JP7415732B2 - electrostatic chuck device - Google Patents
electrostatic chuck device Download PDFInfo
- Publication number
- JP7415732B2 JP7415732B2 JP2020057813A JP2020057813A JP7415732B2 JP 7415732 B2 JP7415732 B2 JP 7415732B2 JP 2020057813 A JP2020057813 A JP 2020057813A JP 2020057813 A JP2020057813 A JP 2020057813A JP 7415732 B2 JP7415732 B2 JP 7415732B2
- Authority
- JP
- Japan
- Prior art keywords
- electrostatic chuck
- base member
- bonding layer
- insulator
- temperature adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012212 insulator Substances 0.000 claims description 118
- 229920002050 silicone resin Polymers 0.000 claims description 60
- 230000004308 accommodation Effects 0.000 claims description 51
- 239000011342 resin composition Substances 0.000 claims description 37
- 239000000919 ceramic Substances 0.000 claims description 23
- 239000000112 cooling gas Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 17
- 239000000945 filler Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 107
- 238000001179 sorption measurement Methods 0.000 description 25
- 125000006850 spacer group Chemical group 0.000 description 24
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 22
- 239000002245 particle Substances 0.000 description 20
- 230000007423 decrease Effects 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 238000005304 joining Methods 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 11
- 239000011810 insulating material Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 239000013464 silicone adhesive Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 graphite and carbon Chemical compound 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011077 uniformity evaluation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、静電チャック装置に関する。 The present invention relates to an electrostatic chuck device.
従来、IC、LSI、VLSI等の半導体装置を製造する半導体製造工程においては、シリコンウエハ等の板状試料は、静電チャック機能を備えた静電チャック部材に静電吸着により固定されて所定の処理が施される。
例えば、この板状試料にプラズマ雰囲気下にてエッチング処理等を施す場合、プラズマの熱により板状試料の表面が高温になり、表面のレジスト膜が張り裂ける(バーストする)等の問題が生じる。
そこで、この板状試料の温度を所望の一定の温度に維持するために、静電チャック装置が用いられている。静電チャック装置は、上記の静電チャック部材の下面に、金属製の部材の内部に温度制御用の冷却媒体を循環させる流路が形成された温度調整用ベース部材を、シリコーン系接着剤を介して接合・一体化した装置である。
この静電チャック装置では、温度調整用ベース部材の流路に温度調整用の冷却媒体を循環させて熱交換を行い、静電チャック部材の上面に固定された板状試料の温度を望ましい一定の温度に維持しつつ静電吸着し、この板状試料に各種のプラズマ処理を施すようになっている。
Conventionally, in the semiconductor manufacturing process of manufacturing semiconductor devices such as IC, LSI, VLSI, etc., a plate-shaped sample such as a silicon wafer is fixed by electrostatic adsorption to an electrostatic chuck member equipped with an electrostatic chuck function and held at a predetermined position. Processing is performed.
For example, when etching or the like is performed on this plate-shaped sample in a plasma atmosphere, the surface of the plate-shaped sample becomes hot due to the heat of the plasma, causing problems such as the resist film on the surface bursting.
Therefore, an electrostatic chuck device is used to maintain the temperature of this plate-shaped sample at a desired constant temperature. The electrostatic chuck device includes a temperature control base member in which a flow path for circulating a cooling medium for temperature control is formed inside the metal member on the bottom surface of the electrostatic chuck member, and a silicone-based adhesive is attached to the bottom surface of the electrostatic chuck member. This is a device that is joined and integrated through the
In this electrostatic chuck device, heat exchange is performed by circulating a cooling medium for temperature adjustment in the flow path of the temperature adjustment base member, and the temperature of the plate-shaped sample fixed on the top surface of the electrostatic chuck member is maintained at a desired constant level. Electrostatic adsorption is performed while maintaining the temperature, and various plasma treatments are applied to this plate-shaped sample.
ところで、静電チャック装置では、プラズマ処理の際に生じる、電極となる温度調整用ベース部材とウエハの間の放電を防止するために、温度調整用ベース部材を厚さ方向に貫通するように設けられた孔内に接着剤を介してセラミックスからなり、冷却ガス導入孔を有する碍子が接合されている。このように温度調整用ベース部材内に碍子を設けることにより、温度調整用ベース部材を絶縁している(例えば、特許文献1~4参照)。
By the way, in an electrostatic chuck device, in order to prevent discharge between the temperature adjustment base member, which becomes an electrode, and the wafer, which occurs during plasma processing, a temperature adjustment base member is provided so as to penetrate through the temperature adjustment base member in the thickness direction. An insulator made of ceramics and having cooling gas introduction holes is bonded into the hole through an adhesive. By providing the insulator within the temperature adjusting base member in this manner, the temperature adjusting base member is insulated (see, for example,
半導体デバイスの構造や材料の進化に伴って、ウエハの処理条件も変化しているため、静電チャック装置の使用温度範囲も広範囲になる傾向にある。温度調整用ベース部材と静電チャック部材は、熱膨張係数の差が大きいため、静電チャック装置の温度変化によって、温度調整用ベース部材と静電チャック部材には、熱膨張の差に起因するせん断変位やせん断応力が発生する。静電チャック装置の使用温度範囲がさらに拡がると、上記のせん断変位やせん断応力が増大して、温度調整用ベース部材と静電チャック部材を接合する接合層が破断することがあった。 As the structure and materials of semiconductor devices evolve, wafer processing conditions are also changing, so the temperature range in which electrostatic chuck devices can be used tends to be wider. The base member for temperature adjustment and the electrostatic chuck member have a large difference in coefficient of thermal expansion, so due to temperature changes in the electrostatic chuck device, the base member for temperature adjustment and the electrostatic chuck member have a large difference in thermal expansion coefficient. Shear displacement and shear stress occur. When the operating temperature range of the electrostatic chuck device is further expanded, the above-mentioned shear displacement and shear stress increase, and the bonding layer that joins the temperature adjustment base member and the electrostatic chuck member may break.
また、静電チャック装置では、温度調整用ベース部材の直上と碍子の直上とでは、静電チャック部材と温度調整用ベース部材の間の熱抵抗が異なる。外部から与えられる熱量が同じであれば、静電チャック部材と温度調整用ベース部材の温度差は、静電チャック部材と温度調整用ベース部材の間の熱抵抗に比例する。そのため、碍子の直上におけるウエハ等の板状試料の温度と碍子の直上以外の領域における板状試料の温度とは差が生じるという課題があった。 Furthermore, in the electrostatic chuck device, the thermal resistance between the electrostatic chuck member and the temperature adjusting base member is different between the area directly above the temperature adjusting base member and the area directly above the insulator. If the amount of heat applied from the outside is the same, the temperature difference between the electrostatic chuck member and the temperature adjustment base member is proportional to the thermal resistance between the electrostatic chuck member and the temperature adjustment base member. Therefore, there is a problem in that the temperature of the plate-shaped sample such as a wafer directly above the insulator is different from the temperature of the plate-shaped sample in a region other than directly above the insulator.
本発明は、上記事情に鑑みてなされたものであって、温度調整用ベース部材と静電チャック部材に、それらの熱膨張の差に起因するせん断変位やせん断応力が発生することを抑制し、かつ静電チャック部材上に固定された板状試料の温度を均一にすることが可能な静電チャック装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and suppresses the generation of shear displacement and shear stress in the temperature adjustment base member and the electrostatic chuck member due to the difference in thermal expansion between them. Another object of the present invention is to provide an electrostatic chuck device that can uniformize the temperature of a plate-shaped sample fixed on an electrostatic chuck member.
上記の課題を解決するため、本発明の一態様は、セラミックスからなる静電チャック部材と、金属からなる温度調整用ベース部材とを、接合層を介して接合してなる静電チャック装置であって、前記静電チャック部材、前記温度調整用ベース部材および前記接合層に、その厚さ方向に貫通する冷却ガス導入孔が設けられ、前記温度調整用ベース部材を厚さ方向に貫通する収容孔内に、前記接合層を介してセラミックスからなる碍子が接合され、前記温度調整用ベース部材における前記冷却ガス導入孔は、前記収容孔内に配置された前記碍子を厚さ方向に貫通する貫通孔であり、前記碍子の前記静電チャック部材側の端面が、前記収容孔内にあり、前記静電チャック部材と前記温度調整用ベース部材の間における前記接合層の厚さが0.05mm以上かつ0.20mm以下であり、前記碍子と前記静電チャック部材の間における前記接合層の前記収容孔内にある部分の厚さが0.0mm以上かつ0.2mm以下であり、前記静電チャック部材と前記温度調整用ベース部材の間における前記接合層は、シリコーン樹脂およびフィラーを含有するシリコーン系樹脂組成物からなり、前記碍子と前記温度調整用ベース部材の間における前記接合層の前記収容孔内にある部分は、シリコーン樹脂のみからなる層を含む静電チャック装置を提供する。 In order to solve the above problems, one embodiment of the present invention provides an electrostatic chuck device in which an electrostatic chuck member made of ceramics and a temperature adjustment base member made of metal are bonded via a bonding layer. A cooling gas introduction hole is provided in the electrostatic chuck member, the temperature adjustment base member, and the bonding layer in the thickness direction, and a housing hole is provided in the temperature adjustment base member in the thickness direction. An insulator made of ceramic is bonded therein via the bonding layer, and the cooling gas introduction hole in the temperature adjustment base member is a through hole that penetrates the insulator in the thickness direction arranged in the accommodation hole. an end surface of the insulator on the electrostatic chuck member side is in the accommodation hole, and the thickness of the bonding layer between the electrostatic chuck member and the temperature adjustment base member is 0.05 mm or more, and 0.20 mm or less, and a thickness of a portion of the bonding layer between the insulator and the electrostatic chuck member located within the accommodation hole is 0.0 mm or more and 0.2 mm or less, and the electrostatic chuck The bonding layer between the member and the temperature regulating base member is made of a silicone resin composition containing a silicone resin and a filler, and the bonding layer between the insulator and the temperature regulating base member is made of a silicone resin composition containing a silicone resin and a filler. The inner portion provides an electrostatic chuck device that includes a layer consisting solely of silicone resin .
本発明の一態様においては、前記収容孔内において、前記碍子と前記温度調整用ベース部材の間における前記接合層の厚さが0.00mm超かつ0.05mm以下であってもよい。 In one aspect of the present invention, the thickness of the bonding layer between the insulator and the temperature adjustment base member within the accommodation hole may be greater than 0.00 mm and less than or equal to 0.05 mm.
本発明の一態様においては、前記静電チャック部材と前記温度調整用ベース部材の間における前記接合層は、硬化後のヤング率が8MPa以下の高分子材料から構成されていてもよい。 In one aspect of the present invention, the bonding layer between the electrostatic chuck member and the temperature adjustment base member may be made of a polymeric material having a Young's modulus of 8 MPa or less after curing.
本発明の一態様においては、前記静電チャック部材と前記温度調整用ベース部材の間における前記接合層の厚さは、前記碍子と前記静電チャック部材の間における前記接合層の前記収容孔内にある部分の厚さ以上、かつ、前記収容孔内において、前記碍子と前記温度調整用ベース部材の間における前記接合層の厚さより大きくてもよい。 In one aspect of the present invention, the thickness of the bonding layer between the electrostatic chuck member and the temperature adjustment base member is such that the thickness of the bonding layer between the insulator and the electrostatic chuck member is within the accommodation hole of the bonding layer between the insulator and the electrostatic chuck member. The thickness of the bonding layer between the insulator and the temperature adjusting base member may be greater than or equal to the thickness of the portion within the accommodation hole.
本発明の一態様においては、前記碍子と前記静電チャック部材の間における前記接合層は、フィラーを含有するシリコーン系樹脂組成物から構成されていてもよい。 In one aspect of the present invention, the bonding layer between the insulator and the electrostatic chuck member may be made of a silicone resin composition containing a filler.
本発明によれば、温度調整用ベース部材と静電チャック部材に、それらの熱膨張の差に起因するせん断変位やせん断応力が発生することを抑制し、かつ静電チャック部材上に固定された板状試料の温度を均一にすることが可能な静電チャック装置を提供することができる。 According to the present invention, the generation of shear displacement and shear stress due to the difference in thermal expansion between the temperature adjustment base member and the electrostatic chuck member is suppressed, and the temperature adjustment base member and the electrostatic chuck member are fixed on the electrostatic chuck member. An electrostatic chuck device capable of uniformizing the temperature of a plate-shaped sample can be provided.
本発明の静電チャック装置の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
An embodiment of an electrostatic chuck device of the present invention will be described.
It should be noted that the present embodiment is specifically explained in order to better understand the gist of the invention, and is not intended to limit the invention unless otherwise specified.
<静電チャック装置>
以下、図1~図3を参照しながら、本実施形態に係る静電チャック装置について説明する。
なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率等は適宜異ならせてある。
<Electrostatic chuck device>
The electrostatic chuck device according to this embodiment will be described below with reference to FIGS. 1 to 3.
Note that in all the drawings below, the dimensions, ratios, etc. of each component are changed as appropriate to make the drawings easier to read.
図1は、本発明の一実施形態の静電チャック装置を示す断面図である。図1に示すように、静電チャック装置1は、円板状の静電チャック部材2と、静電チャック部材2を所望の温度に調整する円板状の温度調節用ベース部材3と、これら静電チャック部材2および温度調整用ベース部材3を接合・一体化する接合層4と、を有している。
以下の説明においては、載置板11の載置面11a側を「上」、温度調整用ベース部材3側を「下」として記載し、各構成の相対位置を表すことがある。
FIG. 1 is a sectional view showing an electrostatic chuck device according to an embodiment of the present invention. As shown in FIG. 1, the
In the following description, the
[静電チャック部材]
静電チャック部材2は、上面が半導体ウエハ等の板状試料を載置する載置面11aとされたセラミックスからなる載置板11と、載置板11の載置面11aとは反対の面側に設けられた支持板12と、これら載置板11と支持板12との間に挟持された静電吸着用電極13と、載置板11と支持板12とに挟持され静電吸着用電極13の周囲を囲む環状の絶縁材14と、静電吸着用電極13に接するように支持板12の固定孔15内に設けられた給電端子16と、を有している。
[Electrostatic chuck member]
The
これら載置板11、支持板12および静電吸着用電極13には、その厚さ方向に貫通する冷却ガス導入孔17が中心軸に対して回転対称となる位置に計4個形成されている。
A total of four cooling
[載置板]
載置板11の載置面11aには、半導体ウエハ等の板状試料を支持するための多数の突起が立設され(図示略)ている。さらに、載置板11の載置面11aの周縁部には、ヘリウム(He)等の冷却ガスが漏れないように、高さが上記の突起と同じ高さの周縁壁が形成され(図示省略)ている。この周縁壁の内側は、板状試料を静電吸着する吸着領域とされている。上記の冷却ガス導入孔17を介して、載置板11の載置面11aと突起頂面に載置された板状試料との隙間に、冷却ガスが供給されるようになっている。
[Placement plate]
A large number of protrusions (not shown) are provided on the
載置板11を構成するセラミックスとしては、誘電体材料であり、機械的な強度を有し、しかも腐食性ガスおよびそのプラズマに対する耐久性を有するものであれば特に制限されるものではない。このようなセラミックスとしては、例えば、酸化アルミニウム(Al2O3)焼結体、窒化アルミニウム(AlN)焼結体、酸化アルミニウム(Al2O3)-炭化ケイ素(SiC)複合焼結体等が好適に用いられる。
The ceramic constituting the
載置板11の厚さは、0.3mm以上かつ3.0mm以下であることが好ましく、0.5mm以上かつ1.5mm以下であることがより好ましい。載置板11の厚さが0.3mm以上であれば、耐電圧性に優れる。一方、載置板11の厚さが3.0mm以下であれば、静電チャック部材2の静電吸着力が低下することがなく、載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
The thickness of the
[支持板]
支持板12は、載置板11と静電吸着用電極13を下側から支持している。
[Support plate]
The
支持板12は、載置板11を構成するセラミックスと同様の材料からなる。
支持板12の厚さは、0.3mm以上かつ3.0mm以下であることが好ましく、0.5mm以上かつ1.5mm以下であることがより好ましい。支持板12の厚さが0.3mm以上であれば、充分な耐電圧を確保することができる。一方、支持板12の厚さが3.0mm以下であれば、静電チャック部材2の静電吸着力が低下することがなく、載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
The
The thickness of the
[静電吸着用電極]
静電吸着用電極13では、電圧を印加することにより、載置板11の載置面11aに板状試料を保持する静電吸着力が生じる。
[Electrostatic adsorption electrode]
By applying a voltage to the
静電吸着用電極13を構成する材料としては、チタン、タングステン、モリブデン、白金等の高融点金属、グラファイト、カーボン等の炭素材料、炭化ケイ素、窒化チタン、炭化チタン等の導電性セラミックス等が好適に用いられる。これらの材料の熱膨張係数は、載置板11の熱膨張係数に出来るだけ近似していることが望ましい。
Suitable materials for forming the
静電吸着用電極13の厚さは、5μm以上かつ200μm以下であることが好ましく、10μm以上かつ100μm以下であることがより好ましい。静電吸着用電極13の厚さが5μm以上であれば、充分な導電性を確保することができる。一方、静電吸着用電極13の厚さが200μm以下でれば、載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することがなく、処理中の板状試料の温度を望ましい一定の温度に保つことができる。また、プラズマ透過性が低下することがなく、安定にプラズマを発生させることができる。
The thickness of the
静電吸着用電極13は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
The
[絶縁材]
絶縁材14は、静電吸着用電極13を囲繞して腐食性ガスおよびそのプラズマから静電吸着用電極13を保護するためのものである。
絶縁材14は、載置板11および支持板12と同一組成、または主成分が同一の絶縁性材料から構成されている。絶縁材14により、載置板11と支持板12とが、静電吸着用電極13を介して接合一体化されている。
[Insulating material]
The insulating
The insulating
[給電端子]
給電端子16は、静電吸着用電極13に電圧を印加するためのものである。
給電端子16の数、形状等は、静電吸着用電極13の形態、すなわち単極型か、双極型かにより決定される。
[Power supply terminal]
The
The number, shape, etc. of the
給電端子16の材料は、耐熱性に優れた導電性材料であれば特に制限されるものではない。給電端子16の材料としては、熱膨張係数が静電吸着用電極13および支持板12の熱膨張係数に近似したものであることが好ましく、例えば、コバール合金、ニオブ(Nb)等の金属材料、各種の導電性セラミックスが好適に用いられる。
The material of the
[温度調整用ベース部材]
温度調整用ベース部材3は、金属およびセラミックスの少なくとも一方からなる厚みのある円板状のものである。温度調整用ベース部材3の躯体は、プラズマ発生用内部電極を兼ねた構成とされている。温度調整用ベース部材3の躯体の内部には、水、Heガス、N2ガス等の冷却媒体を循環させる流路(図示略)が形成されている。また、温度調整用ベース部材3の躯体の内部には、静電チャック部材2と同様に、固定孔15も形成されている。さらに、温度調整用ベース部材3の躯体の内部には、温度調整用ベース部材3を厚さ方向に貫通する収容孔18が形成されている。
[Temperature adjustment base member]
The temperature
温度調整用ベース部材3に設けられた収容孔18内には、静電チャック部材2および温度調整用ベース部材3を接合・一体化する接合層4が延在し、その接合層4を介して、収容孔18にセラミックスからなる碍子21が接合・一体化されている。
碍子21には、碍子21の中央部を、その厚さ方向に貫通する貫通孔22が形成されている。碍子21に設けられた貫通孔22は、静電チャック部材2および接合層4に設けられた冷却ガス導入孔17と連通している。すなわち、温度調整用ベース部材3における冷却ガス導入孔17は、収容孔18内に配置された碍子21を厚さ方向に貫通する貫通孔22である。
A
A through
碍子21の静電チャック部材側の端面(上面)21aは、収容孔18内にある。すなわち、温度調整用ベース部材3の静電チャック部材2とは反対側の面(以下、「他方の面」と言う。)3bを基準として、碍子21の上面21aは、温度調整用ベース部材3の一方の面3aよりも下方に存在する。
An end surface (upper surface) 21 a of the
温度調整用ベース部材3の躯体は、外部の高周波電源31に接続されている。また、温度調整用ベース部材3の固定孔15内には、その外周が絶縁材料32により囲繞された給電端子16が、絶縁材料32を介して固定されている。給電端子16は、外部の直流電源33に接続されている。
The body of the temperature
温度調整用ベース部材3を構成する材料は、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限されるものではない。温度調整用ベース部材3を構成する材料としては、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)等が好適に用いられる。
温度調整用ベース部材3における少なくともプラズマに曝される面は、アルマイト処理またはポリイミド系樹脂による樹脂コーティングが施されていることが好ましい。また、温度調整用ベース部材3の全面が、前記のアルマイト処理または樹脂コーティングが施されていることがより好ましい。
The material constituting the temperature
At least the surface of the temperature
温度調整用ベース部材3にアルマイト処理または樹脂コーティングを施すことにより、温度調整用ベース部材3の耐プラズマ性が向上するとともに、異常放電が防止される。したがって、温度調整用ベース部材3の耐プラズマ安定性が向上し、また、温度調整用ベース部材3の表面傷の発生も防止することができる。
By subjecting the temperature
碍子21を構成する材料は、プラズマやラジカル(フリーラジカル)に対して耐久性を有するセラミックスが好ましく、このセラミックスとしては、窒化アルミニウム(AlN)、酸化アルミニウム(Al2O3)、窒化ケイ素(Si3N4)、酸化ジルコニウム(ZrO2)、サイアロン、窒化ホウ素(BN)、炭化ケイ素(SiC)から選択された1種からなるセラミックス、あるいは2種以上を含む複合セラミックス等が好適に用いられる。
The material constituting the
[接合層]
接合層4は、図2に示すように、硬化体であるシリコーン系樹脂組成物と、フィラーとを含有する複合材料41に、静電チャック部材2を平面視した場合に多角形状のセラミックスからなるスペーサ42が複数個、同一平面内に略一定の密度で略規則的に配列されている。静電チャック部材2を平面視するとは、静電チャック部材2を載置板11の載置面11a側から視ることである。また、接合層4は、温度調整用ベース部材3に設けられた収容孔18内に延在し、収容孔18に碍子21を接合・一体化している。さらに、接合層4の内部には、静電チャック部材2と同様に、固定孔15および冷却ガス導入孔17も形成されている。
[Joining layer]
As shown in FIG. 2, the
図2では、スペーサ42が、最外周の同心円上に等間隔に8個、それよりも内側の同心円上に等間隔に8個、最内周の同心円上に等間隔に4個配置されている。これらのスペーサ42は、直線状に並ばないように配置されている。
In FIG. 2, eight
静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1は、0.05mm超かつ0.20mm以下であり、0.10mm以上かつ0.15mm以下であることが好ましい。
静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1が0.05mm以下では、静電チャック部材2と温度調整用ベース部材3の間の熱膨張率の差によるせん断歪を充分に緩和できず、静電チャック部材が破壊する場合がある。一方、静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1が0.20mmを超えると、接合層の熱抵抗が大きくなり、載置面11a上の板状試料を充分に冷却できない。
The thickness t1 of the
When the thickness t1 of the
碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2が0.0mm以上かつ0.2mm以下であり、0.0mm以上かつ0.1mm以下であることが好ましい。
碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2が0.0mm未満である場合、碍子21の端面21aが温度調整用ベース部材3の一方の面3aより上方となるため、静電チャック部材2と温度調整用ベース部材3の熱膨張差に起因するせん断応力が碍子端面21a近傍の接合層4に集中し、接合層4に亀裂がはいる懸念がある。一方、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2が0.2mmを超えると、接合層の熱抵抗が大きくなりすぎ、板状試料中の碍子直上部の温度が高くなり、温度の均一性が損なわれる。
The thickness t2 of the portion of the
When the thickness t2 of the portion of the
収容孔18内において、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3が0.00mm超かつ0.05mm以下であることが好ましい。
碍子21と静電チャック部材2の間における接合層4の厚さt3が0.00mmであれば、接合層の熱抵抗が小さくなりすぎ、碍子直上の板状試料の温度が低下する。一方、碍子21と静電チャック部材2の間における接合層4の厚さt3が0.05mm超であれば、接合層の熱抵抗が大きくなり過ぎて、板状試料中の碍子直上部の温度が高くなり、温度の均一性が損なわれる。
In the
If the thickness t3 of the
静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1は、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2以上、かつ、収容孔18内において、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3より大きいことが好ましい。
静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1を、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2以上にすることにより、静電チャック部材2と温度調整用ベース部材3の間の熱膨張率の差によるせん断歪みを充分に緩和することができる。また、静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1を、収容孔18内において、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3より大きくすることにより、接合層4の熱抵抗が大きくなり過ぎることがなく、載置面11a上の板状試料中の碍子21の直上部の温度が高くなり過ぎることもなく、温度の均一性が保たれる。
The thickness t1 of the
The thickness t1 of the
スペーサ42は、静電チャック部材2と温度調整用ベース部材3とを一定の厚さで接合するためのものである。スペーサ32の材料としては、高い誘電体損失(tanδ)を有しない材料、例えば、アルミナ(Al2O3)、窒化ケイ素(Si3N4)、ジルコニア(ZrO2)等の焼結体が好適に用いられる。なお、炭化ケイ素(SiC)焼結体、アルミニウム(Al)等の金属板、フェライト(Fe2O3)等の磁性材料といった高い誘電体損失を有する材料は放電の原因となるので好ましくない。
The
以下、接合層4について、詳細に説明する。
静電チャック部材2と温度調整用ベース部材3の間における接合層4は、硬化後のヤング率が8MPa以下の高分子材料からなることが好ましく、6MPa以下の高分子材料からなることがより好ましい。
接合層4は、硬化後のヤング率が8MPa以下の高分子材料から構成されることにより、接合層4の熱抵抗が大きくなり過ぎることがなく、載置面11a上の板状試料中の碍子21の直上部の温度が高くなり過ぎることもなく、温度の均一性が保たれる。
The
The
Since the
接合層4を構成する高分子材料の硬化後のヤング率の測定方法は、DMA法により測定する。ここで、「DMA」とは、動的粘弾性分析をいい、例えば、JIS C 6481に規定される分析方法である。測定条件は、各測定温度条件にて、スパン40mmにて試験片の長手方向に10gの引張加重を加えた状態から,振幅16μm、周波数11Hzで長手方向に正弦波をかけて貯蔵弾性率を求め、その値をヤング率とする。
The Young's modulus of the polymer material constituting the
硬化後のヤング率が8MPa以下高分子材料としては、シリコーン系樹脂組成物が好ましい。
シリコーン系樹脂組成物としては、公知文献(特開平4-287344号公報)に記載されているシリコーン樹脂含む。シリコーン系樹脂組成物は、シリコーン樹脂およびフィラーを含有していてもよい。
As the polymer material having a Young's modulus of 8 MPa or less after curing, a silicone resin composition is preferable.
The silicone resin composition includes silicone resins described in known literature (Japanese Patent Laid-Open No. 4-287344). The silicone resin composition may contain a silicone resin and a filler.
図3に示すように、碍子21と静電チャック部材2の間における接合層4(4A)は、フィラーを含有するシリコーン系樹脂組成物からなることが好ましい。これにより、接合層4Aの熱抵抗が大きくなり過ぎることがなく、載置面11a上の板状試料中の碍子21の直上部の温度が高くなり過ぎることもなく、温度の均一性が保たれる。
As shown in FIG. 3, the bonding layer 4 (4A) between the
また、静電チャック部材2と温度調整用ベース部材3の間における接合層4(4B)は、シリコーン樹脂およびフィラーを含有するシリコーン系樹脂組成物からなることが好ましい。これにより、接合層4(4B)の熱抵抗が大きくなり過ぎることがなく、載置面11a上の板状試料中の碍子21の直上部の温度が高くなり過ぎることもなく、温度の均一性が保たれる。
Further, the bonding layer 4 (4B) between the
また、碍子21と静電チャック部材2温度調整用ベース部材3の間における接合層4の収容孔18内にある部分4C(4)は、シリコーン樹脂のみからなる層を含むことが好ましい。これにより、収容孔18に対して、接合層4C(4)を介して、碍子21を強固に固定することができる。さらに、接合層4C(4)に含まれるシリコーン樹脂のみからなる層は、碍子21と接していることが好ましい。これにより、収容孔18に対して、接合層4C(4)を介して、碍子21をより強固に固定することができる。
Moreover, it is preferable that the
このシリコーン樹脂は、耐熱性、弾性に優れた樹脂であり、シロキサン結合(Si-O-Si)を有するケイ素化合物重合体である。このシリコーン樹脂は、例えば、下記の化学式(1)、化学式(2)で表すことができる。 This silicone resin is a resin with excellent heat resistance and elasticity, and is a silicon compound polymer having siloxane bonds (Si--O--Si). This silicone resin can be represented by, for example, the following chemical formula (1) and chemical formula (2).
このようなシリコーン樹脂としては、特に、熱硬化温度が70℃以上かつ140℃以下のシリコーン樹脂を用いることが好ましい。シリコーン樹脂の熱硬化温度が70℃以上であれば、静電チャック部材2の支持板12と温度調整用ベース部材3とを接合する際に、接合過程の途中でシリコーン樹脂の硬化が始まることがなく、接合作業に支障を来すことがない。一方、シリコーン樹脂の熱硬化温度が140℃以下であれば、支持板12と温度調整用ベース部材3との熱膨張差を吸収することができるため、載置板11の載置面11aの平坦度が低下することがない。また、支持板12と温度調整用ベース部材3との間の接合力が低下することがなく、これらの間で剥離が生じることもない。
As such a silicone resin, it is particularly preferable to use a silicone resin having a thermosetting temperature of 70° C. or higher and 140° C. or lower. If the thermosetting temperature of the silicone resin is 70°C or higher, the silicone resin may start to harden during the joining process when joining the
シリコーン樹脂としては、硬化後のヤング率が8MPa以下のものを用いることが好ましい。硬化後のヤング率が8MPa以下であれば、接合層4に昇温、降温の熱サイクルが負荷された際にも支持板12と温度調整用ベース部材3との熱膨張差を吸収することができるため、接合層4の耐久性が低下することを防止できる。
As the silicone resin, it is preferable to use one having a Young's modulus of 8 MPa or less after curing. If the Young's modulus after curing is 8 MPa or less, it is possible to absorb the difference in thermal expansion between the
フィラーとしては、高熱伝導性の材料であれば特に制限されるものではない。高熱伝導性のフィラーとしては、例えば、アルミナ(Al2O3)、酸化ケイ素(SiO2)、窒化アルミニウム(AlN)等のセラミックス粉末や、アルミニウム(Al)等の金属粉末が挙げられる。フィラーとしては、熱伝導性に優れている点から、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO2)からなる被覆層が形成された表面被覆窒化アルミニウム(AlN)粒子が好ましい。 The filler is not particularly limited as long as it is a highly thermally conductive material. Examples of highly thermally conductive fillers include ceramic powders such as alumina (Al 2 O 3 ), silicon oxide (SiO 2 ), and aluminum nitride (AlN), and metal powders such as aluminum (Al). As the filler, surface-coated aluminum nitride (AlN) particles, in which a coating layer made of silicon oxide (SiO 2 ) is formed on the surface of aluminum nitride (AlN) particles, are preferable because they have excellent thermal conductivity.
また、表面被覆窒化アルミニウム(AlN)粒子は、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO2)からなる被覆層が形成されているため、表面被覆が施されていない単なる窒化アルミニウム(AlN)粒子と比較して、優れた耐水性を有している。したがって、シリコーン系樹脂組成物を主成分とする接合層4の耐久性を確保することができ、よって静電チャック装置1の耐久性を飛躍的に向上させることができる。
In addition, surface-coated aluminum nitride ( AlN ) particles are simply aluminum nitride (AlN ) has excellent water resistance compared to particles. Therefore, the durability of the
表面被覆が施されていない窒化アルミニウム(AlN)粒子は、下記の化学反応式(3)で示されるように、例えば、大気中の水により加水分解されて水酸化アルミニウム(Al(OH)3)とアンモニア(NH3)を生成する。この水酸化アルミニウム(Al(OH)3)により、窒化アルミニウム(AlN)の熱伝導性が低下する。
AlN+3H2O→Al(OH)3+NH3 (3)
As shown in the chemical reaction formula (3) below, aluminum nitride (AlN) particles without a surface coating are, for example, hydrolyzed by water in the atmosphere to form aluminum hydroxide (Al(OH) 3 ). and ammonia (NH 3 ). This aluminum hydroxide (Al(OH) 3 ) reduces the thermal conductivity of aluminum nitride (AlN).
AlN+ 3H2O →Al(OH) 3 +NH3 ( 3 )
一方、表面被覆窒化アルミニウム(AlN)粒子は、窒化アルミニウム(AlN)粒子の表面が、優れた耐水性を有する酸化ケイ素(SiO2)からなる被覆層により被覆されているため、窒化アルミニウム(AlN)が大気中の水により加水分解されることがなく、窒化アルミニウム(AlN)の熱伝導性が低下することもない。したがって、接合層4の耐久性が向上し、また、半導体ウエハ等の板状試料への汚染源となることもない。
On the other hand, surface-coated aluminum nitride (AlN) particles have a surface coated with a coating layer made of silicon oxide (SiO 2 ) having excellent water resistance. is not hydrolyzed by water in the atmosphere, and the thermal conductivity of aluminum nitride (AlN) does not decrease. Therefore, the durability of the
表面被覆窒化アルミニウム(AlN)粒子は、被覆層中のケイ素(Si)とシリコーン系樹脂組成物とにより強固な結合状態を得ることが可能であるから、接合層4の伸び性を向上させることが可能である。これにより、静電チャック部材2の支持板12の熱膨張率と温度調整用ベース部材3の熱膨張率との差に起因する熱応力を緩和することができ、静電チャック部材2と温度調整用ベース部材3とを精度よく、強固に接合することができる。また、使用時の熱サイクル負荷に対する耐性が充分なものとなり、静電チャック装置の耐久性が向上する。
Since the surface-coated aluminum nitride (AlN) particles can obtain a strong bond between silicon (Si) and the silicone resin composition in the coating layer, it is possible to improve the elongation of the
この表面被覆窒化アルミニウム(AlN)粒子の被覆層の厚さは0.005μm以上かつ0.05μm以下であることが好ましく、0.005μm以上かつ0.03μm以下であることがより好ましい。
被覆層の厚さが0.005μm以上であれば、窒化アルミニウム(AlN)の耐水性(耐湿性)を充分に発現することができる。一方、被覆層の厚さが0.05μm以下であれば、表面被覆窒化アルミニウム(AlN)粒子の熱伝導性が低下することがなく、ひいては載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することがない。したがって、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
The thickness of the coating layer of the surface-coated aluminum nitride (AlN) particles is preferably 0.005 μm or more and 0.05 μm or less, more preferably 0.005 μm or more and 0.03 μm or less.
If the thickness of the coating layer is 0.005 μm or more, the water resistance (moisture resistance) of aluminum nitride (AlN) can be sufficiently exhibited. On the other hand, if the thickness of the coating layer is 0.05 μm or less, the thermal conductivity of the surface-coated aluminum nitride (AlN) particles will not decrease, and as a result, they will be placed on the
この表面被覆窒化アルミニウム(AlN)粒子の平均粒径は、1μm以上かつ20μm以下であることが好ましい。
この表面被覆窒化アルミニウム(AlN)粒子の平均粒径が1μmを下回ると、粒子同士の接触が不充分となり、結果的に熱伝導率が劣化する虞があり、また、粒径が細か過ぎると取扱等の作業性の低下を招くこととなり好ましくない。一方、平均粒径が20μmを越えると、局所的に見た場合、接合層4内におけるシリコーン系樹脂組成物の占める割合が減少し、接合層4の伸び性、接着強度の低下を招くことがあり、また、その場合、粒子の脱離が発生し易くなり、接合層4に空孔(ポア)が生じることとなり、結果的に熱伝導性、伸び性、接着強度の劣化を招くので好ましくない。
The average particle size of the surface-coated aluminum nitride (AlN) particles is preferably 1 μm or more and 20 μm or less.
If the average particle size of the surface-coated aluminum nitride (AlN) particles is less than 1 μm, there is a risk that contact between the particles will be insufficient and the thermal conductivity will deteriorate as a result, and if the particle size is too small, it may be difficult to handle. This is not preferable because it causes a decrease in workability. On the other hand, if the average particle size exceeds 20 μm, the proportion of the silicone resin composition in the
この接合層4における表面被覆窒化アルミニウム(AlN)粒子の含有量は、20vol%以上かつ40vol%以下であることが好ましい。
この表面被覆窒化アルミニウム(AlN)粒子の含有量が20vol%を下回ると,接合層4の熱伝導性が低下し、ひいては載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下し、処理中の板状試料の温度を好ましい一定の温度に保つことが困難なものとなるからであり、一方、含有量が40vol%を越えると、接合層4の伸び性が低下して熱応力緩和が不充分となり、載置板11の載置面11aの平坦度、平行度が劣化するのみならず、支持板12と温度調整用ベース部材3との間の接合力が低下し、両者間で剥離が生じる虞があるからである。
The content of surface-coated aluminum nitride (AlN) particles in this
When the content of the surface-coated aluminum nitride (AlN) particles is less than 20 vol%, the thermal conductivity of the
この接合層4の厚みは、50μm以上かつ180μm以下であることが好ましい。
この接合層4の厚みが50μmを下回ると、静電チャック部材2と温度調整用ベース部材3との間の熱伝導性は良好となるものの、熱応力緩和が不充分となるからであり、一方、接合層4の厚みが180μmを超えると、静電チャック部材2と温度調整用ベース部材3との間の熱伝導性を充分確保することができず、またプラズマ透過性も低下するからである。
The thickness of this
If the thickness of the
本実施形態の静電チャック装置1によれば、碍子21の上面21aが収容孔18内にあり、静電チャック部材2と温度調整用ベース部材3の間における接合層4の厚さt1が0.05mm以上かつ0.20mm以下、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2が0.0mm超かつ0.2mm以下であるため、温度調整用ベース部材3と静電チャック部材2に、それらの熱膨張の差に起因するせん断変位やせん断応力が発生することを抑制することができる。
According to the
以下、本実施形態の静電チャック装置1の製造方法を、静電チャック部材2と温度調整用ベース部材3との接合方法に重点をおいて説明する。
Hereinafter, a method for manufacturing the
まず、公知の方法により、静電チャック部材2と、温度調整用ベース部材3とを作製する。
First, the
次いで、碍子21の側面に、シリコーン樹脂およびフィラーを含有するシリコーン系樹脂組成物の少なくとも一方を塗布し、碍子21の上面21aにフィラー入りシリコーン系樹脂組成物を塗布する。その後、温度調整用ベース部材3の収容孔18に、碍子21を挿入する。この際、収容孔18内において、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3が所望の寸法となるように、碍子21の外径と収容孔18の内径の寸法を設定する。
Next, at least one of a silicone resin and a silicone resin composition containing a filler is applied to the side surface of the
碍子21の挿入においては、碍子21の端面(上面)21aが、温度調整用ベース部材3の一方の面3aより下方で、かつ碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分4A(接合層4A)の厚さt2が所望の厚みとなるように位置決めする。位置決めは、温度調整用ベース部材3の他方の面3bを基準とした冶具を用いたり、碍子21、温度調整用ベース部材3の収容孔18を段付きとして突き当てたりする等の方法で行う。
When inserting the
さらに、収容孔18への碍子21の挿入を真空中で行うことで、空気の巻き込みを防ぎ、気泡による耐電圧の低下や、熱伝達が不均一になることを抑制できる。
Furthermore, by inserting the
その後、シリコーン系樹脂組成物を硬化させる。硬化条件は、シリコーン系樹脂の最適硬化条件に従えばよい。 Thereafter, the silicone resin composition is cured. The curing conditions may be in accordance with the optimum curing conditions for the silicone resin.
一方、シリコーン系樹脂組成物と、フィラーとを、所定の比率で混合し、この混合物に攪拌脱泡処理を施し、シリコーン系樹脂組成物とフィラーとの混合物を調製する。この場合、シリコーン系樹脂組成物の粘度が塗布に適する範囲内、例えば、50Pa・s以上かつ300Pa・s以下となるように、混合物に、トルエン、キシレン等の有機溶剤を加えてもよい。 On the other hand, a silicone resin composition and a filler are mixed at a predetermined ratio, and this mixture is subjected to a stirring defoaming treatment to prepare a mixture of the silicone resin composition and filler. In this case, an organic solvent such as toluene or xylene may be added to the mixture so that the viscosity of the silicone resin composition is within a range suitable for coating, for example, 50 Pa·s or more and 300 Pa·s or less.
次いで、温度調整用ベース部材3の接合面を、例えば、アセトンを用いて脱脂、洗浄し、この接合面上に、幅1mm、長さ1mm、厚さ0.1mmのセラミックス製のスペーサ41を、常温硬化型シリコーン接着剤を用いて接着する。
Next, the joint surface of the temperature
スペーサ41は、静電チャック部材2と温度調整用ベース部材3とを一定の間隔をおいて接合するためのものである。スペーサ31の個数、配置する位置は適宜でよい。例えば、直径298mmの静電チャック部材2と直径298mmの温度調整用ベース部材3とを接合する場合には、温度調整用ベース部材3上に最外周の同心円上に8個、さらに適度に中心方向に寄った同心円上に8個、さらに中心方向に寄った同心円上に8個配置する。これらのスペーサ41は、直線状に並ばないように配置する。さらに、中心方向の同心円上に4個、最内周の同心円上に4個配置する。
The
次いで、常温に所定時間放置して、常温硬化型シリコーン接着剤を充分に硬化させた後、スペーサ41の上に、接合層4を形成するシリコーン系樹脂組成物を塗布する。シリコーン系樹脂組成物の塗布量は、静電チャック部材2と温度調整用ベース部材3とを一定の間隔を置いて接合するため所定の範囲内にする。
例えば、直径298mmの静電チャック部材2と直径298mmの温度調整用ベース部材3とを接合する場合には、温度調整用ベース部材3の接合面に20g~22g、静電チャック部材2の接合面に15g~17g、それぞれ塗布する。
Next, the silicone adhesive is left at room temperature for a predetermined period of time to fully cure the room temperature curable silicone adhesive, and then a silicone resin composition forming the
For example, when joining an
このシリコーン系樹脂組成物の塗布方法としては、ヘラ等を用いて手動で塗布する他、バーコート法、スクリーン印刷法等を用いることができる。 As a method for applying this silicone resin composition, in addition to manual application using a spatula or the like, a bar coating method, a screen printing method, etc. can be used.
塗布後、静電チャック部材2と温度調整用ベース部材3とをシリコーン系樹脂組成物を介して重ね合わせ、静電チャック部材2と温度調整用ベース部材3との間隔がスペーサ41の厚さになるまで、静電チャック部材2と温度調整用ベース部材3の積層体を押し潰して、余分なシリコーン系樹脂組成物を押し出して、除去する。押し潰す際の温度は、シリコーン系樹脂組成物の流動性が最も高くなる温度が好ましい。
After coating, the
また、シリコーン系樹脂組成物中の気泡を除去するために、静電チャック部材2と温度調整用ベース部材3とを重ね合わせた後に真空脱泡処理を施すことも、強固かつ均一な組織を有する接合層4を得る上で有効である。
In addition, in order to remove air bubbles in the silicone resin composition, vacuum defoaming treatment may be performed after the
その後、シリコーン系樹脂組成物を硬化させる。硬化条件は、用いるシリコーン系樹脂の最適硬化条件に従えばよく、また、硬化時に加圧してもよい。 Thereafter, the silicone resin composition is cured. The curing conditions may be in accordance with the optimum curing conditions of the silicone resin used, and pressure may be applied during curing.
このようにして静電チャック部材2の支持板12と温度調整用プレート部材3とを接合し、支持板12と温度調整用プレート部材3の間に形成された接合層4の熱伝導率の平均値は0.35W/mK以上であり、熱伝導性に優れている。
In this way, the
なお、本実施形態に係る板状試料としては、半導体ウエハに限るものではなく、例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ等の平板型ディスプレイ(FPD)用ガラス基板等であってもよい。また、その基板の形状や大きさに合わせて本実施形態の静電チャック装置を設計すればよい。 Note that the plate-shaped sample according to this embodiment is not limited to semiconductor wafers, but may also include, for example, glass substrates for flat panel displays (FPD) such as liquid crystal displays (LCDs), plasma displays (PDPs), and organic EL displays. It may be. Further, the electrostatic chuck device of this embodiment may be designed according to the shape and size of the substrate.
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1]
(静電チャック装置の作製)
「静電チャック部材の形成」
載置板11および、中央に給電端子16を有する支持板12を、接合一体化することにより、静電チャック部材2を得た。
具体的には、内部に絶縁材14により周囲を絶縁され、厚さ15μmの静電吸着用電極13が埋設された、図1に示す載置板11と支持板12を有する静電チャック部材2を作製した。
この静電チャック部材2の載置板11は、炭化ケイ素を8質量%含有する酸化アルミニウム-炭化ケイ素複合焼結体であり、直径は310mm、厚みは3mmの円板状であった。
[Example 1]
(Production of electrostatic chuck device)
"Formation of electrostatic chuck member"
The
Specifically, an
The mounting
また、支持板12も載置板11と同様、炭化ケイ素を8質量%含有する酸化アルミニウム-炭化ケイ素複合焼結体であり、直径は310mm、厚さは5.0mmの円板状であった。
Further, like the mounting
この接合体(静電チャック部材2)に機械加工を施し、直径298mm、厚さ1.0mmの円盤形とした。
その後、この載置板11の静電吸着面を、高さが50μmの多数の突起部を形成することで、凹凸面とし、これらの突起部の頂面を板状試料Wの保持面とした。接合体は、この形状により、凹部(吸着面の突起部以外の箇所)と静電吸着された板状試料Wとの間に形成される溝に冷却ガスを流すことができるように形成された。
This joined body (electrostatic chuck member 2) was machined into a disk shape with a diameter of 298 mm and a thickness of 1.0 mm.
Thereafter, the electrostatic attraction surface of this mounting
「温度調整用ベース部材の形成」
直径350mm、高さ30mmの円盤状のアルミニウム製の温度調整用ベース部材3を、機械加工により作製した。この温度調整用ベース部材3の内部には冷媒を循環させる流路34を形成した。冷却ガス導入箇所の碍子の収容孔18を複数形成した。収容孔18の内径を直径5.0mmとした。
収容孔18の温度調整用ベース部材3の一方の面3a側には、C0.05mmの面取りを施した。
"Formation of base member for temperature adjustment"
A disc-shaped temperature
One
「シリコーン系樹脂組成物の作製」
シリコーン樹脂(商品名:TSE3221、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)に、表面が酸化ケイ素(SiO2)により被覆された表面被覆窒化アルミニウム(AlN)粉末(商品名:TOYALNITE、東洋アルミニウム株式会社製)を、上記のシリコーン樹脂および表面被覆窒化アルミニウム(AlN)粉末の体積の合計量に対して35vol%となるように混合し、この混合物に攪拌脱泡処理を施し、シリコーン系樹脂組成物を得た。このシリコーン系樹脂組成物の熱伝導率は0.8W/mKであった。
"Preparation of silicone resin composition"
Surface-coated aluminum nitride (AlN) powder (product name: TOYALNITE, Toyo Aluminum) whose surface is coated with silicon oxide (SiO 2 ) on silicone resin (product name: TSE3221, manufactured by Momentive Performance Materials Japan LLC) Co., Ltd.) was mixed in an amount of 35 vol% based on the total volume of the above silicone resin and surface-coated aluminum nitride (AlN) powder, and this mixture was subjected to stirring and degassing treatment to obtain a silicone resin composition. I got something. The thermal conductivity of this silicone resin composition was 0.8 W/mK.
「碍子の形成」
酸化アルミニウム焼結体を管状に加工し、碍子21を形成した。この際、碍子21の外径を直径4.9mm、内径を直径2.0mm、全長を29.95mmとした。
"Formation of insulators"
An
「碍子の接合」
次いで、前記碍子21の側面に常温硬化型シリコーン接着剤 信越シリコーンKE4895T(信越化学工業株式会社製)を塗布し、碍子21の上面21aにフィラー入りシリコーン系樹脂組成物を塗布した。シリコーン系樹脂組成物としては、上述のようにして作製したものを用いた。その後、温度調整用ベース部材3の冷却ガス導入箇所の碍子の収容孔18に、碍子21を挿入した。その際、碍子21の下端部21bと温度調整用ベース部材3の他方の端面3bが同一高さとなるように位置決め固定した。その結果、碍子21の上端部21aは、収容孔18内にあり、温度調整用ベース部材3の一方の面3aとの段差が0.05mmとなった。
"Joining of insulators"
Next, a cold-curing silicone adhesive Shin-Etsu Silicone KE4895T (manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the side surface of the
「スペーサの形成」
幅1mm、長さ1mm、厚さ0.1mmの角形状のスペーサ42を、アルミナ(Al2O3)焼結体にて作製した。
"Formation of spacers"
A
「スペーサの配置」
前述のスペーサ42を常温硬化型シリコーン接着剤(商品名:信越シリコーンKE4895T、信越化学工業株式会社製)で温度調整用ベース部材3上の所定の位置に接着し、スペーサ42を固定した。
"Spacer placement"
The
「接合層の形成」
次いで、静電チャック部材2上に、スクリーン印刷法により上記のシリコーン系樹脂組成物を塗布した。
"Formation of bonding layer"
Next, the above silicone resin composition was applied onto the
「静電チャック部材とベース部材の積層」
その後、静電チャック部材2と温度調整用ベース部材3とを、前記シリコーン系樹脂組成物を介して重ね合わせた。
次いで、静電チャック部材2と温度調整用ベース部材3の間における接合層4の間隔がスペーサ42の厚さになるまで適度な圧力を加えて落し込み、押し出された余分の接着剤を除去し、硬化した。その結果、静電チャック部材2と温度調整用ベース部材3の間における接合層厚さt1は、0.1mmとなった。
また、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2は、0.05mmとなった。
"Lamination of electrostatic chuck member and base member"
Thereafter, the
Next, the
Further, the thickness t2 of the portion of the
(均熱性評価)
図5に示すような温度評価用基板5、および赤外線ヒータ付きの真空チャンバー6を用い、静電チャック装置1の均熱性を評価した。
(Heat uniformity evaluation)
The thermal uniformity of the
温度評価用基板5は、炭化ケイ素(SiC)ウエハ51に熱電対52を取り付けたもので、熱電対52を取り付けた位置の基板温度を測定できる。熱電対52の取り付け位置は、碍子21の中心直上と、碍子21の中心から20mm離れた箇所としている。
The temperature evaluation substrate 5 is a silicon carbide (SiC)
温度評価用基板5は、赤外線ヒータ付きの真空チャンバー6に取り付けられた静電チャック装置1の静電チャック部材2を構成する載置板11の載置面11aに静電吸着される。真空チャンバー6内において、温度評価用基板5に対向して赤外線ヒータ61が配置され、その赤外線ヒータ61により温度評価用基板5を加熱する構造となっている。また、熱電対52で、SiCウエハ51の温度を測定する。静電チャック装置1の温度調整用ベース部材3は、冷媒62によって冷却される。
The temperature evaluation substrate 5 is electrostatically attracted to the mounting
測定の手順は、真空ポンプ63で、真空チャンバー6内を0.1Pa以下に真空引きし、20℃の冷媒62を温度調整用ベース部材3に流した状態で、赤外線ヒータ61によって所定の入熱量となるように温度評価用基板5を加熱し、熱電対52の位置のSiCウエハ51の温度を測定した。結果を表1に示す。
表1の結果から、温度評価用基板5の碍子21の直上と碍子21の直上から20mm離れた箇所の温度差が0.7℃であり、温度が均一であることが分かった。
The measurement procedure is to evacuate the inside of the
From the results in Table 1, it was found that the temperature difference between the temperature evaluation substrate 5 directly above the
(温度サイクル試験)
次いで、静電チャック装置1を恒温槽に設置し、-20℃から130℃の間で温度を昇降させる温度サイクル試験を実施し、静電チャック部材2と温度調整用ベース部材3の熱膨張差に起因する変位を接合層4に繰り返し与えた。
(Temperature cycle test)
Next, the
温度サイクル試験前後で、図6に示すような方法で接合層4の耐電圧試験を実施した。
直流電源71に接続された電極ピン72を、静電チャック装置1の冷却ガス導入孔17に挿入し、温度調整用ベース部材3を接地した状態で直流電源71により、静電チャック装置1に電圧を印加した。温度調整用ベース部材3とグランド間に接続された電流計73によって、電極ピン72と温度調整用ベース部材3間の漏れ電流を測定し、耐電圧を調べた。
結果を表2に示す。温度サイクル試験後も耐電圧が10kV以上あることが分かった。
Before and after the temperature cycle test, a withstand voltage test was conducted on the
The
The results are shown in Table 2. It was found that the withstand voltage was 10 kV or more even after the temperature cycle test.
[実施例2]
実施例1と同様にして、静電チャック部材2、温度調整用ベース部材3を作製した。
[Example 2]
In the same manner as in Example 1, an
「碍子の形成」
酸化アルミニウム焼結体を管状に加工し、碍子21を形成した。この際、碍子21の外径を直径4.9mm、全長を30.00mmとした。
"Formation of insulators"
An
「碍子の接合」
実施例1と同様の方法で、温度調整用ベース部材3と碍子21を接合した。その結果、碍子21の上端部21aは、収容孔18内にあり、温度調整用ベース部材3の一方の面3aとの段差が0.0mmとなった。
"Joining of insulators"
The temperature
「スペーサの形成」
幅1mm、長さ1mm、厚さ0.05mmの角形状のスペーサ42を、アルミナ(Al2O3)焼結体にて作製した。
"Formation of spacers"
A
実施例1と同様にして、静電チャック部材2と温度調整用ベース部材3を積層した。その結果、静電チャック部材2と温度調整用ベース部材3の間の接合層4の厚さt1は、0.05mmとなった。
また、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2は、0.0mmとなった。
In the same manner as in Example 1, the
Further, the thickness t2 of the portion of the
(評価)
実施例1と同様にして、静電チャック装置1の均熱性を評価した。結果を表1に示す。表1の結果から、温度評価用基板5の碍子21の直上と碍子21の直上から20mm離れた箇所の温度差が0.5℃であり、温度が均一であることが分かった。
次いで、実施例1と同様にして、静電チャック装置1の温度サイクル試験を実施した。結果を表2に示す。温度サイクル試験後も耐電圧が10kV以上あることが分かった。
(evaluation)
The thermal uniformity of the
Next, in the same manner as in Example 1, the
[実施例3]
スペーサ42の厚さを0.2mm、碍子21の外径を4.98mm、全長を29.80mmとした以外は、実施例1と同様にして、静電チャック装置1を作製した。静電チャック部材2と温度調整用ベース部材3の間の接合層厚さt1は、0.2mm、碍子21と静電チャック部材2の間における接合層4の接合層4の収容孔18内にある部分の厚さt2は、0.20mm、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3は、0.01mmとなった。
[Example 3]
An
(評価)
実施例1と同様にして、静電チャック装置1の均熱性を評価した。結果を表1に示す。表1の結果から、温度評価用基板5の碍子21の直上と碍子21の直上から20mm離れた箇所の温度差が0.9℃であり、温度が均一であることが分かった。
次いで、実施例1と同様にして、静電チャック装置1の温度サイクル試験を実施した。結果を表2に示す。温度サイクル試験後も耐電圧が10kV以上あることが分かった。
(evaluation)
The thermal uniformity of the
Next, in the same manner as in Example 1, the
[比較例1]
碍子21の長さを30.05mmとした以外は、実施例1と同様にして、静電チャック装置1を作製した。静電チャック部材2と温度調整用ベース部材3の間の接合層厚さt1は、0.1mm、碍子21の上端部21aは、収容孔18から飛び出し、碍子21と静電チャック部材2の間における接合層4の接合層4の収容孔18内にある部分の厚さt2は、-0.05mm、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3は、0.05mmとなった。
[Comparative example 1]
An
(評価)
実施例1と同様にして、静電チャック装置1の均熱性を評価した。結果を表1に示す。表1の結果から、温度評価用基板5の碍子21の直上と碍子21の直上から20mm離れた箇所の温度差が0.1℃であり、温度が均一であることが分かった。
次いで、実施例1と同様にして、静電チャック装置1の温度サイクル試験を実施した。結果を表2に示す。温度サイクル試験後の耐電圧測定では9kVで放電し、静電チャック部材2と温度調整用ベース部材3の熱膨張差に起因する変位によって接合層4の耐電圧が低下したことが分かった。
(evaluation)
The thermal uniformity of the
Next, in the same manner as in Example 1, the
[比較例2]
碍子21の全長を29.70mmとした以外は、実施例1と同様にして、静電チャック装置1を作製した。静電チャック部材2と温度調整用ベース部材3の間の接合層厚さt1は、0.1mm、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2は、0.10mm、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3は、0.05mmとなった。
[Comparative example 2]
An
(評価)
実施例1と同様にして、静電チャック装置1の均熱性を評価した。結果を表1に示す。表1の結果から、温度評価用基板5の碍子21の直上と碍子21の直上から20mm離れた箇所の温度差が1.6℃であり、碍子21の直上の温度が高く、不均一であることが分かった。
次いで、実施例1と同様にして、静電チャック装置1の温度サイクル試験を実施した。結果を表2に示す。温度サイクル試験後も耐電圧が10kV以上あることが分かった。
(evaluation)
The thermal uniformity of the
Next, in the same manner as in Example 1, the
[比較例3]
スペーサ42の厚さを0.3mm、碍子21の全長を29.80mm、外径を4.86mmとした以外は、実施例1と同様にして、静電チャック装置1を作製した。静電チャック部材2と温度調整用ベース部材3の間の接合層厚さt1は、0.3mm、碍子21と静電チャック部材2の間における接合層4の収容孔18内にある部分の厚さt2は、0.20mm、碍子21と温度調整用ベース部材3の間における接合層4の厚さt3は、0.07mmとなった。
[Comparative example 3]
An
(評価)
実施例1と同様にして、静電チャック装置1の均熱性を評価した。結果を表1に示す。表1の結果から、温度評価用基板5の碍子21の直上と碍子21の直上から20mm離れた箇所の温度差が1.4℃であり、碍子21の直上の温度が51.3℃と高く、不均一であることが分かった。
次いで、実施例1と同様にして、静電チャック装置1の温度サイクル試験を実施した。結果を表2に示す。温度サイクル試験後も耐電圧が10kV以上あることが分かった。
(evaluation)
The thermal uniformity of the
Next, in the same manner as in Example 1, the
本発明の静電チャック装置は、セラミックスからなる静電チャック部材と、金属および/またはセラミックスからなる温度調整用ベース部材とを、シリコーン系樹脂組成物と、表面が酸化ケイ素(SiO2)により被覆された表面被覆窒化アルミニウム(AlN)粒子とを含有する接合層により接合、一体化したものであるから、静電チャック装置以外の、セラミックスからなる部材と、金属およびセラミックスの少なくとも一方からなる部材との接合・一体化に対しても適用可能であり、その有用性は非常に大きいものである。 The electrostatic chuck device of the present invention includes an electrostatic chuck member made of ceramics and a temperature adjustment base member made of metal and/or ceramics, the surface of which is coated with a silicone resin composition and silicon oxide (SiO 2 ). Since it is bonded and integrated by a bonding layer containing surface-coated aluminum nitride (AlN) particles, it can be used with a member made of ceramics and a member made of at least one of metal and ceramics, other than the electrostatic chuck device. It can also be applied to joining and integrating materials, and its usefulness is extremely large.
1 静電チャック装置
2 静電チャック部材
3 温度調整用ベース部材
4 接合層
11 載置板
11a 載置面
12 支持板
13 静電吸着用電極
14 絶縁材
15 固定孔
16 給電端子
17 冷却ガス導入孔
18 収容孔
21 碍子
22 貫通孔
31 高周波電源
32 絶縁材料
33 直流電源
41 複合材料
42 スペーサ
1
Claims (5)
前記静電チャック部材、前記温度調整用ベース部材および前記接合層に、その厚さ方向に貫通する冷却ガス導入孔が設けられ、
前記温度調整用ベース部材を厚さ方向に貫通する収容孔内に、前記接合層を介してセラミックスからなる碍子が接合され、
前記温度調整用ベース部材における前記冷却ガス導入孔は、前記収容孔内に配置された前記碍子を厚さ方向に貫通する貫通孔であり、
前記碍子の前記静電チャック部材側の端面が、前記収容孔内にあり、
前記静電チャック部材と前記温度調整用ベース部材の間における前記接合層の厚さが0.05mm以上かつ0.20mm以下であり、
前記碍子と前記静電チャック部材の間における前記接合層の前記収容孔内にある部分の厚さが0.0mm以上かつ0.2mm以下であり、
前記静電チャック部材と前記温度調整用ベース部材の間における前記接合層は、シリコーン樹脂およびフィラーを含有するシリコーン系樹脂組成物からなり、
前記碍子と前記温度調整用ベース部材の間における前記接合層の前記収容孔内にある部分は、シリコーン樹脂のみからなる層を含む静電チャック装置。 An electrostatic chuck device in which an electrostatic chuck member made of ceramics and a temperature adjustment base member made of metal are bonded via a bonding layer,
Cooling gas introduction holes are provided in the electrostatic chuck member, the temperature adjustment base member, and the bonding layer in a thickness direction thereof;
An insulator made of ceramics is bonded to the accommodation hole passing through the temperature adjustment base member in the thickness direction via the bonding layer,
The cooling gas introduction hole in the temperature adjustment base member is a through hole that penetrates the insulator disposed in the accommodation hole in the thickness direction,
an end surface of the insulator on the electrostatic chuck member side is within the accommodation hole;
The thickness of the bonding layer between the electrostatic chuck member and the temperature adjustment base member is 0.05 mm or more and 0.20 mm or less,
The thickness of the portion of the bonding layer between the insulator and the electrostatic chuck member located within the accommodation hole is 0.0 mm or more and 0.2 mm or less,
The bonding layer between the electrostatic chuck member and the temperature adjustment base member is made of a silicone resin composition containing a silicone resin and a filler,
In the electrostatic chuck device, a portion of the bonding layer between the insulator and the temperature adjusting base member that is located within the accommodation hole includes a layer made only of silicone resin .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020057813A JP7415732B2 (en) | 2020-03-27 | 2020-03-27 | electrostatic chuck device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020057813A JP7415732B2 (en) | 2020-03-27 | 2020-03-27 | electrostatic chuck device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2021158242A JP2021158242A (en) | 2021-10-07 |
| JP7415732B2 true JP7415732B2 (en) | 2024-01-17 |
Family
ID=77919171
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020057813A Active JP7415732B2 (en) | 2020-03-27 | 2020-03-27 | electrostatic chuck device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7415732B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116117686B (en) * | 2021-11-15 | 2024-07-19 | 成都高真科技有限公司 | Wafer grabbing device, polishing equipment and application |
| CN115950765B (en) * | 2023-03-10 | 2023-05-26 | 国网山西省电力公司电力科学研究院 | System and method for detecting shear stress intensity of epoxy part of GIS basin-type insulator |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3154629U (en) | 2009-08-04 | 2009-10-22 | 日本碍子株式会社 | Electrostatic chuck |
| JP2016012733A (en) | 2014-03-27 | 2016-01-21 | Toto株式会社 | Electrostatic chuck |
| WO2017126534A1 (en) | 2016-01-19 | 2017-07-27 | 住友大阪セメント株式会社 | Electrostatic chuck device |
| JP2019176064A (en) | 2018-03-29 | 2019-10-10 | 住友大阪セメント株式会社 | Electrostatic chuck device |
-
2020
- 2020-03-27 JP JP2020057813A patent/JP7415732B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3154629U (en) | 2009-08-04 | 2009-10-22 | 日本碍子株式会社 | Electrostatic chuck |
| JP2016012733A (en) | 2014-03-27 | 2016-01-21 | Toto株式会社 | Electrostatic chuck |
| WO2017126534A1 (en) | 2016-01-19 | 2017-07-27 | 住友大阪セメント株式会社 | Electrostatic chuck device |
| JP2019176064A (en) | 2018-03-29 | 2019-10-10 | 住友大阪セメント株式会社 | Electrostatic chuck device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2021158242A (en) | 2021-10-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4727434B2 (en) | Electrostatic chuck device | |
| KR101677922B1 (en) | Electrostatic chuck apparatus | |
| JP5267603B2 (en) | Electrostatic chuck | |
| US11328948B2 (en) | Electrostatic chuck device and method of manufacturing electrostatic chuck device | |
| KR101902349B1 (en) | Electrostatic chuck device | |
| JP7020221B2 (en) | Electrostatic chuck device | |
| JP4943086B2 (en) | Electrostatic chuck apparatus and plasma processing apparatus | |
| KR20140004756A (en) | Electrostatic chuck device | |
| JP7020238B2 (en) | Electrostatic chuck device | |
| JP2008042141A (en) | Electrostatic chuck | |
| JP2010040644A (en) | Electrostatic chuck device | |
| JP6155922B2 (en) | Electrostatic chuck device | |
| JP5982887B2 (en) | Electrostatic chuck device | |
| JP6702385B2 (en) | Electrostatic chuck device | |
| JP2011222979A (en) | Electrostatic chuck | |
| TWI836170B (en) | Ceramic joint body, electrostatic chuck device, and method for manufacturing ceramic joint body | |
| JP7415732B2 (en) | electrostatic chuck device | |
| WO2023095596A1 (en) | Electrostatic chuck device | |
| JP2021158236A (en) | Electrostatic chuck device | |
| TWI894416B (en) | Ceramic bonded body and electrostatic chuck device | |
| JP7608871B2 (en) | Composite conductive member, sample holder, electrostatic chuck device | |
| WO2023188632A1 (en) | Electrostatic chuck member, electrostatic chuck device, and method for manufacturing electrostatic chuck member | |
| JP2023128350A (en) | Electrostatic chuck member and electrostatic chuck device | |
| TW202503964A (en) | Electrostatic chuck device | |
| TW202427552A (en) | Electrostatic chuck member and electrostatic chuck device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220819 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230626 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230904 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231205 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231218 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7415732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |