by observing with a microscope or an optical detector, a suspension containing the cells is introduced into a cell holding means having a holding part capable of holding the cells, and the cells are placed in the holding part. After holding the cells, it is best to observe them using a microscope, optical detector, etc. Examples of the holding portion include a hole capable of storing the cells and a surface covered with a material capable of fixing the cells (eg, poly-L-lysine). Note that it is preferable that the size of the holding portion is large enough to hold only one cell, since the collection and analysis (morphological analysis, tissue type analysis, genetic analysis, etc.) of specific cells can be easily performed. Further, when holding cells in the holding part, it is preferable to use dielectrophoretic force because the cells can be held in the holding part efficiently. When using dielectrophoretic force, specifically, dielectrophoresis may be generated by applying an alternating current voltage, and cells may be introduced into the holding section. The AC voltage to be applied is preferably an AC voltage having a waveform in which charging and discharging of the cells in the holding part are repeated periodically, the frequency is between 100 kHz and 3 MHz, and the electric field strength is between 1 x 10 and 5 x 10. 5 V/m is particularly preferable (see WO2011/149032 and JP2012-013549).
本発明の検出方法で利用可能な細胞保持装置の一例として、図1から図3に示す細胞保持装置があげられる。 Examples of cell holding devices that can be used in the detection method of the present invention include the cell holding devices shown in FIGS. 1 to 3.
図1および図3に示す細胞保持装置100は、
貫通孔111を有した平板状の絶縁膜110と、
貫通孔121を有した平板状の遮光膜120と、
導入部131および排出部132を有した平板状のスペーサ130と、
遮光膜120の下面およびスペーサー130の上面と密着するよう設けた電極141・142と、
電極141・142同士を接続する導線150と、
電極141・142に信号を印加する交流電源160と、
を備えている。絶縁膜110が有する貫通口111と遮光膜120が有する貫通孔121とは互いに同一の寸法および形状であり、かつそれぞれの貫通孔の位置が一致するよう絶縁膜110および遮光膜120を備えている。
The cell holding device 100 shown in FIGS. 1 and 3 is
a flat insulating film 110 having a through hole 111;
a flat light shielding film 120 having a through hole 121;
A flat spacer 130 having an inlet part 131 and an outlet part 132;
electrodes 141 and 142 provided in close contact with the lower surface of the light shielding film 120 and the upper surface of the spacer 130;
A conductive wire 150 connecting the electrodes 141 and 142,
an AC power supply 160 that applies signals to the electrodes 141 and 142;
It is equipped with The through-hole 111 of the insulating film 110 and the through-hole 121 of the light-shielding film 120 have the same size and shape, and the insulating film 110 and the light-shielding film 120 are provided so that the positions of the through-holes coincide with each other. .
貫通孔111、貫通孔121および遮光膜120の下部に密着して設けた電極141により、細胞保持装置100内に細胞を保持可能な保持部170が構成され、導入部131から細胞を含む液体を導入すると保持部170へ細胞が導入される。遮光膜120は、絶縁膜110自体の自家蛍光に起因するバックグラウンドノイズや隣接する保持部170からの漏れ光に起因するクロストークノイズなどの光ノイズを低減でき、各保持部170に保持された細胞由来の光のみを高感度かつ高精度に検出できる。電極142はスペーサ130上面に密着して備えており、導入部131から導入した、目的細胞を含む試料の飛散や蒸発を防止している。 The through hole 111, the through hole 121, and the electrode 141 provided in close contact with the lower part of the light shielding film 120 constitute a holding section 170 capable of holding cells in the cell holding device 100, and a liquid containing cells is introduced from the introduction section 131. Upon introduction, cells are introduced into the holding section 170. The light shielding film 120 can reduce optical noise such as background noise caused by autofluorescence of the insulating film 110 itself and crosstalk noise caused by light leakage from the adjacent holding parts 170, Only cell-derived light can be detected with high sensitivity and precision. The electrode 142 is provided in close contact with the upper surface of the spacer 130 to prevent the sample containing target cells introduced from the introduction section 131 from scattering or evaporating.
なお、保持部170に保持した細胞の回収を容易にするため、電極142はスペーサ130から取り外し可能な構造となっている。また、電極141・142をITO(酸化インジウムスズ)などの透明電極にすると、保持部170に保持された細胞を、顕微鏡や光学検出器を用いて検出可能となるため好ましい。 Note that the electrode 142 has a structure that is removable from the spacer 130 in order to facilitate recovery of the cells held in the holding part 170. Furthermore, it is preferable to use transparent electrodes such as ITO (indium tin oxide) for the electrodes 141 and 142 because the cells held in the holding part 170 can be detected using a microscope or an optical detector.
前述した細胞保持装置100のうち、電極基板については、図1に示す装置のように絶縁膜110、遮光膜120およびスペーサ130を上下方向に挟むよう備えてもよいし、図2に示す装置のように遮光膜120の下面のみに+極141aおよび-極141bを設けた櫛形電極の態様で電極141を備えてもよい。 In the cell holding device 100 described above, the electrode substrate may be provided with an insulating film 110, a light shielding film 120, and a spacer 130 sandwiched in the vertical direction as in the device shown in FIG. 1, or as in the device shown in FIG. As shown, the electrode 141 may be provided in the form of a comb-shaped electrode in which the + electrode 141a and the − electrode 141b are provided only on the lower surface of the light shielding film 120.
保持部170の大きさは、1個の目的細胞のみを保持可能な大きさとすると、検出工程にて標的細胞の検出が容易になる点で好ましい。なお、細胞保持装置100へ展開させる試料中に含まれる細胞数(目的細胞と夾雑細胞との和)が、細胞保持装置100に設けた保持部170の数よりも多いことが予想される場合は、適切な細胞数が展開されるように希釈したり、展開に供する試料をあらかじめ計量するとよい。 It is preferable that the size of the holding part 170 is large enough to hold only one target cell, since this makes it easier to detect the target cell in the detection step. Note that if the number of cells (sum of target cells and contaminant cells) contained in the sample to be expanded into the cell retention device 100 is expected to be greater than the number of holding sections 170 provided in the cell retention device 100, It is recommended that the sample be diluted so that an appropriate number of cells are developed, or that the sample to be subjected to development be weighed in advance.
以下、本発明の検出方法および採取方法の一例として、血液試料中に含まれる腫瘍細胞(CTC)を検出および採取する方法を用いて詳細に説明するが、本発明は本説明の内容に限定されるものではない。 Hereinafter, as an example of the detection method and collection method of the present invention, a method for detecting and collecting tumor cells (CTC) contained in a blood sample will be described in detail, but the present invention is not limited to the contents of this explanation. It's not something you can do.
(1)がんの疑いのある患者から血液試料を採取する。なお血液試料を採取する際、クエン酸やエチレンジアミン四酢酸(EDTA)などのキレート剤に代表される抗凝固剤を添加すると好ましい。 (1) Collect a blood sample from a patient suspected of having cancer. Note that when collecting a blood sample, it is preferable to add an anticoagulant typified by a chelating agent such as citric acid or ethylenediaminetetraacetic acid (EDTA).
(2)(1)で採取した血液試料(または希釈した血液試料)に、CTCを安定化させるための保存剤であるホルムアルデヒドドナー化合物、抗血小板剤、ポリエチレングリコールを添加する。なお、(1)で抗凝固剤を添加せずに血液試料を採取した場合は抗凝固剤も添加する。前記添加の際、前記保存剤を構成する全ての物質を一度に添加してもよく、各成分を含む溶液をそれぞれ添加してもよい。 (2) A formaldehyde donor compound, an antiplatelet agent, and polyethylene glycol, which are preservatives for stabilizing CTCs, are added to the blood sample (or diluted blood sample) collected in (1). Note that if the blood sample is collected without adding an anticoagulant in (1), an anticoagulant is also added. At the time of the addition, all the substances constituting the preservative may be added at once, or solutions containing each component may be added individually.
(3)保存剤を添加した血液試料(保存処理した血液試料)に含まれる赤血球を、塩化アンモニウムを用いて破砕する(溶血させる)。塩化アンモニウムによる赤血球の破砕(溶血)は、赤血球と他の細胞とのイオン取り込み能の違いを利用した破砕(溶血)方法であり、他の細胞への損傷を抑えながら赤血球を破砕できる点で、好ましい赤血球破砕方法である。 (3) Red blood cells contained in a blood sample to which a preservative has been added (preserved blood sample) are disrupted (hemolyzed) using ammonium chloride. Disruption (hemolysis) of red blood cells with ammonium chloride is a method of disruption (hemolysis) that takes advantage of the difference in ion uptake ability between red blood cells and other cells, and has the advantage of being able to disrupt red blood cells while minimizing damage to other cells. This is a preferred method of disrupting red blood cells.
(4)赤血球破砕(溶血)処理後、遠心分離することで血液試料中に含まれるCTCと夾雑細胞(白血球や血小板など)をペレット状にした後、溶血剤(塩化アンモニウム)を含む上清を除去する。 (4) After red blood cell disruption (hemolysis) treatment, CTCs and contaminant cells (white blood cells, platelets, etc.) contained in the blood sample are pelleted by centrifugation, and then the supernatant containing a hemolytic agent (ammonium chloride) is Remove.
(5)(4)の残液をピペッティングなどの撹拌操作により、CTCと夾雑細胞を含むペレットを解して細胞を懸濁させた後、塩化ナトリウムを少なくとも含む溶液を添加し、再度懸濁させる。塩化ナトリウムを少なくとも含む溶液としては、生理食塩水やPBS(リン酸緩衝生理食塩水)が例示できるが、生理的pHの維持が容易なPBSを用いるとよい。なお前記溶液に、親水性高分子を結合したタンパク質(例えば、ポリエチレングリコールを結合したBSA)を含ませると、CTCの回収効率が向上するため好ましい。親水性高分子を結合したタンパク質の濃度は、再懸濁液における当該タンパク質の終濃度として、0.01%(w/v)以上25%(w/v)以下であればよく、0.02%(w/v)以上5%(w/v)以下であれば好ましく、0.05%(w/v)以上2%(w/v)以下であればより好ましい。また前記タンパク質を前記溶液に添加することで、CTCに対する、白血球と結合可能な結合部位を修飾した担体との非特異吸着を抑制することも可能となる。 (5) After dissolving the pellet containing CTCs and contaminant cells and suspending the cells by stirring the residual solution from (4) such as pipetting, add a solution containing at least sodium chloride and suspend again. let Examples of solutions containing at least sodium chloride include physiological saline and PBS (phosphate buffered saline), and PBS is preferably used because it can easily maintain physiological pH. Note that it is preferable to include a protein bound to a hydrophilic polymer (for example, BSA bound to polyethylene glycol) in the solution, since this improves the CTC recovery efficiency. The concentration of the protein bound to the hydrophilic polymer may be 0.01% (w/v) or more and 25% (w/v) or less as the final concentration of the protein in the resuspension liquid, and 0.02% (w/v) or more and 25% (w/v) or less. % (w/v) or more and 5% (w/v) or less, preferably 0.05% (w/v) or more and 2% (w/v) or less. Furthermore, by adding the protein to the solution, it is also possible to suppress nonspecific adsorption of CTC with a carrier modified with a binding site capable of binding to leukocytes.
(6)(5)で調製したCTCを含む懸濁液を再度遠心分離し、CTCと夾雑細胞を含むペレットを回収する。本操作は懸濁液内の細胞の懸濁濃度を向上させ、夾雑細胞である白血球と、白血球と結合可能な担体との反応性を高めることを目的に行なう操作である。 (6) The CTC-containing suspension prepared in (5) is centrifuged again to collect a pellet containing CTCs and contaminant cells. This operation is performed for the purpose of increasing the suspension concentration of cells in the suspension and increasing the reactivity between leukocytes, which are contaminant cells, and a carrier capable of binding to leukocytes.
(7)夾雑細胞の一部である白血球と結合可能な担体として、抗CD45抗体を結合した磁性粒子を添加する。磁性粒子との反応時間や反応温度は、使用した抗体の特性に応じて適時変更すればよい。 (7) Magnetic particles bound to anti-CD45 antibody are added as a carrier capable of binding to white blood cells that are part of the contaminant cells. The reaction time and reaction temperature with magnetic particles may be changed as appropriate depending on the characteristics of the antibody used.
(8)前記磁性粒子と白血球とを結合させた後、添加した前記磁性粒子を磁石を用いて取り除く(磁気分離)。CTCと前記磁気分離により除去しきれず残存した夾雑細胞を含む上清を回収し、適時好ましい置換溶媒に添加し、懸濁させる。前記置換溶媒としては、CTCより比重が小さい等張液であれば特に限定されないが、回収した細胞を誘電泳動を用いて細胞を操作する場合、キシリトールやスクロース、マンニトールなどの糖を含む溶液を用いるとよい。なお懸濁に用いる容器としては、遠心分離用のチューブであれば特に限定されず、例えば市販の50mLディスポーザブルコニカルチューブを使用すればよい。 (8) After binding the magnetic particles and white blood cells, the added magnetic particles are removed using a magnet (magnetic separation). The supernatant containing CTC and the remaining contaminant cells that could not be removed by the magnetic separation is collected, and added to a suitable replacement solvent at appropriate times to be suspended. The replacement solvent is not particularly limited as long as it is an isotonic solution with a specific gravity lower than that of CTC, but when the collected cells are manipulated using dielectrophoresis, a solution containing sugars such as xylitol, sucrose, and mannitol is used. Good. Note that the container used for suspension is not particularly limited as long as it is a tube for centrifugation, and for example, a commercially available 50 mL disposable conical tube may be used.
(9)(8)で得られた懸濁液を遠心分離後、上清を除去し、懸濁液に含まれるCTCおよび夾雑細胞を含むペレットを得る。なお遠心分離条件として、目的細胞が遠心により損傷を受けることのない遠心強度とすることが好ましい。遠心強度としては200×g以上2000×g以下が好ましく、500×g以上1000×g以下がより好ましい。遠心時間としては1分以上30分以下が好ましく、3分以上10分以下がより好ましい。また、上清除去の際は、上清の残液量が0.5mL以上20mL以下となるように除去すればよいが、残液量を1mL以上15mL以下とすると好ましく、2mL以上10mL以下とするとより好ましい。 (9) After centrifuging the suspension obtained in (8), the supernatant is removed to obtain a pellet containing CTCs and contaminant cells contained in the suspension. Note that the centrifugation conditions are preferably such that the centrifugation strength is such that the target cells are not damaged by centrifugation. The centrifugal strength is preferably 200 x g or more and 2000 x g or less, more preferably 500 x g or more and 1000 x g or less. The centrifugation time is preferably 1 minute or more and 30 minutes or less, more preferably 3 minutes or more and 10 minutes or less. In addition, when removing the supernatant, it is sufficient to remove the supernatant so that the amount of residual liquid is 0.5 mL or more and 20 mL or less, but it is preferable that the residual liquid amount is 1 mL or more and 15 mL or less, and 2 mL or more and 10 mL or less. More preferred.
(10)(9)で得られたCTCおよび夾雑細胞を含むペレットと上清除去後の残液とが入った(ペレットを含む溶液が入った)容器を斜めに固定した後、置換溶媒を一定速度で添加する。なお容器を固定する角度は、容器の開放部が真上を向いている状態を90度としたとき、20度以上70度以下が好ましく、30度以上60度以下がより好ましい。また、CTCの比重と比較し夾雑細胞の比重は小さいため、前記ペレット中において、比重の大きいCTCはペレット下層(底部)に存在し、CTCより比重の小さい夾雑細胞がペレット上層に存在する。したがって置換溶媒を、前記ペレットの上層のみが解れる速度、すなわち上層に存在する夾雑細胞が当該置換溶媒に分散される速度で添加すればよい。前記添加速度は置換溶媒の種類により適宜決定すればよいが、キシリトールを含む溶液とする場合、3.5mL/s以上7.5mL/s以下の添加速度にすると好ましく、スクロースを含む溶液とする場合、1mL/s以上3mL/s以下の添加速度にすると好ましい。なお、置換溶媒の添加方法は前記添加速度が一定となれば特に限定しないが、電動ピペッターを用いると正確かつ簡便に一定速度で液を添加できるため好ましい。さらに置換溶媒を添加する際は、液が容器の壁面に沿って流れるように添加すると、液の流れを安定化できるため好ましい。 (10) After fixing the container containing the pellet containing CTCs and contaminant cells obtained in (9) and the residual solution after removing the supernatant (containing the solution containing the pellet) at an angle, the replacement solvent was kept constant. Add at speed. The angle at which the container is fixed is preferably 20 degrees or more and 70 degrees or less, and more preferably 30 degrees or more and 60 degrees or less, when the open part of the container is 90 degrees. Furthermore, since the specific gravity of contaminant cells is lower than that of CTCs, in the pellet, CTCs with a higher specific gravity are present in the lower layer (bottom) of the pellet, and contaminant cells with a lower specific gravity than CTCs are present in the upper layer of the pellet. Therefore, the replacement solvent may be added at a rate that only the upper layer of the pellet is dissolved, that is, at a rate that the contaminant cells present in the upper layer are dispersed in the replacement solvent. The addition rate may be determined as appropriate depending on the type of replacement solvent, but in the case of a solution containing xylitol, the addition rate is preferably 3.5 mL/s or more and 7.5 mL/s or less, and in the case of a solution containing sucrose. , the addition rate is preferably 1 mL/s or more and 3 mL/s or less. Note that the method of adding the replacement solvent is not particularly limited as long as the addition rate is constant, but it is preferable to use an electric pipettor because the liquid can be added accurately and easily at a constant rate. Furthermore, when adding the replacement solvent, it is preferable to add the liquid so that it flows along the wall surface of the container, since this can stabilize the flow of the liquid.
(11)(10)の操作後の容器を再度遠心分離し、CTCおよび(10)の操作で残存した夾雑細胞をペレット状にし、上清を除去後、当該ペレットを残存上清で懸濁することで、CTCを含む懸濁液として回収する。なお、前記懸濁液の回収を行なう前に(10)の工程を繰り返し、溶媒置換を行なってもよい。 (11) Centrifuge the container after the operation in (10) again to pellet the CTCs and contaminant cells remaining in the operation in (10), remove the supernatant, and suspend the pellet in the remaining supernatant. As a result, a suspension containing CTC is recovered. Note that before recovering the suspension, the step (10) may be repeated to perform solvent replacement.
(12)(11)で得られたCTCを含む細胞懸濁液を、細胞を保持可能な保持部を有した細胞保持装置(例えば、図1および図2に示す装置)に導入し、前記保持部に前記細胞を保持した後、顕微鏡や光学検出器などで観察することで血液試料中に含まれるCTCおよび/または夾雑細胞(例えば、白血球などの血液成分)を検出する。CTCの検出は、例えば、明視野像によるCTCと夾雑細胞との大きさや形状の違いに基づき検出してもよく、サイトケラチンやEpCAM(Epithelial Cell Adhesion Molecule)などCTCで発現するタンパク質に対する標識抗体および/または夾雑細胞で発現するタンパク質(夾雑細胞が白血球の場合はCD45など)に対する標識抗体で細胞を染色し当該染色結果に基づき検出してもよい。 (12) The cell suspension containing CTCs obtained in (11) is introduced into a cell holding device (for example, the device shown in FIGS. 1 and 2) having a holding part capable of holding cells, and After holding the cells in the blood sample, CTCs and/or contaminant cells (for example, blood components such as white blood cells) contained in the blood sample are detected by observing them with a microscope, an optical detector, or the like. CTCs may be detected, for example, based on the difference in size and shape between CTCs and contaminant cells in a bright field image, using labeled antibodies against proteins expressed in CTCs such as cytokeratin and EpCAM (Epithelial Cell Adhesion Molecule), and Alternatively, the cells may be stained with a labeled antibody against a protein expressed in the contaminant cells (such as CD45 when the contaminant cells are white blood cells), and detection may be performed based on the staining results.
(13)(12)で検出したCTCおよび/または夾雑細胞を採取手段で採取する。採取手段の一例として、ノズルによる吸引吐出により採取する手段があげられ、具体例として特開2016-142616号に開示の装置があげられる。 (13) The CTCs and/or contaminant cells detected in (12) are collected using a collection means. An example of a collection means is a means for collecting by suction and discharge using a nozzle, and a specific example is a device disclosed in JP-A No. 2016-142616.
本発明は、目的細胞および夾雑細胞を含む懸濁液を遠心分離する工程と、前記遠心分離で得た上清を除去し目的細胞および夾雑細胞を含むペレットを得る工程と、前記上清除去後に得たペレットを含む溶液に置換溶媒を添加し遠心分離する工程と、前記遠心分離後の上清を除去し目的細胞を含む懸濁液を得る工程とを含む、試料の前処理方法において、前記目的細胞の比重が前記夾雑細胞の比重よりも大きく、かつ前記置換溶媒の添加を前記ペレットに含まれる夾雑細胞は前記置換溶媒に分散させる一方、前記ペレットに含まれる目的細胞は前記置換溶媒に分散させない条件で行なうことを特徴とする。 The present invention comprises a step of centrifuging a suspension containing target cells and contaminant cells, a step of removing the supernatant obtained by the centrifugation to obtain a pellet containing the target cells and contaminant cells, and after removing the supernatant. In the sample pretreatment method, the method includes the steps of adding a replacement solvent to a solution containing the obtained pellet and centrifuging the solution, and removing the supernatant after the centrifugation to obtain a suspension containing the target cells. The specific gravity of the target cells is greater than the specific gravity of the contaminant cells, and when the replacement solvent is added, the contaminant cells contained in the pellet are dispersed in the replacement solvent, while the target cells contained in the pellet are dispersed in the replacement solvent. It is characterized by being carried out under conditions that do not allow
本発明により、試料中に含まれる目的細胞数が夾雑細胞数に対して非常に少ない場合であっても、試料中に含まれる夾雑細胞を除去し、目的細胞を濃縮できる。つまり試料中に含まれる目的細胞を検出する際に、目的細胞以外の夾雑細胞数を減らせるため、夾雑細胞を目的細胞として誤検出する頻度(偽陽性数)を大幅に減らせる。したがって、より高精度に目的細胞を検出できる。また本発明の方法は、検出対象となる細胞の総数を減らせるため、細胞検出時間の短縮にも繋がる。 According to the present invention, even if the number of target cells contained in a sample is very small compared to the number of contaminant cells, the contaminant cells contained in the sample can be removed and the target cells can be concentrated. In other words, when detecting target cells contained in a sample, the number of contaminant cells other than the target cells can be reduced, so the frequency of erroneously detecting contaminant cells as target cells (number of false positives) can be significantly reduced. Therefore, target cells can be detected with higher accuracy. Furthermore, since the method of the present invention can reduce the total number of cells to be detected, it also leads to a reduction in cell detection time.
一例として、本発明を血液中に含まれる腫瘍細胞(CTC)の検出に適用する場合、本発明の方法を用いることで高精度にCTCを検出できる。また、がんの診断をCTCの存在により行なう場合、CTCの有無の判断結果に対する信頼性が向上するため、精度高くがんを診断できる。 As an example, when the present invention is applied to the detection of tumor cells (CTCs) contained in blood, CTCs can be detected with high accuracy by using the method of the present invention. Furthermore, when diagnosing cancer based on the presence of CTCs, the reliability of the determination result of the presence or absence of CTCs is improved, so that cancer can be diagnosed with high accuracy.
以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。なお参考例は本発明を構成しない。 Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples, but the present invention is not limited to these Examples. Note that the reference examples do not constitute the present invention.
実施例1
(1)一方の末端がメトキシ基であり、もう一方の末端がN-ヒドロオキシスクシンイミドエステル基である、分子量5000のポリエチレングリコール(mPEG-NHS)と、ウシ血清アルブミン(BSA)(300mg、0.3mmol)とを、炭酸水素ナトリウム緩衝液(0.1M、15mL)に溶解させ、当該溶液を25℃近傍で3時間撹拌することでポリエチレングリコールを結合したBSA(PEG-BSA)を調製した。なお調製する際、mPEG-NHSとBSAとのモル比(mPEG-NHS/BSA)を2となるようにした。調製後、分画分子量10000の透析膜を用いて、純水への溶液置換を3日間行なった。
Example 1
(1) Polyethylene glycol (mPEG-NHS) with a molecular weight of 5,000, which has a methoxy group at one end and an N-hydroxysuccinimide ester group at the other end, and bovine serum albumin (BSA) (300 mg, 0.5 mg). BSA bound to polyethylene glycol (PEG-BSA) was prepared by dissolving 3 mmol) in sodium hydrogen carbonate buffer (0.1 M, 15 mL) and stirring the solution at around 25° C. for 3 hours. During preparation, the mPEG-NHS and BSA molar ratio (mPEG-NHS/BSA) was set to 2. After preparation, the solution was replaced with pure water for 3 days using a dialysis membrane with a molecular weight cutoff of 10,000.
(2)イミダゾリジニル尿素(保存剤)2.3g、分子量2000のポリエチレングリコール(PEG)2.3g、チロフィバン(抗血小板剤)1.2mgおよびエチレンジアミン四酢酸(EDTA)(抗凝固剤)30mgを、溶液として30mLになるよう、超純水で溶解した。 (2) Add 2.3 g of imidazolidinyl urea (preservative), 2.3 g of polyethylene glycol (PEG) with a molecular weight of 2000, 1.2 mg of tirofiban (antiplatelet agent), and 30 mg of ethylenediaminetetraacetic acid (EDTA) (anticoagulant) to a solution. The solution was dissolved in ultrapure water to a total volume of 30 mL.
(3)ヒト肺がん細胞(PC9細胞)を、5%CO2環境下、10%FBS(ウシ胎児血清)を含むRPMI-1640培地を用いて37℃で24から96時間培養後、0.25%トリプシン/1mM EDTAを用いて培地から細胞を剥離し、マイクロチューブに回収した。1000rpmで5分間遠心分離を行なって上清を除去し、ペレットを培地1mLに再懸濁することで洗浄した。前記PC9細胞を本実施例での目的細胞とした。 (3) Human lung cancer cells (PC9 cells) were cultured at 37°C for 24 to 96 hours using RPMI-1640 medium containing 10% FBS (fetal bovine serum) in a 5% CO 2 environment, and then 0.25% Cells were detached from the medium using trypsin/1mM EDTA and collected into a microtube. The supernatant was removed by centrifugation at 1000 rpm for 5 minutes, and the pellet was washed by resuspending in 1 mL of medium. The PC9 cells were used as the target cells in this example.
(4)インフォームドコンセントを得た健常人から血液をEDTA-2K採血管(VP-DK050K、テルモ社製)に3mL採血後、前記採血管に(2)で調製した溶液0.45mLおよび(3)で調製したPC9細胞約100個を添加し、希釈血液試料を調製した。 (4) Collect 3 mL of blood from a healthy individual who has given informed consent into an EDTA-2K blood collection tube (VP-DK050K, manufactured by Terumo Corporation), then add 0.45 mL of the solution prepared in (2) and (3 Approximately 100 PC9 cells prepared in ) were added to prepare a diluted blood sample.
(5)(4)で調製した希釈血液試料3.45mLに、0.9%(w/v)塩化アンモニウムと0.1%(w/v)炭酸水素カリウムとを含む水溶液を、総量90mLとなるまで添加後、室温で5分間静置することで赤血球を破砕(溶血)した。溶血処理後、900×gで5分間、25℃で遠心分離した。 (5) Add an aqueous solution containing 0.9% (w/v) ammonium chloride and 0.1% (w/v) potassium bicarbonate to 3.45 mL of the diluted blood sample prepared in (4) in a total volume of 90 mL. After addition, the red blood cells were disrupted (hemolysed) by standing at room temperature for 5 minutes. After hemolysis, the mixture was centrifuged at 900 xg for 5 minutes at 25°C.
(6)遠心分離後の上清を88mL除去後、ピペッティングによりPC9細胞と夾雑細胞(白血球や血小板など)を含むペレットを上清残液に懸濁させた。 (6) After removing 88 mL of the supernatant after centrifugation, a pellet containing PC9 cells and contaminant cells (white blood cells, platelets, etc.) was suspended in the remaining supernatant by pipetting.
(7)(1)で調製したPEG-BSA(BSAとして0.1%(w/v))および2%(w/v)BSAを含むPBS(リン酸緩衝生理食塩水)を、総量30mLとなるまで(6)の懸濁液に添加後、600×gで5分間、25℃で遠心分離した。得られた上清を29mL除去し、ピペッティングによりペレットを上清残液に再懸濁させた。 (7) Add PBS (phosphate buffered saline) containing PEG-BSA (0.1% (w/v) as BSA) and 2% (w/v) BSA prepared in (1) to a total volume of 30 mL. After adding the mixture to the suspension obtained in (6) until the mixture was completely dissolved, it was centrifuged at 600 xg for 5 minutes at 25°C. 29 mL of the resulting supernatant was removed, and the pellet was resuspended in the remaining supernatant by pipetting.
(8)抗CD45抗体修飾磁性粒子懸濁液(Dynabeads CD45、Thermo Fisher Scientific社製)100μLと抗CD15抗体修飾磁性粒子懸濁液(Dynabeads CD15、Thermo Fisher Scientific社製)100μLとを混合後、磁石を用いて分散媒を除去し磁性粒子を濃縮した。濃縮した磁性粒子と(7)で得られた細胞懸濁液全量とを混合させた後、室温で5分間回転撹拌し、磁性粒子に結合した白血球を磁石を用いて除去した。 (8) 100 μL of anti-CD45 antibody modified magnetic particle suspension (Dynabeads CD45, manufactured by Thermo Fisher Scientific) and 100 μL of anti-CD15 antibody modified magnetic particle suspension (Dynabeads CD15, manufactured by Thermo Fisher Scientific) After mixing with the magnet The dispersion medium was removed and the magnetic particles were concentrated. After mixing the concentrated magnetic particles with the entire cell suspension obtained in (7), the mixture was stirred for 5 minutes at room temperature, and leukocytes bound to the magnetic particles were removed using a magnet.
(9)(8)で白血球を除去した細胞懸濁液(一部の白血球と血小板は夾雑細胞として残存)を50mL容量のファルコンコニカルチューブ(コーニング社製、商品番号352070)に全量移し、PEG-BSA(BSAとして0.1%(w/v))および280mMキシリトールを含む水溶液(置換溶媒とする)を、総量30mLとなるまで添加後、600×gで5分間、25℃で遠心分離した。なお当該操作は、溶液中の塩濃度を低下させ、目的とするPC9細胞を濃縮するための操作である。 (9) Transfer the entire cell suspension from which leukocytes were removed in (8) (some leukocytes and platelets remain as contaminant cells) to a 50 mL Falcon conical tube (Corning, product number 352070), and transfer the PEG- An aqueous solution containing BSA (0.1% (w/v) as BSA) and 280 mM xylitol (used as a replacement solvent) was added to a total volume of 30 mL, followed by centrifugation at 600 x g for 5 minutes at 25°C. Note that this operation is an operation for reducing the salt concentration in the solution and concentrating the target PC9 cells.
(10)遠心分離後の上清を25mL除去した後、前記コニカルチューブを傾斜スタンドを用いて斜め45度に固定した。100mLビーカーに入れた置換溶媒を、2.5mL/s、3mL/s、5mL/s、10mL/sのうち、いずれかの添加速度で、当該溶媒がチューブの壁面に沿って流れるよう、デカントで添加した。総量30mLとなるまで添加した後、600×gで5分間、25℃で遠心分離した。 (10) After removing 25 mL of the supernatant after centrifugation, the conical tube was fixed at an angle of 45 degrees using a tilt stand. Decant the displacement solvent in a 100 mL beaker at an addition rate of 2.5 mL/s, 3 mL/s, 5 mL/s, or 10 mL/s so that the solvent flows along the wall of the tube. Added. After adding the mixture to a total volume of 30 mL, it was centrifuged at 600 xg for 5 minutes at 25°C.
(11)(10)と同様の操作を再度実施した。 (11) The same operation as (10) was performed again.
(12)遠心分離後の上清を除去し残液量を850μLとした後、ピペッティングによりPC9と残存した夾雑細胞を含むペレットを再懸濁し、細胞懸濁液とした。前記懸濁液を以下に示す方法で図1および図3に示す細胞保持装置100に保持した後、目的細胞を検出した。なお、細胞保持装置100には、直径φ30μm、深さ40μmの保持部170を設けている。
(12-1)導入部131から、細胞懸濁液を導入した後、交流電源160から各電極141・142に交流電圧(電圧20Vpp、周波数1MHz、矩形波)を印加し、誘電泳動力により前記細胞を保持部170に保持させた。
(12-2)導入部131から、0.01%(w/v)ポリ-L-リジンを含む280mMキシリトール水溶液を、前記交流電圧を印加しながら導入し、3分間静置後、前記交流電圧の印加を停止し、排出部132から前記水溶液を吸引除去した。
(12-3)導入部131から、1%HCHOを含むPBS溶液を導入し、10分間静置することで細胞を固定後、排出部132から前記試薬を吸引除去した。その後、導入部131から、0.05%(w/v)Tween20(商品名)を含むPBS溶液(以下PBS-T)を導入することで、残留した前記試薬を洗浄した。
(12-4)導入部131から、95%(v/v)エタノールを含む水溶液を導入し、10分間静置することで細胞を膜透過後、排出部132から前記試薬を吸引除去した。その後、導入部131から、PBS-Tを導入することで、残留した前記試薬を洗浄した。
(12-5)導入部131から、10%(v/v)Goat Serum(ヤギ血清)および3%(w/v)BSAを含むPBS溶液を導入し、10分間静置することで細胞をブロッキング後、排出部132から前記試薬を吸引除去した。
(12-6)導入部131から、抗サイトケラチンマウス抗体(Miltenyi Biotec社製)、10%(v/v)Goat Serumおよび3%(w/v)BSAを混合した細胞標識試薬を導入し、30分間静置することでPC9細胞を標識した後、排出部132から前記試薬を吸引除去した。その後、導入部131から、PBS-Tを導入することで、残留した前記試薬を洗浄した。
(12-7)導入部131から、Alexa Fluor 488標識抗マウスIgG1抗体(Thermo Fisher Scientific社製)、PE(フィコエリスリン)標識抗CD45抗体(Miltenyi Biotec社製)、DAPI(4’,6-DiAmidino-2-PhenylIndole)(同仁化学研究所社製)、10%(v/v)Goat Serumおよび3%(w/v)BSAを混合した細胞染色試薬を導入し、20分静置することで細胞を染色した。その後、排出口22から細胞染色試薬を吸引除去した。その後、導入部131から、PBS-Tを導入することで、残留した前記試薬を洗浄した。
(12-8)保持部170に保持された全ての細胞を観察するために、コンピューター制御式電動ステージおよびCMOSカメラ(浜松ホトニクス社製ORCA-Flash4.0)を備えた蛍光顕微鏡(Olympus社製IX71)を用いて全ての保持部の明視野像および蛍光画像を撮影した。
(12-9)(12-8)で撮影した画像を解析ソフトウェアLabVIEW(National Instruments社製)を用いて解析を行ない、DAPIで染色され(細胞核を有し)、Alexa Fluor 488で染色され(サイトケラチンを発現し)、かつPEでは染色されない(CD45を発現しない)細胞を検出した。
(12-10)(12-9)で検出した細胞のうち、目的細胞であるPC9細胞数を計測し、これを検出数とした。前記検出数を(4)で添加したPC9細胞数で除することでがん細胞検出率を算出した。
(12-11)(12-9)で検出した細胞のうち、明らかにPC9細胞より小さく白血球と同程度の大きさ(約10μm)の細胞を、誤検出された夾雑細胞(偽陽性)と判断し、偽陽性数を計測した。
(12) After removing the supernatant after centrifugation to make the remaining liquid volume 850 μL, the pellet containing PC9 and remaining contaminant cells was resuspended by pipetting to obtain a cell suspension. After holding the suspension in the cell holding device 100 shown in FIGS. 1 and 3 by the method shown below, target cells were detected. Note that the cell holding device 100 is provided with a holding portion 170 having a diameter of 30 μm and a depth of 40 μm.
(12-1) After introducing the cell suspension from the introduction part 131, an AC voltage (voltage 20Vpp, frequency 1MHz, rectangular wave) is applied from the AC power supply 160 to each electrode 141, 142, and the dielectrophoretic force The cells were held in the holding part 170.
(12-2) A 280 mM xylitol aqueous solution containing 0.01% (w/v) poly-L-lysine is introduced from the introduction part 131 while applying the AC voltage, and after standing for 3 minutes, the AC voltage The application of was stopped, and the aqueous solution was removed by suction from the discharge part 132.
(12-3) A PBS solution containing 1% HCHO was introduced from the introduction part 131 and the cells were fixed by allowing it to stand for 10 minutes, and then the reagent was removed by suction from the discharge part 132. Thereafter, a PBS solution (hereinafter referred to as PBS-T) containing 0.05% (w/v) Tween 20 (trade name) was introduced from the introduction part 131 to wash away the remaining reagent.
(12-4) An aqueous solution containing 95% (v/v) ethanol was introduced from the introduction part 131 and allowed to stand for 10 minutes to permeate the cells through the membrane, and then the reagent was removed by suction from the discharge part 132. Thereafter, PBS-T was introduced from the introduction section 131 to wash away the remaining reagent.
(12-5) Introduce a PBS solution containing 10% (v/v) Goat Serum and 3% (w/v) BSA from the introduction part 131, and block the cells by leaving it for 10 minutes. Thereafter, the reagent was removed by suction from the discharge section 132.
(12-6) Introducing a cell labeling reagent containing a mixture of anti-cytokeratin mouse antibody (manufactured by Miltenyi Biotec), 10% (v/v) Goat Serum, and 3% (w/v) BSA from the introduction part 131, After labeling the PC9 cells by standing for 30 minutes, the reagent was removed by suction from the discharge part 132. Thereafter, PBS-T was introduced from the introduction section 131 to wash away the remaining reagent.
(12-7) From the introduction part 131, Alexa Fluor 488-labeled anti-mouse IgG1 antibody (manufactured by Thermo Fisher Scientific), PE (phycoerythrin)-labeled anti-CD45 antibody (manufactured by Miltenyi Biotec), DAPI (4',6- By introducing a cell staining reagent containing a mixture of DiAmidino-2-PhenylIndole (manufactured by Dojindo Laboratories), 10% (v/v) Goat Serum, and 3% (w/v) BSA, and leaving it for 20 minutes. Cells were stained. Thereafter, the cell staining reagent was removed by suction from the outlet 22. Thereafter, PBS-T was introduced from the introduction section 131 to wash away the remaining reagent.
(12-8) In order to observe all the cells held in the holding part 170, a fluorescence microscope (IX71 manufactured by Olympus) equipped with a computer-controlled motorized stage and a CMOS camera (ORCA-Flash 4.0 manufactured by Hamamatsu Photonics) was used. ) to take bright field and fluorescence images of all retention areas.
(12-9) The images taken in (12-8) were analyzed using the analysis software LabVIEW (manufactured by National Instruments), and the images were stained with DAPI (with cell nuclei) and Alexa Fluor 488 (with cell nuclei). Cells that expressed keratin) and were not stained with PE (do not express CD45) were detected.
(12-10) Among the cells detected in (12-9), the number of target cells, PC9 cells, was counted, and this was taken as the number of detections. The cancer cell detection rate was calculated by dividing the detected number by the number of PC9 cells added in (4).
(12-11) Among the cells detected in (12-9), cells that are clearly smaller than PC9 cells and about the same size as white blood cells (approximately 10 μm) are judged to be erroneously detected contaminant cells (false positives). and counted the number of false positives.
がん細胞検出率と偽陽性数の結果を表1に示す。表1において偽陽性数とは、夾雑細胞のうちCD45の発現が弱い白血球や血小板に対してがん細胞マーカー(サイトケラチン)標識抗体が非特異吸着したものが目的細胞として誤判定した細胞数のことを指す。添加速度5mL/sの条件では、がん細胞の検出率を比較的維持(60%以上70%未満)しながら、偽陽性の発生数は比較的抑えている(10個以上30個未満)ことがわかる。したがって添加速度5mL/sの条件では、(10)および(11)に示す工程を、ペレットに含まれる夾雑細胞(血小板や白血球など)は置換溶媒に分散させる一方、ペレットに含まれる目的細胞(がん細胞)は置換溶媒に分散されない条件で行なっていることがわかる。一方、添加速度5mL/sの条件よりも遅い速度条件(添加速度2.5mL/sおよび3mL/sの条件)で置換溶媒を添加すると、がん細胞の検出率は高い(70%以上)ものの、偽陽性の発生数も増大(30個以上)した。また添加速度5mL/sの条件よりも速い速度条件(添加速度10mL/sの条件)で置換溶媒を添加すると、偽陽性の発生数は少ない(10個未満)ものの、がん細胞の検出率も減少(60%未満)した。 Table 1 shows the results of the cancer cell detection rate and the number of false positives. In Table 1, the number of false positives refers to the number of contaminant cells incorrectly determined as target cells due to non-specific adsorption of cancer cell marker (cytokeratin)-labeled antibodies to white blood cells and platelets with weak CD45 expression. refers to something. Under the condition of addition rate of 5 mL/s, the detection rate of cancer cells is relatively maintained (60% or more and less than 70%), while the number of false positives is relatively suppressed (10 or more and less than 30). I understand. Therefore, under the conditions of an addition rate of 5 mL/s, the steps shown in (10) and (11) can be carried out to disperse contaminant cells (platelets, white blood cells, etc.) contained in the pellet in the replacement solvent, while dispersing the target cells (such as It can be seen that the experiment was carried out under conditions in which the cells (cells) were not dispersed in the replacement solvent. On the other hand, when the substitution solvent is added at a rate slower than the addition rate of 5 mL/s (addition rate of 2.5 mL/s and 3 mL/s), the detection rate of cancer cells is high (more than 70%), but , the number of false positives also increased (more than 30). Furthermore, when the substitution solvent is added at a faster rate than the addition rate of 5 mL/s (addition rate of 10 mL/s), the number of false positives is small (less than 10), but the detection rate of cancer cells also increases. decreased (less than 60%).
本実施例において、目的細胞である、がん細胞の比重は1.040から1.065程度と、夾雑細胞である血小板(1.032程度)の比重より大きい。また同じく夾雑細胞である白血球の比重は1.063から1.085程度であり、その一部はがん細胞よりも比重が小さい。目的細胞(がん細胞)および夾雑細胞(血小板や白血球など)を含む細胞懸濁液を遠心分離すると、当該遠心分離後に得られたペレット中において、血小板および一部の比重の小さい白血球ががん細胞(下層)の上に蓄積した状態(上層)となる。上清除去後に置換溶媒を添加する際、当該溶媒の添加によりペレットに衝撃を加えることでペレット上部を解し、細胞を置換溶媒に分散させることで夾雑細胞を上清とともに除去できる。したがって、置換溶媒の添加速度が遅いほどペレットへの衝撃が小さくなるためペレットが解れにくく(すなわち置換溶媒への分散量が少なく)なり、添加速度が速いほどペレットへの衝撃が大きくなるためペレットが解れやすく(すなわち置換溶媒への分散量が多く)なる。以上より、置換溶媒の添加操作を、ペレット上層に主に含まれる夾雑細胞は前記置換溶媒に分散させる一方、ペレット下層(底部)に主に含まれる目的細胞は前記置換溶媒に分散させない条件(本実施例では添加速度5mL/sの条件)で行なうことで、目的細胞(がん細胞)を取りこぼすことなく、ペレット上層に含まれる夾雑細胞のみ分散させることができ、結果、がん細胞検出率は維持したまま偽陽性の低減が可能となる。 In this example, the specific gravity of cancer cells, which are target cells, is about 1.040 to 1.065, which is higher than the specific gravity of platelets (about 1.032), which are contaminant cells. Further, the specific gravity of white blood cells, which are also contaminant cells, is about 1.063 to 1.085, and some of them have a specific gravity lower than that of cancer cells. When a cell suspension containing target cells (cancer cells) and contaminant cells (platelets, white blood cells, etc.) is centrifuged, platelets and some low-density white blood cells are cancerous in the pellet obtained after centrifugation. It accumulates on top of the cells (lower layer) (upper layer). When a replacement solvent is added after removing the supernatant, the addition of the solvent applies an impact to the pellet, thereby loosening the upper part of the pellet and dispersing the cells in the replacement solvent, thereby removing contaminant cells together with the supernatant. Therefore, the slower the addition speed of the replacement solvent, the smaller the impact on the pellets, making it difficult for the pellets to unravel (that is, the smaller the amount of dispersion in the replacement solvent), and the faster the addition speed, the larger the impact on the pellets, making the pellets It dissolves easily (that is, the amount of dispersion in the replacement solvent increases). From the above, the addition operation of the replacement solvent was carried out under the conditions that the contaminant cells mainly contained in the upper layer of the pellet were dispersed in the replacement solvent, while the target cells mainly contained in the lower layer (bottom) of the pellet were not dispersed in the replacement solvent. By performing this at an addition rate of 5 mL/s (in the example), only the contaminant cells contained in the upper layer of the pellet can be dispersed without losing the target cells (cancer cells), resulting in a lower cancer cell detection rate. It is possible to reduce false positives while maintaining the
参考例1
実施例1(10)および(11)において、置換溶媒の添加速度を5mL/sとし、異なる2人の作業者(作業者Aおよび作業者B)で行なった他は、実施例1と同様な方法でがん細胞検出率と偽陽性数を算出した。
Reference example 1
In Examples 1 (10) and (11), the same procedure as in Example 1 was carried out, except that the addition rate of the replacement solvent was 5 mL/s, and two different operators (operator A and worker B) performed the operations. The cancer cell detection rate and the number of false positives were calculated using the method.
実施例2
実施例1(10)および(11)において、置換溶媒の添加速度を5mL/sとし、置換溶媒の添加に電動ピペッターを用い、異なる2人の作業者(作業者Aおよび作業者B)で行なった他は、実施例1と同様な方法でがん細胞検出率と偽陽性数を算出した。
Example 2
In Examples 1 (10) and (11), the addition rate of the replacement solvent was 5 mL/s, an electric pipetter was used for the addition of the replacement solvent, and two different operators (worker A and worker B) performed the addition. Otherwise, the cancer cell detection rate and the number of false positives were calculated in the same manner as in Example 1.
比較例1
実施例1(10)および(11)において、置換溶媒の添加速度1.5mL/sまたは10mL/sとし、置換溶媒の添加に電動ピペッターを用いた他は、実施例1と同様な方法でがん細胞検出率と偽陽性数を算出した。
Comparative example 1
In Examples 1 (10) and (11), the same method as in Example 1 was used except that the replacement solvent addition rate was 1.5 mL/s or 10 mL/s and an electric pipetter was used for adding the replacement solvent. The cell detection rate and the number of false positives were calculated.
参考例1、実施例2および比較例1における、がん細胞検出率と偽陽性数の結果をまとめて表2に示す。実施例1および参考例1(作業者B)では、がん細胞の検出率を比較的維持(60%以上70%未満)しながら、偽陽性の発生数を比較的抑えて(10個以上30個未満)いたが、参考例1(作業者A)では偽陽性の発生数が増大(30個以上)していた。したがって、本発明の前処理方法における置換溶媒の添加を、デカントで行なおうとした場合、作業者によるばらつきが発生するおそれがあることがわかる。置換溶媒の添加に電動ピペッターを用いた場合(実施例2)、デカントで行なった場合(実施例1)と比較して、がん細胞検出率が向上(70%以上)し、偽陽性数も低減(10個未満)した。さらにデカントによる置換溶媒の添加(参考例1)で発生した、作業者間でのばらつきもみられず、安定した結果が得られることが確認された。これは、デカントでは手振れなどにより安定して液を添加することが困難である一方、電動ピペッターであれば容易に一定速度で安定して液を添加可能であるためと考えられる。 Table 2 summarizes the results of the cancer cell detection rate and the number of false positives in Reference Example 1, Example 2, and Comparative Example 1. In Example 1 and Reference Example 1 (Worker B), the detection rate of cancer cells was relatively maintained (60% or more and less than 70%), while the number of false positives was relatively suppressed (10 or more and less than 30%). However, in Reference Example 1 (Worker A), the number of false positives increased (more than 30). Therefore, it can be seen that when the replacement solvent is added by decantation in the pretreatment method of the present invention, there is a possibility that variations depending on the operator may occur. When an electric pipettor was used to add the replacement solvent (Example 2), the cancer cell detection rate was improved (more than 70%) and the number of false positives was also reduced compared to when the substitution solvent was added using a decant (Example 1). reduced (less than 10). Furthermore, there was no variation among operators, which occurred when adding the replacement solvent by decantation (Reference Example 1), and it was confirmed that stable results could be obtained. This is thought to be because, while it is difficult to add liquid stably with a decant due to hand shake, etc., it is easy to add liquid stably at a constant speed with an electric pipettor.
なお置換溶媒の添加に電動ピペッターを用いても、添加速度が1.5mL/sでは高いがん細胞検出率は維持(70%以上)できるものの偽陽性数は増大(30個以上)し、添加速度が10mL/sでは偽陽性数は低減(10個未満)できるもののがん細胞検出率は低下(60%未満)した(比較例1)。このことから、置換溶媒にキシリトール溶液を使用した場合、添加速度を3.5mL/s以上7.5mL/s以下とすると、高いがん細胞検出率を維持したまま偽陽性数が低減できるため、好ましいといえる。 Even if an electric pipettor is used to add the replacement solvent, a high cancer cell detection rate can be maintained (over 70%) at an addition rate of 1.5 mL/s, but the number of false positives will increase (over 30 cells) and the addition rate will be 1.5 mL/s. At a speed of 10 mL/s, the number of false positives could be reduced (less than 10), but the cancer cell detection rate was reduced (less than 60%) (Comparative Example 1). From this, when using a xylitol solution as the replacement solvent, if the addition rate is 3.5 mL/s or more and 7.5 mL/s or less, the number of false positives can be reduced while maintaining a high cancer cell detection rate. It can be said that it is preferable.
比較例2
実施例1(9)から(11)で用いる置換溶媒を280mMスクロース水溶液とし、実施例1(10)および(11)における置換溶媒の添加を電動ピペッターを用いて添加速度0.5mL/sまたは5mL/sで添加した他は、実施例1と同様な方法でがん細胞検出率と偽陽性数を算出した。
Comparative example 2
The replacement solvent used in Examples 1 (9) to (11) was a 280 mM sucrose aqueous solution, and the replacement solvent in Examples 1 (10) and (11) was added at an addition rate of 0.5 mL/s or 5 mL using an electric pipettor. The cancer cell detection rate and the number of false positives were calculated in the same manner as in Example 1, except that the addition was performed at a rate of /s.
実施例3
実施例1(10)および(11)において置換溶媒の添加速度を1.5mL/sとした他は、比較例2と同様な方法でがん細胞検出率と偽陽性数を算出した。
Example 3
The cancer cell detection rate and the number of false positives were calculated in the same manner as in Comparative Example 2, except that the replacement solvent addition rate was 1.5 mL/s in Examples 1 (10) and (11).
比較例2および実施例3における、がん細胞検出率と偽陽性数の結果をまとめて表3に示す。置換溶媒の添加速度を0.5mL/sとすると高いがん細胞検出率は維持できる(70%以上)ものの、偽陽性数が増大(30個以上)し、5mL/sとすると偽陽性数は低減(10個未満)できるものの、がん細胞検出率が低下(60%未満)した(比較例3)。一方、添加速度を1.5mL/sとすると、高いがん細胞検出率(70%以上)を維持しながら偽陽性数が低減(10個未満)した(実施例3)。このことから置換溶媒にスクロース溶液を使用した場合、添加速度を1mL/s以上3mL/s以下の添加速度とすると、高いがん細胞検出率を維持したまま偽陽性数が低減できるため、好ましいといえる。 The results of the cancer cell detection rate and the number of false positives in Comparative Example 2 and Example 3 are summarized in Table 3. When the substitution solvent addition rate is set to 0.5 mL/s, a high cancer cell detection rate can be maintained (more than 70%), but the number of false positives increases (30 or more), and when the addition rate is set to 5 mL/s, the number of false positives decreases. Although it was possible to reduce the number of cancer cells (to less than 10 cells), the cancer cell detection rate decreased (to less than 60%) (Comparative Example 3). On the other hand, when the addition rate was 1.5 mL/s, the number of false positives was reduced (less than 10) while maintaining a high cancer cell detection rate (70% or more) (Example 3). From this, when using a sucrose solution as the replacement solvent, it is preferable to set the addition rate to 1 mL/s or more and 3 mL/s or less, as this can reduce the number of false positives while maintaining a high cancer cell detection rate. I can say that.
100:細胞保持装置
110:絶縁膜
120:遮光膜
111・121:貫通孔
130:スペーサ
131:導入部
132:排出部
141・142:電極
141a:+極
141b:-極
150:導線
160:交流電源
170:保持部
200:検出部
300:細胞
400:誘電泳動力
500:光
100: Cell holding device 110: Insulating film 120: Light shielding film 111, 121: Through hole 130: Spacer 131: Introduction section 132: Exhaust section 141, 142: Electrode 141a: + pole 141b: - pole 150: Conductive wire 160: AC power supply 170: Holding section 200: Detection section 300: Cell 400: Dielectrophoretic force 500: Light
Claims (9)
(2)(1)の工程で得た遠心上清の一部を除去し、細胞の比重に依存して層を形成した目的細胞および夾雑細胞を含むペレット状の沈殿物と、元の試料由来の遠心上清を含む試料を得る工程と、
(3)(2)の工程で得た試料に、糖を含む等張液を一定速度で添加する工程と、
(4)(3)の工程で得た試料を、遠心分離する工程と、
(5)(4)の工程で得た遠心上清を除去し、夾雑細胞が除かれた目的細胞を含む懸濁液を得る工程と、
を含む、目的細胞および夾雑細胞を含む血液由来の試料から、夾雑細胞が除かれた目的細胞を含む懸濁液を得る前処理方法であって、
前記糖を含む等張液が、目的細胞の比重よりも小さくなるように調整された糖を含む等張液であり、
かつ前記糖を含む等張液を一定速度で添加する工程が、前記ペレット状の沈殿物の上層に含まれる夾雑細胞は前記糖を含む等張液に分散させる一方、前記ペレット状の沈殿物の下層に含まれる目的細胞は前記糖を含む等張液に分散させない条件であり、糖を含む等張液を添加する際に、前記(2)の工程で得た試料に含まれるペレット状の沈殿物の上層のみを懸濁する条件で、電動ピペッターを使用して一定速度で添加することで行なう、
前記方法。 (1) A step of centrifuging a sample obtained from blood containing target cells and contaminant cells;
(2) A part of the centrifuged supernatant obtained in step (1) is removed, and a pellet-like precipitate containing target cells and contaminant cells formed in a layer depending on the specific gravity of the cells , and the original sample obtaining a sample containing a centrifugal supernatant of
(3) adding an isotonic solution containing sugar to the sample obtained in step (2) at a constant rate ;
(4) centrifuging the sample obtained in step (3);
(5) removing the centrifuged supernatant obtained in step (4) to obtain a suspension containing target cells from which contaminant cells have been removed ;
A pretreatment method for obtaining a suspension containing target cells from which contaminant cells have been removed from a blood-derived sample containing target cells and contaminant cells, comprising:
The isotonic solution containing sugar is an isotonic solution containing sugar adjusted so that the specific gravity is smaller than the specific gravity of the target cell,
and the step of adding the sugar-containing isotonic solution at a constant rate disperses the contaminant cells contained in the upper layer of the pellet-like precipitate in the sugar-containing isotonic solution, while adding the sugar-containing isotonic solution to the pellet -like precipitate. The target cells contained in the lower layer are not dispersed in the sugar-containing isotonic solution , and when adding the sugar-containing isotonic solution, the pellet-like precipitates contained in the sample obtained in step (2) above are removed. This is done by adding at a constant rate using an electric pipettor, under the conditions that only the upper layer of the substance is suspended .
Said method.
(I)請求項1から7に記載のいずれかの方法で試料の前処理を行ない、目的細胞を含む懸濁液を得る工程、
(II)(I)の工程で得た懸濁液を、保持部を有した細胞保持手段に導入する工程、
(III)誘電泳動力を利用して前記懸濁液に含まれる目的細胞を前記保持部に保持させる工程、
(IV)(III)で保持させた目的細胞を検出する工程。 A method for detecting target cells contained in a sample, including the steps shown in (I) to (IV) below:
(I) pretreating the sample by any of the methods described in claims 1 to 7 to obtain a suspension containing target cells;
(II) a step of introducing the suspension obtained in step (I) into a cell holding means having a holding section;
(III) a step of holding the target cells contained in the suspension in the holding section using dielectrophoretic force;
(IV) Detecting the target cells retained in (III).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019173721A JP7413692B2 (en) | 2019-09-25 | 2019-09-25 | Pretreatment method for samples containing cells |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019173721A JP7413692B2 (en) | 2019-09-25 | 2019-09-25 | Pretreatment method for samples containing cells |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2021050990A JP2021050990A (en) | 2021-04-01 |
| JP7413692B2 true JP7413692B2 (en) | 2024-01-16 |
Family
ID=75157646
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019173721A Active JP7413692B2 (en) | 2019-09-25 | 2019-09-25 | Pretreatment method for samples containing cells |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7413692B2 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016500008A (en) | 2012-11-30 | 2016-01-07 | クヴェッラ コーポレーション | Apparatus and method for extracting microbial cells |
| JP2016142616A (en) | 2015-02-02 | 2016-08-08 | 東ソー株式会社 | Microparticle recovery apparatus |
| JP2017504027A (en) | 2014-01-22 | 2017-02-02 | セラノス, インコーポレイテッドTheranos, Inc. | Rapid measurement of blood component sedimentation rates formed from small sample volumes |
| JP2019060869A (en) | 2017-09-26 | 2019-04-18 | 東ソー株式会社 | Factors involved in the metastatic potential of cancer and prognostic value prediction method for cancer patients using said factors |
| US20190277852A1 (en) | 2016-10-19 | 2019-09-12 | Queen Mary University Of London | Method for Determining Prognosis of Cancer |
-
2019
- 2019-09-25 JP JP2019173721A patent/JP7413692B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016500008A (en) | 2012-11-30 | 2016-01-07 | クヴェッラ コーポレーション | Apparatus and method for extracting microbial cells |
| JP2017504027A (en) | 2014-01-22 | 2017-02-02 | セラノス, インコーポレイテッドTheranos, Inc. | Rapid measurement of blood component sedimentation rates formed from small sample volumes |
| JP2016142616A (en) | 2015-02-02 | 2016-08-08 | 東ソー株式会社 | Microparticle recovery apparatus |
| US20190277852A1 (en) | 2016-10-19 | 2019-09-12 | Queen Mary University Of London | Method for Determining Prognosis of Cancer |
| JP2019060869A (en) | 2017-09-26 | 2019-04-18 | 東ソー株式会社 | Factors involved in the metastatic potential of cancer and prognostic value prediction method for cancer patients using said factors |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2021050990A (en) | 2021-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Franquesa et al. | Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells | |
| CN100468058C (en) | Blood Cell Separation System | |
| US8372657B2 (en) | Microfluidic system for detecting a biological entity in a sample | |
| US8263404B2 (en) | Method for enriching rare cell subpopulations from blood | |
| US20130345084A1 (en) | Methods and devices for obtaining and analyzing cells | |
| JP6936984B2 (en) | How to Predict the Prognosis of Cancer Patients Using Rare Cells | |
| JP2000500337A (en) | Method and apparatus for bulk enrichment of a population or subpopulation of cells | |
| JP6617516B2 (en) | Method for detecting target cells contained in blood sample | |
| CN109863399B (en) | Method for counting particles present in a cell composition | |
| JP6686768B2 (en) | Cell separation and collection method | |
| CN111751543A (en) | A kind of rare tumor cell enrichment method and kit | |
| EP0672458A2 (en) | Method and apparatus for magnetic cytometry | |
| JP7413692B2 (en) | Pretreatment method for samples containing cells | |
| JP2020030180A (en) | Hemolytic agent for blood sample | |
| JP7494460B2 (en) | Method for producing a carrier capable of binding to cells | |
| WO2022085341A1 (en) | Sample preparation system and sample preparation method | |
| JP2018028457A (en) | Target particle recovery method and recovery device | |
| JP7279542B2 (en) | Method for quantifying target cells contained in a sample | |
| JP2018157812A (en) | Method for detecting cells contained in a sample | |
| RU2846705C1 (en) | Method of extracting extracellular vesicles from human biological fluids | |
| JP2016106622A (en) | Separation and recovery method of cells | |
| JP6198186B2 (en) | Method for separating target cells | |
| JP2020096555A (en) | How to collect cells | |
| JP2021019513A (en) | Method for analyzing target particles | |
| JP6754345B2 (en) | Magnetic labeling method and labeling device for particles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220822 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230711 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230718 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230913 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231128 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231211 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 7413692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |